51
|
James JP, Sasidharan P, Mandal SP, Dixit SR. Virtual Screening of Alkaloids and Flavonoids as Acetylcholinesterase and MAO-B Inhibitors by Molecular Docking and Dynamic Simulation Studies. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2102662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Jainey P. James
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), NITTE (Deemed to Be University), Mangaluru, India
| | - Pradija Sasidharan
- Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), NITTE (Deemed to Be University), Mangaluru, India
| | - Subhankar P. Mandal
- Department of Pharmaceutical Chemistry, JSS Academy of Higher Education and Research, JSS College of Pharmacy, Mysuru, India
| | - Sheshagiri R. Dixit
- Department of Pharmaceutical Chemistry, JSS Academy of Higher Education and Research, JSS College of Pharmacy, Mysuru, India
| |
Collapse
|
52
|
Plant Bioactives in the Treatment of Inflammation of Skeletal Muscles: A Molecular Perspective. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4295802. [PMID: 35911155 PMCID: PMC9328972 DOI: 10.1155/2022/4295802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 12/20/2022]
Abstract
Skeletal muscle mass responds rapidly to growth stimuli, precipitating hypertrophies (increased protein synthesis) and hyperplasia (activation of the myogenic program). For ages, muscle degeneration has been attributed to changes in the intracellular myofiber pathways. These pathways are tightly regulated by hormones and lymphokines that ultimately pave the way to decreased anabolism and accelerated protein breakdown. Despite the lacunae in our understanding of specific pathways, growing bodies of evidence suggest that the changes in the myogenic/regenerative program are the major contributing factor in the development and progression of muscle wasting. In addition, inflammation plays a key role in the pathophysiology of diseases linked to the failure of skeletal muscles. Chronic inflammation with elevated levels of inflammatory mediators has been observed in a spectrum of diseases, such as inflammatory myopathies and chronic obstructive pulmonary disease (COPD). Although the pathophysiology of these diseases varies greatly, they all demonstrate sarcopenia and dysregulated skeletal muscle physiology as common symptoms. Medicinal plants harbor potential novel chemical moieties for a plenitude of illnesses, and inflammation is no exception. However, despite the vast number of potential antiinflammatory compounds found in plant extracts and isolated components, the research on medicinal plants is highly daunting. This review aims to explore the various phytoconstituents employed in the treatment of inflammatory responses in skeletal muscles, while providing an in-depth molecular insight into the latter.
Collapse
|
53
|
Elangovan A, Ramachandran J, Lakshmanan DK, Ravichandran G, Thilagar S. Ethnomedical, phytochemical and pharmacological insights on an Indian medicinal plant: The balloon vine (Cardiospermum halicacabum Linn.). JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115143. [PMID: 35227784 DOI: 10.1016/j.jep.2022.115143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiospermum halicacabum Linn. (C. halicacabum) is one of the well-known leafy green vegetables in India. It is an herbaceous climber from the Sapindaceae family which is found in almost every Continent and Oceania. In the traditional Indian medicine systems, this plant is used for the treatment of rheumatism, abdominal pain, orchitis, dropsy, lumbago, skin diseases, cough, nervous disorders, and hyperthermia. AIM OF THE REVIEW This review presents the current information about ethnomedical uses and progress on geographical distribution, pharmacological activities, phytochemistry, micropropagation, and toxicity of C. halicacabum. Also, critically summarizes the relationship between the reported pharmacological activities and the traditional usages along with the future perspectives for research on this medicinal plant. MATERIALS AND METHODS The data on C. halicacabum were collected using multiple internet sources such as Google Scholar, Science Direct, Taylor & Francis, PubMed, Web of Science, Springer Link, Wiley online, and plant databases. RESULTS Chemical characterization using LC-MS/MS, HPLC, and NMR exposed the presence of chlorogenic acid, caffeic acid, coumaric acid, luteolin-7-o-glucuronide, apigenin-7-o-glucuronide, and chrysoeriol in different parts of C. halicacabum. Based on the outcomes of this review, the main bioactive compounds found in C. halicacabum include phenols, phenolic acids, flavonoids, flavonoid glycosides, and flavonoid glucuronides. Besides the above-mentioned constituents, palmitic acid, oleic acid, stearic acid, linolenic acid, eicosenoic acid, and arachidic acid are the compounds that constitute the fatty acid profile of C. halicacabum seeds. Specifically, Cardiospermin, a bioactive compound isolated from the root extract of C. halicacabum has been recognized for its anxiolytic activity. Moreover, C. halicacabum showed a broad spectrum of pharmacological activities including anti-inflammatory, anti-arthritic, anti-diabetic, anxiolytic activity, antiulcer, apoptotic activity, antibacterial, antiviral, anti-diarrheal, antioxidant, hepatoprotective, and nephroprotective properties. However, the bioactive compounds responsible for most of the above therapeutic properties have not been elucidated till now. CONCLUSION Phytochemicals from C. halicacabum showed noticeable pharmacological effects against plethora of health disorders. Some of the traditional applications were supported by modern scientific studies, however, more pharmacological evaluations should be conducted to validate other traditional uses of C. halicacabum. Despite C. halicacabum's vast pharmacological activity, additional human clinical trials are needed to determine the potent and safe dosages for the treatment of various health abnormalities. Besides, bioassay-guided isolation of active constituents, pharmacokinetic evaluations and identification of their mode of action are recommended for future investigations on C. halicacabum to unveil its therapeutic drug leads. Overall, this review suggests that C. halicacabum could be a new source of functional foods.
Collapse
Affiliation(s)
- Abbirami Elangovan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Jeyadevi Ramachandran
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Dinesh Kumar Lakshmanan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India; Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Guna Ravichandran
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Sivasudha Thilagar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
54
|
Adel M, Zahmatkeshan M, Akbarzadeh A, Rabiee N, Ahmadi S, Keyhanvar P, Rezayat SM, Seifalian AM. Chemotherapeutic effects of Apigenin in breast cancer: Preclinical evidence and molecular mechanisms; enhanced bioavailability by nanoparticles. BIOTECHNOLOGY REPORTS 2022; 34:e00730. [PMID: 35686000 PMCID: PMC9171451 DOI: 10.1016/j.btre.2022.e00730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022]
|
55
|
Šamec D, Karalija E, Dahija S, Hassan STS. Biflavonoids: Important Contributions to the Health Benefits of Ginkgo ( Ginkgo biloba L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:1381. [PMID: 35631806 PMCID: PMC9143338 DOI: 10.3390/plants11101381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 05/03/2023]
Abstract
Ginkgo (Ginkgo biloba L.) is one of the most distinctive plants, characterized by excellent resistance to various environmental conditions. It is used as an ornamental plant and is recognized as a medicinal plant in both traditional and Western medicine. Its bioactive potential is associated with the presence of flavonoids and terpene trilactones, but many other compounds may also have synergistic effects. Flavonoid dimers-biflavonoids-are important constituents of ginkgophytopharmaceuticals. Currently, the presence of 13 biflavonoids has been reported in ginkgo, of which amentoflavone, bilobetin, sciadopitysin, ginkgetin and isoginkgetin are the most common. Their role in plants remains unknown, but their bioactivity and potential role in the management of human health are better investigated. In this review, we have provided an overview of the chemistry, diversity and biological factors that influence the presence of biflavonoids in ginkgo, as well as their bioactive and health-related properties. We have focused on their antioxidant, anticancer, antiviral, antibacterial, antifungal and anti-inflammatory activities as well as their potential role in the treatment of cardiovascular, metabolic and neurodegenerative diseases. We also highlighted their potential toxicity and pointed out further research directions.
Collapse
Affiliation(s)
- Dunja Šamec
- Department of Food Technology, University North, Trga Dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| | - Erna Karalija
- Department for Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina; (E.K.); (S.D.)
| | - Sabina Dahija
- Department for Biology, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina; (E.K.); (S.D.)
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic;
| |
Collapse
|
56
|
Jia C, Zhao Y, Huang H, Fan K, Xie T, Xie M. Apigenin sensitizes radiotherapy of mouse subcutaneous glioma through attenuations of cell stemness and DNA damage repair by inhibiting NF-κB/HIF-1α-mediated glycolysis. J Nutr Biochem 2022; 107:109038. [PMID: 35533901 DOI: 10.1016/j.jnutbio.2022.109038] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/12/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
The radioresistance of glioma is related to the presence of glioma stem cells. Apigenin, a natural flavonoid compound present in numerous health foods and edible plants, has inhibitory effects on a variety of glioma cells. However, the effects of apigenin on glioma and radiotherapy remain unclear. Here, we used radioresistant SU3-5R stem cells-inoculated subcutaneous glioma model to investigate the effects of apigenin and potential mechanisms. The results showed that after treatment of mouse subcutaneous glioma with apigenin 20 mg/kg for 12 days, irradiation 8 Gray twice or their combination, the tumor volume and weight were significantly decreased, especially in the combined treatment group. Apigenin treatment inhibited the activities of glycolytic related enzymes and expressions of nuclear factor kappa B (NF-κB) p65, hypoxia inducible factor-lα (HIF-1α), glucose transporter (GLUT)-1/3 and pyruvate kinase isozyme type M2 (PKM2) proteins in tumor tissues. After treatment of SU3-5R cells with apigenin 7.5 μM, the fluorescence intensity of CD133 positive cells was decreased, the percentage of cells with comet tails caused by irradiation was increased, and the expressions of lipopolysaccharide-induced NF-κB p65, HIF-1α, GLUT-3 and PKM2 proteins were reduced. These results demonstrate that apigenin can sensitize the radiotherapy of subcutaneous glioma in nude mice, and its mechanisms may result from the attenuations of cell stemness and DNA damage repair by inhibiting NF-κB/HIF-1α-mediated glycolytic related enzymes and protein expressions. In conclusion, our findings suggest that apigenin and apigenin-rich health foods can be used in the radiotherapy of glioma as a radiosensitizer.
Collapse
Affiliation(s)
- Changhao Jia
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Ying Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Hui Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Ke Fan
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Tao Xie
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, Jiangsu Province, China.
| | - Meilin Xie
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
57
|
Noori T, Sureda A, Sobarzo-Sánchez E, Shirooie S. The Role of Natural Products in Treatment of Depressive Disorder. Curr Neuropharmacol 2022; 20:929-949. [PMID: 34979889 PMCID: PMC9881107 DOI: 10.2174/1570159x20666220103140834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
Depressive disorder is one of the most common psychiatric syndromes that, if left untreated, can cause many disturbances in a person's life. Numerous factors are involved in depression, including inflammation, brain-derived neurotrophic factor (BDNF), GABAergic system, hypothalamic- pituitary-adrenal (HPA) Axis, monoamine neurotransmitters (serotonin (5-HT), noradrenaline, and dopamine). Common treatments for depression are selective serotonin reuptake inhibitors, tricyclic antidepressants, and monoamine oxidase inhibitors, but these drugs have several side effects such as anxiety, diarrhea, constipation, weight loss, and sexual dysfunctions. These agents only reduce the symptoms and temporarily reduce the rate of cognitive impairment associated with depression. As a result, extensive research has recently been conducted on the potential use of antidepressant and sedative herbs. According to the available data, herbs used in traditional medicine can be significantly effective in reducing depression, depressive symptoms and improving patients' performance. The present study provides a summary of biomarkers and therapeutic goals of depression and shows that natural products such as saffron or genipin have antidepressant effects. Some of the useful natural products and their mechanisms were evaluated. Data on various herbs and natural isolated compounds reported to prevent and reduce depressive symptoms is also discussed.
Collapse
Affiliation(s)
- Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands-IUNICS, Palma de Mallorca E-07122, Balearic Islands, Spain;,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile; Chile;,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago, Spain
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran;,Address correspondence to this author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; E-mail:
| |
Collapse
|
58
|
Kaur R, Sood A, Lang DK, Bhatia S, Al-Harrasi A, Aleya L, Behl T. Potential of flavonoids as anti-Alzheimer's agents: bench to bedside. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26063-26077. [PMID: 35067880 DOI: 10.1007/s11356-021-18165-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Developing therapies for neurodegenerative diseases are challenging because of the presence of blood-brain barrier and Alzheimer being one of the commonest and uprising neurodegenerative disorders possess the need for developing novel therapies. Alzheimer's is attributed to be the sixth leading cause of death in the USA and the number of cases is estimated to be increased from 58 million in 2021 to 88 million by 2050. Natural drugs have benefits of being cost-effective, widely available, fewer side effects, and immuno-booster can be useful in managing Alzheimer. Flavonoids can slow the neuronal degeneration as they have shown activity in central nervous system and are able to cross the blood-brain barrier. These can be easily extracted from fruits, vegetable, and plants. In Alzheimer disease, flavonoids scavenges the reactive oxygen species and reduces the production of amyloid beta protein. Agents from sub-classes of flavonoids such as flavanones, flavanols, flavones, flavonols, anthocyanins, and isoflavones having pharmacological action in treating Alzheimer disease are discussed in this review.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
| | - Ankita Sood
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
| | | | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India.
| |
Collapse
|
59
|
Apigenin Suppresses the Warburg Effect and Stem-like Properties in SOSP-9607 Cells by Inactivating the PI3K/Akt/mTOR Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3983637. [PMID: 35310040 PMCID: PMC8926538 DOI: 10.1155/2022/3983637] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/09/2021] [Accepted: 02/02/2022] [Indexed: 12/22/2022]
Abstract
Osteosarcoma (OS) is a prevalent primary malignant bone tumor that commonly occurs in children and adolescents. Apigenin (4′,5,7-trihydroxyflavone) is one of the most researched phenolic compounds that exhibits antitumor effects in several cancers. The aim of the current study was to investigate the effect and underlying mechanisms of apigenin on OS. To address this, OS cells (SOSP-9607) were treated with different concentrations of apigenin. The proliferation, migration, invasion, stem-like properties, and Warburg effect of apigenin-treated OS cells were evaluated. Apigenin was found to suppress the proliferation of SOSP-9607 cells and inhibit epithelial-mesenchymal transition, as indicated by decreased number of migrated and invaded cells, decreased protein expression of vimentin, and increased protein expression of E-cadherin. Additionally, apigenin suppressed tumorsphere formation and reduced the proportion of SOSP-9607 cells with positive expression of the stem cell-related markers Nanog and OCT-4. Apigenin inhibited the Warburg effect in SOSP-9607 cells, as demonstrated by decreased glucose and lactic acid levels, increased citrate and ATP levels, and downregulation of GLUT1, HK1, and LDHA, which are metabolism-related enzymes related to the Warburg effect. Moreover, apigenin inhibited the phosphorylation of PI3K, Akt, and mTOR in SOSP-9607 cells. Collectively, these results indicate that apigenin suppresses the Warburg effect and stem-like properties in SOSP-9607 cells, which may be mediated by PI3K/Akt/mTOR signaling, thus, providing a novel strategy for OS treatment.
Collapse
|
60
|
Szklener K, Szklener S, Michalski A, Żak K, Kuryło W, Rejdak K, Mańdziuk S. Dietary Supplements in Chemotherapy-Induced Peripheral Neuropathy: A New Hope? Nutrients 2022; 14:625. [PMID: 35276984 PMCID: PMC8838672 DOI: 10.3390/nu14030625] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is one of the main and most prevalent side effects of chemotherapy, significantly affecting the quality of life of patients and the course of chemotherapeutic treatment. Nevertheless, despite its prevalence, the management of the CIPN is considered particularly challenging, with this condition often being perceived as very difficult or even impossible to prevent with currently available agents. Therefore, it is imperative to find better options for patients diagnosed with this condition. While the search for the new agents must continue, another opportunity should be taken into consideration-repurposing of the already known medications. As proposed, acetyl-L-carnitine, vitamins (group B and E), extracts of medical plants, including goshajinkigan, curcumin and others, unsaturated fatty acids, as well as the diet composed of so-called "sirtuin-activating foods", could change the typical way of treatment of CIPN, improve the quality of life of patients and maintain the continuity of chemotherapy. This review summarizes currently available data regarding mentioned above agents and evaluates the rationale behind future research focused on their efficacy in CIPN.
Collapse
Affiliation(s)
- Katarzyna Szklener
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland;
| | - Sebastian Szklener
- Department of Neurology, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland; (S.S.); (K.R.)
| | - Adam Michalski
- Student Scientific Association, Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland; (A.M.); (K.Ż.); (W.K.)
| | - Klaudia Żak
- Student Scientific Association, Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland; (A.M.); (K.Ż.); (W.K.)
| | - Weronika Kuryło
- Student Scientific Association, Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland; (A.M.); (K.Ż.); (W.K.)
| | - Konrad Rejdak
- Department of Neurology, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland; (S.S.); (K.R.)
| | - Sławomir Mańdziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland;
| |
Collapse
|
61
|
Khan H, Alam W, Alsharif KF, Aschner M, Pervez S, Saso L. Alkaloids and Colon Cancer: Molecular Mechanisms and Therapeutic Implications for Cell Cycle Arrest. Molecules 2022; 27:molecules27030920. [PMID: 35164185 PMCID: PMC8838632 DOI: 10.3390/molecules27030920] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 12/18/2022] Open
Abstract
Cancer is the second most fatal disease worldwide, with colon cancer being the third most prevalent and fatal form of cancer in several Western countries. The risk of acquisition of resistance to chemotherapy remains a significant hurdle in the management of various types of cancer, especially colon cancer. Therefore, it is essential to develop alternative treatment modalities. Naturally occurring alkaloids have been shown to regulate various mechanistic pathways linked to cell proliferation, cell cycle, and metastasis. This review aims to shed light on the potential of alkaloids as anti-colon-cancer chemotherapy agents that can modulate or arrest the cell cycle. Preclinical investigated alkaloids have shown anti-colon cancer activities and inhibition of cancer cell proliferation via cell cycle arrest at different stages, suggesting that alkaloids may have the potential to act as anticancer molecules.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
- Correspondence: or
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099,Taif 21944, Saudi Arabia;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Samreen Pervez
- Department of Pharmacy, Qurtuba University of Science and Information Technology, Peshawar 29050, Pakistan;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
62
|
Oyenihi OR, Oyenihi AB, Alabi TD, Tade OG, Adeyanju AA, Oguntibeju OO. Reactive oxygen species: Key players in the anticancer effects of apigenin? J Food Biochem 2022; 46:e14060. [PMID: 34997605 DOI: 10.1111/jfbc.14060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 01/04/2023]
Abstract
Reactive oxygen species (ROS) exhibit a double-edged sword in cancer-hence their modulation has been an attractive strategy in cancer prevention and therapy. The abundance of scientific information on the pro-oxidant effects of apigenin in cancer cells suggests the crucial role of ROS in its mechanisms of action. Although apigenin is known to enhance the cellular ROS levels to cytotoxic degrees in cancer cells in vitro, it remains to be determined if these pro-oxidant effects prevail or are relevant in experimental tumor models and clinical trials. Here, we critically examine the pro-oxidant and antioxidant effects of apigenin in cancer to provide insightful perspectives on the association between its ROS-modulating action and anticancer potential. We also discussed these effects in a cell/tissue type-specific context to highlight the factors influencing the switch between antioxidant and pro-oxidant effects. Finally, we raised some questions that need addressing for the potential translation of these studies into clinical applications. Further research into this duality in oxidant actions of apigenin, especially in vivo, may enable better exploitation of its anticancer potential. PRACTICAL APPLICATION: Apigenin is a naturally occurring compound found in chamomile flowers, parsley, celery, peppermint, and citrus fruits. Many human trials of dietary interventions with apigenin-containing herbs and flavonoid mixture on oxidative stress markers, for instance, point to their antioxidant effects and health benefits in many diseases. Preclinical studies suggest that apigenin alone or its combination with chemotherapeutics has a strong anti-neoplastic effect and can induce ROS-mediated cytotoxicity at concentrations in the micromolar (μM) range, which may not be feasible with dietary interventions. Enhancing the in vivo pharmacokinetic properties of apigenin may be indispensable for its potential cancer-specific pro-oxidant therapy and may provide relevant information for clinical studies of apigenin either as a single agent or an adjuvant to chemotherapeutics.
Collapse
Affiliation(s)
- Omolola R Oyenihi
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Ayodeji B Oyenihi
- Functional Foods Research Unit, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Toyin D Alabi
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Oluwatosin G Tade
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne A Adeyanju
- Department of Biological Sciences, Faculty of Applied Sciences, KolaDaisi University, Ibadan, Oyo State, Nigeria
| | - Oluwafemi O Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| |
Collapse
|
63
|
Hadrich F, Chamkha M, Sayadi S. Protective effect of olive leaves phenolic compounds against neurodegenerative disorders: Promising alternative for Alzheimer and Parkinson diseases modulation. Food Chem Toxicol 2021; 159:112752. [PMID: 34871668 DOI: 10.1016/j.fct.2021.112752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
The main objective of this work was to review literature on compounds extracted from olive tree leaves, such as simple phenols (hydroxytyrosol) and flavonoids (Apigenin, apigenin-7-O-glucoside, luteolin.) and their diverse pharmacological activities as antioxidant, antimicrobial, anti-viral, anti-obesity, anti-inflammatory and neuroprotective properties. In addition, the study discussed the key mechanisms underlying their neuroprotective effects. This study adopted an approach of collecting data through the databases provided by ScienceDirect, SCOPUS, MEDLINE, PubMed and Google Scholar. This review revealed that there was an agreement on the great impact of olive tree leaves phenolic compounds on many metabolic syndromes as well as on the most prevalent neurodegenerative diseases such as Alzheimer and Parkinson. These findings would be of great importance for the use of olive tree leaves extracts as a food supplement and/or a source of drugs for many diseases. In addition, this review would of great help to beginning researchers in the field since it would offer them a general overview of the studies undertaken in the last two decades on the topic.
Collapse
Affiliation(s)
- Fatma Hadrich
- Environmental Bioprocesses Laboratory, Center of Biotechnology of Sfax, P.O. Box 1177, 3038, Sfax, Tunisia.
| | - Mohamed Chamkha
- Environmental Bioprocesses Laboratory, Center of Biotechnology of Sfax, P.O. Box 1177, 3038, Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center of Sustainable Development, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
64
|
Kaur L, Malhi DS, Cooper R, Kaur M, Sohal HS, Mutreja V, Sharma A. Comprehensive review on ethnobotanical uses, phytochemistry, biological potential and toxicology of Parthenium hysterophorus L.: A journey from noxious weed to a therapeutic medicinal plant. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114525. [PMID: 34411657 DOI: 10.1016/j.jep.2021.114525] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Parthenium hysterophorus L. is a noxious weed and a species of flowering plant in the Asteraceae family. It is regarded as the seventh most deadly weed in the world: harmful to both humans and livestock. It is widely known as Congress Grass or Feverfew. Despite its pitfalls, P. hysterophorus bestows medicinal effects. Although prolific in nature and difficult to control, many novel applications of this controversial herb have been discovered as an approach to manage the weed. AIM The current review aims to compile all the ethnobotanical, phytochemistry, biological activities and utilities, clinical studies and toxicity data available on P. hysterophorus and its major chemical constituent parthenin. MATERIALS AND METHODS Extensive literature surveyed Google search, Google scholar, Wiley online library, Elsevier, Springer, Science direct, American Chemical Society, Royal Society of Chemistry and Research Gate. RESULT According to the study, P. hysterophorus is utilized as a traditional medicine throughout Central America and the Caribbean. It can be used to treat skin infections, dermatitis, amoebic dysentery, and as an analgesic in the treatment of muscular rheumatism. The extracts obtained from P. hysterophorus have anti-inflammatory, antioxidant, larvicidal, anti-microbial, insecticidal, hypoglycaemic and anti-cancer activity. CONCLUSION The earlier investigations confirmed that P. hysterophorus has numerous traditional and biological applications. However, the scientific data are limited in clinical and toxicological studies. Therefore, further research is required on clinical and toxicological aspects to understand the complete potential and effects of P. hysterophorus.
Collapse
Affiliation(s)
- Loveleen Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Dharambeer Singh Malhi
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Raymond Cooper
- Dept Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Manvinder Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Harvinder Singh Sohal
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Vishal Mutreja
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Ajay Sharma
- Medicinal and Natural Product Laboratory, Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, 140413, India.
| |
Collapse
|
65
|
Alam W, Rocca C, Khan H, Hussain Y, Aschner M, De Bartolo A, Amodio N, Angelone T, Cheang WS. Current Status and Future Perspectives on Therapeutic Potential of Apigenin: Focus on Metabolic-Syndrome-Dependent Organ Dysfunction. Antioxidants (Basel) 2021; 10:antiox10101643. [PMID: 34679777 PMCID: PMC8533599 DOI: 10.3390/antiox10101643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome and its associated disorders such as obesity, insulin resistance, atherosclerosis and type 2 diabetes mellitus are globally prevalent. Different molecules showing therapeutic potential are currently available for the management of metabolic syndrome, although their efficacy has often been compromised by their poor bioavailability and side effects. Studies have been carried out on medicinal plant extracts for the treatment and prevention of metabolic syndrome. In this regard, isolated pure compounds have shown promising efficacy for the management of metabolic syndrome, both in preclinical and clinical settings. Apigenin, a natural bioactive flavonoid widely present in medicinal plants, functional foods, vegetables and fruits, exerts protective effects in models of neurological disorders and cardiovascular diseases and most of these effects are attributed to its antioxidant action. Various preclinical and clinical studies carried out so far show a protective effect of apigenin against metabolic syndrome. Herein, we provide a comprehensive review on both in vitro and in vivo evidence related to the promising antioxidant role of apigenin in cardioprotection, neuroprotection and renoprotection, and to its beneficial action in metabolic-syndrome-dependent organ dysfunction. We also provide evidence on the potential of apigenin in the prevention and/or treatment of metabolic syndrome, analysing the potential and limitation of its therapeutic use.
Collapse
Affiliation(s)
- Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 221400, China;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Anna De Bartolo
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
- National Institute of Cardiovascular Research I.N.R.C., 40126 Bologna, Italy
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China;
| |
Collapse
|
66
|
Sarigul Sezenoz A, Akkoyun I, Helvacioglu F, Haberal N, Dagdeviren A, Bacanli D, Yilmaz G, Oto S. Antiproliferative and Mitochondrial Protective Effects of Apigenin in an Oxygen-Induced Retinopathy In Vivo Mouse Model. J Ocul Pharmacol Ther 2021; 37:580-590. [PMID: 34665015 DOI: 10.1089/jop.2021.0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Purpose: To investigate the effects of a common dietary flavonoid apigenin on retinal endothelial cell proliferation, retinal morphological structure, and apoptotic cell death in an oxygen-induced retinopathy (OIR) mouse model to evaluate the possibility of the use of apigenin in the treatment of ocular neovascular diseases (ONDs). Methods: Ninety-six newborn C57BL/6J mice were included. Eight groups were randomized, each including 12 mice. Two negative control groups were kept in room air: the first without any injection and the second received intravitreal (IV) dimethyl sulfoxide (DMSO), which is the solvent we used. The OIR groups were exposed to 75% ± 2% oxygen from postnatal days (PD) 7 to 12. On PD 12, the mice were randomly assigned to 6 groups: 2 OIR control groups (1 received no injection, 1 received IV-DMSO), 2 IV-apigenin groups (10 and 20 μg/mL), and 2 intraperitoneal (IP)-apigenin groups (10 and 20 mg/kg). We quantified retinal endothelial cell proliferation by counting neovascular tufts in cross-sections and examined histological and ultrastructural changes through light and electron microscopy. We evaluated apoptosis by terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL). Results: We detected a significant increase in endothelial cell proliferation in the OIR groups. Groups receiving apigenin, both IP and IV, had significant decreases in endothelial cells, atypical mitochondrion count, and apoptotic cells compared with the groups receiving no injections. None of the apigenin-injected groups revealed cystic degeneration or cell loss. Conclusions: Apigenin suppresses neovascularization, has antiapoptotic and antioxidative effects in an OIR mouse model, and can be considered a promising agent for treating OND. Clinical trial (Project number: DA15/19).
Collapse
Affiliation(s)
| | - Imren Akkoyun
- Department of Ophthalmology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Fatma Helvacioglu
- Department of Histology and Embryology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Nihan Haberal
- Department of Pathology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Attila Dagdeviren
- Department of Histology and Embryology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Didem Bacanli
- Baskent University Laboratory Animal Breeding and Research Center, Ankara, Turkey
| | - Gursel Yilmaz
- Department of Ophthalmology, Baskent University Faculty of Medicine, Ankara, Turkey
| | - Sibel Oto
- Department of Ophthalmology, Baskent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
67
|
Varshney M, Kumar B, Rana VS, Sethiya NK. An overview on therapeutic and medicinal potential of poly-hydroxy flavone viz. Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone for management of Alzheimer's and Parkinson's diseases: a critical analysis on mechanistic insight. Crit Rev Food Sci Nutr 2021; 63:2749-2772. [PMID: 34590507 DOI: 10.1080/10408398.2021.1980761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neurodegenerative disorders occur when nerve cells in the brain or peripheral nervous system partial or complete fail in their functions and sometimes even die due to some injuries or aging. Neurodegenerative disorders such as Alzheimer's Disease (AD) and Parkinson's Disease (PD), have been majorly resulted due to degeneration of neurons and neuroinflammation progressively. There are many similarities that correlates both AD and PD on a cellular and sub-cellular level. Therefore, a hope for therapeutic advancement for simultaneous upgradation in both the diseases are directly depending on the discovery of common mechanism at molecular and cellular level. Recent and past evidences from scientific literature supporting the efficacy of plants flavonoids in treatment and protection of both AD and PD. Further, dietary flavones, specially Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone gains recently much more attention for producing many health beneficiary effects including neuroprotection. Despite of these evidence a detailed updated overview of neuroprotective effects against both AD and PD by Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone are still missing. In this context several published studies were assessed by using various online electronic search engines/databases to meet the objective from 1981 to 2021 (Approx. 224). Therefore, present review was designed to deliver the detailed description on these flavones including therapeutic benefits in AD, PD and other CNS complications with critical analysis on underlying mechanisms.
Collapse
Affiliation(s)
| | - Bhavna Kumar
- Faculty of Pharmacy, DIT University, Dehradun, India
| | | | | |
Collapse
|
68
|
Kashyap P, Shikha D, Thakur M, Aneja A. Functionality of apigenin as a potent antioxidant with emphasis on bioavailability, metabolism, action mechanism and in vitro and in vivo studies: A review. J Food Biochem 2021; 46:e13950. [PMID: 34569073 DOI: 10.1111/jfbc.13950] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 01/18/2023]
Abstract
Numerous diseases such as cancer, diabetes, cardiovascular, neurodegenerative diseases, etc. are linked with overproduction of reactive oxygen species (ROS) and oxidative stress. Apigenin (5,7,4'-trihydroxyflavone) is a widely distributed flavonoid, responsible for antioxidant potential and chelating redox active metals. Being present as glycosides or polymers, the apigenin degrades to variable amount in the digestive tract; during processing, its activity is also reduced due to high temperature or Fe/Cu addition. Although its metabolism remains elusive, enteric absorption occurs sufficiently to reduce plasma indices of oxidant status. Delayed clearance in plasma and slow liver decomposition enhance its systematic bioavailability. Antioxidant mechanism of apigenin includes: oxidant enzymes inhibition, modulation of redox signaling pathways (NF-kB, Nrf2, MAPK, and P13/Akt), reinforcing enzymatic and nonenzymatic antioxidant, metal chelation, and free radical scavenging. DPPH, ORAC, ABTS, and FRAP are the major in vitro methods for determining the antioxidant potential of apigenin, whereas its protective effects in whole and living cells of animals are examined using in vivo studies. Due to limited information on antioxidant potential of apigenin, its in vitro and in vivo antioxidant effects are, therefore, discussed with action mechanism and interaction with the signaling pathways. This paper concludes that apigenin is a potent antioxidant compound to overcome the difficulties related to oxidative stress and other chronic diseases.
Collapse
Affiliation(s)
- Piyush Kashyap
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Deep Shikha
- Department of Food Technology, Bhai Gurdas Institute of Engineering and Technology, Sangrur, Punjab, India
| | - Mamta Thakur
- Department of Food Technology, School of Sciences, ITM University, Gwalior, India
| | - Ashwin Aneja
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
69
|
Rahman MH, Bajgai J, Fadriquela A, Sharma S, Trinh TT, Akter R, Jeong YJ, Goh SH, Kim CS, Lee KJ. Therapeutic Potential of Natural Products in Treating Neurodegenerative Disorders and Their Future Prospects and Challenges. Molecules 2021; 26:5327. [PMID: 34500759 PMCID: PMC8433718 DOI: 10.3390/molecules26175327] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022] Open
Abstract
Natural products derived from plants, as well as their bioactive compounds, have been extensively studied in recent years for their therapeutic potential in a variety of neurodegenerative diseases (NDs), including Alzheimer's (AD), Huntington's (HD), and Parkinson's (PD) disease. These diseases are characterized by progressive dysfunction and loss of neuronal structure and function. There has been little progress in designing efficient treatments, despite impressive breakthroughs in our understanding of NDs. In the prevention and therapy of NDs, the use of natural products may provide great potential opportunities; however, many clinical issues have emerged regarding their use, primarily based on the lack of scientific support or proof of their effectiveness and patient safety. Since neurodegeneration is associated with a myriad of pathological processes, targeting multi-mechanisms of action and neuroprotection approaches that include preventing cell death and restoring the function of damaged neurons should be employed. In the treatment of NDs, including AD and PD, natural products have emerged as potential neuroprotective agents. This current review will highlight the therapeutic potential of numerous natural products and their bioactive compounds thatexert neuroprotective effects on the pathologies of NDs.
Collapse
Affiliation(s)
- Md. Habibur Rahman
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
- Department of Global Medical Science, Yonsei University Graduate School, Wonju 26426, Gangwon-do, Korea;
| | - Johny Bajgai
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| | - Ailyn Fadriquela
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea;
| | - Subham Sharma
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
- Department of Global Medical Science, Yonsei University Graduate School, Wonju 26426, Gangwon-do, Korea;
| | - Thuy Thi Trinh
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
- Department of Global Medical Science, Yonsei University Graduate School, Wonju 26426, Gangwon-do, Korea;
| | - Rokeya Akter
- Department of Global Medical Science, Yonsei University Graduate School, Wonju 26426, Gangwon-do, Korea;
| | - Yun Ju Jeong
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| | - Seong Hoon Goh
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| | - Cheol-Su Kim
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| | - Kyu-Jae Lee
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea; (M.H.R.); (J.B.); (S.S.); (T.T.T.); (Y.J.J.); (S.H.G.); (C.-S.K.)
| |
Collapse
|
70
|
Optimization of Pre-Inoculum, Fermentation Process Parameters and Precursor Supplementation Conditions to Enhance Apigenin Production by a Recombinant Streptomyces albus Strain. FERMENTATION 2021. [DOI: 10.3390/fermentation7030161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Streptomyces albus J1074-pAPI (Streptomyces albus-pAPI) is a recombinant strain constructed to biotechnologically produce apigenin, a flavonoid with interesting bioactive features that up to now has been manufactured by extraction from plants with long and not environmentally friendly procedures. So far, in literature, only a maximum apigenin concentration of 80.0 µg·L−1 has been obtained in shake flasks. In this paper, three integrated fermentation strategies were exploited to enhance the apigenin production by Streptomyces albus J1074-pAPI, combining specific approaches for pre-inoculum conditions, optimization of fermentation process parameters and supplementation of precursors. Using a pre-inoculum of mycelium, the apigenin concentration increased of 1.8-fold in shake flask physiological studies. In 2L batch fermentation, the aeration and stirring conditions were optimized and integrated with the new inoculum approach and the apigenin production reached 184.8 ± 4.0 µg·L−1, with a productivity of 2.6 ± 0.1 μg·L−1·h−1. The supplementation of 1.5 mM L-tyrosine in batch fermentations allowed to obtain an apigenin production of 343.3 ± 3.0 µg·L−1 in only 48 h, with an increased productivity of 7.1 ± 0.1 μg·L−1·h−1. This work demonstrates that the optimization of fermentation process conditions is a crucial requirement to increase the apigenin concentration and productivity by up to 4.3- and 10.7-fold.
Collapse
|
71
|
Islam MA, Zaman S, Biswas K, Al-Amin MY, Hasan MK, Alam AHMK, Tanaka T, Sadik G. Evaluation of cholinesterase inhibitory and antioxidant activity of Wedelia chinensis and isolation of apigenin as an active compound. BMC Complement Med Ther 2021; 21:204. [PMID: 34315449 PMCID: PMC8317308 DOI: 10.1186/s12906-021-03373-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Background Wedelia chinensis has been reported as a folk medicine for the treatment of different diseases including neurodegenerative disease. Although the plant has been studied well for diverse biological activities, the effect of this plant in neurological disorder is largely unknown. The present study was undertaken to evaluate the cholinesterase inhibitory and antioxidant potential of W. chinensis. Methods The extract and fractions of the plant were evaluated for acetylcholinesterase and butyrylcholinesterase inhibitory activity by modified Ellman method. The antioxidant activity was assessed in several in vitro models/assays such as reducing power, total antioxidant capacity, total phenolic and flavonoid content, scavenging of 2,2′-diphenyl-1-picrylhydrazyl (DPPH) free radical and hydroxyl radical, and inhibition of brain lipid peroxidation. Chromatographic and spectroscopic methods were used to isolate and identify the active compound from the extract. Results Among the fractions, aqueous fraction (AQF) and ethylacetate fraction (EAF) exhibited high inhibition against acetylcholinesterase (IC50: 40.02 ± 0.16 μg/ml and 57.76 ± 0.37 μg/ml) and butyrylcholinesterase (IC50: 31.79 ± 0.18 μg/ml and 48.41 ± 0.05 μg/ml). Similarly, the EAF and AQF had high content of phenolics and flavonoids and possess strong antioxidant activity in several antioxidant assays including DPPH and hydroxyl radical scavenging, reducing power and total antioxidant activity. They effectively inhibited the peroxidation of brain lipid in vitro with IC50 values of 45.20 ± 0.10 μg/ml and 25.53 ± 0.04 μg/ml, respectively. A significant correlation was observed between total flavonoids and antioxidant and cholinesterase inhibitory activity. Activity guided chromatographic separation led to the isolation of a major active compound from the EAF and its structure was elucidated as apigenin by spectral analysis. Conclusions The potential ability of W. chinensis to inhibit the cholinesterase activity and peroxidation of lipids suggest that the plant might be useful for the management of AD. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03373-4.
Collapse
Affiliation(s)
- Md Aminul Islam
- Department of Chemistry, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Shahed Zaman
- Department of Chemistry, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Kushal Biswas
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Yusuf Al-Amin
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Kamrul Hasan
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - A H M K Alam
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | | | - Golam Sadik
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
72
|
Zhao F, Chen M, Jin S, Wang S, Yue W, Zhang L, Ye N. Macro-composition quantification combined with metabolomics analysis uncovered key dynamic chemical changes of aging white tea. Food Chem 2021; 366:130593. [PMID: 34314928 DOI: 10.1016/j.foodchem.2021.130593] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 06/30/2021] [Accepted: 07/11/2021] [Indexed: 11/04/2022]
Abstract
It is a common belief in China that aging could improve the quality of white tea. However, the stored-induced compositional changes remain elusive. In this study, ten subsets of white tea samples, which had been stored for 1-, 2-, 3-, 4-, 5-, 6-, 7-, 10-, 11- and 13- years, were selected. Macro-compositions were quantified firstly. As the results showed, it was interesting to find total flavonoids, thearubigins (TRs), and theabrownines (TBs) increasing, accompanied with a gradual decrease of total polyphenols, which suggest a conversion of phenolic component in the aging process. Then, nontargeted metabolomics was further conducted on selected subsets of samples, including 1-, 7- and 13- years stored to profile their conversion. As a result, most different metabolites were related to flavonol glycosides and flavone glycosides, suggesting dynamic phenolic component changes were vital in aging. The partial least-squares-discriminant analysis (PLS-DA) also identified them as markers in distinguishing.
Collapse
Affiliation(s)
- Feng Zhao
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Mingjie Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; College of Life Science, Xinyang Normal University, Xinyang, Henan, 464000 China
| | - Shan Jin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Shuyan Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Wenjie Yue
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lixiong Zhang
- Zhangyuanji Tea Co., Ltd., Fuding City, Fujian 355200, China
| | - Naixing Ye
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
73
|
Duan L, Cheng S, Li L, Liu Y, Wang D, Liu G. Natural Anti-Inflammatory Compounds as Drug Candidates for Inflammatory Bowel Disease. Front Pharmacol 2021; 12:684486. [PMID: 34335253 PMCID: PMC8316996 DOI: 10.3389/fphar.2021.684486] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) represents chronic recurrent intestinal inflammation resulting from various factors. Crohn’s disease (CD) and ulcerative colitis (UC) have been identified as the two major types of IBD. Currently, most of the drugs for IBD used commonly in the clinic have adverse reactions, and only a few drugs present long-lasting treatment effects. Moreover, issues of drug resistance and disease recurrence are frequent and difficult to resolve. Together, these issues cause difficulties in treating patients with IBD. Therefore, the development of novel therapeutic agents for the prevention and treatment of IBD is of significance. In this context, research on natural compounds exhibiting anti-inflammatory activity could be a novel approach to developing effective therapeutic strategies for IBD. Phytochemicals such as astragalus polysaccharide (APS), quercetin, limonin, ginsenoside Rd, luteolin, kaempferol, and icariin are reported to be effective in IBD treatment. In brief, natural compounds with anti-inflammatory activities are considered important candidate drugs for IBD treatment. The present review discusses the potential of certain natural compounds and their synthetic derivatives in the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Linshan Duan
- School of Pharmaceutical Sciences Xiamen University, Xiamen, China
| | - Shuyu Cheng
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, China
| | - Long Li
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Yanling Liu
- School of Pharmaceutical Sciences Xiamen University, Xiamen, China
| | - Dan Wang
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, China
| | - Guoyan Liu
- School of Pharmaceutical Sciences Xiamen University, Xiamen, China.,Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, China.,Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
74
|
Ozel AB, Cilingir-Kaya OT, Sener G, Ozbeyli D, Sen A, Sacan O, Yanardag R, Yarat A. Investigation of possible neuroprotective effects of some plant extracts on brain in bile duct ligated rats. J Food Biochem 2021; 45:e13835. [PMID: 34173678 DOI: 10.1111/jfbc.13835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/29/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022]
Abstract
This study aimed to investigate the possible neuroprotective effects of bitter melon (BM), chard, and parsley extracts on oxidative damage that may occur in the brain of rats with bile duct ligation (BDL)-induced biliary cirrhosis. It was observed that lipid peroxidation (LPO), sialic acid (SA), and nitric oxide (NO) levels increased; glutathione (GSH) levels, catalase (CAT) activity, and tissue factor (TF) activity decreased significantly in the BDL group. However, in groups with BDL given BM, chard, and parsley extracts LPO, SA, NO levels decreased; GSH levels and CAT activities increased significantly. No significant differences were observed between groups in total protein, glutathione-S-transferase, superoxide dismutase, and boron. Histological findings were supported by the biochemical results. BM, chard, and parsley extracts were effective in the regression of oxidant damage caused by cirrhosis in the brain tissues. PRACTICAL APPLICATIONS: Bitter melon (BM), chard, and parsley have antioxidant properties due to their bioactive compounds which are involved in scavenging free radicals, suppressing their production, and stimulating the production of endogenous antioxidant compounds. Since BM, chard, and parsley extracts were found to be effective in the regression of oxidant damage caused by cirrhosis in the brain tissues, these plant extracts may be an alternative in the development of different treatment approaches against brain damage in cirrhosis. At the same time, these species have been used as food by the people for many years. Therefore, they can be used safely as neuroprotective agents in treatment.
Collapse
Affiliation(s)
- Armagan Begum Ozel
- Department of Basic Medical Sciences, Biochemistry, Marmara University, Faculty of Dentistry, Istanbul, Turkey
| | | | - Goksel Sener
- Vocational School of Health Service, Fenerbahçe University, Istanbul, Turkey
| | - Dilek Ozbeyli
- Pathology Laboratory Techniques, Vocational School of Health Service, Marmara University, Istanbul, Turkey
| | - Ali Sen
- Department of Pharmacognosy, Marmara University, Faculty of Pharmacy, Istanbul, Turkey
| | - Ozlem Sacan
- Department of Chemistry, Istanbul University-Cerrahpasa, Faculty of Engineering, Istanbul, Turkey
| | - Refiye Yanardag
- Department of Chemistry, Istanbul University-Cerrahpasa, Faculty of Engineering, Istanbul, Turkey
| | - Aysen Yarat
- Department of Basic Medical Sciences, Biochemistry, Marmara University, Faculty of Dentistry, Istanbul, Turkey
| |
Collapse
|
75
|
Wu JY, Li Y, Li BL, Wang YG, Cui WG, Zhou WH, Zhao X. Evidence for 5-HT 1A receptor-mediated antiallodynic and antihyperalgesic effects of apigenin in mice suffering from mononeuropathy. Br J Pharmacol 2021; 178:4005-4025. [PMID: 34030210 DOI: 10.1111/bph.15574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/28/2021] [Accepted: 05/09/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Neuropathic pain places a devastating health burden, with very few effective therapies. We investigated the potential antiallodynic and antihyperalgesic effects of apigenin, a natural flavonoid with momoamine oxidase (MAO) inhibitory activity, against neuropathic pain and investigated the mechanism(s). EXPERIMENTAL APPROACH The neuropathic pain model was produced by chronic constriction injury of sciatic nerves in male C57BL/6J mice, with pain-related behaviours being assayed by von Frey test and Hargreaves test. In this model the role of 5-HT and 5-HT1A receptor-related mechanisms were investigated in vivo/in vitro. KEY RESULTS Apigenin repeated treatment (p.o., once per day for 2 weeks), in a dose-related manner (3, 10 and 30 mg·kg-1 ), ameliorated the allodynia and hyperalgesia in chronic nerve constriction injury in mice. These effects seem dependent on neuronal 5-hydroxytryptamine, because (i) the antihyperalgesia and antiallodynia were attenuated by depletion of 5-HT with p-chlorophenylalanine and potentiated by 5-hydroxytryptophan and (ii), apigenin-treated chronic constriction injury mice caused an increased level of spinal 5-HT, associated with diminished MAO activity. In vivo administration, spinally or systematically, of the 5-HT1A antagonist WAY-100635 inhibited the apigenin-induced antiallodynia and antihyperalgesia. In vitro, apigenin acted as a positive allosteric modulator to increase the efficacy (stimulation of [35 S]GTPγS binding) of the 5-HT1A agonist 8-OH-DPAT. Apigenin attenuated neuronal changes caused by chronic constriction of the sciatic nerve in mice, without causing a hypertensive crisis. CONCLUSION AND IMPLICATIONS Apigenin antiallodynic and antihyperalgesic actions against neuropathic pain crucially involve spinal 5-HT1A receptors and indicate it could be used to treat neuropathic pain.
Collapse
Affiliation(s)
- Jia-Yi Wu
- Department of Pharmacology, Ningbo University, School of Medical Science, Ningbo, China
| | - Ye Li
- School of Marine Science, Ningbo University, Ningbo, China
| | - Ben-Ling Li
- School of Mathematics and Statistics, Ningbo University, Ningbo, China
| | - Yan-Gui Wang
- Department of Geriatrics, Hunan Provincial People's Hospital, Changsha, China
| | - Wu-Geng Cui
- Department of Pharmacology, Ningbo University, School of Medical Science, Ningbo, China
| | - Wen-Hua Zhou
- Department of Pharmacology, Ningbo University, School of Medical Science, Ningbo, China
| | - Xin Zhao
- Department of Pharmacology, Ningbo University, School of Medical Science, Ningbo, China
| |
Collapse
|
76
|
Ali AAM, Mansour AB, Attia SA. The potential protective role of apigenin against oxidative damage induced by nickel oxide nanoparticles in liver and kidney of male Wistar rat, Rattus norvegicus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27577-27592. [PMID: 33515148 DOI: 10.1007/s11356-021-12632-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Nickel oxide nanoparticles (NiONPs) are involved in several applications but still have some adverse effects. Apigenin (APG) is a widespread natural product with antioxidative, anticancer, and anti-inflammatory properties. The present work aimed to study the protective role of APG against the NiONP-induced toxicity in male Wistar rats. Rats were randomly distributed to one control group and three treated groups. The treated groups were orally administered NiONPs (100 mg/kg) alone, APG (25 mg/kg) alone, or APG 1 h before NiONPs, once daily for 28 days. Blood, liver, and kidney were collected after 7, 14, and 28 days of administration for Ni accumulation, hematological, biochemical, histological, and transmission electron microscopy (TEM) investigations. As compared to the controls, the administration of NiONPs alone significantly elevated the levels of Ni, malondialdehyde, total cholesterol, low-density lipoprotein cholesterol, creatinine, urea, blood urea nitrogen, and the activity of alanine and aspartate aminotransferases as well as the count of white blood cells. Besides, marked reductions in the activity of superoxide dismutase, and the levels of glutathione, high-density lipoprotein cholesterol, total proteins, albumin, globulin, hemoglobin, packed cell volume, and red blood cell count were reported. Histologically, the liver and kidney of rats administered NiONPs alone showed remarkable disturbances. According to TEM, subcellular alterations were observed in the liver and kidney of rats administered NiONPs alone. In contrast, APG administering before NiONPs substantially alleviated all the studied parameters. In conclusion, APG can ameliorate the NiONP-induced hepatotoxicity and nephrotoxicity in male Wistar rats.
Collapse
|
77
|
Wu Q, Li W, Zhao J, Sun W, Yang Q, Chen C, Xia P, Zhu J, Zhou Y, Huang G, Yong C, Zheng M, Zhou E, Gao K. Apigenin ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammation. Biomed Pharmacother 2021; 137:111308. [PMID: 33556877 DOI: 10.1016/j.biopha.2021.111308] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Doxorubicin (DOX) is an anthracycline antitumor antibiotic widely utilized in treating various tumors. Nevertheless, the toxicity of DOX toward normal cells limits its applicability, with nephrotoxicity considered a major dose-limiting adverse effect. Apigenin (APG), a flavonoid widely distributed in natural plants, has been reported to have antioxidant, anti-inflammatory, and mild tumor-suppressive properties. In this study, we investigated the role of APG in DOX-induced nephrotoxicity and chemotherapeutic efficacy. METHODS Male BALB/c mice were administered DOX (11.5 mg/kg) via the tail vein to establish the DOX nephropathy model. After treatment with or without APG (125, 250, and 500 mg/kg) for two weeks, urine, serum, and tissue samples were collected to evaluate proteinuria, serum albumin, serum creatinine (Scr), blood urea nitrogen (BUN), superoxide dismutase (SOD) activity, malondialdehyde (MDA), glutathione (GSH), and pathological changes. Rat renal tubular epithelial cells (NRK52E), murine podocyte cells (MPC5), and murine breast cancer cells (4T1) were utilized to verify the effect of APG on DOX-induced cell injury. An MTT assay was employed to analyze cell viability. Apoptosis was evaluated using a colorimetric TUNEL staining and cleaved caspase-3 protein analysis by western blotting. A reactive oxygen species (ROS)/superoxide (O2-) fluorescence probe was employed to determine oxidative injury. Western blotting was used to analyze nephrin, α-smooth muscle actin (α-SMA), collagen I (Col1), fibronectin (FN), and SOD2 expression. The mRNA levels of tumor necrosis factor-α (TNF-α), interleukin-18 (IL-18), IL-6, NACHT, LRR, PYD domain-containing protein 3 (NLRP3), caspase-1, and IL-1β were tested by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS APG ameliorated DOX-elicited renal injuries in both the glomeruli and tubules. The DOX + APG groups had much lower tissue MDA, IL-6, TNF-α, NLRP3, caspase-1, and IL-1β levels and generation of intracellular ROS, but significantly higher SOD activity and GSH levels compared to those of the DOX group. Additionally, APG attenuated DOX-induced morphological changes, loss of cellular viability, and apoptosis in NRK-52E and MPC-5 cells, but not in 4T1 cells. CONCLUSION APG has a protective role against DOX-induced nephrotoxicity, without weakening DOX cytotoxicity in malignant tumors. Thus, APG may serve as a potential protective agent against renal injury and inflammatory diseases and may be a promising candidate to attenuate renal toxicity in cancer patients treated with DOX.
Collapse
Affiliation(s)
- Qijing Wu
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Wei Li
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jing Zhao
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Wei Sun
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
| | - Qianqian Yang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chong Chen
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ping Xia
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jingjing Zhu
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yiceng Zhou
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu Province, China
| | - Guoshun Huang
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Chen Yong
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Min Zheng
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Enchao Zhou
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Kun Gao
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
| |
Collapse
|
78
|
Sobarzo-Sánchez E. Meet Our Editorial Board Member. Mini Rev Med Chem 2021. [DOI: 10.2174/138955752108210301160735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Eduardo Sobarzo-Sánchez
- Grupo de Investigacion en Quimica Medica y Bio-inorganica (QMEDBIN) Facultad de Ciencias de la Salud Universidad Central de Chile,Chile
| |
Collapse
|
79
|
Shahidi F, Pan Y. Influence of food matrix and food processing on the chemical interaction and bioaccessibility of dietary phytochemicals: A review. Crit Rev Food Sci Nutr 2021; 62:6421-6445. [PMID: 33787422 DOI: 10.1080/10408398.2021.1901650] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Consumption of phytochemicals-rich foods shows the health effect on some chronic diseases. However, the bioaccessibility of these phytochemicals is extremely low, and they are often consumed in the diet along with the food matrix. The food matrix can be described as a complex assembly of various physical and chemical interactions that take place between the compounds present in the food. Some studies indicated that the physiological response and the health benefits of phytochemicals are resultant in these interactions. Some food substrates inhibit the absorption of phytochemicals via this interaction. Moreover, processing technologies have been developed to facilitate the release and/or to increase the accessibility of phytochemicals in plants or breakdown of the food matrix. Food processing processes may disrupt the activity of phytochemicals or reduce bioaccessibility. Enhancement of functional and sensorial attributes of phytochemicals in the daily diet may be achieved by modifying the food matrix and food processing in appropriate ways. Therefore, this review concisely elaborated on the mechanism and the influence of food matrix in different parts of the digestive tract in the human body, the chemical interaction between phytochemicals and other compounds in a food matrix, and the various food processing technologies on the bioaccessibility and chemical interaction of dietary phytochemicals. Moreover, the enhancing of phytochemical bioaccessibility through food matrix design and the positive/negative of food processing for dietary phytochemicals was also discussed in this study.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Yao Pan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.,State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, Jiangxi, China
| |
Collapse
|
80
|
Wu L, Guo T, Deng R, Liu L, Yu Y. Apigenin Ameliorates Insulin Resistance and Lipid Accumulation by Endoplasmic Reticulum Stress and SREBP-1c/SREBP-2 Pathway in Palmitate-Induced HepG2 Cells and High-Fat Diet-Fed Mice. J Pharmacol Exp Ther 2021; 377:146-156. [PMID: 33509902 DOI: 10.1124/jpet.120.000162] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin resistance (IR) is the common basis of diabetes and cardiovascular diseases, and its development is closely associated with lipid metabolism disorder. Flavonoids have definite chemical defense effects, including anti-inflammatory effects, anticancer effects, and antimutation effects. However, the function and mechanism of apigenin (AP, a kind of flavonoid) in IR are still unclear. In our study, intracellular fat accumulation model cells and high-fat diet (HFD)-fed model mice were established using palmitate (PA) and HFD. Mechanistically, we first demonstrated that AP could notably downregulate sterol regulatory element-binding protein 1c (SREBP-1c), sterol regulatory element-binding protein 2 (SREBP-2), fatty acid synthase, stearyl-CoA desaturase 1, and 3-hydroxy-3-methyl-glutaryl-CoA reductase in PA-induced hyperlipidemic cells and mice. Functionally, we verified that AP could markedly reduce lipid accumulation in PA-induced hyperlipidemic cells and decrease the body weight, visceral fat weight, IR, and lipid accumulation in HFD-induced hyperlipidemic mice. Besides, we showed that PA could significantly downregulate endoplasmic reticulum stress (ERS)-related proteins and inhibit ERS. Furthermore, we proved that AP could reduce blood lipids by inhibiting ERS in PA-induced hyperlipidemic cells. Meanwhile, 4-phenyl butyric acid (also called ERS alleviator), like AP, could significantly reduce blood lipids and alleviate IR in HFD-fed model mice. Therefore, we concluded that AP could substantially improve the disorder of lipid metabolism, and its mechanism might be related to the decrease of SREBP-1c, SREBP-2, and downstream genes, the inhibition of ERS, and the reduction of blood lipids and IR. SIGNIFICANCE STATEMENT: Apigenin, a nontoxic and naturally sourced flavonoid, has antihyperlipidemic properties in mice and hepatocyte. This study highlights a new mechanism of apigenin and proposes that these hypolipidemic effects are associated with the mitigation of endoplasmic reticulum stress and insulin resistance in diet-induced obesity. This study might provide translational insight into the prevention and treatment of apigenin in hyperlipidemia-related diseases.
Collapse
Affiliation(s)
- Liling Wu
- College of Animal Science and Technology, Southwest University, Chongqing, China (L.W., L.L., Y.Y.) and Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College (L.W., T.G.), Department of Clinical Medicine (R.D.), North Sichuan Medical College, Nanchong, Sichuan, China
| | - Tingdong Guo
- College of Animal Science and Technology, Southwest University, Chongqing, China (L.W., L.L., Y.Y.) and Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College (L.W., T.G.), Department of Clinical Medicine (R.D.), North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ranxi Deng
- College of Animal Science and Technology, Southwest University, Chongqing, China (L.W., L.L., Y.Y.) and Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College (L.W., T.G.), Department of Clinical Medicine (R.D.), North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lusheng Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China (L.W., L.L., Y.Y.) and Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College (L.W., T.G.), Department of Clinical Medicine (R.D.), North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yongxiong Yu
- College of Animal Science and Technology, Southwest University, Chongqing, China (L.W., L.L., Y.Y.) and Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College (L.W., T.G.), Department of Clinical Medicine (R.D.), North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
81
|
Maan G, Sikdar B, Kumar A, Shukla R, Mishra A. Role of Flavonoids in Neurodegenerative Diseases: Limitations and Future Perspectives. Curr Top Med Chem 2021; 20:1169-1194. [PMID: 32297582 DOI: 10.2174/1568026620666200416085330] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Flavonoids, a group of natural dietary polyphenols, are known for their beneficial effects on human health. By virtue of their various pharmacological effects, like anti-oxidative, antiinflammatory, anti-carcinogenic and neuroprotective effects, flavonoids have now become an important component of herbal supplements, pharmaceuticals, medicinals and cosmetics. There has been enormous literature supporting neuroprotective effect of flavonoids. Recently their efficacy in various neurodegenerative diseases, like Alzheimer's disease and Parkinson diseases, has received particular attention. OBJECTIVE The mechanism of flavanoids neuroprotection might include antioxidant, antiapoptotic, antineuroinflammatory and modulation of various cellular and intracellular targets. In in-vivo systems, before reaching to brain, they have to cross barriers like extensive first pass metabolism, intestinal barrier and ultimately blood brain barrier. Different flavonoids have varied pharmacokinetic characteristics, which affect their pharmacodynamic profile. Therefore, brain accessibility of flavonoids is still debatable. METHODS This review emphasized on current trends of research and development on flavonoids, especially in neurodegenerative diseases, possible challenges and strategies to encounter using novel drug delivery system. RESULTS Various flavonoids have elicited their therapeutic potential against neurodegenerative diseases, however by using nanotechnology and novel drug delivery systems, the bioavailability of favonoids could be enhanced. CONCLUSION This study bridges a significant opinion on medicinal chemistry, ethanopharmacology and new drug delivery research regarding use of flavonoids in management of neurodegeneration.
Collapse
Affiliation(s)
- Gagandeep Maan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow-226002, U.P., India
| | - Biplab Sikdar
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow-226002, U.P., India
| | - Ashish Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow-226002, U.P., India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow-226002, U.P., India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow-226002, U.P., India
| |
Collapse
|
82
|
Ciccone L, Vandooren J, Nencetti S, Orlandini E. Natural Marine and Terrestrial Compounds as Modulators of Matrix Metalloproteinases-2 (MMP-2) and MMP-9 in Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:86. [PMID: 33498927 PMCID: PMC7911533 DOI: 10.3390/ph14020086] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/16/2022] Open
Abstract
Several studies have reported neuroprotective effects by natural products. A wide range of natural compounds have been investigated, and some of these may play a beneficial role in Alzheimer's disease (AD) progression. Matrix metalloproteinases (MMPs), a family of zinc-dependent endopeptidases, have been implicated in AD. In particular, MMP-2 and MMP-9 are able to trigger several neuroinflammatory and neurodegenerative pathways. In this review, we summarize and discuss existing literature on natural marine and terrestrial compounds, as well as their ability to modulate MMP-2 and MMP-9, and we evaluate their potential as therapeutic compounds for neurodegenerative and neuroinflammatory diseases, with a focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy; (L.C.); (S.N.)
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, KU Leuven—Herestraat 49—Box 1044, 3000 Leuven, Belgium;
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy; (L.C.); (S.N.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health (NUTRAFOOD), University of Pisa, 56126 Pisa, Italy
| | - Elisabetta Orlandini
- Department of Earth Sciences, University of Pisa, via Santa Maria 53, 56126 Pisa, Italy
- Research Center “E. Piaggio”, University of Pisa, 56122 Pisa, Italy
| |
Collapse
|
83
|
Olaleye O, Titilope O, Moses O. Possible health benefits of polyphenols in neurological disorders associated with COVID-19. ACTA FACULTATIS MEDICAE NAISSENSIS 2021. [DOI: 10.5937/afmnai38-30190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Novel Coronavirus disease 2019 (COVID-19) represents an emergent global health burden that has challenged the health systems worldwide. Since its sudden upsurge in 2019, many COVID-19 patients have exhibited neurological symptoms and complications. Till now, there is no known effective established drug against the highly contagious COVID-19 infection despite the frightening associated mortality rate. This article aims to present the mechanism of action of coronavirus-2 (SARS-CoV-2), the clinical neurological manifestations displayed by COVID-19 patients, and present polyphenols with neuroprotective ability that can offer beneficial effects against COVID-19-mediated neuropathology. Reports from COVID-19 clinical studies, case reports, and other related literature were evaluated for this review. Neurological complications of COVID-19 include anosmia, acute cerebrovascular disease, acute disseminated post-infectious encephalomyelitis, encephalitis, etc. Also, SARS-CoV-2 sould be a neurotropic vіruѕ due to its iѕolatіon from serebroѕrіnal fluіd. Multіrle neurologіsal damages displayed by COVID-19 patients might be due to hyperinflammation associated with SARS-CoV-2 infections. Resveratrol, kolaviron, quercetin and apigenin are polyphenols with proven anti-inflammatory and therapeutic properties that can extenuate the adverse effects of COVID-19. These polyphenols have been documented to suppress c-Jun N-terminal kinase (JNK), phosphoinositide-3-kinase (PI3-K), extrasellularѕіgnal-regulated kinase (ERK), nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-kB) and mіtogen-astіvated protein kіnaѕe (MAPK) pathways which are essential in the pathogenesis of COVID-19. They also showed significant inhibitory activities against SARS-CoV-2 proteins. Taken together, these polyphenols may offer neuroprotective benefits against COVID-19 mediated neuropathology via modulation of the pathogenic pathways.
Collapse
|
84
|
Yarmohammadi F, Hayes AW, Karimi G. Natural compounds against cytotoxic drug-induced cardiotoxicity: A review on the involvement of PI3K/Akt signaling pathway. J Biochem Mol Toxicol 2020; 35:e22683. [PMID: 33325091 DOI: 10.1002/jbt.22683] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/09/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022]
Abstract
Cardiotoxicity is a critical concern in the use of several cytotoxic drugs. Induction of apoptosis, inflammation, and autophagy following dysregulation of the PI3K/Akt signaling pathway contributes to the cardiac damage induced by these drugs. Several natural compounds (NCs), including ferulic acid, gingerol, salvianolic acid B, paeonol, apigenin, calycosin, rutin, neferine, higenamine, vincristine, micheliolide, astragaloside IV, and astragalus polysaccharide, have been reported to suppress cytotoxic drug-induced cardiac injury. This article reviews these NCs that have been reported to have a protective effect against cytotoxic drug-induced cardiotoxicity through regulation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- College of Public Health, University of South Florida, Tampa, Florida, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
85
|
Guedj F, Siegel AE, Pennings JLA, Alsebaa F, Massingham LJ, Tantravahi U, Bianchi DW. Apigenin as a Candidate Prenatal Treatment for Trisomy 21: Effects in Human Amniocytes and the Ts1Cje Mouse Model. Am J Hum Genet 2020; 107:911-931. [PMID: 33098770 PMCID: PMC7675036 DOI: 10.1016/j.ajhg.2020.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
Human fetuses with trisomy 21 (T21) have atypical brain development that is apparent sonographically in the second trimester. We hypothesize that by analyzing and integrating dysregulated gene expression and pathways common to humans with Down syndrome (DS) and mouse models we can discover novel targets for prenatal therapy. Here, we tested the safety and efficacy of apigenin, identified with this approach, in both human amniocytes from fetuses with T21 and in the Ts1Cje mouse model. In vitro, T21 cells cultured with apigenin had significantly reduced oxidative stress and improved antioxidant defense response. In vivo, apigenin treatment mixed with chow was administered prenatally to the dams and fed to the pups over their lifetimes. There was no significant increase in birth defects or pup deaths resulting from prenatal apigenin treatment. Apigenin significantly improved several developmental milestones and spatial olfactory memory in Ts1Cje neonates. In addition, we noted sex-specific effects on exploratory behavior and long-term hippocampal memory in adult mice, and males showed significantly more improvement than females. We demonstrated that the therapeutic effects of apigenin are pleiotropic, resulting in decreased oxidative stress, activation of pro-proliferative and pro-neurogenic genes (KI67, Nestin, Sox2, and PAX6), reduction of the pro-inflammatory cytokines INFG, IL1A, and IL12P70 through the inhibition of NFκB signaling, increase of the anti-inflammatory cytokines IL10 and IL12P40, and increased expression of the angiogenic and neurotrophic factors VEGFA and IL7. These studies provide proof of principle that apigenin has multiple therapeutic targets in preclinical models of DS.
Collapse
Affiliation(s)
- Faycal Guedj
- Prenatal Genomics and Therapy Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; Mother Infant Research Institute, Tufts Medical Center and Tufts Children's Hospital, Boston, MA 02111, USA.
| | - Ashley E Siegel
- Prenatal Genomics and Therapy Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; Mother Infant Research Institute, Tufts Medical Center and Tufts Children's Hospital, Boston, MA 02111, USA
| | - Jeroen L A Pennings
- Center for Health Protection, National Institute for Public Health and the Environment, Bilthoven, BA 3720, the Netherlands
| | - Fatimah Alsebaa
- Mother Infant Research Institute, Tufts Medical Center and Tufts Children's Hospital, Boston, MA 02111, USA
| | - Lauren J Massingham
- Mother Infant Research Institute, Tufts Medical Center and Tufts Children's Hospital, Boston, MA 02111, USA
| | - Umadevi Tantravahi
- Department of Pathology, Women and Infants' Hospital, Providence, RI 02912, USA
| | - Diana W Bianchi
- Prenatal Genomics and Therapy Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; Mother Infant Research Institute, Tufts Medical Center and Tufts Children's Hospital, Boston, MA 02111, USA.
| |
Collapse
|
86
|
Santi MD, Arredondo F, Carvalho D, Echeverry C, Prunell G, Peralta MA, Cabrera JL, Ortega MG, Savio E, Abin-Carriquiry JA. Neuroprotective effects of prenylated flavanones isolated from Dalea species, in vitro and in silico studies. Eur J Med Chem 2020; 206:112718. [DOI: 10.1016/j.ejmech.2020.112718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023]
|
87
|
Kumar S, Fayaz F, Pottoo FH, Bajaj S, Manchanda S, Bansal H. Nanophytomedicine Based Novel Therapeutic Strategies in Liver Cancer. Curr Top Med Chem 2020; 20:1999-2024. [DOI: 10.2174/1568026619666191114113048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Liver cancer is the fifth (6.3% of all cancers i.e., 548,000 cases/year) and ninth (2.8% of all
cancers i.e., 244,000 cases/year) most prevalent cancer worldwide in men and women, respectively. Although
multiple choices of therapies are offered for Hepatocellular Carcinoma (HCC) like liver resection
or transplant, radiofrequency ablation, transarterial chemoembolization, radioembolization, and systemic
targeted agent, by the time of diagnosis, most of the cases of HCC are in an advanced stage, which
renders therapies like liver transplant or resection and local ablation impractical; and targeted therapy
has its shortcomings like general toxicity, imprecise selectivity, several adversative reactions, and resistance
development. Therefore, novel drugs with specificity and selectivity are needed to provide the potential
therapeutic response. Various researches have shown the potential of phytomedicines in liver
cancer by modulating cell growth, invasion, metastasis, and apoptosis. However, their therapeutic potential
is held up by their unfavorable properties like stability, poor water solubility, low absorption, and
quick metabolism. Nonetheless, the advancement of nanotechnology-based innovative nanocarrier formulations
has improved the phytomedicines’ profile to be used in the treatment of liver cancer. Nanocarriers
not only improve the solubility and stability of phytomedicines but also extend their residence in
plasma and accomplish specificity. In this review, we summarize the advancements introduced by
nanotechnology in the treatment of liver cancer. In particular, we discuss quite a few applications of
nanophytomedicines like curcumin, quercetin, epigallocatechin-3-gallate, berberine, apigenin, triptolide,
and resveratrol in liver cancer treatment.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| | - Faizana Fayaz
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Sakshi Bajaj
- Department of Herbal Drug Technology, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| | - Satish Manchanda
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| | - Himangini Bansal
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| |
Collapse
|
88
|
Ding F, Li X. Apigenin Mitigates Intervertebral Disc Degeneration through the Amelioration of Tumor Necrosis Factor α (TNF-α) Signaling Pathway. Med Sci Monit 2020; 26:e924587. [PMID: 32949455 PMCID: PMC7523418 DOI: 10.12659/msm.924587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a common spinal disease affected by environmental and lifestyle factors that has a significant pathological cascade toward inflammation and partial disability. There is currently no therapy that can completely restore the cellular derangement in IDD. Hence, in this study, the therapeutic effects of apigenin on IDD were evaluated using a rat model. Material/Methods Animals were separated into 4 groups: Grp 1, sham-operated control; Grp 2, IDD-induced; Grp 3, IDD-induced+apigenin treatment; Grp 4, apigenin control. The animals were assessed for inflammatory cytokines, chemokines, and prostaglandin signaling. Results There were significant increases in the inflammatory cytokines IL-1β, IL-2, IL-6, IL-8 and IL-17 in the IDD-induced group compared to that of control. Moreover, with increased levels of MMP-3, MMP-9, ADAMTS-4, and syndecan-4, the levels of TNF-α, IFN-γ, prostaglandin E2, and cyclooxygenase 2 were directly increased in the IDD-induced group. In contrast, apigenin protectively restored levels of prostaglandin signaling and reduced cytokine levels. In addition, nucleus pulposus cells cultured separately with either TNF-α inhibitor or apigenin significantly attenuated the levels of extracellular matrix proteins. Conclusions The reduction of cytokine levels under apigenin treatment suggests it may be a promising target drug therapy for the treatment of deleterious IDD conditions.
Collapse
Affiliation(s)
- Fan Ding
- Department of Orthopaedic Surgery, The First People's Hospital of Jingmen, Jingmen, Hubei, China (mainland)
| | - Xia Li
- Department of Ophthalmology, The First People's Hospital of Jingmen, Jingmen, Hubei, China (mainland)
| |
Collapse
|
89
|
Kim JK, Park SU. Recent insights into the biological functions of apigenin. EXCLI JOURNAL 2020; 19:984-991. [PMID: 32788912 PMCID: PMC7415933 DOI: 10.17179/excli2020-2579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Jae Kwang Kim
- Division of Life Sciences and Bio-Resource and Environmental Center, Incheon National University, Incheon 22012, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| |
Collapse
|
90
|
Amedu NO, Omotoso GO. Lead acetate- induced neurodegenerative changes in the dorsolateral prefrontal cortex of mice: the role of Vitexin. Environ Anal Health Toxicol 2020; 35:e2020001. [PMID: 32570996 PMCID: PMC7308664 DOI: 10.5620/eaht.e2020001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/23/2020] [Indexed: 12/26/2022] Open
Abstract
This study was aimed at investigating the neuroprotective effect of Vitexin against lead (Pb) induced neurodegenerative changes in the dorsolateral prefrontal cortex (DLPFC) and working memory in mice. Thirty-two adolescent male albino mice were divided into four groups (n=8). Control group received 0.2 mL of normal saline; Pb group received 100 mg/kg of Pb acetate for 14 days, Vitexin group received 1mg/kg of Vitexin for 14 days, and Pb+Vitexin group received 100 mg/kg of Pb acetate and 1 mgkg of Vitexin for 14 days. Barnes maze test and novel object recognition test were done to ascertain working memory. Histoarchitectural assessment of DLPFC was done with haematoxylin and eosin (H&E), cresyl fast violet and congo red stains. Furthermore, cell count and other morphometric measurements were done. There was significant decline in working memory in the Pb group, but a combination of Pb+Vitexin improved the working memory. Vitexin significantly reduced neuronal death and chromatolysis caused by Pb. Amyloid aggregation was not observed in any of the groups. This study has shown that concurrent administration of Vitexin and Pb will significantly reduce neurodegeneration and improve working memory. However, Pb treatment or Pb+Vitexin treatment does not have any effect on intercellular distance, neuronal length and the cross-sectional area of neurons in layer III of DLPFC.
Collapse
Affiliation(s)
- Nathaniel Ohiemi Amedu
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria.,Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Kogi State University, P.M.B. 1008, Anyigba, Nigeria
| | - Gabriel Olaiya Omotoso
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| |
Collapse
|
91
|
Milutinović V, Pecikoza U, Tomić M, Stepanović-Petrović R, Niketić M, Ušjak L, Petrović S. Investigation of antihyperalgesic and antiedematous activities of three Hieracium species. Nat Prod Res 2020; 35:5384-5388. [DOI: 10.1080/14786419.2020.1768086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Violeta Milutinović
- Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Uroš Pecikoza
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Maja Tomić
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | | | | - Ljuboš Ušjak
- Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Silvana Petrović
- Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
92
|
Jiang W, Chen H, Tai Z, Li T, Luo L, Tong Z, Zhu W. Apigenin and Ethaverine Hydrochloride Enhance Retinal Vascular Barrier In Vitro and In Vivo. Transl Vis Sci Technol 2020; 9:8. [PMID: 32821505 PMCID: PMC7409011 DOI: 10.1167/tvst.9.6.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/11/2020] [Indexed: 12/28/2022] Open
Abstract
Purpose This study aims to develop an impedance-based drug screening platform that will help identify drugs that can enhance the vascular barrier function by stabilizing vascular endothelial cell junctions. Methods Changes in permeability of cultured human retinal microvascular endothelial cells (HRMECs) monolayer were monitored in real-time with the xCELLigence RTCA system. Using this platform, we performed a primary screen of 2100 known drugs and confirmed hits using two additional secondary permeability assays: the transwell permeability assay and the XPerT assay. The cellular and molecular mechanisms of action and in vivo therapeutic efficacy were also assessed. Results Eleven compounds blocked interleukin 1 beta (IL-1β) induced hyperpermeability in the primary screen. Two of 11 compounds, apigenin and ethaverine hydrochloride, reproducibly blocked multiple cytokines induced hyperpermeability. In addition to HRMEC monolayers, the two compounds stabilized three other types of primary vascular endothelial cell monolayers. Preliminary mechanistic studies suggest that the two compounds stabilize the endothelium by blocking ADP-ribosylation factor 6 (ARF6) activation, which results in enhanced VE-cadherin membrane localization. The two compounds showed in vivo efficacy in an animal model of retinal permeability. Conclusions We developed an impedance-based cellular phenotypic drug screening platform that can identify drugs that enhance vascular barrier function. We found apigenin and ethaverine hydrochloride stabilize endothelial cell junctions and enhance the vascular barrier by blocking ARF6 activation and increasing VE-cadherin membrane localization. Translational Relevance The drugs identified from the phenotypic screen would have potential therapeutic efficacy in retinal vascular diseases regardless of the underlying mechanisms that promote vascular leak.
Collapse
Affiliation(s)
- Weiwei Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Huan Chen
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhengfu Tai
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Tian Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ling Luo
- Department of Ophthalmology, the 306th Hospital of PLA, Beijing, China
| | - Zongzhong Tong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA.,Navigen Inc., Salt Lake City, UT, USA
| | - Weiquan Zhu
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA.,Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
93
|
Yessenkyzy A, Saliev T, Zhanaliyeva M, Masoud AR, Umbayev B, Sergazy S, Krivykh E, Gulyayev A, Nurgozhin T. Polyphenols as Caloric-Restriction Mimetics and Autophagy Inducers in Aging Research. Nutrients 2020; 12:E1344. [PMID: 32397145 PMCID: PMC7285205 DOI: 10.3390/nu12051344] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
It has been thought that caloric restriction favors longevity and healthy aging where autophagy plays a vital role. However, autophagy decreases during aging and that can lead to the development of aging-associated diseases such as cancer, diabetes, neurodegeneration, etc. It was shown that autophagy can be induced by mechanical or chemical stress. In this regard, various pharmacological compounds were proposed, including natural polyphenols. Apart from the ability to induce autophagy, polyphenols, such as resveratrol, are capable of modulating the expression of pro- and anti-apoptotic factors, neutralizing free radical species, affecting mitochondrial functions, chelating redox-active transition metal ions, and preventing protein aggregation. Moreover, polyphenols have advantages compared to chemical inducers of autophagy due to their intrinsic natural bio-compatibility and safety. In this context, polyphenols can be considered as a potential therapeutic tool for healthy aging either as a part of a diet or as separate compounds (supplements). This review discusses the epigenetic aspect and the underlying molecular mechanism of polyphenols as an anti-aging remedy. In addition, the recent advances of studies on NAD-dependent deacetylase sirtuin-1 (SIRT1) regulation of autophagy, the role of senescence-associated secretory phenotype (SASP) in cells senescence and their regulation by polyphenols have been highlighted as well. Apart from that, the review also revised the latest information on how polyphenols can help to improve mitochondrial function and modulate apoptosis (programmed cell death).
Collapse
Affiliation(s)
- Assylzhan Yessenkyzy
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| | - Timur Saliev
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| | - Marina Zhanaliyeva
- Department of Human Anatomy, NSC “Medical University of Astana”, Nur-Sultan 010000, Kazakhstan;
| | - Abdul-Razak Masoud
- Department of Biological Sciences, Louisiana Tech University, Ruston, LA 71270, USA;
| | - Bauyrzhan Umbayev
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Shynggys Sergazy
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Elena Krivykh
- Khanty-Mansiysk State Medical Academy, Tyumen Region, Khanty-Mansiysk Autonomous Okrug—Ugra, Khanty-Mansiysk 125438, Russia;
| | - Alexander Gulyayev
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Talgat Nurgozhin
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| |
Collapse
|
94
|
|
95
|
Amin S, Ullah B, Ali M, Khan H, Rauf A, Khan SA, Sobarzo-Sánchez E. In Vitro α-glucosidase Inhibition and Computational Studies of Kaempferol Derivatives from Dryopteris cycanida. Curr Top Med Chem 2020; 20:731-737. [PMID: 32000643 DOI: 10.2174/1568026620666200130161033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/03/2020] [Accepted: 01/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dryopteris cycadina has diverse traditional uses in the treatment of various human disorders which are supported by pharmacological studies. Similarly, the phytochemical studies of this plant led to the isolation of numerous compounds. METHODOLOGY The present study deals with α-glucosidase inhibition of various kaempferol derivates including kaempferol-3, 4/-di-O-α- L-rhamnopyranoside 1, kaempferol-3, 5-di-O-α-L-rhamnoside 2 and kaempferol-3,7-di-O-α- L-rhamnopyranoside 3. RESULTS The results showed marked concentration-dependent inhibition of the enzyme when assayed at different concentrations and the IC50 values of compounds 1-3 were 137±9.01, 110±7.33, and 136±1.10 mM, respectively far better than standard compound, acarbose 290±0.54 mM. The computational studies revealed strong docking scores of these compounds and augmented the in vitro assay. CONCLUSION In conclusion, the isolated kaempferol derivatives 1-3 from D. cycadina exhibited potent α- glucosidase inhibition.
Collapse
Affiliation(s)
- Surriya Amin
- Department of Botany, Islamia College University Peshawar, Peshawar, Pakistan
| | - Barkat Ullah
- Department of Botany, Islamia College University Peshawar, Peshawar, Pakistan
| | - Mumtaz Ali
- Department of Chemistry, University of Malakand, Upper Dir, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Anbar 23430, Pakistan
| | - Sher A Khan
- Department of Chemistry, University of Malakand, Upper Dir, Pakistan
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Coruna, Spain.,Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| |
Collapse
|
96
|
He Y, Fang X, Shi J, Li X, Xie M, Liu X. Apigenin attenuates pulmonary hypertension by inducing mitochondria-dependent apoptosis of PASMCs via inhibiting the hypoxia inducible factor 1α–KV1.5 channel pathway. Chem Biol Interact 2020; 317:108942. [DOI: 10.1016/j.cbi.2020.108942] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/06/2019] [Accepted: 01/08/2020] [Indexed: 01/10/2023]
|
97
|
Neuroprotective Effects of Quercetin in Alzheimer's Disease. Biomolecules 2019; 10:biom10010059. [PMID: 31905923 PMCID: PMC7023116 DOI: 10.3390/biom10010059] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/21/2019] [Accepted: 12/22/2019] [Indexed: 02/05/2023] Open
Abstract
Quercetin is a flavonoid with notable pharmacological effects and promising therapeutic potential. It is widely distributed among plants and found commonly in daily diets predominantly in fruits and vegetables. Neuroprotection by quercetin has been reported in several in vitro studies. It has been shown to protect neurons from oxidative damage while reducing lipid peroxidation. In addition to its antioxidant properties, it inhibits the fibril formation of amyloid-β proteins, counteracting cell lyses and inflammatory cascade pathways. In this review, we provide a synopsis of the recent literature exploring the relationship between quercetin and cognitive performance in Alzheimer's disease and its potential as a lead compound in clinical applications.
Collapse
|
98
|
Passiflora tenuifila Killip: Assessment of chemical composition by 1H NMR and UPLC-ESI-Q-TOF-MSE and its bioactive properties in a rotenone-induced rat model of Parkinson’s disease. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
99
|
Zhao F, Dang Y, Zhang R, Jing G, Liang W, Xie L, Li Z. Apigenin attenuates acrylonitrile-induced neuro-inflammation in rats: Involved of inactivation of the TLR4/NF-κB signaling pathway. Int Immunopharmacol 2019; 75:105697. [DOI: 10.1016/j.intimp.2019.105697] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 11/25/2022]
|
100
|
The antidepressant effects of apigenin are associated with the promotion of autophagy via the mTOR/AMPK/ULK1 pathway. Mol Med Rep 2019; 20:2867-2874. [PMID: 31322238 DOI: 10.3892/mmr.2019.10491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/06/2019] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate whether apigenin elicits antidepressant effects in depressant‑like mice via the regulation of autophagy. The depressant‑like behaviors were established in a chronic restraint stress model. Male BALB/c mice were subjected to restraint stress for 6 h/day for a period of 21 days, and deficits in sucrose preference, tail suspension and forced swim tests were confirmed to be improved following oral apigenin. To investigate the underlining mechanisms, the hippocampal levels of p62 and microtubule‑associated protein light chain 3‑II/I (LC3‑II/I) were measured using western blot analysis. The expression levels of LC3‑II/I and p62 indicated that the significantly inhibited autophagy level induced by chronic restraint stress can be increased following apigenin treatment. Similar to the level of autophagy, the expression levels of adenosine monophosphate‑activated protein kinase (AMPK) and Unc‑51 like autophagy activating kinase‑1 were downregulated after chronic restraint stress stimulation and, subsequently upregulated following treatment with apigenin. Conversely, the levels of mammalian target of rapamycin (mTOR) were increased in chronic restraint stress mice and inhibited by apigenin. Collectively, the present findings indicated that apigenin potentially promotes autophagy via the AMPK/mTOR pathway and induces antidepressive effects in chronic restraint stress mice.
Collapse
|