51
|
Oniszczuk A, Oniszczuk T, Gancarz M, Szymańska J. Role of Gut Microbiota, Probiotics and Prebiotics in the Cardiovascular Diseases. Molecules 2021; 26:molecules26041172. [PMID: 33671813 PMCID: PMC7926819 DOI: 10.3390/molecules26041172] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, there has been a growing interest in identifying and applying new, naturally occurring molecules that promote health. Probiotics are defined as “live microorganisms which, when administered in adequate amounts, confer health benefits on the host”. Quite a few fermented products serve as the source of probiotic strains, with many factors influencing the effectiveness of probiotics, including interactions of probiotic bacteria with the host’s microbiome. Prebiotics contain no microorganisms, only substances which stimulate their growth. Prebiotics can be obtained from various sources, including breast milk, soybeans, and raw oats, however, the most popular prebiotics are the oligosaccharides contained in plants. Recent research increasingly claims that probiotics and prebiotics alleviate many disorders related to the immune system, cancer metastasis, type 2 diabetes, and obesity. However, little is known about the role of these supplements as important dietary components in preventing or treating cardiovascular disease. Still, some reports and clinical studies were conducted, offering new ways of treatment. Therefore, the aim of this review is to discuss the roles of gut microbiota, probiotics, and prebiotics interventions in the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (A.O.); (T.O.)
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland
- Correspondence: (A.O.); (T.O.)
| | - Marek Gancarz
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland;
| | - Jolanta Szymańska
- Department of Integrated Paediatric Dentistry, Chair of Integrated Dentistry, Medical University of Lublin, Chodźki 6, 20-093 Lublin, Poland;
| |
Collapse
|
52
|
Li Y, Hintze KJ, Ward RE. Effect of supplemental prebiotics, probiotics and bioactive proteins on the microbiome composition and fecal calprotectin in C57BL6/j mice. Biochimie 2021; 185:43-52. [PMID: 33609630 DOI: 10.1016/j.biochi.2021.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/11/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023]
Abstract
The composition and metabolic activity of the microbiome affect many aspects of health, and there is current interest in dietary constituents that may affect this system. The purpose of this study was to evaluate the effects of a mix of probiotics, a mix of prebiotics and a bioactive protein fraction on the microbiome, when fed to mice alone and in combination at physiologically relevant doses. Mice were fed the total western diet (TWD) supplemented with prebiotics, probiotics, and bioactive proteins individually and in combination for four weeks. Subsequently, effects on the composition of the gut microbiome, gut short-chain fatty acids (SCFAs) concentration, and gut inflammation were measured. Ruminococcus gnavus was increased in mice gut microbiome after feeding prebiotics. Bifidobacterium longum was increased after feeding probiotics. The treatments significantly affected beta-diversity with minor treatment effects on cecal or fecal SCFAs levels, and the treatments did not affect gut inflammation as measured by fecal calprotectin.
Collapse
Affiliation(s)
- Ye Li
- Nutrition, Dietetics and Food Sciences, Utah State University, 8700 Old Main Hill, Logan, UT, 84322-8700, USA
| | - Korry J Hintze
- Nutrition, Dietetics and Food Sciences, Utah State University, 8700 Old Main Hill, Logan, UT, 84322-8700, USA
| | - Robert E Ward
- Nutrition, Dietetics and Food Sciences, Utah State University, 8700 Old Main Hill, Logan, UT, 84322-8700, USA.
| |
Collapse
|
53
|
Julio-Gonzalez LC, Moreno FJ, Jimeno ML, Doyagüez EG, Olano A, Corzo N, Hernandez-Hernandez O. Hydrolysis and transglycosylation activities of glycosidases from small intestine brush-border membrane vesicles. Food Res Int 2020; 139:109940. [PMID: 33509494 DOI: 10.1016/j.foodres.2020.109940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022]
Abstract
In order to know the catalytic activities of the disaccharidases expressed in the mammalian small intestinal brush-border membrane vesicles (BBMV) high concentrated solutions of sucrose, maltose, isomaltulose, trehalose and the mixture sucrose:lactose were incubated with pig small intestine disaccharidases. The hydrolysis and transglycosylation reactions generated new di- and trisaccharides, characterized and quantified by GC-MS and NMR, except for trehalose where only hydrolysis was detected. In general, α-glucosyl-glucoses and α-glucosyl-fructoses were the most abundant structures, whereas no fructosyl-fructoses or fructosyl-glucoses were found. The in-depth structural characterization of the obtained carbohydrates represents a new alternative to understand the potential catalytic activities of pig small intestinal disaccharidases. The hypothesis that the oligosaccharides synthesized by glycoside hydrolases could be also hydrolysed by the same enzymes was confirmed. This information could be extremely useful in the design of new non-digestible or partially digestible oligosaccharides with potential prebiotic properties.
Collapse
Affiliation(s)
| | - F Javier Moreno
- Institute of Food Science Research, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - María Luisa Jimeno
- Centro de Química Orgánica "Lora Tamayo" (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Elisa G Doyagüez
- Centro de Química Orgánica "Lora Tamayo" (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Agustín Olano
- Institute of Food Science Research, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Nieves Corzo
- Institute of Food Science Research, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | | |
Collapse
|
54
|
Kanouchi H, Majumder K, Shibata H, Mine Y. Lactobacillus pentosus S-PT84 and Rubus suavissimus leaf extract suppress lipopolysaccharide-induced gut permeability and egg allergen uptake. FOOD PRODUCTION, PROCESSING AND NUTRITION 2020. [DOI: 10.1186/s43014-020-0018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractIncreased gut permeability facilitates the uptake of food allergens into the bloodstream and triggers allergenic reactions. The present study aimed to evaluate the effect of Lactobacillus pentosus S-PT84 (S-PT84) and Rubus suavissimus leaf extract (RSLE) against egg ovomucoid (OVM)-uptake in lipopolysaccharide (LPS)-induced increased gut-permeability mice model of food allergy. Six-eight weeks old, female C57BL6 mice were continuously fed with LPS (300 μg/kg BW), for 3 months to increase gut permeability. Reduction in the expression of sealing claudin-4, increase in the expression of pore-forming claudin-2, and increase in D-mannitol absorption into the blood plasma in the LPS treated groups suggested the increase in gut permeability after LPS treatment. The oral administration of major egg allergen, OVM, after LPS intervention, significantly increased the plasma mast cell protease-1 and OVM-specific IgE compared to the negative control group. These results indicated that continuous LPS intervention developed OVM-induced food allergy. However, both the treatment of S-PT84 and RSLE suppressed the claudin-2 expression and the gut permeability induced by LPS. Furthermore, S-PT84 and RSLE treatment also reduced the plasma mast cell protease-1 and OVM-specific IgE, indicating the potential beneficial effect against LPS intervention developed OVM-induced food allergy. These findings suggest that S-PT84 and RSLE ameliorated LPS induced gut permeability and food allergic reactions.
Collapse
|
55
|
Azad MA, Gao J, Ma J, Li T, Tan B, Huang X, Yin J. Opportunities of prebiotics for the intestinal health of monogastric animals. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2020; 6:379-388. [PMID: 33364453 PMCID: PMC7750794 DOI: 10.1016/j.aninu.2020.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
The goal of prebiotic applications from different sources is to improve the gut ecosystem where the host and microbiota can benefit from prebiotics. It has already been recognized that prebiotics have potential roles in the gut ecosystem because gut microbiota ferment complex dietary macronutrients and carry out a broad range of functions in the host body, such as the production of nutrients and vitamins, protection against pathogens, and maintenance of immune system balance. The gut ecosystem is very crucial and can be affected by numerous factors consisting of dietary constituents and commensal bacteria. This review focuses on recent scientific evidence, confirming a beneficial effect of prebiotics on animal health, particularly in terms of protection against pathogenic bacteria and increasing the number of beneficial bacteria that may improve epithelial cell barrier functions. It has also been reviewed that modification of the gut ecosystem through the utilization of prebiotics significantly affects the intestinal health of animals. However, the identification and characterization of novel potential prebiotics remain a topical issue and elucidation of the metagenomics relationship between gut microbiota alteration and prebiotic substances is necessary for future prebiotic studies.
Collapse
Affiliation(s)
- Md A.K. Azad
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Gao
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Ma
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Tiejun Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| |
Collapse
|
56
|
Isolation, characterization and immunomodulatory activity of oligosaccharides from Codonopsis pilosula. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
57
|
Abd El-Aziz AH, El-Kasrawy NI, Abd El-Hack ME, Kamel SZ, Mahrous UE, El-Deeb EM, Atta MS, Amer MS, Naiel MAE, Khafaga AF, Metwally AE, Abo Ghanima MM. Growth, immunity, relative gene expression, carcass traits and economic efficiency of two rabbit breeds fed prebiotic supplemented diets. Anim Biotechnol 2020; 33:417-428. [PMID: 32734820 DOI: 10.1080/10495398.2020.1800485] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The current study designed to evaluate the effect of oligosaccharide supplemented diets on growth performance, histomorphometric changes, economic efficiency and genetic expression of some growth and immunity-relative genes. One hundred and twenty weaned male rabbits, six weeks of age of two breeds (NZW and APPRI) were randomly allocated into six equal groups; the first supplemented with 0.3% Mannan-oligosaccharide (MOS), the second supplemented with 0.05% Isomalto-oligosaccharide (IMO) and the third considered a control group. Each group contained ten equal replicates. The highest Final body weight and feed consumption were recorded in MOS and IMO groups compared with control. Fortified feed diet with IMO significantly increased duodenal villi area and length than MOS and control groups. At the same time, Spleen white bulb area and length were significantly higher in MOS and IMO than control. Supplementation of MOS and IMO significantly improved carcass traits, economic efficiency and induced certain modifications in some major key genes involved in the regulation of nutrients metabolism, immunity and growth in different tissues. In conclusion, dietary supplementation of MOS and IMO had a desirable positive impact on productive and economic efficiency in the rabbit.
Collapse
Affiliation(s)
- Ayman H Abd El-Aziz
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Nagwa I El-Kasrawy
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | | | - Sherif Z Kamel
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Usama E Mahrous
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Eman M El-Deeb
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mostafa S Atta
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mahmoud S Amer
- Laser Application in Biotechnology Department, National Institute of Laser Enhanced Science, Cairo University, Cairo, Egypt
| | - Mohammed A E Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - Abdallah E Metwally
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mahmoud M Abo Ghanima
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
58
|
Hou XD, Yan N, Du YM, Liang H, Zhang ZF, Yuan XL. Consumption of Wild Rice ( Zizania latifolia) Prevents Metabolic Associated Fatty Liver Disease through the Modulation of the Gut Microbiota in Mice Model. Int J Mol Sci 2020; 21:E5375. [PMID: 32751062 PMCID: PMC7432455 DOI: 10.3390/ijms21155375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) due to excess weight and obesity threatens public health worldwide. Gut microbiota dysbiosis contributes to obesity and related diseases. The cholesterol-lowering, anti-inflammatory, and antioxidant effects of wild rice have been reported in several studies; however, whether it has beneficial effects on the gut microbiota is unknown. Here, we show that wild rice reduces body weight, liver steatosis, and low-grade inflammation, and improves insulin resistance in high-fat diet (HFD)-fed mice. High-throughput 16S rRNA pyrosequencing demonstrated that wild rice treatment significantly changed the gut microbiota composition in mice fed an HFD. The richness and diversity of the gut microbiota were notably decreased upon wild rice consumption. Compared with a normal chow diet (NCD), HFD feeding altered 117 operational taxonomic units (OTUs), and wild rice supplementation reversed 90 OTUs to the configuration in the NCD group. Overall, our results suggest that wild rice may be used as a probiotic agent to reverse HFD-induced MAFLD through the modulation of the gut microbiota.
Collapse
Affiliation(s)
- Xiao-Dong Hou
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266109, China; (X.-D.H.); (N.Y.); (Y.-M.D.); (Z.-F.Z.)
| | - Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266109, China; (X.-D.H.); (N.Y.); (Y.-M.D.); (Z.-F.Z.)
| | - Yong-Mei Du
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266109, China; (X.-D.H.); (N.Y.); (Y.-M.D.); (Z.-F.Z.)
| | - Hui Liang
- College of Public Health, Qingdao University, Qingdao 266101, China;
| | - Zhong-Feng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266109, China; (X.-D.H.); (N.Y.); (Y.-M.D.); (Z.-F.Z.)
| | - Xiao-Long Yuan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266109, China; (X.-D.H.); (N.Y.); (Y.-M.D.); (Z.-F.Z.)
| |
Collapse
|
59
|
Khanna S, Walia S, Kondepudi KK, Shukla G. Administration of indigenous probiotics modulate high-fat diet-induced metabolic syndrome in Sprague Dawley rats. Antonie van Leeuwenhoek 2020; 113:1345-1359. [PMID: 32632629 DOI: 10.1007/s10482-020-01445-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/26/2020] [Indexed: 01/08/2023]
Abstract
Modulation of the gut microbiota by probiotics, is emerging as a promising approach for the management of metabolic diseases but due to their species and strain specific response, isolation of new probiotic strains is gaining importance. The present study was designed to assess the effect of isolated and well characterised indigenous probiotics, Lactobacillus pentosus GSSK2, Lactobacillus fermentum PUM and Lactobacillus plantarum GS26A in high fat diet (HFD) induced metabolic syndrome. It was observed that though supplementation of all three probiotics for 12 weeks to Sprague Dawley rats fed with HFD, ameliorated the anthropometric parameters, but L. pentosus GSSK2 showed maximum reduction in weight gain while maximum decrease in abdominal circumference, Lee's index, BMI and visceral fat deposition was observed in L. plantarum GS26A compared with HFD animals. Further, administration of L. plantarum GS26A to HFD animals led to significant increase in lactic acid bacteria count and lipid excretion in feces followed by L. pentosus GSSK2 and L. fermentum PUM compared with counter controls. Additionally, both L. pentosus GSSK2 and L. plantarum GS26A exhibited improved glucose tolerance, liver biomarkers, alleviated oxidative stress and restored the histoarchitechture of adipose tissue, colon and liver compared with HFD animals. The study highlights the prophylactic potential of isolated probiotics in experimental metabolic syndrome model and revealed that amongst all three probiotics, L. pentosus GSSK2 and L. plantarum GS26A were equally effective and more promising than L. fermentum PUM in improving metabolic dysfunctions and may be employed as functional foods but needs to be correlated clinically.
Collapse
Affiliation(s)
- Sakshi Khanna
- Department of Microbiology, Basic Medical Sciences Block A, South Campus, Panjab University, Chandigarh, 160014, India
| | - Sanisha Walia
- Department of Microbiology, Basic Medical Sciences Block A, South Campus, Panjab University, Chandigarh, 160014, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Geeta Shukla
- Department of Microbiology, Basic Medical Sciences Block A, South Campus, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
60
|
Guarino MPL, Altomare A, Emerenziani S, Di Rosa C, Ribolsi M, Balestrieri P, Iovino P, Rocchi G, Cicala M. Mechanisms of Action of Prebiotics and Their Effects on Gastro-Intestinal Disorders in Adults. Nutrients 2020; 12:nu12041037. [PMID: 32283802 PMCID: PMC7231265 DOI: 10.3390/nu12041037] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, research has focused on the use of dietary fibers and prebiotics, since many of these polysaccharides can be metabolized by intestinal microbiota, leading to the production of short-chain fatty acids. The metabolites of prebiotic fermentation also show anti-inflammatory and immunomodulatory capabilities, suggesting an interesting role in the treatment of several pathological conditions. Galacto-oligosaccharide and short- and long-chain fructans (Fructo-oligosaccharides and inulin) are the most studied prebiotics, even if other dietary compounds seem to show the same features. There is an increasing interest in dietary strategies to modulate microbiota. The aim of this review is to explore the mechanisms of action of prebiotics and their effects on the principal gastro-intestinal disorders in adults, with a special focus on Galacto-oligosaccharides, Fructo-oligosaccharides, lactulose and new emerging substances which currently have evidence of prebiotics effects, such as xilooligosaccharides, soybean oligosaccharides, isomaltooligosaccharides, lactobionic acid, resistant starch and polyphenols.
Collapse
Affiliation(s)
- Michele Pier Luca Guarino
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
| | - Annamaria Altomare
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
- Correspondence: ; Tel.: +39-06-22541-606; Fax: +39-06-22541-456
| | - Sara Emerenziani
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
| | - Claudia Di Rosa
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy;
| | - Mentore Ribolsi
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
| | - Paola Balestrieri
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
| | - Paola Iovino
- Gastrointestinal Unit, Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, Università di Salerno, Via Allende, 84081 Salerno, Italy;
| | - Giulia Rocchi
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
| | - Michele Cicala
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
| |
Collapse
|
61
|
Mechanisms of Action of Prebiotics and Their Effects on Gastro-Intestinal Disorders in Adults. Nutrients 2020. [PMID: 32283802 DOI: 10.3390/nu12041037.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In recent years, research has focused on the use of dietary fibers and prebiotics, since many of these polysaccharides can be metabolized by intestinal microbiota, leading to the production of short-chain fatty acids. The metabolites of prebiotic fermentation also show anti-inflammatory and immunomodulatory capabilities, suggesting an interesting role in the treatment of several pathological conditions. Galacto-oligosaccharide and short- and long-chain fructans (Fructo-oligosaccharides and inulin) are the most studied prebiotics, even if other dietary compounds seem to show the same features. There is an increasing interest in dietary strategies to modulate microbiota. The aim of this review is to explore the mechanisms of action of prebiotics and their effects on the principal gastro-intestinal disorders in adults, with a special focus on Galacto-oligosaccharides, Fructo-oligosaccharides, lactulose and new emerging substances which currently have evidence of prebiotics effects, such as xilooligosaccharides, soybean oligosaccharides, isomaltooligosaccharides, lactobionic acid, resistant starch and polyphenols.
Collapse
|
62
|
Liu Y, Chen J, Tan Q, Deng X, Tsai PJ, Chen PH, Ye M, Guo J, Su Z. Nondigestible Oligosaccharides with Anti-Obesity Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4-16. [PMID: 31829005 DOI: 10.1021/acs.jafc.9b06079] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Obesity has an important influence on health conditions, causing a multitude of complications and comorbidities, and drug therapy is considered to be one of the treatment strategies. Nowadays, there is increasing interest in the study of intestinal microbiota regulation of obesity; also, an increasing number of agricultural and sideline products have been found to have anti-obesity potential. In the present review, we summarize an overview of current known and potential anti-obesity oligosaccharides and their molecular structures. We describe their anti-obesity potential activity and the molecular structure associated with this activity, the regulation of intestinal microbiota composition and its mechanism of action, including regulation of the short-chain fatty acid (SCFA) pathway and altering bile acid (BA) pathway. This review will provide new ideas for us to develop new anti-obesity functional foods.
Collapse
Affiliation(s)
- Yongjian Liu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs , Guangdong Pharmaceutical University , Guangzhou 510006 , China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Jiajia Chen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs , Guangdong Pharmaceutical University , Guangzhou 510006 , China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Qiuhua Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs , Guangdong Pharmaceutical University , Guangzhou 510006 , China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Xiaoyi Deng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs , Guangdong Pharmaceutical University , Guangzhou 510006 , China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Ping-Ju Tsai
- King-Prebiotics Biotechnology (TW) CO., LTD. , Linkou District, New Taipei City 24446 , Taiwan China
| | - Pei-Hsuan Chen
- King-Prebiotics Biotechnology (TW) CO., LTD. , Linkou District, New Taipei City 24446 , Taiwan China
| | - Manxiang Ye
- New Francisco (Yunfu City) Biotechnology CO., LTD. , Swan-kan-chiau Industrial District, Kaofong Village Yunfu City 527343 , Guangdong , China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| |
Collapse
|
63
|
Xiao S, Jiang S, Qian D, Duan J. Modulation of microbially derived short-chain fatty acids on intestinal homeostasis, metabolism, and neuropsychiatric disorder. Appl Microbiol Biotechnol 2019; 104:589-601. [PMID: 31865438 DOI: 10.1007/s00253-019-10312-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022]
Abstract
A diverse range of symbiotic gut bacteria codevelops with the host and is considered a metabolic "organ" that not only facilitates harvesting of nutrients from the dietary components but also produces a class of metabolites. Many metabolites of gut microbes have an important impact on host health. For example, an inventory of metabolic intermediates derived from bacterial protein fermentation may affect host physiology and pathophysiology. Additionally, gut microbiota can convert cholesterol to bile acids and further into secondary bile acids which can conversely modulate microbial community. Moreover, new research identifies that microbes synthesize vitamins for us in the colon. Here, we will review data implicating a major class of bacterial metabolites through breaking down dietary fiber we cannot process, short-chain fatty acids (SCFAs), as crucial executors of alteration of immune mechanisms, regulation of metabolic homeostasis, and neuroprotective effects to combat disease and improve health.
Collapse
Affiliation(s)
- Suwei Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China.
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
64
|
Liu YC, Li XY, Shen L. Modulation effect of tea consumption on gut microbiota. Appl Microbiol Biotechnol 2019; 104:981-987. [PMID: 31853562 DOI: 10.1007/s00253-019-10306-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/27/2019] [Accepted: 12/08/2019] [Indexed: 01/09/2023]
Abstract
Tea is one of the most popular beverages in the world and possesses a wide range of beneficial effects for human health. The modulation of tea on gut microbiota has gained much interest in recent years. The present study discussed the modulation effect of various types of tea on gut microbiota, which plays crucial roles in human health, as investigated by in vitro animal and human studies. The currently available findings from a total of 23 studies support the modulation effects of tea liquid, tea extract, and its major active components, including polyphenols, polysaccharides, and teasaponin, on gut microbiota. Overall, tea possesses prebiotic-like effect and can alleviate the gut microbiota dysbiosis induced by high-fat diet in gut microbiota, despite the detailed bacterial taxa may alter depending on the types of tea supplemented. Current evidence implies that the modulation effect on gut microbiota may be an important action mechanism underlying the beneficial effect of tea consumption in daily life and also the great potential of strategically chosen tea extract to develop functional foods.
Collapse
Affiliation(s)
- Yu-Chuan Liu
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Zibo Key Laboratory for Neurodegenerative Diseases Drug development, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, 255049, Shandong, People's Republic of China
| | - Xin-Yu Li
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Zibo Key Laboratory for Neurodegenerative Diseases Drug development, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, 255049, Shandong, People's Republic of China
| | - Liang Shen
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China. .,Zibo Key Laboratory for Neurodegenerative Diseases Drug development, Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, 255049, Shandong, People's Republic of China.
| |
Collapse
|
65
|
Tang GY, Meng X, Gan RY, Zhao CN, Liu Q, Feng YB, Li S, Wei XL, Atanasov AG, Corke H, Li HB. Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. Int J Mol Sci 2019; 20:E6196. [PMID: 31817990 PMCID: PMC6941079 DOI: 10.3390/ijms20246196] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Tea is widely consumed all over the world. Generally, tea is divided into six categories: White, green, yellow, oolong, black, and dark teas, based on the fermentation degree. Tea contains abundant phytochemicals, such as polyphenols, pigments, polysaccharides, alkaloids, free amino acids, and saponins. However, the bioavailability of tea phytochemicals is relatively low. Thus, some novel technologies like nanotechnology have been developed to improve the bioavailability of tea bioactive components and consequently enhance the bioactivity. So far, many studies have demonstrated that tea shows various health functions, such as antioxidant, anti-inflammatory, immuno-regulatory, anticancer, cardiovascular-protective, anti-diabetic, anti-obesity, and hepato-protective effects. Moreover, it is also considered that drinking tea is safe to humans, since reports about the severe adverse effects of tea consumption are rare. In order to provide a better understanding of tea and its health potential, this review summarizes and discusses recent literature on the bioactive components, bioavailability, health functions, and safety issues of tea, with special attention paid to the related molecular mechanisms of tea health functions.
Collapse
Affiliation(s)
- Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Yi-Bin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Atanas G. Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland;
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| |
Collapse
|
66
|
Dharavath RN, Arora S, Bishnoi M, Kondepudi KK, Chopra K. High fat-low protein diet induces metabolic alterations and cognitive dysfunction in female rats. Metab Brain Dis 2019; 34:1531-1546. [PMID: 31313125 DOI: 10.1007/s11011-019-00459-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022]
Abstract
Approximately one-third of the world population is suffering from MetS, and the same is expected to rise in the years to come. Worldwide, most of the staple diets contain high amounts of carbohydrates, fats and comparatively low quantities of proteins. The goal of this study was to evaluate the effect of high fat-low protein diet in the development of the metabolic syndrome and associated cognitive deficits in the female rats. The rats fed with high fat-low protein diet (HFLPD) and 15% oral fructose solution for 24 weeks. Body weight, food intake, water intake, fasting blood glucose, oral glucose tolerance, glycosylated hemoglobin (HbA1C), and serum lipid profile were measured after every 4 weeks. Serum insulin, HOMA-IR index, rectal temperature, and systolic blood pressure were measured to confirm the manifestation of the hallmarks of metabolic syndrome. Behavioral tests for locomotion, anxiety, learning, and spatial memory were performed from the 12th week to till the end of the study. At the 24th week, oxidative stress assays and histopathology of liver, kidney, brain, and WAT were also performed. HFLPD significantly altered the physiologic and metabolic parameters which contributed to the manifestation of MetS. HFLPD also impaired the cognitive functions along with significant structural changes in the liver, kidney, WAT, and brain. The findings of this study reveal that HFLPD has the potential to induce the physiological, metabolic and histological alterations in rats, which eventually led to the development of MetS and also disrupted the cognitive functions in female rats.
Collapse
Affiliation(s)
- Ravinder Naik Dharavath
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Shiyana Arora
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Mahendra Bishnoi
- Food and Nutritional Biotechnology Laboratory, National Agri-food Biotechnology Institute (NABI), SAS Nagar, Punjab, 140306, India
| | - Kanthi Kiran Kondepudi
- Food and Nutritional Biotechnology Laboratory, National Agri-food Biotechnology Institute (NABI), SAS Nagar, Punjab, 140306, India
| | - Kanwaljit Chopra
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
67
|
Zhang T, Li Q, Cheng L, Buch H, Zhang F. Akkermansia muciniphila is a promising probiotic. Microb Biotechnol 2019; 12:1109-1125. [PMID: 31006995 PMCID: PMC6801136 DOI: 10.1111/1751-7915.13410] [Citation(s) in RCA: 406] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/12/2022] Open
Abstract
Akkermansia muciniphila (A. muciniphila), an intestinal symbiont colonizing in the mucosal layer, is considered to be a promising candidate as probiotics. A. muciniphila is known to have an important value in improving the host metabolic functions and immune responses. Moreover, A. muciniphila may have a value in modifying cancer treatment. However, most of the current researches focus on the correlation between A. muciniphila and diseases, and little is known about the causal relationship between them. Few intervention studies on A. muciniphila are limited to animal experiments, and limited studies have explored its safety and efficacy in humans. Therefore, a critical analysis of the current knowledge in A. muciniphila will play an important foundation for it to be defined as a new beneficial microbe. This article will review the bacteriological characteristics and safety of A. muciniphila, as well as its causal relationship with metabolic disorders, immune diseases and cancer therapy.
Collapse
Affiliation(s)
- Ting Zhang
- Medical Center for Digestive Diseasesthe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
| | - Qianqian Li
- Medical Center for Digestive Diseasesthe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
| | - Lei Cheng
- Biogas Institute of Ministry of Agriculture and Rural AffairsChengdu610041China
- Center for Anaerobic Microbial Resources of Sichuan ProvinceChengdu610041China
| | - Heena Buch
- Medical Center for Digestive Diseasesthe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
| | - Faming Zhang
- Medical Center for Digestive Diseasesthe Second Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
- Key Lab of Holistic Integrative EnterologyNanjing Medical UniversityNanjing210011China
| |
Collapse
|
68
|
Khursheed R, Singh SK, Wadhwa S, Kapoor B, Gulati M, Kumar R, Ramanunny AK, Awasthi A, Dua K. Treatment strategies against diabetes: Success so far and challenges ahead. Eur J Pharmacol 2019; 862:172625. [DOI: 10.1016/j.ejphar.2019.172625] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/11/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022]
|
69
|
Chen T, Yang CS. Biological fates of tea polyphenols and their interactions with microbiota in the gastrointestinal tract: implications on health effects. Crit Rev Food Sci Nutr 2019; 60:2691-2709. [DOI: 10.1080/10408398.2019.1654430] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tingting Chen
- School of Food Science & Technology, State Key Laboratory of Food Science & Technology, Nanchang University, Nanchang, China
| | - Chung S. Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
70
|
Chen B, Wang X, Lin D, Xu D, Li S, Huang J, Weng S, Lin Z, Zheng Y, Yao H, Lin X. Proliposomes for oral delivery of total biflavonoids extract from Selaginella doederleinii: formulation development, optimization, and in vitro-in vivo characterization. Int J Nanomedicine 2019; 14:6691-6706. [PMID: 31692515 PMCID: PMC6708437 DOI: 10.2147/ijn.s214686] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/27/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose Amentoflavone, robustaflavone, 2'',3''-dihydro-3',3'''-biapigenin, 3',3'''-binaringenin and delicaflavone are five major active ingredients in the total biflavonoids extract from Selaginella doederleinii (TBESD) with favorable anticancer properties. However, the natural-derived potent antitumor agent of TBESD is undesirable due to its poor solubility. The present study was to develop and optimize a proliposomal formulation of TBESD (P-TBESD) to improve its solubility, oral bioavailability and efficacy. Materials and methods P-TBESD containing a bile salt, a protective hydrophilic isomalto-oligosaccharides (IMOs) coating, were successfully prepared by thin film dispersion-sonication method. The physicochemical and pharmacokinetic properties of P-TBESD were characterized, and the antitumor effect was evaluated using the HT-29 xenograft-bearing mice models in rats. Results Compared with TBESD, the relative bioavailability of amentoflavone, robustaflavone, 2'',3''-dihydro-3',3'''-biapigenin, 3',3'''-binaringenin and delicaflavone from P-TBESD were 669%, 523%, 761%, 955% and 191%, respectively. The results of pharmacodynamics demonstrated that both TBESD and P-TBESD groups afforded antitumor effect without systemic toxicity, and the antitumor effect of P-TBESD was significantly superior to that of raw TBESD, based on the tumor growth inhibition and histopathological examination. Conclusion Hence, IMOs-modified proliposomes have promising potential for TBESD solving the problem of its poor solubility and oral bioavailability, which can serve as a practical oral preparation for TBESD in the future cancer therapy.
Collapse
Affiliation(s)
- Bing Chen
- Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Xuewen Wang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Dan Lin
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Dafen Xu
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Shaoguang Li
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Jianyong Huang
- Department of Pharmaceutical, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Shaohuang Weng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Zhen Lin
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Yanjie Zheng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Hong Yao
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Xinhua Lin
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
71
|
Liu H, Ren W, Ly M, Li H, Wang S. Characterization of an Alkaline GH49 Dextranase from Marine Bacterium Arthrobacter oxydans KQ11 and Its Application in the Preparation of Isomalto-Oligosaccharide. Mar Drugs 2019; 17:md17080479. [PMID: 31430863 PMCID: PMC6723167 DOI: 10.3390/md17080479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 11/16/2022] Open
Abstract
A GH49 dextranase gene DexKQ was cloned from marine bacteria Arthrobacter oxydans KQ11. It was recombinantly expressed using an Escherichia coli system. Recombinant DexKQ dextranase of 66 kDa exhibited the highest catalytic activity at pH 9.0 and 55 °C. kcat/Km of recombinant DexKQ at the optimum condition reached 3.03 s−1 μM−1, which was six times that of commercial dextranase (0.5 s−1 μM−1). DexKQ possessed a Km value of 67.99 µM against dextran T70 substrate with 70 kDa molecular weight. Thin-layer chromatography (TLC) analysis showed that main hydrolysis end products were isomalto-oligosaccharide (IMO) including isomaltotetraose, isomaltopantose, and isomaltohexaose. When compared with glucose, IMO could significantly improve growth of Bifidobacterium longum and Lactobacillus rhamnosus and inhibit growth of Escherichia coli and Staphylococcus aureus. This is the first report of dextranase from marine bacteria concerning recombinant expression and application in isomalto-oligosaccharide preparation.
Collapse
Affiliation(s)
- Hongfei Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wei Ren
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Modern Bio-Manufacture, Anhui University, Hefei 230039, China
| | - Mingsheng Ly
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Haifeng Li
- Medical College, Hangzhou Normal University, Hangzhou 311121, China.
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
72
|
Zhu D, Yan Q, Liu J, Wu X, Jiang Z. Can functional oligosaccharides reduce the risk of diabetes mellitus? FASEB J 2019; 33:11655-11667. [PMID: 31415188 DOI: 10.1096/fj.201802802rrr] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diabetes significantly affects the life quality and length of patients with diabetes, and almost half of the 4 million people who die from diabetes are under the age of 60. Because of the increasing number of patients with diabetes and the side effects of antidiabetic drugs, the search for new dietary supplementation from natural resources, especially functional oligosaccharides, has attracted much attention among scientific researchers. Functional oligosaccharides are potential antidiabetic treatments because of their nondigestible, low-calorie, and probiotic features. The antidiabetic activity of multiple functional oligosaccharides such as fructo-oligosaccharides, galacto-oligosaccharides, and xylo-oligosaccharides has been reviewed in this paper. Molecular mechanisms involved in the antidiabetic activity of oligosaccharides have been systematically discussed from multiple perspectives, including the improvement of pancreas function, α-glucosidase inhibition, the relief of insulin and leptin resistance, anti-inflammatory effects, regulation of gut microbiota and hormones, and the intervention of diabetic risk factors. In addition, the antidiabetic effects of functional oligosaccharides through the complex gut-brain-liver axis are summarized. The concepts addressed in this review have important clinical implications, although more works are needed to confirm the antidiabetic mechanisms of functional oligosaccharides, standardize safe dose levels, and clarify their metabolism in the human body.-Zhu, D., Yan, Q., Liu, J., Wu, X., Jiang, Z. Can functional oligosaccharides reduce the risk of diabetes mellitus?
Collapse
Affiliation(s)
- Di Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing, China
| | - Jun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xia Wu
- College of Engineering, China Agricultural University, Beijing, China
| | - Zhengqiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
73
|
Grubic TJ, Sowinski RJ, Nevares BE, Jenkins VM, Williamson SL, Reyes AG, Rasmussen C, Greenwood M, Murano PS, Earnest CP, Kreider RB. Comparison of ingesting a food bar containing whey protein and isomalto-oligosaccharides to carbohydrate on performance and recovery from an acute bout of resistance-exercise and sprint conditioning: an open label, randomized, counterbalanced, crossover pilot study. J Int Soc Sports Nutr 2019; 16:34. [PMID: 31409363 PMCID: PMC6693099 DOI: 10.1186/s12970-019-0301-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/29/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND We previously reported that consuming a food bar (FB) containing whey protein and the plant fiber isomalto-oligosaccharides [IMO] had a lower glycemic (GI) but similar insulinemic response as a high GI carbohydrate. Therefore, we hypothesized that ingestion of this FB before, during, and following intense exercise would better maintain glucose homeostasis and performance while hastening recovery in comparison to the common practice of ingesting carbohydrate alone. METHODS Twelve resistance-trained males participated in an open label, randomized, counterbalanced, crossover trial with a 7-d washout period. Participants consumed a carbohydrate matched dextrose comparitor (CHO) or a FB containing 20 g of whey, 25 g of IMO, and 7 g of fat 30-min before, mid-way, and following intense exercise. Participants performed 11 resistance-exercises (3 sets of 10 repetitions at 70% of 1RM) followed by agility and sprint conditioning drills for time. Participants donated blood to assess catabolic and inflammatory markers, performed isokinetic strength tests, and rated perceptions of muscle soreness, hypoglycemia before, and following exercise and after 48 h of recovery. Data were analyzed using general linear models (GLM) for repeated measures and mean changes from baseline with 95% confidence intervals (CI) with a one-way analysis of variance. Data are reported as mean change from baseline with 95% CI. RESULTS GLM analysis demonstrated that blood glucose was significantly higher 30-min post-ingestion for CHO (3.1 [2.0, 4.3 mmol/L,] and FB (0.8 [0.2, 1.5, mmol/L, p = 0.001) while the post-exercise ratio of insulin to glucose was greater with FB (CHO 0.04 [0.00, 0.08], FB 0.11 [0.07, 0.15], p = 0.013, η2 = 0.25). GLM analysis revealed no significant interaction effects between treatments in lifting volume of each resistance-exercise or total lifting volume. However, analysis of mean changes from baseline with 95% CI's revealed that leg press lifting volume (CHO -130.79 [- 235.02, - 26.55]; FB -7.94 [- 112.17, 96.30] kg, p = 0.09, η2 = 0.12) and total lifting volume (CHO -198.26 [- 320.1, - 76.4], FB -81.7 [- 203.6, 40.1] kg, p = 0.175, η2 = 0.08) from set 1 to 3 was significantly reduced for CHO, but not for the FB. No significant interaction effects were observed in ratings of muscle soreness. However, mean change analysis revealed that ratings of soreness of the distal vastus medialis significantly increased from baseline with CHO while being unchanged with FB (CHO 1.88 [0.60, 3.17]; FB 0.29 [- 0.99, 1.57] cm, p = 0.083, η2 = 0.13). No significant GLM interaction or mean change analysis effects were seen between treatments in sprint performance, isokinetic strength, markers of catabolism, stress and sex hormones, or inflammatory markers. CONCLUSION Pilot study results provide some evidence that ingestion of this FB can positively affect glucose homeostasis, help maintain workout performance, and lessen perceptions of muscle soreness. TRIAL REGISTRATION clinicaltrials.gov, # NCT03704337 . Retrospectively registered 12, July 2018.
Collapse
Affiliation(s)
- Tyler J Grubic
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA
| | - Ryan J Sowinski
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA.,Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Ben E Nevares
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA
| | - Victoria M Jenkins
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA
| | - Susannah L Williamson
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA
| | - Aimee G Reyes
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA.,Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Christopher Rasmussen
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA
| | - Mike Greenwood
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA
| | - Peter S Murano
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Conrad P Earnest
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA.
| |
Collapse
|
74
|
Xiao Y, Li X, Zeng X, Wang H, Mai Q, Cheng Y, Li J, Tang L, Ding H. A Low ω-6/ω-3 Ratio High-Fat Diet Improves Rat Metabolism via Purine and Tryptophan Metabolism in the Intestinal Tract, While Reversed by Inulin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7315-7324. [PMID: 31184122 DOI: 10.1021/acs.jafc.9b02110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A high-fat diet (HFD) is the main cause of metabolic diseases. However, HFD in previous studies consists of much lard, which contains a large amount of omega-6 (ω-6) polyunsaturated fatty acid (PUFA) and little omega-3 (ω-3) PUFA. The role of ω-6/ω-3 ratio of HFD in the development of metabolic diseases remains incompletely discussed. In this study, rats were fed with either a low or a high ω-6/ω-3 ratio HFD singly or combined with inulin. Metabolism state was valued and metabolomics of cecal content were detected. Results show that HFD with low ω-6/ω-3 ratio promotes the glucose utilization in rats. However, inulin had different effects on metabolism with different diets. Xanthosine and kynurenic acid in cecum were positively related to epididymal white adipose tissues (eWAT) mass. The present study indicates the beneficial effects of low ω-6/ω-3 ratio HFD (LRD) on the metabolic state of rats. Moreover, xanthosine and kynurenic acid were closely related to the development of metabolic diseases.
Collapse
Affiliation(s)
- Yao Xiao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences , Wuhan University , Wuhan 430000 , Hubei , People's Republic of China
| | - Xiaolei Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences , Wuhan University , Wuhan 430000 , Hubei , People's Republic of China
| | - Xin Zeng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences , Wuhan University , Wuhan 430000 , Hubei , People's Republic of China
| | - Huiling Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences , Wuhan University , Wuhan 430000 , Hubei , People's Republic of China
| | - Qianting Mai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences , Wuhan University , Wuhan 430000 , Hubei , People's Republic of China
| | - Yahong Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences , Wuhan University , Wuhan 430000 , Hubei , People's Republic of China
| | - Jing Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences , Wuhan University , Wuhan 430000 , Hubei , People's Republic of China
| | - Liu Tang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences , Wuhan University , Wuhan 430000 , Hubei , People's Republic of China
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences , Wuhan University , Wuhan 430000 , Hubei , People's Republic of China
| |
Collapse
|
75
|
Luo J, Qi J, Wang W, Luo Z, Liu L, Zhang G, Zhou Q, Liu J, Peng X. Antiobesity Effect of Flaxseed Polysaccharide via Inducing Satiety due to Leptin Resistance Removal and Promoting Lipid Metabolism through the AMP-Activated Protein Kinase (AMPK) Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7040-7049. [PMID: 31199141 DOI: 10.1021/acs.jafc.9b02434] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Obesity is a metabolic syndrome worldwide that causes many chronic diseases. Recently, we found an antiobesity effect of flaxseed polysaccharide (FP), but the mechanism remains to be elucidated. In this study, rats were first induced to develop obesity by being fed a high-fat diet. The obese rats were then fed a control diet, AIN-93M (group HFD), or a 10% FP diet (group FPD). The body weight, body fat, adipose tissue and liver sections, serous total triglycerides, levels of fasting blood glucose in serum, serous insulin, inflammatory cytokines in serum, and serous proteins within the leptin-neuropeptide Y (NPY) and AMP-activated protein kinase (AMPK) signaling pathway were determined and analyzed. FP intervention significantly reduced body weight and abdominal fat from 530 ± 16 g and 2.15% ± 0.30% in group HFD to 478 ± 10 g and 1.38% ± 0.48% in group FPD, respectively. This effect was achieved by removing leptin resistance possibly by inhibiting inflammation and recovering satiety through the significant downregulation of NPY and the upregulation of glucagon-like peptide 1. Adiponectin was then significantly upregulated probably via the gut-brain axis and further activated the AMPK signaling pathway to improve lipid metabolism including the improvement of lipolysis and fatty acid oxidation and the suppression of lipogenesis. This is the first report of the proposed antiobesity mechanism of FP, thereby providing a comprehensive understanding of nonstarch polysaccharides and obesity.
Collapse
Affiliation(s)
- Jianming Luo
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Jiamei Qi
- College of Life Science and Technology , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Wenjun Wang
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, School of Pharmacy , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Zhenhuan Luo
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, School of Pharmacy , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Liu Liu
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Guangwen Zhang
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Qinghua Zhou
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, School of Pharmacy , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Jiesheng Liu
- College of Life Science and Technology , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Xichun Peng
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 Guangdong , China
| |
Collapse
|
76
|
Li T, Chen X, Huang Z, Xie W, Tong C, Bao R, Sun X, Li W, Li S. Pectin oligosaccharide from hawthorn fruit ameliorates hepatic inflammation via NF-κB inactivation in high-fat diet fed mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
77
|
Yang CS, Zhang J. Studies on the Prevention of Cancer and Cardiometabolic Diseases by Tea: Issues on Mechanisms, Effective Doses, and Toxicities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5446-5456. [PMID: 30541286 DOI: 10.1021/acs.jafc.8b05242] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This article presents a brief overview of studies on the prevention of cancer and cardiometabolic diseases by tea. The major focus is on green tea catechins concerning the effective doses used, the mechanisms of action, and possible toxic effects. In cancer prevention by tea, the laboratory results are strong; however, the human data are inconclusive, and the effective doses used in some human trials approached toxic levels. In studies of the alleviation of metabolic syndrome, diabetes, and prevention of cardiovascular diseases, the results from human studies are stronger in individuals who consume 3-4 cups of tea (600-900 mg of catechins) or more per day. The tolerable upper intake level of tea catechins has been set at 300 mg of (-)-epigallocatechin-3-gallate in a bolus dose per day in some European countries. The effects of doses and dosage forms on catechin toxicity, the mechanisms involved, and factors that may affect toxicity are discussed.
Collapse
Affiliation(s)
- Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 164 Frelinghuysen Road , Piscataway , New Jersey 08854-8020 , United States
| | | |
Collapse
|
78
|
Wang P, Li D, Ke W, Liang D, Hu X, Chen F. Resveratrol-induced gut microbiota reduces obesity in high-fat diet-fed mice. Int J Obes (Lond) 2019; 44:213-225. [PMID: 30718820 DOI: 10.1038/s41366-019-0332-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Resveratrol (RSV) is a natural polyphenol with putative anti-obesity effects; however, its mechanisms of action remain unclear due to its low bioavailability. Microbial functions in the physiology result from the microbiota-host coevolution has profoundly affected host metabolism. Here, we sought to determine how beneficial microbiome caused by RSV interventions affects antiobesity. METHODS C57BL/6J mice were fed either standard diet (SD) or RSV (300 mg/kg/day) diet for 16 weeks. The composition of the gut microbiota was assessed by analyzing 16S rRNA gene sequences. Then, transplant the RSV-microbiota to high-fat diet (HFD)-fed mice (HFD-RSVT) to explore the function of microbiota. Body weight and food intake were monitored. Markers of lipid metabolism, inflammation, gut microbiota compostion, and intestinal barrier were determined. RESULTS Mice treated with RSV shows a remarkable alteration in microbiota composition compared with that of SD-fed mice and is characterized by an enrichment of Bacteroides, Lachnospiraceae_NK4A136_group, Blautia, Lachnoclostridium, Parabacteroides, and Ruminiclostridium_9, collectively referred to as RSV-microbiota. We further explored whether RSV-microbiota has anti-obesity functions. Transplantation of the RSV-microbiota to high-fat diet (HFD)-fed mice (HFD-RSVT) was sufficient to decrease their weight gain and increase their insulin sensitivity. Moreover, RSV-microbiota was able to modulate lipid metabolism, stimulate the development of beige adipocytes in WAT, reduce inflammation and improve intestinal barrier function. CONCLUSIONS Our study demonstrates that RSV-induced microbiota plays a key role in controlling obesity development and brings new insights to a potential therapy based on host-microbe interactions.
Collapse
Affiliation(s)
- Pan Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, 100083, Beijing, China
| | - Daotong Li
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, 100083, Beijing, China
| | - Weixin Ke
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, 100083, Beijing, China
| | - Dong Liang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, 100083, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, 100083, Beijing, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, 100083, Beijing, China.
| |
Collapse
|
79
|
Porras D, Nistal E, Martínez-Flórez S, Olcoz JL, Jover R, Jorquera F, González-Gallego J, García-Mediavilla MV, Sánchez-Campos S. Functional Interactions between Gut Microbiota Transplantation, Quercetin, and High-Fat Diet Determine Non-Alcoholic Fatty Liver Disease Development in Germ-Free Mice. Mol Nutr Food Res 2019; 63:e1800930. [PMID: 30680920 DOI: 10.1002/mnfr.201800930] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/21/2018] [Indexed: 12/16/2022]
Abstract
SCOPE Modulation of intestinal microbiota has emerged as a new therapeutic approach for non-alcoholic fatty liver disease (NAFLD). Herein, it is addressed whether gut microbiota modulation by quercetin and intestinal microbiota transplantation can influence NAFLD development. METHODS AND RESULTS Gut microbiota donor mice are selected according to their response to high-fat diet (HFD) and quercetin in terms of obesity and NAFLD-related biomarkers. Germ-free recipients displayed metabolic phenotypic differences derived from interactions between microbiota transplanted, diets, and quercetin. Based on the evaluation of hallmark characteristics of NAFLD, it is found that gut microbiota transplantation from the HFD-non-responder donor and the HFD-fed donor with the highest response to quercetin results in a protective phenotype against HFD-induced NAFLD, in a mechanism that involves gut-liver axis alteration blockage in these receivers. Gut microbiota from the HFD-responder donor predisposed transplanted germ-free mice to NAFLD. Divergent protective and deleterious metabolic phenotypes exhibited are related to definite microbial profiles in recipients, highlighting the predominant role of Akkermansia genus in the protection from obesity-associated NAFLD development. CONCLUSIONS The results provide scientific support for the prebiotic capacity of quercetin and the transfer of established metabolic profiles through gut microbiota transplantation as a protective strategy against the development of obesity-related NAFLD.
Collapse
Affiliation(s)
- David Porras
- Institute of Biomedicine (IBIOMED), University of León, 24071, León, Spain
| | - Esther Nistal
- Institute of Biomedicine (IBIOMED), University of León, 24071, León, Spain.,Department of Gastroenterology. Complejo Asistencial Universitario de León, 24008, León, Spain
| | | | - José Luis Olcoz
- Department of Gastroenterology. Complejo Asistencial Universitario de León, 24008, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ramiro Jover
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Experimental Hepatology Unit, IIS Hospital La Fe, 46026, Valencia, Spain.,Department of Biochemistry and Molecular Biology, University of Valencia, 46010, Valencia, Spain
| | - Francisco Jorquera
- Department of Gastroenterology. Complejo Asistencial Universitario de León, 24008, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, 24071, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Victoria García-Mediavilla
- Institute of Biomedicine (IBIOMED), University of León, 24071, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Sonia Sánchez-Campos
- Institute of Biomedicine (IBIOMED), University of León, 24071, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
| |
Collapse
|
80
|
Chen T, Liu AB, Sun S, Ajami NJ, Ross MC, Wang H, Zhang L, Reuhl K, Kobayashi K, Onishi JC, Zhao L, Yang CS. Green Tea Polyphenols Modify the Gut Microbiome in db/db Mice as Co-Abundance Groups Correlating with the Blood Glucose Lowering Effect. Mol Nutr Food Res 2019; 63:e1801064. [PMID: 30667580 DOI: 10.1002/mnfr.201801064] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/07/2019] [Indexed: 01/04/2023]
Abstract
SCOPE The effects of green tea polyphenols, Polyphenon E (PPE), and black tea polyphenols, theaflavins (TFs), on gut microbiota and development of diabetes in db/db mice are investigated and compared. METHODS AND RESULTS Supplementation of PPE (0.1%) in the diet of female db/db mice for 7 weeks decreases fasting blood glucose levels and mesenteric fat while increasing the serum level of insulin, possibly through protection against β-cell damage. However, TFs are less or not effective. Microbiome analysis through 16S rRNA gene sequencing shows that PPE and TFs treatments significantly alter the bacterial community structure in the cecum and colon, but not in the ileum. The key bacterial phylotypes responding to the treatments are then clustered into 11 co-abundance groups (CAGs). CAGs 6 and 7, significantly increased by PPE but not by TFs, are negatively associated with blood glucose levels. The operational taxonomic units in these CAGs are from two different phyla, Firmicutes and Bacteroidetes. CAG 10, decreased by PPE and TFs, is positively associated with blood glucose levels. CONCLUSION Gut microbiota respond to tea polyphenol treatments as CAGs instead of taxa. Some of the CAGs associated with the blood glucose lowering effect are enriched by PPE, but not TFs.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Chemical Biology, The State University of New Jersey, Piscataway, NJ, USA
| | - Anna B Liu
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Shili Sun
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nadim J Ajami
- The Alkek Center for Metagenomics and Microbiome Research, Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX, USA
| | - Matthew C Ross
- The Alkek Center for Metagenomics and Microbiome Research, Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX, USA
| | - Hong Wang
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Le Zhang
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Kenneth Reuhl
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, The State University of New Jersey, Piscataway, NJ, USA
| | - Koichi Kobayashi
- Department of Microbial Pathogenesis & Immunology, Texas A&M Health Science Center, College Station, TX, USA
| | - Janet C Onishi
- Department of Chemical Biology, The State University of New Jersey, Piscataway, NJ, USA
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Chung S Yang
- Department of Chemical Biology, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
81
|
Polygonatum odoratum Polysaccharides Modulate Gut Microbiota and Mitigate Experimentally Induced Obesity in Rats. Int J Mol Sci 2018; 19:ijms19113587. [PMID: 30428630 PMCID: PMC6274832 DOI: 10.3390/ijms19113587] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence suggests that the gut microbiota plays vital roles in metabolic diseases. Polygonatum odoratum extract alleviates hyperglycemia and hyperlipidemia, but the underlying mechanism remains unclear. This study investigated the effects of P. odoratum polysaccharides (POPs) on high-fat diet (HFD)-induced obesity in rats and whether these effects were related to modulation of gut microbiota. POP treatment attenuated weight gain, fat accumulation, epididymal adipocyte size, liver triglycerides, and total liver cholesterol content in HFD-fed rats. POP administration also increased short-chain fatty acids (SCFAs), including isobutyric acid, butyric acid, and valeric acid. POP upregulated the expression of genes involved in adipocyte differentiation (Pparg, Cebpa, Cebpb) and lipolysis (Ppara, Atgl), and downregulated those related to lipid synthesis (Srebpf1, Fabp4, Fas), with corresponding changes in PPARγ and FABP4 protein expression. Finally, POP enhanced species richness and improved the gut microbiota community structure, reducing the relative abundances of Clostridium, Enterococcus, Coprobacillus, Lactococcus, and Sutterella. Principal coordinates analysis (PCoA) revealed a clear separation between HFD-fed rats and all other treatment groups. Correlation analysis identified negative and positive associations between obesity phenotypes and 28 POP-influenced operational taxonomic units (OTUs), including putative SCFA-producing bacteria. Our data suggest that POP supplementation may attenuate features of obesity in HFD-fed rats in association with the modulation of gut microbiota.
Collapse
|
82
|
Abstract
The microbiome has received increasing attention over the last 15 years. Although gut microbes have been explored for several decades, investigations of the role of microorganisms that reside in the human gut has attracted much attention beyond classical infectious diseases. For example, numerous studies have reported changes in the gut microbiota during not only obesity, diabetes, and liver diseases but also cancer and even neurodegenerative diseases. The human gut microbiota is viewed as a potential source of novel therapeutics. Between 2013 and 2017, the number of publications focusing on the gut microbiota was, remarkably, 12 900, which represents four-fifths of the total number of publications over the last 40 years that investigated this topic. This review discusses recent evidence of the impact of the gut microbiota on metabolic disorders and focus on selected key mechanisms. This review also aims to provide a critical analysis of the current knowledge in this field, identify putative key issues or problems and discuss misinterpretations. The abundance of metagenomic data generated on comparing diseased and healthy subjects can lead to the erroneous claim that a bacterium is causally linked with the protection or the onset of a disease. In fact, environmental factors such as dietary habits, drug treatments, intestinal motility and stool frequency and consistency are all factors that influence the composition of the microbiota and should be considered. The cases of the bacteria Prevotella copri and Akkermansia muciniphila will be discussed as key examples.
Collapse
Affiliation(s)
- Patrice D Cani
- Metabolism and Nutrition Research Group, Université catholique de Louvain, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Brussels, Belgium
| |
Collapse
|
83
|
Gut microbiome: Microflora association with obesity and obesity-related comorbidities. Microb Pathog 2018; 124:266-271. [PMID: 30138755 DOI: 10.1016/j.micpath.2018.08.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/26/2018] [Accepted: 08/18/2018] [Indexed: 12/23/2022]
Abstract
Obesity and obesity-related comorbidities have transformed into a global epidemic. The number of people suffering from obesity has increased dramatically within the past few decades. This rise in obesity cannot alone be explained by genetic factors; however, diet, environment, lifestyle, and presence of other diseases undoubtedly contribute towards obesity etiology. Nevertheless, evidence suggests that alterations in the gut microbial diversity and composition have a role to play in energy assimilation, storage, and expenditure. In this review, the impact of gut microbiota composition on metabolic functionalities, and potential therapeutics such as gut microbial modulation to manage obesity and its associated comorbidities are highlighted. Optimistically, an understanding of the gut microbiome could facilitate the innovative clinical strategies to restore the normal gut flora and improve lifestyle-related diseases in the future.
Collapse
|
84
|
Maternal consumption of green tea extract during pregnancy and lactation alters offspring's metabolism in rats. PLoS One 2018; 13:e0199969. [PMID: 30020947 PMCID: PMC6051583 DOI: 10.1371/journal.pone.0199969] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 05/13/2018] [Indexed: 02/06/2023] Open
Abstract
Introduction Green tea extract has anti-inflammatory and antioxidant effects which improve dyslipidemia and decrease adipose tissue depots associated with hyperlipidic diet consumption. Objective To evaluate the effect of green tea extract consumption by rats during pregnancy and lactation on the metabolism of their offspring that received control or high-fat diet with water during 10 weeks after weaning. Methods Wistar rats received water (W) or green tea extract diluted in water (G) (400 mg/kg body weight/day), and control diet (10 animals in W and G groups) during pregnancy and lactation. After weaning, offspring received water and a control (CW) or a high-fat diet (HW), for 10 weeks. One week before the end of treatment, oral glucose tolerance test was performed. The animals were euthanized and the samples were collected for biochemical, hormonal and antioxidant enzymes activity analyses. In addition, IL-10, TNF-α, IL-6, and IL-1β were quantified by ELISA while p-NF-κBp50 was analyzed by Western Blotting. Repeated Measures ANOVA, followed by Tukey's test were used to find differences between data (p < 0.05). Results The consumption of high-fat diet by rats for 10 weeks after weaning promoted hyperglycemia and hyperinsulinemia, and increased fat depots. The ingestion of a high-fat diet by the offspring of mothers who consumed green tea extract during pregnancy and lactation decreased the inflammatory cytokines in adipose tissue, while the ingestion of a control diet increased the same cytokines. Conclusion Our results demonstrate that prenatal consumption of green tea associated with consumption of high-fat diet by offspring after weaning prevented inflammation. However, maternal consumption of the green tea extract induced a proinflammatory status in the adipose tissue of the adult offspring that received the control diet after weaning.
Collapse
|
85
|
Dhaliwal J, Singh D, Singh S, Pinnaka A, Boparai R, Bishnoi M, Kondepudi K, Chopra K. Lactobacillus plantarumMTCC 9510 supplementation protects from chronic unpredictable and sleep deprivation-induced behaviour, biochemical and selected gut microbial aberrations in mice. J Appl Microbiol 2018; 125:257-269. [DOI: 10.1111/jam.13765] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/22/2022]
Affiliation(s)
- J. Dhaliwal
- Pharmacology Division; University Institute of Pharmaceutical Sciences (UIPS); Panjab University; Chandigarh Punjab India
| | - D.P. Singh
- Pharmacology Division; University Institute of Pharmaceutical Sciences (UIPS); Panjab University; Chandigarh Punjab India
- National Agri-food Biotechnology Institute (NABI); SAS Nagar; Mohali Punjab India
- Toxicology Division; National Institute of Occupational Health; Meghani Nagar Ahmedabad Gujarat India
| | - S. Singh
- National Agri-food Biotechnology Institute (NABI); SAS Nagar; Mohali Punjab India
| | - A.K. Pinnaka
- Microbial Type Culture Collection and Gene Bank; CSIR - Institute of Microbial Technology; Chandigarh Punjab India
| | - R.K. Boparai
- Department of Biotechnology; Government College for Girls; Chandigarh Punjab India
| | - M. Bishnoi
- National Agri-food Biotechnology Institute (NABI); SAS Nagar; Mohali Punjab India
- Functional Foods Research Laboratory; University of Southern Queensland; Toowoomba-4350 Queensland Australia
| | - K.K. Kondepudi
- National Agri-food Biotechnology Institute (NABI); SAS Nagar; Mohali Punjab India
| | - K. Chopra
- Pharmacology Division; University Institute of Pharmaceutical Sciences (UIPS); Panjab University; Chandigarh Punjab India
| |
Collapse
|
86
|
Liu G, Bei J, Liang L, Yu G, Li L, Li Q. Stachyose Improves Inflammation through Modulating Gut Microbiota of High-Fat Diet/Streptozotocin-Induced Type 2 Diabetes in Rats. Mol Nutr Food Res 2018; 62:e1700954. [PMID: 29341443 DOI: 10.1002/mnfr.201700954] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/13/2017] [Indexed: 12/11/2022]
Abstract
SCOPE The present study is undertaken to assess the effects of stachyose (STS) on type 2 diabetes in rats and changes in the gut microbiota compared to metformin (MET). METHODS AND RESULTS The type 2 diabetic model is successfully established via a high-fat diet /streptozotocin in Wistar rats, and STS or MET is administered for 4 weeks. Blood is collected to analyze biochemical parameters, pancreas for mRNA expression of related gene, and contents of colon for gut microbiota. STS or MET decreases serum LPS, mRNA expression of IL-6, and tumor necrosis factor-α (TNF-α). In addition, STS and MET show a similar shifting of the structure of the gut microbiota and a selective enrichment of key species. At the genus level, STS shows selective enrichment of Phascolarctobacterium, Bilophila, Oscillospira, Turicibacter, and SMB5, but MET demonstrates a selective effect on Sutterella, Prevotella, 02d06, and rc4. The correlation analysis indicates that STS and MET decrease IL-6 and TNF-α and increase Akt/PI3K expression, which are relative to key species of gut microbiota. CONCLUSION STS decreases pancreatic mRNA expression of IL-6 and TNF-α via key species of gut microbiota. The mechanism of this effect is similar to that of MET.
Collapse
Affiliation(s)
- Guimei Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China.,Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| | - Jia Bei
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China.,Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| | - Li Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China.,Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| | - Guoyong Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China.,Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| | - Lu Li
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China.,Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| | - Quanhong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China.,Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| |
Collapse
|
87
|
Co-supplementation of isomalto-oligosaccharides potentiates metabolic health benefits of polyphenol-rich cranberry extract in high fat diet-fed mice via enhanced gut butyrate production. Eur J Nutr 2017; 57:2897-2911. [PMID: 29127476 DOI: 10.1007/s00394-017-1561-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/13/2017] [Indexed: 12/16/2022]
Abstract
PURPOSE Cranberries are a rich source of polyphenolic antioxidants. Purified sugars or artificial sweeteners are being added to cranberry-based food products to mask tartness. Refined sugar and artificial sweeteners intake modulate gut microbiota and result in metabolic complications. We evaluated effects of isomalto-oligosaccharides (IMOs; sweet tasting non-digestible oligosaccharides) with cranberry extract (CRX) on high fat diet (HFD)-induced metabolic alterations in mice. METHODS Male Swiss albino mice were fed normal chow or HFD (58% fat kcal), and were administered either CRX (200 mg/kg) alone or in combination with IMOs (1 g/kg). Cecal short-chain fatty acids, abundances of selected (1) butyrate producing, (2) metabolically beneficial, and (3) selective lipopolysaccharides producing gram negative gut bacteria were studied. Further, gut-related histological, biochemical, genomic changes along with circulating pro-/anti-inflammatory markers and systemic obesity-associated metabolic changes were studied. RESULTS Co-supplementation of CRX and IMOs significantly improved cecal SCFAs, especially butyrate levels, selected butyrate-producing bacteria (clostridial cluster XIVa bacteria) and butyrate kinase expression in HFD-fed mice. The combination also significantly improved gut beneficial bacterial abundance, gut histology and related changes (colon mucin production, gut permeability) as compared to individual agents. It also prevented HFD-induced systemic and tissue inflammation, glucose intolerance and systemic obesity-associated metabolic changes in adipose tissue and liver. The combination of CRX and IMOs appeared more effective in the prevention of HFD-induced gut derangements. CONCLUSION Combination of CRX and IMOs could be advantageous for normalization of metabolic alterations seen in diet-induced obesity via beneficial modulation of gastrointestinal health.
Collapse
|
88
|
Lyu M, Wang YF, Fan GW, Wang XY, Xu SY, Zhu Y. Balancing Herbal Medicine and Functional Food for Prevention and Treatment of Cardiometabolic Diseases through Modulating Gut Microbiota. Front Microbiol 2017; 8:2146. [PMID: 29167659 PMCID: PMC5682319 DOI: 10.3389/fmicb.2017.02146] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022] Open
Abstract
It has become apparent that gut microbiota is closely associated with cardiometabolic diseases (CMDs), and alteration in microbiome compositions is also linked to the host environment. Next generation sequencing (NGS) has facilitated in-depth studies on the effects of herbal medicine and functional food on gut microbiota. Both herbal medicine and functional food contain fiber, polyphenols and polysaccharides, exerting prebiotics-like activities in the prevention and treatment of CMDs. The administrations of herbal medicine and functional food lead to increased the abundance of phylum Bacteroidetes, and genus Akkermansia, Bifidobacteria, Lactobacillus, Bacteroides and Prevotella, while reducing phylum Firmicutes and Firmicutes/Bacteroidetes ratio in gut. Both herbal medicine and functional food interact with gut microbiome and alter the microbial metabolites including short-chain fatty acids (SCFAs), bile acids (BAs) and lipopolysaccharides (LPS), which are now correlated with metabolic diseases such as type 2 diabetes (T2D), obesity and non-alcoholic fatty liver disease (NAFLD). In addition, trimethylamine (TMA)-N-oxide (TMAO) is recently linked to atherosclerosis (AS) and cardiovascular disease (CVD) risks. Moreover, gut-organs axes may serve as the potential strategy for treating CMDs with the intervention of herbal medicine and functional food. In summary, a balance between herbal medicine and functional food rich in fiber, polyphenols and polysaccharides plays a vital role in modulating gut microbiota (phylum Bacteroidetes, Firmicutes and Firmicutes/Bacteroidetes ratio, and genus Akkermansia, Bifidobacteria, Lactobacillus, Bacteroides and Prevotella) through SCFAs, BAs, LPS and TMAO signaling regarding CMDs. Targeting gut-organs axes may serve as a new therapeutic strategy for CMDs by herbal medicine and functional food in the future. This review aims to summarize the balance between herbal medicine and functional food utilized for the prevention and treatment of CMDs through modulating gut microbiota.
Collapse
Affiliation(s)
- Ming Lyu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Yue-Fei Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Guan-Wei Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China.,Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao-Ying Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Neuroscience Program, Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| |
Collapse
|
89
|
Cani PD, de Vos WM. Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila. Front Microbiol 2017; 8:1765. [PMID: 29018410 PMCID: PMC5614963 DOI: 10.3389/fmicb.2017.01765] [Citation(s) in RCA: 641] [Impact Index Per Article: 91.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022] Open
Abstract
Metabolic disorders associated with obesity and cardiometabolic disorders are worldwide epidemic. Among the different environmental factors, the gut microbiota is now considered as a key player interfering with energy metabolism and host susceptibility to several non-communicable diseases. Among the next-generation beneficial microbes that have been identified, Akkermansia muciniphila is a promising candidate. Indeed, A. muciniphila is inversely associated with obesity, diabetes, cardiometabolic diseases and low-grade inflammation. Besides the numerous correlations observed, a large body of evidence has demonstrated the causal beneficial impact of this bacterium in a variety of preclinical models. Translating these exciting observations to human would be the next logic step and it now appears that several obstacles that would prevent the use of A. muciniphila administration in humans have been overcome. Moreover, several lines of evidence indicate that pasteurization of A. muciniphila not only increases its stability but more importantly increases its efficacy. This strongly positions A. muciniphila in the forefront of next-generation candidates for developing novel food or pharma supplements with beneficial effects. Finally, a specific protein present on the outer membrane of A. muciniphila, termed Amuc_1100, could be strong candidate for future drug development. In conclusion, as plants and its related knowledge, known as pharmacognosy, have been the source for designing drugs over the last century, we propose that microbes and microbiomegnosy, or knowledge of our gut microbiome, can become a novel source of future therapies.
Collapse
Affiliation(s)
- Patrice D Cani
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de LouvainBrussels, Belgium
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands.,Immunobiology Research Program, Research Programs Unit, Department of Bacteriology and Immunology, University of HelsinkiHelsinki, Finland
| |
Collapse
|
90
|
Liu Z, Liu HY, Zhou H, Zhan Q, Lai W, Zeng Q, Ren H, Xu D. Moderate-Intensity Exercise Affects Gut Microbiome Composition and Influences Cardiac Function in Myocardial Infarction Mice. Front Microbiol 2017; 8:1687. [PMID: 28919891 PMCID: PMC5585143 DOI: 10.3389/fmicb.2017.01687] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022] Open
Abstract
Physical exercise is commonly regarded as protective against cardiovascular disease (CVD). Recent studies have reported that exercise alters the gut microbiota and that modification of the gut microbiota can influence cardiac function. Here, we focused on the relationships among exercise, the gut microbiota and cardiac function after myocardial infarction (MI). Four-week-old C57BL/6J mice were exercised on a treadmill for 4 weeks before undergoing left coronary artery ligation. Cardiac function was assessed using echocardiography. Gut microbiomes were evaluated post-exercise and post-MI using 16S rRNA gene sequencing on an Illumina HiSeq platform. Exercise training inhibited declines in cardiac output and stroke volume in post-MI mice. In addition, physical exercise and MI led to alterations in gut microbial composition. Exercise training increased the relative abundance of Butyricimonas and Akkermansia. Additionally, key operational taxonomic units were identified, including 24 lineages (mainly from Bacteroidetes, Barnesiella, Helicobacter, Parabacteroides, Porphyromonadaceae, Ruminococcaceae, and Ureaplasma) that were closely related to exercise and cardiac function. These results suggested that exercise training improved cardiac function to some extent in addition to altering the gut microbiota; therefore, they could provide new insights into the use of exercise training for the treatment of CVD.
Collapse
Affiliation(s)
- Zuheng Liu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical UniversityGuangzhou, China.,Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of ChinaGuangzhou, China
| | - Hai-Yue Liu
- Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of ChinaGuangzhou, China.,Department of Environmental Health, School of Public Health, Southern Medical UniversityGuangzhou, China
| | - Haobin Zhou
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical UniversityGuangzhou, China.,Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of ChinaGuangzhou, China
| | - Qiong Zhan
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical UniversityGuangzhou, China.,Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of ChinaGuangzhou, China
| | - Wenyan Lai
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical UniversityGuangzhou, China.,Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of ChinaGuangzhou, China
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical UniversityGuangzhou, China.,Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of ChinaGuangzhou, China
| | - Hao Ren
- Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of ChinaGuangzhou, China.,Department of Rheumatology, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical UniversityGuangzhou, China.,Key Laboratory for Organ Failure Research, Ministry of Education of the People's Republic of ChinaGuangzhou, China
| |
Collapse
|