51
|
|
52
|
Liu R, Wang J, Chen Y, Collier JM, Capuk O, Jin S, Sun M, Mondal SK, Whiteside TL, Stolz DB, Yang Y, Begum G. NOX activation in reactive astrocytes regulates astrocytic LCN2 expression and neurodegeneration. Cell Death Dis 2022; 13:371. [PMID: 35440572 PMCID: PMC9018876 DOI: 10.1038/s41419-022-04831-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 01/13/2023]
Abstract
Reactive astrocytes (RA) secrete lipocalin-2 (LCN2) glycoprotein that regulates diverse cellular processes including cell death/survival, inflammation, iron delivery and cell differentiation. Elevated levels of LCN2 are considered as a biomarker of brain injury, however, the underlying regulatory mechanisms of its expression and release are not well understood. In this study, we investigated the role of astrocytic Na+/H+ exchanger 1 (NHE1) in regulating reactive astrocyte LCN2 secretion and neurodegeneration after stroke. Astrocyte specific deletion of Nhe1 in Gfap-CreER+/-;Nhe1f/f mice reduced astrogliosis and astrocytic LCN2 and GFAP expression, which was associated with reduced loss of NeuN+ and GRP78+ neurons in stroke brains. In vitro ischemia in astrocyte cultures triggered a significant increase of secreted LCN2 in astrocytic exosomes, which caused neuronal cell death and neurodegeneration. Inhibition of NHE1 activity during in vitro ischemia with its potent inhibitor HOE642 significantly reduced astrocytic LCN2+ exosome secretion. In elucidating the cellular mechanisms, we found that stroke triggered activation of NADPH oxidase (NOX)-NF-κB signaling and ROS-mediated LCN2 expression. Inhibition of astrocytic NHE1 activity attenuated NOX signaling and LCN2-mediated neuronal apoptosis and neurite degeneration. Our findings demonstrate for the first time that RA use NOX signaling to stimulate LCN2 expression and secretion. Blocking astrocytic NHE1 activity is beneficial to reduce LCN2-mediated neurotoxicity after stroke.
Collapse
Affiliation(s)
- Ruijia Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Neurology, the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Wang
- Department of Neurology, the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Chen
- Department of Neurology, the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jenelle M Collier
- Department of Neurology, the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Okan Capuk
- Department of Neurology, the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shijie Jin
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Ming Sun
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sujan K Mondal
- Department of Pathology, University of Pittsburgh and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yongjie Yang
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Gulnaz Begum
- Department of Neurology, the Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
53
|
Luo C, Zhou S, Yin S, Jian L, Luo P, Dong J, Liu E. Lipocalin-2 and Cerebral Stroke. Front Mol Neurosci 2022; 15:850849. [PMID: 35493318 PMCID: PMC9039332 DOI: 10.3389/fnmol.2022.850849] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/23/2022] [Indexed: 11/26/2022] Open
Abstract
Stroke is a common and devastating disease with an escalating prevalence worldwide. The known secondary injuries after stroke include cell death, neuroinflammation, blood-brain barrier disruption, oxidative stress, iron dysregulation, and neurovascular unit dysfunction. Lipocalin-2 (LCN-2) is a neutrophil gelatinase-associated protein that influences diverse cellular processes during a stroke. The role of LCN-2 has been widely recognized in the peripheral system; however, recent findings have revealed that there are links between LCN-2 and secondary injury and diseases in the central nervous system. Novel roles of LCN-2 in neurons, microglia, astrocytes, and endothelial cells have also been demonstrated. Here, we review the evidence on the regulatory roles of LCN-2 in secondary injuries following a stroke from various perspectives and the pathological mechanisms involved in the modulation of stroke. Overall, our review suggests that LCN-2 is a promising target to promote a better understanding of the neuropathology of stroke.
Collapse
Affiliation(s)
- Chao Luo
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Shuai Zhou
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Department of Neurosurgery, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Shi Yin
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Lipeng Jian
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Pengren Luo
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jigeng Dong
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Erheng Liu
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
54
|
Wan T, Zhu W, Zhao Y, Zhang X, Ye R, Zuo M, Xu P, Huang Z, Zhang C, Xie Y, Liu X. Astrocytic phagocytosis contributes to demyelination after focal cortical ischemia in mice. Nat Commun 2022; 13:1134. [PMID: 35241660 PMCID: PMC8894352 DOI: 10.1038/s41467-022-28777-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/11/2022] [Indexed: 01/24/2023] Open
Abstract
Ischemic stroke can cause secondary myelin damage in the white matter distal to the primary injury site. The contribution of astrocytes during secondary demyelination and the underlying mechanisms are unclear. Here, using a mouse of distal middle cerebral artery occlusion, we show that lipocalin-2 (LCN2), enriched in reactive astrocytes, expression increases in nonischemic areas of the corpus callosum upon injury. LCN2-expressing astrocytes acquire a phagocytic phenotype and are able to uptake myelin. Myelin removal is impaired in Lcn2−/− astrocytes. Inducing re-expression of truncated LCN2(Δ2–20) in astrocytes restores phagocytosis and leads to progressive demyelination in Lcn2−/− mice. Co-immunoprecipitation experiments show that LCN2 binds to low-density lipoprotein receptor-related protein 1 (LRP1) in astrocytes. Knockdown of Lrp1 reduces LCN2-induced myelin engulfment by astrocytes and reduces demyelination. Altogether, our findings suggest that LCN2/LRP1 regulates astrocyte-mediated myelin phagocytosis in a mouse model of ischemic stroke. Ischemic stroke can cause secondary demyelination. Whether phagocytic astrocytes can contribute to such demyelination is unclear. Here, the authors show that lipocalin-2 (LCN-2) expression increased in astrocytes upon injury. LCN-2 expressing astrocytes acquire a phagocytic phenotype and contribute to secondary demyelination in a mouse model of ischemic stroke.
Collapse
Affiliation(s)
- Ting Wan
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Wusheng Zhu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Ying Zhao
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Xiaohao Zhang
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Ruidong Ye
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Meng Zuo
- Department of Neurology, Southwest Hospital and the First Affiliated Hospital, Army Medical University, Chongqing, 400000, China
| | - Pengfei Xu
- Stroke Center & Department of Neurology, The Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China
| | - Zhenqian Huang
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Chunni Zhang
- Department of Clinical Laboratory, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China.
| | - Yi Xie
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China.
| | - Xinfeng Liu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, China. .,Stroke Center & Department of Neurology, The Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, Anhui, China.
| |
Collapse
|
55
|
Kalinin S, Boullerne AI, Feinstein DL. Serum levels of lipocalin-2 are elevated at early times in African American relapsing remitting multiple sclerosis patients. J Neuroimmunol 2022; 364:577810. [DOI: 10.1016/j.jneuroim.2022.577810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
|
56
|
Kim JH, Kwon O, Bhusal A, Lee J, Hwang EM, Ryu H, Park JY, Suk K. Neuroinflammation Induced by Transgenic Expression of Lipocalin-2 in Astrocytes. Front Cell Neurosci 2022; 16:839118. [PMID: 35281301 PMCID: PMC8904391 DOI: 10.3389/fncel.2022.839118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
Transgenic mice are a useful tool for exploring various aspects of gene function. A key element of this approach is the targeted overexpression of specific genes in cells or tissues. Herein, we report for the first time, the generation and characterization of conditional transgenic (cTg) mice for lipocalin-2 (LCN2) expression. We generated the R26-LCN2-transgenic (LCN2-cTg) mice that carried a loxP-flanked STOP (neo) cassette, Lcn2 cDNA, and a GFP sequence. When bred with Tg mice expressing Cre recombinase under the control of various tissues or cell-specific promoters, Cre-mediated recombination deletes the STOP cassette and allows the expression of LCN2 and GFP. In this study, we achieved the recombination of loxP-flanked LCN2 in hippocampal astrocytes of cTg mouse brain, using a targeted delivery of adeno-associated virus (AAVs) bearing Cre recombinase under the control of a GFAP promoter (AAVs-GFAP-mCherry-Cre). These mice with localized LCN2 overexpression in astrocytes of the hippocampus developed neuroinflammation with enhanced glial activation and increased mRNA and protein levels of proinflammatory cytokines. Furthermore, mice showed impairment in cognitive functions as a typical symptom of hippocampal inflammation. Taken together, our study demonstrates the usefulness of LCN2-cTg mice in targeting specific cells at various organs for conditional LCN2 expression and for subsequent investigation of the functional role of cell-type-specific LCN2 within these sites. Moreover, the LCN2-cTg mice with targeted expression of LCN2 in hippocampal astrocytes are a new in vivo model of neuroinflammation.
Collapse
Affiliation(s)
- Jae-Hong Kim
- Department of Pharmacology and Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Osung Kwon
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, South Korea
| | - Anup Bhusal
- Department of Pharmacology and Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jiyoun Lee
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, South Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, South Korea
| | - Eun Mi Hwang
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Hoon Ryu
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
- Veterans Affairs Boston Healthcare System, Boston, MA, United States
- Boston University Alzheimer’s Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Jae-Yong Park
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, South Korea
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, South Korea
- *Correspondence: Kyoungho Suk Jae-Yong Park
| | - Kyoungho Suk
- Department of Pharmacology and Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, South Korea
- *Correspondence: Kyoungho Suk Jae-Yong Park
| |
Collapse
|
57
|
Brattinga B, Plas M, Spikman JM, Rutgers A, de Haan JJ, Absalom AR, van der Wal-Huisman H, de Bock GH, van Leeuwen BL. The association between the inflammatory response following surgery and post-operative delirium in older oncological patients: a prospective cohort study. Age Ageing 2022; 51:afab237. [PMID: 35180288 PMCID: PMC9160877 DOI: 10.1093/ageing/afab237] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/07/2021] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Post-operative delirium (POD) is associated with increased morbidity and mortality rates in older patients. Neuroinflammation, the activation of the intrinsic immune system of the brain, seems to be one of the mechanisms behind the development of POD. The aim of this study was to explore the association between the perioperative inflammatory response and the development of POD in a cohort of older oncological patients in need for surgery. METHODS In this prospective cohort study, patients 65 years and older in need for oncologic surgery were included. Inflammatory markers C-reactive protein (CRP), interleukin-1 beta (IL-1β), IL-6, IL10 and Neutrophil gelatinase-associated lipocalin (NGAL) were measured in plasma samples pre- and post-operatively. Delirium Observation Screening Scale (DOS) was used as screening instrument for POD in the first week after surgery. In case of positive screening, diagnosis of POD was assessed by a clinician. RESULTS Between 2010 and 2016, plasma samples of 311 patients with median age of 72 years (range 65-89) were collected. A total of 38 (12%) patients developed POD in the first week after surgery. The perioperative increase in plasma levels of IL-10 and NGAL were associated with POD in multivariate logistic regression analysis (OR 1.33 [1.09-1.63] P = 0.005 and OR 1.30 [1.03-1.64], P = 0.026, respectively). The biomarkers CRP, IL-1β and IL-6 were not significantly associated with POD. CONCLUSIONS Increased surgery-evoked inflammatory responses of IL-10 and NGAL are associated with the development of POD in older oncological patients. The outcomes of this study contribute to understanding the aetiology of neuroinflammation and the development of POD.
Collapse
Affiliation(s)
- Baukje Brattinga
- University of Groningen, University Medical Center Groningen, Department of Surgery, 9700 RB Groningen, The Netherlands
| | - Matthijs Plas
- University of Groningen, University Medical Center Groningen, Department of Surgery, 9700 RB Groningen, The Netherlands
| | - Jacoba M Spikman
- University of Groningen, University Medical Center Groningen, Department of Neurology, 9700 RB Groningen, The Netherlands
| | - Abraham Rutgers
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, 9700 RB Groningen, The Netherlands
| | - Jacco J de Haan
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, 9700 RB Groningen, The Netherlands
| | - Anthony R Absalom
- University of Groningen, University Medical Center Groningen, Department of Anesthesiology, 9700 RB Groningen, The Netherlands
| | - Hanneke van der Wal-Huisman
- University of Groningen, University Medical Center Groningen, Department of Surgery, 9700 RB Groningen, The Netherlands
| | - Geertruida H de Bock
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, 9700 RB Groningen, The Netherlands
| | - Barbara L van Leeuwen
- University of Groningen, University Medical Center Groningen, Department of Surgery, 9700 RB Groningen, The Netherlands
| |
Collapse
|
58
|
Martínez-Alberquilla I, Gasull X, Pérez-Luna P, Seco-Mera R, Ruiz-Alcocer J, Crooke A. Neutrophils and neutrophil extracellular trap components: Emerging biomarkers and therapeutic targets for age-related eye diseases. Ageing Res Rev 2022; 74:101553. [PMID: 34971794 DOI: 10.1016/j.arr.2021.101553] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/17/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Age-related eye diseases, including dry eye, glaucoma, age-related macular degeneration, and diabetic retinopathy, represent a major global health issue based on their increasing prevalence and disabling action. Unraveling the molecular mechanisms underlying these diseases will provide novel opportunities to reduce the burden of age-related eye diseases and improve eye health, contributing to sustainable development goals achievement. The impairment of neutrophil extracellular traps formation/degradation processes seems to be one of these mechanisms. These traps formed by a meshwork of DNA and neutrophil cytosolic granule proteins may exacerbate the inflammatory response promoting chronic inflammation, a pivotal cause of age-related diseases. In this review, we describe current findings that suggest the role of neutrophils and their traps in the pathogenesis of the above-mentioned age-related eye diseases. Furthermore, we discuss why these cells and their constituents could be biomarkers and therapeutic targets for dry eye, glaucoma, age-related macular degeneration, and diabetic retinopathy. We also examine the therapeutic potential of some neutrophil function modulators and provide several recommendations for future research in age-related eye diseases.
Collapse
Affiliation(s)
- Irene Martínez-Alberquilla
- Department of Optometry and Vision, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain; Clinical and Experimental Eye Research Group, UCM 971009, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Xavier Gasull
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Patricia Pérez-Luna
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Rubén Seco-Mera
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Ruiz-Alcocer
- Department of Optometry and Vision, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain; Clinical and Experimental Eye Research Group, UCM 971009, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Almudena Crooke
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain; Clinical and Experimental Eye Research Group, UCM 971009, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
59
|
Cui J, Yuan Y, Wang J, Song N, Xie J. Desferrioxamine Ameliorates Lipopolysaccharide-Induced Lipocalin-2 Upregulation via Autophagy Activation in Primary Astrocytes. Mol Neurobiol 2022; 59:2052-2067. [PMID: 35040039 DOI: 10.1007/s12035-021-02687-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/08/2021] [Indexed: 01/18/2023]
Abstract
Lipocalin-2 (LCN2) is an important regulator of both neuroinflammation and iron homeostasis. Upregulated LCN2 was observed in reactive astrocytes in the Parkinson's disease (PD) models. In the present study, we reported iron chelator deferoxamine (DFO) abolished lipopolysaccharide (LPS)-induced LCN2 upregulation in primary astrocytes, although iron overload had no effects. The suppressive effects of DFO were consistent with autophagy inducer rapamycin or carfilzomib, blocked by autophagy inhibitor 3-methyladenine rather than chloroquine or bafilomycin A1, meanwhile, while were not dependent on proteasome system and NF-κB pathway. DFO was not able to ameliorate LCN2 upregulation in α-synuclein-treated astrocytes, because DFO failed to induce autophagy in these cells. We further demonstrated that DFO could not enhance autophagy lysosomal degradation, however promoted secretory autophagy in primary astrocytes with LPS insults. These data suggest that DFO could serve as an autophagy activator, capable of ameliorating the upregulation of LCN2 in astrocytes by acting on the formation of autophagosomes and secretory autophagy. This provides better understandings of DFO-mediated neuroprotection against neuroinflammation and provides new insights that autophagy activation could be beneficial approaches in PD.
Collapse
Affiliation(s)
- Juntao Cui
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Yu Yuan
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Jun Wang
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Ning Song
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, School of Basic Medicine, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
60
|
Wang X, Li X, Zuo X, Liang Z, Ding T, Li K, Ma Y, Li P, Zhu Z, Ju C, Zhang Z, Song Z, Quan H, Zhang J, Hu X, Wang Z. Photobiomodulation inhibits the activation of neurotoxic microglia and astrocytes by inhibiting Lcn2/JAK2-STAT3 crosstalk after spinal cord injury in male rats. J Neuroinflammation 2021; 18:256. [PMID: 34740378 PMCID: PMC8571847 DOI: 10.1186/s12974-021-02312-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neurotoxic microglia and astrocytes begin to activate and participate in pathological processes after spinal cord injury (SCI), subsequently causing severe secondary damage and affecting tissue repair. We have previously reported that photobiomodulation (PBM) can promote functional recovery by reducing neuroinflammation after SCI, but little is known about the underlying mechanism. Therefore, we aimed to investigate whether PBM ameliorates neuroinflammation by modulating the activation of microglia and astrocytes after SCI. METHODS Male Sprague-Dawley rats were randomly divided into three groups: a sham control group, an SCI + vehicle group and an SCI + PBM group. PBM was performed for two consecutive weeks after clip-compression SCI models were established. The activation of neurotoxic microglia and astrocytes, the level of tissue apoptosis, the number of motor neurons and the recovery of motor function were evaluated at different days post-injury (1, 3, 7, 14, and 28 days post-injury, dpi). Lipocalin 2 (Lcn2) and Janus kinase-2 (JAK2)-signal transducer and activator of transcription-3 (STAT3) signaling were regarded as potential targets by which PBM affected neurotoxic microglia and astrocytes. In in vitro experiments, primary microglia and astrocytes were irradiated with PBM and cotreated with cucurbitacin I (a JAK2-STAT3 pathway inhibitor), an adenovirus (shRNA-Lcn2) and recombinant Lcn2 protein. RESULTS PBM promoted the recovery of motor function, inhibited the activation of neurotoxic microglia and astrocytes, alleviated neuroinflammation and tissue apoptosis, and increased the number of neurons retained after SCI. The upregulation of Lcn2 and the activation of the JAK2-STAT3 pathway after SCI were suppressed by PBM. In vitro experiments also showed that Lcn2 and JAK2-STAT3 were mutually promoted and that PBM interfered with this interaction, inhibiting the activation of microglia and astrocytes. CONCLUSION Lcn2/JAK2-STAT3 crosstalk is involved in the activation of neurotoxic microglia and astrocytes after SCI, and this process can be suppressed by PBM.
Collapse
Affiliation(s)
- Xuankang Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xin Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.,967 Hospital of People's Liberation Army Joint Logistic Support Force, Dalian, 116044, Liaoning, China
| | - Xiaoshuang Zuo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhuowen Liang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Tan Ding
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Kun Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yangguang Ma
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Penghui Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhijie Zhu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Cheng Ju
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhihao Zhang
- 967 Hospital of People's Liberation Army Joint Logistic Support Force, Dalian, 116044, Liaoning, China
| | - Zhiwen Song
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Huilin Quan
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jiawei Zhang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xueyu Hu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
61
|
Mollet I, Marto JP, Mendonça M, Baptista MV, Vieira HLA. Remote but not Distant: a Review on Experimental Models and Clinical Trials in Remote Ischemic Conditioning as Potential Therapy in Ischemic Stroke. Mol Neurobiol 2021; 59:294-325. [PMID: 34686988 PMCID: PMC8533672 DOI: 10.1007/s12035-021-02585-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
Stroke is one of the main causes of neurological disability worldwide and the second cause of death in people over 65 years old, resulting in great economic and social burden. Ischemic stroke accounts for 85% of total cases, and the approved therapies are based on re-establishment of blood flow, and do not directly target brain parenchyma. Thus, novel therapies are urgently needed. In this review, limb remote ischemic conditioning (RIC) is revised and discussed as a potential therapy against ischemic stroke. The review targets both (i) fundamental research based on experimental models and (ii) clinical research based on clinical trials and human interventional studies with healthy volunteers. Moreover, it also presents two approaches concerning RIC mechanisms in stroke: (i) description of the underlying cerebral cellular and molecular mechanisms triggered by limb RIC that promote neuroprotection against stroke induced damage and (ii) the identification of signaling factors involved in inter-organ communication following RIC procedure. Limb to brain remote signaling can occur via circulating biochemical factors, immune cells, and/or stimulation of autonomic nervous system. In this review, these three hypotheses are explored in both humans and experimental models. Finally, the challenges involved in translating experimentally generated scientific knowledge to a clinical setting are also discussed.
Collapse
Affiliation(s)
- Inês Mollet
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-526, Caparica, Portugal.,CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - João Pedro Marto
- CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Marcelo Mendonça
- CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Champalimaud Research, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Miguel Viana Baptista
- CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Helena L A Vieira
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-526, Caparica, Portugal. .,CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal. .,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| |
Collapse
|
62
|
Dekens DW, Eisel ULM, Gouweleeuw L, Schoemaker RG, De Deyn PP, Naudé PJW. Lipocalin 2 as a link between ageing, risk factor conditions and age-related brain diseases. Ageing Res Rev 2021; 70:101414. [PMID: 34325073 DOI: 10.1016/j.arr.2021.101414] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
Chronic (neuro)inflammation plays an important role in many age-related central nervous system (CNS) diseases, including Alzheimer's disease, Parkinson's disease and vascular dementia. Inflammation also characterizes many conditions that form a risk factor for these CNS disorders, such as physical inactivity, obesity and cardiovascular disease. Lipocalin 2 (Lcn2) is an inflammatory protein shown to be involved in different age-related CNS diseases, as well as risk factor conditions thereof. Lcn2 expression is increased in the periphery and the brain in different age-related CNS diseases and also their risk factor conditions. Experimental studies indicate that Lcn2 contributes to various neuropathophysiological processes of age-related CNS diseases, including exacerbated neuroinflammation, cell death and iron dysregulation, which may negatively impact cognitive function. We hypothesize that increased Lcn2 levels as a result of age-related risk factor conditions may sensitize the brain and increase the risk to develop age-related CNS diseases. In this review we first provide a comprehensive overview of the known functions of Lcn2, and its effects in the CNS. Subsequently, this review explores Lcn2 as a potential (neuro)inflammatory link between different risk factor conditions and the development of age-related CNS disorders. Altogether, evidence convincingly indicates Lcn2 as a key constituent in ageing and age-related brain diseases.
Collapse
Affiliation(s)
- Doortje W Dekens
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Leonie Gouweleeuw
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Regien G Schoemaker
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Laboratory of Neurochemistry and Behaviour, Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Petrus J W Naudé
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands; Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
63
|
Liu Q, Bhuiyan MIH, Liu R, Song S, Begum G, Young CB, Foley LM, Chen F, Hitchens TK, Cao G, Chattopadhyay A, He L, Sun D. Attenuating vascular stenosis-induced astrogliosis preserves white matter integrity and cognitive function. J Neuroinflammation 2021; 18:187. [PMID: 34454529 PMCID: PMC8403348 DOI: 10.1186/s12974-021-02234-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) causes white matter damage and cognitive impairment, in which astrogliosis is the major pathology. However, underlying cellular mechanisms are not well defined. Activation of Na+/H+ exchanger-1 (NHE1) in reactive astrocytes causes astrocytic hypertrophy and swelling. In this study, we examined the role of NHE1 protein in astrogliosis, white matter demyelination, and cognitive function in a murine CCH model with bilateral carotid artery stenosis (BCAS). METHODS Sham, BCAS, or BCAS mice receiving vehicle or a selective NHE1 inhibitor HOE642 were monitored for changes of the regional cerebral blood flow and behavioral performance for 28 days. Ex vivo MRI-DTI was subsequently conducted to detect brain injury and demyelination. Astrogliosis and demyelination were further examined by immunofluorescence staining. Astrocytic transcriptional profiles were analyzed with bulk RNA-sequencing and RT-qPCR. RESULTS Chronic cerebral blood flow reduction and spatial working memory deficits were detected in the BCAS mice, along with significantly reduced mean fractional anisotropy (FA) values in the corpus callosum, external capsule, and hippocampus in MRI DTI analysis. Compared with the sham control mice, the BCAS mice displayed demyelination and axonal damage and increased GFAP+ astrocytes and Iba1+ microglia. Pharmacological inhibition of NHE1 protein with its inhibitor HOE642 prevented the BCAS-induced gliosis, damage of white matter tracts and hippocampus, and significantly improved cognitive performance. Transcriptome and immunostaining analysis further revealed that NHE1 inhibition specifically attenuated pro-inflammatory pathways and NADPH oxidase activation. CONCLUSION Our study demonstrates that NHE1 protein is involved in astrogliosis with pro-inflammatory transformation induced by CCH, and its blockade has potentials for reducing astrogliosis, demyelination, and cognitive impairment.
Collapse
Affiliation(s)
- Qian Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Mohammad Iqbal H Bhuiyan
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Ruijia Liu
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Cullen B Young
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Lesley M Foley
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Fenghua Chen
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - T Kevin Hitchens
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- VA Pittsburgh Healthcare System, Geriatric Research Education and Clinical Center, Pittsburgh, Pennsylvania, 15240, USA
| | - Ansuman Chattopadhyay
- Molecular Biology-Information Service, Health Sciences Library System, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Li He
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA.
- VA Pittsburgh Healthcare System, Geriatric Research Education and Clinical Center, Pittsburgh, Pennsylvania, 15240, USA.
| |
Collapse
|
64
|
Unno K, Nakamura Y. Green Tea Suppresses Brain Aging. Molecules 2021; 26:molecules26164897. [PMID: 34443485 PMCID: PMC8401650 DOI: 10.3390/molecules26164897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
Epidemiological studies have demonstrated that the intake of green tea is effective in reducing the risk of dementia. The most important component of green tea is epigallocatechin gallate (EGCG). Both EGCG and epigallocatechin (EGC) have been suggested to cross the blood–brain barrier to reach the brain parenchyma, but EGCG has been found to be more effective than EGC in promoting neuronal differentiation. It has also been suggested that the products of EGCG decomposition by the intestinal microbiota promote the differentiation of nerve cells and that both EGCG and its degradation products act on nerve cells with a time lag. On the other hand, the free amino acids theanine and arginine contained in green tea have stress-reducing effects. While long-term stress accelerates the aging of the brain, theanine and arginine suppress the aging of the brain due to their anti-stress effect. Since this effect is counteracted by EGCG and caffeine, the ratios between these green tea components are important for the anti-stress action. In this review, we describe how green tea suppresses brain aging, through the activation of nerve cells by both EGCG and its degradation products, and the reductions in stress achieved by theanine and arginine.
Collapse
|
65
|
Weng YC, Huang YT, Chiang IC, Tsai PJ, Su YW, Chou WH. Lipocalin-2 mediates the rejection of neural transplants. FASEB J 2021; 35:e21317. [PMID: 33421207 DOI: 10.1096/fj.202001018r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 12/29/2022]
Abstract
Lipocalin-2 (LCN2) has been implicated in promoting apoptosis and neuroinflammation in neurological disorders; however, its role in neural transplantation remains unknown. In this study, we cultured and differentiated Lund human mesencephalic (LUHMES) cells into human dopaminergic-like neurons and found that LCN2 mRNA was progressively induced in mouse brain after the intrastriatal transplantation of human dopaminergic-like neurons. The induction of LCN2 protein was detected in a subset of astrocytes and neutrophils infiltrating the core of the engrafted sites, but not in neurons and microglia. LCN2-immunoreactive astrocytes within the engrafted sites expressed lower levels of A1 and A2 astrocytic markers. Recruitment of microglia, neutrophils, and monocytes after transplantation was attenuated in LCN2 deficiency mice. The expression of M2 microglial markers was significantly elevated and survival of engrafted neurons was markedly improved after transplantation in LCN2 deficiency mice. Brain type organic cation transporter (BOCT), the cell surface receptor for LCN2, was induced in dopaminergic-like neurons after differentiation, and treatment with recombinant LCN2 protein directly induced apoptosis in dopaminergic-like neurons in a dose-dependent manner. Our results, therefore, suggested that LCN2 is a neurotoxic factor for the engrafted neurons and a modulator of neuroinflammation. LCN2 inhibition may be useful in reducing rejection after neural transplantation.
Collapse
Affiliation(s)
- Yi-Chinn Weng
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Ting Huang
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - I-Chen Chiang
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Pei-Ju Tsai
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Wen Su
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Wen-Hai Chou
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
66
|
Zhou Q, Niño DF, Yamaguchi Y, Wang S, Fulton WB, Jia H, Lu P, Prindle T, Pamies D, Morris M, Chen LL, Sodhi CP, Hackam DJ. Necrotizing enterocolitis induces T lymphocyte-mediated injury in the developing mammalian brain. Sci Transl Med 2021; 13:13/575/eaay6621. [PMID: 33408187 DOI: 10.1126/scitranslmed.aay6621] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 04/27/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
Abstract
Necrotizing enterocolitis (NEC) causes acute intestinal necrosis in premature infants and is associated with severe neurological impairment. In NEC, Toll-like receptor 4 is activated in the intestinal epithelium, and NEC-associated brain injury is characterized by microglial activation and white matter loss through mechanisms that remain unclear. We now show that the brains of mice and humans with NEC contained CD4+ T lymphocytes that were required for the development of brain injury. Inhibition of T lymphocyte influx into the brains of neonatal mice with NEC reduced inflammation and prevented myelin loss. Adoptive intracerebroventricular delivery of gut T lymphocytes from mice with NEC into Rag1 -/- recipient mice lacking CD4+ T cells resulted in brain injury. Brain organoids derived from mice with or without NEC and from human neuronal progenitor cells revealed that IFN-γ release by CD4+ T lymphocytes induced microglial activation and myelin loss in the organoids. IFN-γ knockdown in CD4+ T cells derived from mice with NEC abrogated the induction of NEC-associated brain injury after adoptive transfer to naïve Rag1 -/- recipient mice. T cell receptor sequencing revealed that NEC mouse brain-derived T lymphocytes shared homology with gut T lymphocytes from NEC mice. Intraperitoneal injection of NEC gut-derived CD4+ T lymphocytes into naïve Rag1 -/- recipient mice induced brain injury, suggesting that gut-derived T lymphocytes could mediate neuroinflammation in NEC. These findings indicate that NEC-associated brain injury may be induced by gut-derived IFN-γ-releasing CD4+ T cells, suggesting that early management of intestinal inflammation in children with NEC could improve neurological outcomes.
Collapse
Affiliation(s)
- Qinjie Zhou
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Diego F Niño
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yukihiro Yamaguchi
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanxia Wang
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William B Fulton
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hongpeng Jia
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peng Lu
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas Prindle
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Pamies
- Center for Alternatives to Animal Testing, Johns Hopkins School of Public Health, Baltimore, MD, USA.,Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland
| | - Meaghan Morris
- Division of Neuropathology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Liam L Chen
- Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland
| | - Chhinder P Sodhi
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA. .,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J Hackam
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA. .,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
67
|
Neutrophil, Extracellular Matrix Components, and Their Interlinked Action in Promoting Secondary Pathogenesis After Spinal Cord Injury. Mol Neurobiol 2021; 58:4652-4665. [PMID: 34159551 DOI: 10.1007/s12035-021-02443-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023]
Abstract
Secondary pathogenesis following primary mechanical damage to the spinal cord is believed to be the ultimate reason for the limitation of currently available therapies. Precisely, the complex cascade of secondary events-mediated scar formation is the sole hurdle in the recovery process due to its inhibitory effect on axonal regeneration, plasticity, and remyelination. Neutrophils initiate this secondary injury along with other extracellular matrix components such as matrix metalloproteinase (MMPs), and chondroitin sulfate proteoglycans (CSPGs). Together, they mediate inflammation, necrosis, apoptosis, lesion, and scar formation at the injury site. Activated neutrophil releases several proteases, cytokines, and chemokines that cause complete tissue destruction. Thus, neutrophil activation and infiltration in the acute phase of injury act as a roadmap for inducing tissue destruction. MMPs, are extracellular proteolytic enzymes that degrade the ECM proteins, increases vascular permeability, and are predominantly released by neutrophils. These MMPs, in turn, cleave NG2 proteoglycan, a subtype of CSPG, into the active form. This active or shed form is involved in both the fibrotic as well as glial scar formation. Since neutrophils and ECM components are closely associated with each other in pathological conditions. Herein, we emphasize the interaction of neutrophils and their influence on ECM protein expression during the acute and chronic phases to identify a promising targets for designing a therapeutic approach in spinal cord injury.
Collapse
|
68
|
Ziebart A, Breit C, Ruemmler R, Hummel R, Möllmann C, Jungmann F, Kamuf J, Garcia-Bardon A, Thal SC, Kreitner KF, Schäfer MKE, Hartmann EK. Effect of fluid resuscitation on cerebral integrity: A prospective randomised porcine study of haemorrhagic shock. Eur J Anaesthesiol 2021; 38:411-421. [PMID: 33399378 DOI: 10.1097/eja.0000000000001416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The treatment of haemorrhagic shock is a challenging task. Colloids have been regarded as standard treatment, but their safety and benefit have been the subject of controversial debates. Negative effects, including renal failure and increased mortality, have resulted in restrictions on their administration. The cerebral effects of different infusion regimens are largely unknown. OBJECTIVES The current study investigated the impact of gelatine-polysuccinate, hydroxyethyl starch (HES) and balanced electrolyte solution (BES) on cerebral integrity, focusing on cerebral inflammation, apoptosis and blood flow in pigs. DESIGN Randomised experimental study. SETTING University-affiliated large animal research unit. ANIMALS Twenty-four juvenile pigs aged 8 to 12 weeks. INTERVENTION Haemorrhagic shock was induced by controlled arterial blood withdrawal to achieve a combination of relevant blood loss (30 to 40 ml kg-1) and haemodynamic deterioration. After 30 min of shock, fluid resuscitation was started with either gelatine-polysuccinate, HES or BES. The animals were then monitored for 4 h. MAIN OUTCOME MEASURES Cerebral perfusion and diffusion were measured via arterial-spin-labelling MRI. Peripheral tissue perfusion was evaluated via white light spectroscopy. Cortical and hippocampal samples were collected at the end of the experiment. The numbers of cerebral cell nuclei were counted and mRNA expression of markers for cerebral apoptosis [glucose transporter protein type 1 (SLC2A), lipocalin 2 (LCN-2), aquaporin-4 (AQP4)] and inflammation [IL-6, TNF-α, glial fibrillary acidic protein (GFAP)] were determined. RESULTS The three fluid protocols all stabilised the macrocirculation. Fluid resuscitation significantly increased the cerebral perfusion. Gelatine-polysuccinate and HES initially led to a higher cardiac output but caused haemodilution. Cerebral cell counts (as cells μm-2) were lower after colloid administration in the cortex (gelatine-polysuccinate, 1.8 ± 0.3; HES, 1.9 ± 0.4; each P < 0.05 vs. BES, 2.3 ± 0.2) and the hippocampus (gelatine-polysuccinate, 0.8 ± 0.2; HES, 0.9 ± 0.2; each P < 0.05 vs. BES, 1.1 ± 0.1). After gelatine-polysuccinate, the hippocampal SLC2A and GFAP were lower. After gelatine-polysuccinate, the cortical LCN-2 and TNF-α expression levels were increased (each P < 0.05 vs. BES). CONCLUSION In a porcine model, fluid resuscitation by colloids, particularly gelatine-polysuccinate, was associated with the occurrence of cerebral injury. ETHICAL APPROVAL NUMBER 23 177-07/G 15-1-092; 01/2016.
Collapse
Affiliation(s)
- Alexander Ziebart
- From the Department of Anaesthesiology (AZ, RR, RH, CM, JK, AG-B, SCT, MKES, EKH), Department of Diagnostic and Interventional Radiology, University Medical Centre of the Johannes Gutenberg-University (CB, FJ, K-FK), Focus Program Translational Neurosciences (MKES) and Research Centre for Immunotherapy, Johannes Gutenberg-University of Mainz, Mainz, Germany (MKES)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Zarfeshani A, Carroll KR, Volpe BT, Diamond B. Cognitive Impairment in SLE: Mechanisms and Therapeutic Approaches. Curr Rheumatol Rep 2021; 23:25. [PMID: 33782842 PMCID: PMC11207197 DOI: 10.1007/s11926-021-00992-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
A wide range of patients with systemic lupus erythematosus (SLE) suffer from cognitive dysfunction (CD) which severely impacts their quality of life. However, CD remains underdiagnosed and poorly understood. Here, we discuss current findings in patients and in animal models. Strong evidence suggests that CD pathogenesis involves known mechanisms of tissue injury in SLE. These mechanisms recruit brain resident cells, in particular microglia, into the pathological process. While systemic immune activation is critical to central nervous system injury, the current focus of therapy is the microglial cell and not the systemic immune perturbation. Further studies are critical to examine additional potential therapeutic targets and more specific treatments based on the cause and progress of the disease.
Collapse
Affiliation(s)
- Aida Zarfeshani
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Kaitlin R Carroll
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Bruce T Volpe
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Betty Diamond
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
70
|
Unno K, Muguruma Y, Inoue K, Konishi T, Taguchi K, Hasegawa-Ishii S, Shimada A, Nakamura Y. Theanine, Antistress Amino Acid in Tea Leaves, Causes Hippocampal Metabolic Changes and Antidepressant Effects in Stress-Loaded Mice. Int J Mol Sci 2020; 22:ijms22010193. [PMID: 33379343 PMCID: PMC7795947 DOI: 10.3390/ijms22010193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023] Open
Abstract
By comprehensively measuring changes in metabolites in the hippocampus of stress-loaded mice, we investigated the reasons for stress vulnerability and the effect of theanine, i.e., an abundant amino acid in tea leaves, on the metabolism. Stress sensitivity was higher in senescence-accelerated mouse prone 10 (SAMP10) mice than in normal ddY mice when these mice were loaded with stress on the basis of territorial consciousness in males. Group housing was used as the low-stress condition reference. Among the statistically altered metabolites, depression-related kynurenine and excitability-related histamine were significantly higher in SAMP10 mice than in ddY mice. In contrast, carnosine, which has antidepressant-like activity, and ornithine, which has antistress effects, were significantly lower in SAMP10 mice than in ddY mice. The ingestion of theanine, an excellent antistress amino acid, modulated the levels of kynurenine, histamine, and carnosine only in the stress-loaded SAMP10 mice and not in the group-housing mice. Depression-like behavior was suppressed in mice that had ingested theanine only under stress loading. Taken together, changes in these metabolites, such as kynurenine, histamine, carnosine, and ornithine, were suggested to be associated with the stress vulnerability and depression-like behavior of stressed SAMP10 mice. It was also shown that theanine action appears in the metabolism of mice only under stress loading.
Collapse
Affiliation(s)
- Keiko Unno
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (K.T.); (Y.N.)
- Correspondence: ; Tel.: +81-54-264-5822
| | - Yoshio Muguruma
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (Y.M.); (K.I.)
| | - Koichi Inoue
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (Y.M.); (K.I.)
| | - Tomokazu Konishi
- Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita 010-0195, Japan;
| | - Kyoko Taguchi
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (K.T.); (Y.N.)
| | - Sanae Hasegawa-Ishii
- Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo 181-8612, Japan; (S.H.-I.); (A.S.)
| | - Atsuyoshi Shimada
- Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo 181-8612, Japan; (S.H.-I.); (A.S.)
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (K.T.); (Y.N.)
| |
Collapse
|
71
|
Tissue-specific Gene Expression Changes Are Associated with Aging in Mice. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:430-442. [PMID: 33309863 PMCID: PMC8242333 DOI: 10.1016/j.gpb.2020.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 03/13/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022]
Abstract
Aging is a complex process that can be characterized by functional and cognitive decline in an individual. Aging can be assessed based on the functional capacity of vital organs and their intricate interactions with one another. Thus, the nature of aging can be described by focusing on a specific organ and an individual itself. However, to fully understand the complexity of aging, one must investigate not only a single tissue or biological process but also its complex interplay and interdependencies with other biological processes. Here, using RNA-seq, we monitored changes in the transcriptome during aging in four tissues (including brain, blood, skin and liver) in mice at 9 months, 15 months, and 24 months, with a final evaluation at the very old age of 30 months. We identified several genes and processes that were differentially regulated during aging in both tissue-dependent and tissue-independent manners. Most importantly, we found that the electron transport chain (ETC) of mitochondria was similarly affected at the transcriptome level in the four tissues during the aging process. We also identified the liver as the tissue showing the largest variety of differentially expressed genes (DEGs) over time. Lcn2 (Lipocalin-2) was found to be similarly regulated among all tissues, and its effect on longevity and survival was validated using its orthologue in Caenorhabditis elegans. Our study demonstrated that the molecular processes of aging are relatively subtle in their progress, and the aging process of every tissue depends on the tissue’s specialized function and environment. Hence, individual gene or process alone cannot be described as the key of aging in the whole organism.
Collapse
|
72
|
Gasterich N, Wetz S, Tillmann S, Fein L, Seifert A, Slowik A, Weiskirchen R, Zendedel A, Ludwig A, Koschmieder S, Beyer C, Clarner T. Inflammatory Responses of Astrocytes Are Independent from Lipocalin 2. J Mol Neurosci 2020; 71:933-942. [PMID: 32959226 DOI: 10.1007/s12031-020-01712-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022]
Abstract
The central nervous system (CNS) responds to diverse neurologic injuries with a vigorous activation of astrocytes. In addition to their role in the maintenance of CNS homeostasis and neuronal function, astrocytes are thought to participate in the regulation of innate and adaptive immune responses in the CNS. Following antigen recognition, reactive astrocytes may participate in the initiation of innate immune responses, and modulate adaptive immune response leading to the recruitment of peripheral immune cells. Among activation, astrocytes undergo morphological changes and express several molecules, e.g., chemokines. Lipocalin 2 (LCN2) is involved in the control of innate immune responses, regulation of excess iron, and reactive oxygen production. Here, we investigated the influence of LCN2 on basic astrocytic functions linked to inflammatory responses. In vitro studies revealed a similar chemokine expression pattern in wild-type and Lcn2-deficient astrocyte cultures after treatment with lipopolysaccharides (LPS). Increased wound closure and morphological changes upon LPS treatment are independent of Lcn2 expression. We conclude that LCN2 is not necessary for basic astrocytic functions in the context of inflammation. However, CNS-derived LCN2 might have a regulatory effect on other cells, e.g., endothelial cells of the blood-brain barrier.
Collapse
Affiliation(s)
- Natalie Gasterich
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany.
| | - Sophie Wetz
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Stefan Tillmann
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lena Fein
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Anke Seifert
- Institute of Molecular Pharmacology, RWTH University Hospital Aachen, Aachen, Germany
| | - Alexander Slowik
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, RWTH University Hospital Aachen, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Tim Clarner
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
73
|
The role of neutrophils in innate immunity-driven nonalcoholic steatohepatitis: lessons learned and future promise. Hepatol Int 2020; 14:652-666. [PMID: 32880077 DOI: 10.1007/s12072-020-10081-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
The enrichment of innate immune cells and the enhanced inflammation represent the hallmark of non-alcoholic steatohepatitis (NASH), the advanced subtype with a significantly increased risk of progression to end-stage liver diseases within the spectrum of non-alcoholic fatty liver disease. Neutrophils are traditionally recognized as key components in the innate immune system to defend against pathogens. Recently, a growing body of evidence supports neutrophils as emerging key player in mediating the transition from steatosis to NASH, which is largely inspired by the histological findings in human liver biopsy indicating the enhanced infiltration of neutrophils as one of the key histological features of NASH. In this review, we discuss data regarding histological perspectives of hepatic infiltration of neutrophils in NASH. We also highlight the pathophysiological role of neutrophils in promoting metabolic inflammation in the liver through the release of a vast array of granule proteins, the interaction with other pro-inflammatory immune cells, and the formation of neutrophil extracellular traps. Neutrophil granule proteins possess pleiotropic effects on regulating neutrophil biology and functions. A variety of granule proteins (including lipocalin-2, myeloperoxidase, proteinase 3, neutrophil elastase, etc.) produced by neutrophils enhance liver metabolic inflammation, thereby promoting NASH progression by mediating neutrophil-macrophage interaction. Therapeutically, pharmacological inhibitors targeting neutrophil granule proteins hold promise to combat NASH. In addition, this article also summarizes potentials of neutrophils and its derived various granule proteins for the accurate, even non-invasive diagnosis of NASH.
Collapse
|
74
|
Neutralization of Lipocalin-2 Diminishes Stroke-Reperfusion Injury. Int J Mol Sci 2020; 21:ijms21176253. [PMID: 32872405 PMCID: PMC7503651 DOI: 10.3390/ijms21176253] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 01/18/2023] Open
Abstract
Oxidative stress is a key contributor to the pathogenesis of stroke-reperfusion injury. Neuroinflammatory peptides released after ischemic stroke mediate reperfusion injury. Previous studies, including ours, have shown that lipocalin-2 (LCN2) is secreted in response to cerebral ischemia to promote reperfusion injury. Genetic deletion of LCN2 significantly reduces brain injury after stroke, suggesting that LCN2 is a mediator of reperfusion injury and a potential therapeutic target. Immunotherapy has the potential to harness neuroinflammatory responses and provides neuroprotection against stroke. Here we report that LCN2 was induced on the inner surface of cerebral endothelial cells, neutrophils, and astrocytes that gatekeep the blood–brain barrier (BBB) after stroke. LCN2 monoclonal antibody (mAb) specifically targeted LCN2 in vitro and in vivo, attenuating the induction of LCN2 and pro-inflammatory mediators (iNOS, IL-6, CCL2, and CCL9) after stroke. Administration of LCN2 mAb at 4 h after stroke significantly reduced neurological deficits, cerebral infarction, edema, BBB leakage, and infiltration of neutrophils. The binding epitope of LCN2 mAb was mapped to the β3 and β4 strands, which are responsible for maintaining the integrity of LCN2 cup-shaped structure. These data indicate that LCN2 can be pharmacologically targeted using a specific mAb to reduce reperfusion injury after stroke.
Collapse
|
75
|
Yang C, Yang Y, DeMars KM, Rosenberg GA, Candelario-Jalil E. Genetic Deletion or Pharmacological Inhibition of Cyclooxygenase-2 Reduces Blood-Brain Barrier Damage in Experimental Ischemic Stroke. Front Neurol 2020; 11:887. [PMID: 32973660 PMCID: PMC7468510 DOI: 10.3389/fneur.2020.00887] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022] Open
Abstract
Cyclooxygenase (COX)-2 and matrix metalloproteinase (MMP)-9 are two crucial mediators contributing to blood-brain barrier (BBB) damage during cerebral ischemia. However, it is not known whether MMP-9 activation is involved in COX-2-mediated BBB disruption in ischemic stroke. In this study, we hypothesized that genetic deletion or pharmacological inhibition of COX-2 reduces BBB damage by reducing MMP-9 activity in a mouse model of ischemic stroke. Male COX-2 knockout (COX-2-/-) and wild-type (WT) mice were subjected to 60 min of middle cerebral artery occlusion (MCAO) followed by 24 h of reperfusion. Genetic deletion of COX-2 or post-ischemic treatment with CAY10404, a highly selective COX-2 inhibitor, significantly reduced BBB damage and hemorrhagic transformation, as assessed by immunoglobulin G (IgG) extravasation and brain hemoglobin (Hb) levels, respectively. Immunoblotting analysis showed that tight junction proteins (TJPs) zonula occludens (ZO)-1 and occludin as well as junctional adhesion molecule-A (JAM-A) and the basal lamina protein collagen IV were dramatically reduced in the ischemic brain. Stroke-induced loss of these BBB structural proteins was significantly attenuated in COX-2-/- mice. Similarly, stroke-induced loss of ZO-1 and occludin was significantly attenuated by CAY10404 treatment. Ischemia-induced increase in MMP-9 protein levels in the ipsilateral cerebral cortex was significantly reduced in COX-2-/- mice. Stroke induced a dramatic increase in MMP-9 enzymatic activity in the ischemic cortex, which was markedly reduced by COX-2 gene deficiency or pharmacological inhibition with CAY10404. Levels of myeloperoxidase (MPO, an indicator of neutrophil infiltration into the brain parenchyma), neutrophil elastase (NE), and lipocalin-2 (LCN2, also known as neutrophil gelatinase-associated lipocalin), measured by western blot and specific ELISA kits, respectively, were markedly increased in the ischemic brain. Increased levels of markers for neutrophil infiltration were significantly reduced in COX-2-/- mice compared with WT controls following stroke. Altogether, neurovascular protective effects of COX-2 blockade are associated with reduced BBB damage, MMP-9 expression/activity and neutrophil infiltration. Our study shows for the first time that MMP-9 is an important downstream effector contributing to COX-2-mediated neurovascular damage in ischemic stroke. Targeting the COX-2/MMP-9 pathway could represent a promising strategy to reduce neuroinflammatory events in order to preserve the BBB integrity and ameliorate ischemic stroke injury.
Collapse
Affiliation(s)
- Changjun Yang
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Yi Yang
- Department of Neurology, Center for Memory and Aging, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Kelly M DeMars
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Gary A Rosenberg
- Department of Neurology, Center for Memory and Aging, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
76
|
Li X, Li M, Tian L, Chen J, Liu R, Ning B. Reactive Astrogliosis: Implications in Spinal Cord Injury Progression and Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9494352. [PMID: 32884625 PMCID: PMC7455824 DOI: 10.1155/2020/9494352] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/06/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022]
Abstract
Astrocytes are the most populous glial cells in the central nervous system (CNS). They are essential to CNS physiology and play important roles in the maintenance of homeostasis, development of synaptic plasticity, and neuroprotection. Nevertheless, under the influence of certain factors, astrocytes may also exert detrimental effects through a process of reactive astrogliosis. Previous studies have shown that astrocytes have more than one type of polarization. Two types have been extensively researched. One is a damaging change that occurs under inflammation and has been termed A1 astrocyte, while the other is a restorative change that occurs under ischemic induction and was termed A2 astrocyte. Researchers are now increasingly paying attention to the role of astrocytes in spinal cord injury (SCI), degenerative diseases, chronic pain, neurological tumors, and other CNS disorders. In this review, we discuss (a) the characteristics of polarized astrocytes, (b) the relationship between astrocyte polarization and SCI, and (c) new implications of reactive astrogliosis for future SCI therapies.
Collapse
Affiliation(s)
- Xinyu Li
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Meng Li
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Lige Tian
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Jianan Chen
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Ronghan Liu
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| | - Bin Ning
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, No. 105, Jiefang Road, Jinan, Shandong 250013, China
| |
Collapse
|
77
|
Sanz P, Garcia-Gimeno MA. Reactive Glia Inflammatory Signaling Pathways and Epilepsy. Int J Mol Sci 2020; 21:ijms21114096. [PMID: 32521797 PMCID: PMC7312833 DOI: 10.3390/ijms21114096] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation and epilepsy are interconnected. Brain inflammation promotes neuronal hyper-excitability and seizures, and dysregulation in the glia immune-inflammatory function is a common factor that predisposes or contributes to the generation of seizures. At the same time, acute seizures upregulate the production of pro-inflammatory cytokines in microglia and astrocytes, triggering a downstream cascade of inflammatory mediators. Therefore, epileptic seizures and inflammatory mediators form a vicious positive feedback loop, reinforcing each other. In this work, we have reviewed the main glial signaling pathways involved in neuroinflammation, how they are affected in epileptic conditions, and the therapeutic opportunities they offer to prevent these disorders.
Collapse
Affiliation(s)
- Pascual Sanz
- Instituto de Biomedicina de Valencia (CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Jaime Roig 11, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-963391779; Fax: +34-963690800
| | - Maria Adelaida Garcia-Gimeno
- Department of Biotechnology, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural (ETSIAMN), Universitat Politècnica de València, 46022 Valencia, Spain;
| |
Collapse
|
78
|
Petrozziello T, Mills AN, Farhan SM, Mueller KA, Granucci EJ, Glajch KE, Chan J, Chew S, Berry JD, Sadri‐Vakili G. Lipocalin‐2 is increased in amyotrophic lateral sclerosis. Muscle Nerve 2020; 62:272-283. [DOI: 10.1002/mus.26911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Tiziana Petrozziello
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General Hospital Boston Massachusetts
| | - Alexandra N. Mills
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General Hospital Boston Massachusetts
| | - Sali M.K. Farhan
- Analytic and Translational Genetics Unit, Department of MedicineMassachusetts General Hospital and Harvard Medical School Boston Massachusetts
- Program in Medical and Population GeneticsBroad Institute of MIT and Harvard Cambridge Massachusetts
| | - Kaly A. Mueller
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General Hospital Boston Massachusetts
| | - Eric J. Granucci
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General Hospital Boston Massachusetts
| | - Kelly E. Glajch
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General Hospital Boston Massachusetts
| | - James Chan
- Biostatistics Center, Department of MedicineMassachusetts General Hospital Boston Massachusetts
| | - Sheena Chew
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General Hospital Boston Massachusetts
| | - James D. Berry
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General Hospital Boston Massachusetts
| | - Ghazaleh Sadri‐Vakili
- Sean M. Healey & AMG Center for ALS at Mass GeneralMassachusetts General Hospital Boston Massachusetts
| |
Collapse
|
79
|
Chen X, Qiu F, Zhao X, Lu J, Tan X, Xu J, Chen C, Zhang F, Liu C, Qiao D, Wang H. Astrocyte-Derived Lipocalin-2 Is Involved in Mitochondrion-Related Neuronal Apoptosis Induced by Methamphetamine. ACS Chem Neurosci 2020; 11:1102-1116. [PMID: 32186847 DOI: 10.1021/acschemneuro.9b00559] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Methamphetamine (METH) is a widely abused and highly addictive psychoactive stimulant that can induce neuronal apoptosis. Lipocalin-2 (LCN2) is a member of the lipocalin family, and its upregulation is involved in cell death in the adult brain. However, the role of LCN2 in METH-induced neurotoxicity has not been reported. In this study, we found that LCN2 was predominantly expressed in hippocampal astrocytes after METH exposure and that recombinant LCN2 (Re LCN2) can induce neuronal apoptosis in vitro and in vivo. The inhibition of LCN2 and LCN2R, a cell surface receptor for LCN2, reduced METH- and Re LCN2-induced mitochondrion-related neuronal apoptosis in cultures of primary rat neurons and animal models. Our study supports the role of reactive oxygen species (ROS) generation and the PRKR-like ER kinase (PERK)-mediated signaling pathway in the upregulation of astrocyte-derived LCN2 after METH exposure. Additionally, the serum and cerebrospinal fluid (CSF) levels of LCN2 were significantly upregulated after METH exposure. These results indicate that upregulation of astrocyte-derived LCN2 binding to LCN2R is involved in METH-induced mitochondrion-related neuronal apoptosis.
Collapse
Affiliation(s)
- Xuebing Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Feng Qiu
- Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan, Guangdong 528244, China
| | - Xu Zhao
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiancong Lu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaohui Tan
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jingtao Xu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chuanxiang Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fu Zhang
- Key Lab of Forensic Pathology, Guangdong Public Security Department, Guangzhou 510050, China
| | - Chao Liu
- Guangzhou Forensic Science Institute, Guangzhou 510030, China
| | - Dongfang Qiao
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan, Guangdong 528244, China
| |
Collapse
|
80
|
Vismara I, Papa S, Veneruso V, Mauri E, Mariani A, De Paola M, Affatato R, Rossetti A, Sponchioni M, Moscatelli D, Sacchetti A, Rossi F, Forloni G, Veglianese P. Selective Modulation of A1 Astrocytes by Drug-Loaded Nano-Structured Gel in Spinal Cord Injury. ACS NANO 2020; 14:360-371. [PMID: 31887011 DOI: 10.1021/acsnano.9b05579] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Astrogliosis has a very dynamic response during the progression of spinal cord injury, with beneficial or detrimental effects on recovery. It is therefore important to develop strategies to target activated astrocytes and their harmful molecular mechanisms so as to promote a protective environment to counteract the progression of the secondary injury. The challenge is to formulate an effective therapy with maximum protective effects, but reduced side effects. In this study, a functionalized nanogel-based nanovector was selectively internalized in activated mouse or human astrocytes. Rolipram, an anti-inflammatory drug, when administered by these nanovectors limited the inflammatory response in A1 astrocytes, reducing iNOS and Lcn2, which in turn reverses the toxic effect of proinflammatory astrocytes on motor neurons in vitro, showing advantages over conventionally administered anti-inflammatory therapy. When tested acutely in a spinal cord injury mouse model, it improved motor performance, but only in the early stage after injury, reducing the astrocytosis and preserving neuronal cells.
Collapse
Affiliation(s)
- Irma Vismara
- Department of Neuroscience , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , via Mario Negri 2 , 20156 Milano , Italy
| | - Simonetta Papa
- Department of Neuroscience , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , via Mario Negri 2 , 20156 Milano , Italy
| | - Valeria Veneruso
- Department of Neuroscience , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , via Mario Negri 2 , 20156 Milano , Italy
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Politecnico di Milano , via Mancinelli 7 , 20131 Milano , Italy
| | - Emanuele Mauri
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Politecnico di Milano , via Mancinelli 7 , 20131 Milano , Italy
| | - Alessandro Mariani
- Department of Environmental Health Sciences , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , via Mario Negri 2 , 20156 Milan , Italy
| | - Massimiliano De Paola
- Department of Environmental Health Sciences , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , via Mario Negri 2 , 20156 Milan , Italy
| | - Roberta Affatato
- Department of Oncology , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , via Mario Negri 2 , 20156 Milan , Italy
| | - Arianna Rossetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Politecnico di Milano , via Mancinelli 7 , 20131 Milano , Italy
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Politecnico di Milano , via Mancinelli 7 , 20131 Milano , Italy
| | - Davide Moscatelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Politecnico di Milano , via Mancinelli 7 , 20131 Milano , Italy
| | - Alessandro Sacchetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Politecnico di Milano , via Mancinelli 7 , 20131 Milano , Italy
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Politecnico di Milano , via Mancinelli 7 , 20131 Milano , Italy
| | - Gianluigi Forloni
- Department of Neuroscience , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , via Mario Negri 2 , 20156 Milano , Italy
| | - Pietro Veglianese
- Department of Neuroscience , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , via Mario Negri 2 , 20156 Milano , Italy
| |
Collapse
|
81
|
Inami Y, Uta D, Andoh T. Neuronal hyperexcitability and astrocyte activation in spinal dorsal horn of a dermatitis mouse model with cutaneous hypersensitivity. Neurosci Lett 2020; 720:134784. [PMID: 31987915 DOI: 10.1016/j.neulet.2020.134784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/11/2020] [Accepted: 01/23/2020] [Indexed: 10/25/2022]
Abstract
Cleaning products such as soaps, shampoos, and detergents are comprised mainly of surfactants, agents known to cause dermatitis and cutaneous hypersensitivity characterized by itching, stinging, and burning of the skin and scalp. However, the mechanisms underlying surfactant-induced cutaneous hypersensitivity remain unclear. In the present study, we investigated the mechanisms of cutaneous hypersensitivity in mice treated with the detergent sodium dodecyl sulfate (SDS). Repeated SDS application to the skin induced inflammation, xeroderma, and elongation of peripheral nerves into the epidermis. The number of neurons immunopositive for c-Fos, a well known marker of neural activity, was substantially higher (+441%) in spinal dorsal horn (SDH) lamina I-II (but not lamina III-VI) of SDS-treated mice compared to vehicle-treated mice. In vivo extracellular recording revealed enhanced spontaneous (+64%) and non-noxious mechanical stimulation-evoked firing (+139%) of SDH lamina I-II neurons in SDS-treated mice, and stimulation-evoked neuronal firing was sustained (+5333%) even after stimulation. The number of GFAP-positive (activated) astrocytes, but not Iba1-positive microglia, was also elevated (+137%) in SDH lamina I-II of SDS-treated mice compared to vehicle-treated mice. Peripheral nerve elongation and hyperexcitability of afferent or SDH neurons, possible associated with the activation of spinal astrocytes, may underlie cutaneous hypersensitivity induced by surfactants.
Collapse
Affiliation(s)
- Yoshihiro Inami
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan; Advanced Research Laboratory, Hoyu Co., Ltd., Nagakute, Aichi, Japan.
| | - Daisuke Uta
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| |
Collapse
|
82
|
Unno K, Sumiyoshi A, Konishi T, Hayashi M, Taguchi K, Muguruma Y, Inoue K, Iguchi K, Nonaka H, Kawashima R, Hasegawa-Ishii S, Shimada A, Nakamura Y. Theanine, the Main Amino Acid in Tea, Prevents Stress-Induced Brain Atrophy by Modifying Early Stress Responses. Nutrients 2020; 12:nu12010174. [PMID: 31936294 PMCID: PMC7019546 DOI: 10.3390/nu12010174] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/30/2019] [Accepted: 01/04/2020] [Indexed: 11/16/2022] Open
Abstract
Chronic stress can impair the health of human brains. An important strategy that may prevent the accumulation of stress may be the consumption of functional foods. When senescence-accelerated mice prone 10 (SAMP10), a stress-sensitive strain, were loaded with stress using imposed male mouse territoriality, brain volume decreased. However, in mice that ingested theanine (6 mg/kg), the main amino acid in tea leaves, brain atrophy was suppressed, even under stress. On the other hand, brain atrophy was not clearly observed in a mouse strain that aged normally (Slc:ddY). The expression level of the transcription factor Npas4 (neuronal PAS domain protein 4), which regulates the formation and maintenance of inhibitory synapses in response to excitatory synaptic activity, decreased in the hippocampus and prefrontal cortex of stressed SAMP10 mice, but increased in mice that ingested theanine. Lipocalin 2 (Lcn2), the expression of which increased in response to stress, was significantly high in the hippocampus and prefrontal cortex of stressed SAMP10 mice, but not in mice that ingested theanine. These data suggest that Npas4 and Lcn2 are involved in the brain atrophy and stress vulnerability of SAMP10 mice, which are prevented by the consumption of theanine, causing changes in the expression of these genes.
Collapse
Affiliation(s)
- Keiko Unno
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.H.); (K.T.); (Y.N.)
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan;
- Correspondence: ; Tel.: +81-54-264-5822
| | - Akira Sumiyoshi
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (A.S.); (H.N.); (R.K.)
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tomokazu Konishi
- Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita 010-0195, Japan;
| | - Michiko Hayashi
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.H.); (K.T.); (Y.N.)
| | - Kyoko Taguchi
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.H.); (K.T.); (Y.N.)
| | - Yoshio Muguruma
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (Y.M.); (K.I.)
| | - Koichi Inoue
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (Y.M.); (K.I.)
| | - Kazuaki Iguchi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan;
| | - Hiroi Nonaka
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (A.S.); (H.N.); (R.K.)
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (A.S.); (H.N.); (R.K.)
| | - Sanae Hasegawa-Ishii
- Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo 181-8612, Japan; (S.H.-I.); (A.S.)
| | - Atsuyoshi Shimada
- Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo 181-8612, Japan; (S.H.-I.); (A.S.)
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.H.); (K.T.); (Y.N.)
| |
Collapse
|
83
|
Koga K, Yamagata R, Kohno K, Yamane T, Shiratori-Hayashi M, Kohro Y, Tozaki-Saitoh H, Tsuda M. Sensitization of spinal itch transmission neurons in a mouse model of chronic itch requires an astrocytic factor. J Allergy Clin Immunol 2020; 145:183-191.e10. [DOI: 10.1016/j.jaci.2019.09.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/16/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
|
84
|
Tu Z, Tan X, Li S, Cui J, Tu S, Jiang L. The therapeutic effect of controlled reoxygenation on chronic hypoxia-associated brain injury. Biol Open 2019; 8:bio.039370. [PMID: 31719034 PMCID: PMC6918765 DOI: 10.1242/bio.039370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cardiopulmonary bypass (CPB) is the most general technique applied in congenital heart disease (CHD). However, standard CPB poses a specific pathologic condition for patients during surgery: exposure to reoxygenation. When surgery is performed on cyanotic infants, standard CPB is usually initiated at a high concentration of oxygen without consideration of cytotoxic effects. Controlled reoxygenation is defined as using normoxic CPB with a pump primed to the PO2 (oxygen tension in the blood), which is matched to the patient's preoperative saturation. The aim of this study was to determine whether controlled reoxygenation could avoid standard reoxygenation injury and also to clarify the molecular signaling pathways during hypoxia. We successfully reproduced the abnormal brain observed in mice with chronic hypoxia during early postnatal development – equivalent to the third trimester in human. Mice were treated with standard reoxygenation and controlled reoxygenation after hypoxia for 24 h. We then assessed the brain tissue of these mice. In standard reoxygenation-treated hypoxia mice, the caspase-3-dependent neuronal apoptosis was enhanced by increasing concentration of oxygen. Interestingly, controlled reoxygenation inhibited neuron and glial cell apoptosis through suppressing cleavage of caspase-3 and PARP. We also found that controlled reoxygenation suppressed LCN2 expression and inflammatory cytokine (including TNF-α, IL-6, and CXCL10) production, in which the JAK2/STAT3 signaling pathway might participate. In conclusion, our findings propose the novel therapeutic potential of controlled reoxygenation on CPB during CHD. Summary: Controlled reoxygenation may provide an effective therapeutic strategy for hypoxia-induced tissue injury via regulation of the JAK2/STAT3 signaling pathway. It will help make better informed clinical treatment decisions for cyanotic infants.
Collapse
Affiliation(s)
- Zhenzhen Tu
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders, Chongqing 400016, China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing 400016, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400016, China
| | - Xingqin Tan
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders, Chongqing 400016, China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing 400016, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400016, China
| | - Shangyingying Li
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders, Chongqing 400016, China
| | - Jie Cui
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders, Chongqing 400016, China
| | - Shengfen Tu
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders, Chongqing 400016, China.,China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing 400016, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400016, China
| | - Li Jiang
- China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing 400016, China .,Chongqing Key Laboratory of Pediatrics, Chongqing 400016, China.,Department of Neurology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders, Chongqing 400016, China
| |
Collapse
|
85
|
Maysinger D, Lalancette-Hébert M, Ji J, Jabbour K, Dernedde J, Silberreis K, Haag R, Kriz J. Dendritic polyglycerols are modulators of microglia-astrocyte crosstalk. FUTURE NEUROLOGY 2019. [DOI: 10.2217/fnl-2019-0008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aim: To determine the ability of sulfated dendritic polyglycerols (dPGS) to modulate neuroglia activation challenged with lipopolysaccharide (LPS). Materials & methods: Microglia/astrocyte activation in vivo was determined in transgenic animals expressing TLR2-/GFAP-luciferase reporter. Mechanisms implicated in microglia-astrocyte crosstalk were studied in primary mouse brain cultures. Results & discussion: dPGS significantly reduced microglia activation in vivo, and decreased astrocytic LCN2 production. Activated microglia are necessary for astrocyte stimulation and increase in LCN2 abundance. LCN2 production in astrocytes involves signaling via toll-like receptor 4, activation of NF-κB, IL6 and enhancement of reactive oxygen species. Conclusion: dPGS are powerful modulators of microglia-astrocyte crosstalk and LCN2 abundance; dPGS are promising anti-inflammatory dendritic nanostructures.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada, H3G 1Y6
| | | | - Jeff Ji
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada, H3G 1Y6
| | - Katherine Jabbour
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada, H3G 1Y6
| | - Jens Dernedde
- Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin, Berlin Institute of Health, Berlin, Germany
| | - Kim Silberreis
- Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin, Berlin Institute of Health, Berlin, Germany
- Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Rainer Haag
- Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Jasna Kriz
- Department of Psychiatry & Neuroscience, Laval University, Quebec, Canada, G1J 2G3
| |
Collapse
|
86
|
Meyerhoff N, Rohn K, Carlson R, Tipold A. Measurement of Neutrophil Gelatinase-Associated Lipocalin Concentration in Canine Cerebrospinal Fluid and Serum and Its Involvement in Neuroinflammation. Front Vet Sci 2019; 6:315. [PMID: 31620456 PMCID: PMC6759468 DOI: 10.3389/fvets.2019.00315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/04/2019] [Indexed: 11/28/2022] Open
Abstract
Neutrophil gelatinase-associated Lipocalin (NGAL) is a glycoprotein involved in inflammation acting as an acute phase protein and chemokine as well as a regulator of iron homeostasis. NGAL has been shown to be upregulated in experimental autoimmune encephalomyelitis (EAE) in mice. Increased NGAL concentration in cerebrospinal fluid (CSF) and expression in central nervous system (CNS) has been described in human neuroinflammatory disease such as multiple sclerosis and neuropsychiatric lupus as well as in bacterial meningitis. We aimed to investigate involvement of NGAL in spontaneous canine neuroinflammation as a potential large animal model for immune- mediated neurological disorders. A commercially available Enzyme-linked Immunosorbent Assay (ELISA) for detection of canine NGAL was validated for use in canine CSF. Concentration in CSF and serum of canine patients suffering from steroid- responsive meningitis- arteriitis (SRMA), Meningoencephalitis of unknown origin (MUO), different non- inflammatory CNS disease and control dogs were compared. Relationship between NGAL concentration in CSF and serum and inflammatory parameters in CSF and blood (IgA concentration, total nucleated cell count (TNCC), protein content) as well as association with erythrocytes in CSF, duration of illness, plasma creatinine and urinary leucocytes were evaluated. In dogs with SRMA and MUO, CSF concentration of NGAL was significantly higher than in dogs with idiopathic epilepsy, compressive myelopathy, intracranial neoplasia and SRMA in remission (p < 0.0001). Patients with acute SRMA had significantly higher levels of NGAL in CSF than neurologically normal controls (p < 0.0001). Serum NGAL concentrations were significantly higher in dogs with SRMA than in patients with myelopathy and intracranial neoplasia (p < 0.0001). NGAL levels in CSF were strongly positively associated with IgA concentration (rSpear= 0.60116, p < 0.0001), TNCC (rSpear= 0.65746, p < 0.0001) and protein content (rSpear= 0.73353, p < 0.0001) in CSF. It can be measured in CSF of healthy and diseased dogs. Higher concentrations in canine patients with SRMA as well as positive association with TNCC in CSF suggest an involvement in pro-inflammatory pathways and chemotaxis in SRMA. High serum levels of NGAL in serum of SRMA patients in different stages of disease might reflect the systemic character of the disease.
Collapse
Affiliation(s)
- Nina Meyerhoff
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Karl Rohn
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine, Hanover, Germany
| | - Regina Carlson
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
87
|
Sailuotong Capsule Prevents the Cerebral Ischaemia-Induced Neuroinflammation and Impairment of Recognition Memory through Inhibition of LCN2 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8416105. [PMID: 31565154 PMCID: PMC6745154 DOI: 10.1155/2019/8416105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/27/2019] [Accepted: 05/04/2019] [Indexed: 12/13/2022]
Abstract
Background Astrogliosis can result in astrocytes with hypertrophic morphology after injury, indicated by extended processes and swollen cell bodies. Lipocalin-2 (LCN2), a secreted glycoprotein belonging to the lipocalin superfamily, has been reported to play a detrimental role in ischaemic brains and neurodegenerative diseases. Sailuotong (SLT) capsule is a standardized three-herb preparation composed of ginseng, ginkgo, and saffron for the treatment of vascular dementia. Although recent clinical trials have demonstrated the beneficial effect of SLT on vascular dementia, its potential cellular mechanism has not been fully explored. Methods Male adult Sprague-Dawley (SD) rats were subjected to microsphere-embolized cerebral ischaemia. Immunostaining and Western blotting were performed to assess astrocytic reaction. Human astrocytes exposed to oxygen-glucose deprivation (OGD) were used to elucidate the effects of SLT-induced inflammation and astrocytic reaction. Results A memory recovery effect was found to be associated with the cerebral ischaemia-induced expression of inflammatory proteins and the suppression of LCN2 expression in the brain. Additionally, SLT reduced the astrocytic reaction, LCN2 expression, and the phosphorylation of STAT3 and JAK2. For in vitro experiments, OGD-induced expression of inflammation and LCN2 was also decreased in human astrocyte by the SLT treatment. Moreover, LCN2 overexpression significantly enhanced the above effects. SLT downregulated these effects that were enhanced by LCN2 overexpression. Conclusions SLT mediates neuroinflammation, thereby protecting against ischaemic brain injury by inhibiting astrogliosis and suppressing neuroinflammation via the LCN2-JAK2/STAT3 pathway, providing a new idea for the treatment strategy of ischaemic stroke.
Collapse
|
88
|
Deng Y, Chen D, Gao F, Lv H, Zhang G, Sun X, Liu L, Mo D, Ma N, Song L, Huo X, Yan T, Zhang J, Miao Z. Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. J Biol Eng 2019; 13:71. [PMID: 31485266 PMCID: PMC6714399 DOI: 10.1186/s13036-019-0193-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/30/2019] [Indexed: 12/16/2022] Open
Abstract
Background MicroRNAs (miRNAs) are implicated in the progression of ischemic stroke (IS) and bone marrow-derived mesenchymal stem cells (BMSCs)-derived exosomes play a role in IS therapy. Herein we hypothesized that the BMSCs-derived exosomes containing overexpressed miR-138-5p could protect the astrocytes following IS involved with lipocalin 2 (LCN2). Methods The differentially expressed gene related to IS was initially identified by bioinformatics analysis. miR-138-5p was predicted to regulate LCN2. The expression of miR-138-5p and LCN2 was altered in the oxygen-glucose deprivation (OGD)-induced astrocytes. Furthermore, the cell behaviors and inflammatory responses were evaluated both in astrocytes alone and astrocytes co-cultured with exosomes derived from BMSCs overexpressing miR-138-5p to explore the involvement of miR-138-5p and LCN2 in IS. Besides, middle cerebral artery occlusion (MCAO) mouse model was established to explore the effect of BMSCs-derived exosomal miR-138-5p in IS in vivo. Results LCN2 was highly expressed in IS. Besides, LCN2 was a target gene of miR-138-5p. BMSCs-derived exosomes could be endocytosed by astrocytes via co-culture. Overexpression of miR-138-5p promoted the proliferation and inhibited apoptosis of astrocytes injured by OGD, accompanied by the reduced expression of inflammatory factors, which was achieved by down-regulating LCN2. More importantly, BMSCs delivered miR-138-5p to the astrocytes via exosomes and BMSCs-derived exosomal miR-138-5p alleviated neuron injury in IS mice. Conclusion BMSCs-derived exosomal miR-138-5p reduces neurological impairment by promoting proliferation and inhibiting inflammatory responses of astrocytes following IS by targeting LCN2, which may provide a novel target for IS treatment.
Collapse
Affiliation(s)
- Yiming Deng
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Duanduan Chen
- 4School of Life Science, Beijing Institute of Technology, Beijing, 100081 China
| | - Feng Gao
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Hong Lv
- 5Departments of Clinical Laboratory, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050 People's Republic of China
| | - Guojun Zhang
- 5Departments of Clinical Laboratory, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050 People's Republic of China
| | - Xuan Sun
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Lian Liu
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Dapeng Mo
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Ning Ma
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Ligang Song
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Xiaochuan Huo
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Tianyi Yan
- 4School of Life Science, Beijing Institute of Technology, Beijing, 100081 China
| | - Jingbo Zhang
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| | - Zhongrong Miao
- 1Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, No. 6, Tiantan Xili, Fengtai District, Beijing, 100050 People's Republic of China.,2China National Clinical Research Center for Neurological Diseases, Beijing, 100070 People's Republic of China.,3Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100069 China
| |
Collapse
|
89
|
Escartin C, Guillemaud O, Carrillo-de Sauvage MA. Questions and (some) answers on reactive astrocytes. Glia 2019; 67:2221-2247. [PMID: 31429127 DOI: 10.1002/glia.23687] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/12/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Astrocytes are key cellular partners for neurons in the central nervous system. Astrocytes react to virtually all types of pathological alterations in brain homeostasis by significant morphological and molecular changes. This response was classically viewed as stereotypical and is called astrogliosis or astrocyte reactivity. It was long considered as a nonspecific, secondary reaction to pathological conditions, offering no clues on disease-causing mechanisms and with little therapeutic value. However, many studies over the last 30 years have underlined the crucial and active roles played by astrocytes in physiology, ranging from metabolic support, synapse maturation, and pruning to fine regulation of synaptic transmission. This prompted researchers to explore how these new astrocyte functions were changed in disease, and they reported alterations in many of them (sometimes beneficial, mostly deleterious). More recently, cell-specific transcriptomics revealed that astrocytes undergo massive changes in gene expression when they become reactive. This observation further stressed that reactive astrocytes may be very different from normal, nonreactive astrocytes and could influence disease outcomes. To make the picture even more complex, both normal and reactive astrocytes were shown to be molecularly and functionally heterogeneous. Very little is known about the specific roles that each subtype of reactive astrocytes may play in different disease contexts. In this review, we have interrogated researchers in the field to identify and discuss points of consensus and controversies about reactive astrocytes, starting with their very name. We then present the emerging knowledge on these cells and future challenges in this field.
Collapse
Affiliation(s)
- Carole Escartin
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Univ. Paris Sud, Univ. Paris-Saclay, UMR 9199, Neurodegenerative Disease Laboratory, Fontenay-aux-Roses, France
| | - Océane Guillemaud
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Univ. Paris Sud, Univ. Paris-Saclay, UMR 9199, Neurodegenerative Disease Laboratory, Fontenay-aux-Roses, France
| | - Maria-Angeles Carrillo-de Sauvage
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Département de la Recherche Fondamentale, Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique, Univ. Paris Sud, Univ. Paris-Saclay, UMR 9199, Neurodegenerative Disease Laboratory, Fontenay-aux-Roses, France
| |
Collapse
|
90
|
Zhao N, Xu X, Jiang Y, Gao J, Wang F, Xu X, Wen Z, Xie Y, Li J, Li R, Lv Q, Liu Q, Dai Q, Liu X, Xu G. Lipocalin-2 may produce damaging effect after cerebral ischemia by inducing astrocytes classical activation. J Neuroinflammation 2019; 16:168. [PMID: 31426811 PMCID: PMC6699078 DOI: 10.1186/s12974-019-1556-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
Abstract
Background Functions of astrocytes in the rehabilitation after ischemic stroke, especially their impacts on inflammatory processes, remain controversial. This study uncovered two phenotypes of astrocytes, of which one was helpful, and the other harmful to anoxic neurons after brain ischemia. Methods We tested the levels of inflammatory factors including TNF-a, IL-6, IL-10, iNOS, IL-1beta, and CXCL10 in primary astrocytes at 0 h, 6 h, 12 h, 24 h, and 48 h after OGD, grouped the hypoxia astrocytes into iNOS-positive (iNOS(+)) and iNOS-negative (iNOS(−)) by magnetic bead sorting, and then co-cultured the two groups of cells with OGD-treated neurons for 24 h. We further verified the polarization of astrocytes in vivo by detecting the co-localization of iNOS, GFAP, and Iba-1 on MCAO brain sections. Lentivirus overexpressing LCN2 and LCN2 knockout mice (#024630. JAX, USA) were used to explore the role of LCN2 in the functional polarization of astrocytes. 7.0-T MRI scanning and the modified Neurological Severity Score (mNSS) were used to evaluate the neurological outcomes of the mice. Results After oxygen-glucose deprivation (OGD), iNOS mRNA expression increased to the peak at 6 h in primary astrocytes, but keep baseline expression in LCN2-knockout astrocytes. In mice with transient middle cerebral artery occlusion (tMCAO), LCN2 was proved necessary for astrocyte classical activation. In LCN2 knockout mice with MCAO, no classically activated astrocytes were detected, and smaller infarct volumes and better neurological functions were observed. Conclusions The results indicated a novel pattern of astrocyte activation after ischemic stroke and lipocalin-2 (LCN2) plays a key role in polarizing and activating astrocytes.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Xiaomeng Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China.,Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Roud, Shanghai, 20025, China
| | - Yongjun Jiang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, 510260, China
| | - Jie Gao
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Fang Wang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Xiaohui Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Zhuoyu Wen
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Yi Xie
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Juanji Li
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Rongrong Li
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Qiushi Lv
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Qian Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Qiliang Dai
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China.
| | - Gelin Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
91
|
Mass Spectrometry for the Study of Autism and Neurodevelopmental Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31347066 DOI: 10.1007/978-3-030-15950-4_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Mass spectrometry (MS) has been increasingly used to study central nervous system (CNS) disorders, including autism spectrum disorders (ASDs). The first studies of ASD using MS focused on the identification of external toxins, but current research is more directed at understanding endogenous protein changes that occur in ASD (ASD proteomics). This chapter focuses on how MS has been used to study ASDs, with particular focus on proteomic analysis. Other neurodevelopmental disorders have been investigated using this technique, including genetic syndromes associated with autism such as fragile X syndrome (FXS) and Smith-Lemli-Opitz Syndrome (SLOS).
Collapse
|
92
|
Ranjbar Taklimie F, Gasterich N, Scheld M, Weiskirchen R, Beyer C, Clarner T, Zendedel A. Hypoxia Induces Astrocyte-Derived Lipocalin-2 in Ischemic Stroke. Int J Mol Sci 2019; 20:ijms20061271. [PMID: 30871254 PMCID: PMC6471434 DOI: 10.3390/ijms20061271] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 12/18/2022] Open
Abstract
Ischemic stroke causes rapid hypoxic damage to the core neural tissue which is followed by graded chronological tissue degeneration in the peri-infarct zone. The latter process is mainly triggered by neuroinflammation, activation of inflammasomes, proinflammatory cytokines, and pyroptosis. Besides microglia, astrocytes play an important role in the fine-tuning of the inflammatory network in the brain. Lipocalin-2 (LCN2) is involved in the control of innate immune responses, regulation of excess iron, and reactive oxygen production. In this study, we analyzed LCN2 expression in hypoxic rat brain tissue after ischemic stroke and in astrocyte cell cultures receiving standardized hypoxic treatment. Whereas no LCN2-positive cells were seen in sham animals, the number of LCN2-positive cells (mainly astrocytes) was significantly increased after stroke. In vitro studies with hypoxic cultured astroglia revealed that LCN2 expression is significantly increased after only 2 h, then further increased, followed by a stepwise decline. The expression pattern of several proinflammatory cytokines mainly followed that profile in wild type (WT) but not in cultured LCN2-deficient astrocytes. Our data revealed that astrocytes are an important source of LCN2 in the peri-infarct region under hypoxic conditions. However, we must also stress that brain-intrinsic LCN2 after the initial hypoxia period might come from other sources such as invaded immune cells and peripheral organs via blood circulation. In any case, secreted LCN2 might have an influence on peripheral organ functions and the innate immune system during brain hypoxia.
Collapse
Affiliation(s)
| | - Natalie Gasterich
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.
| | - Miriam Scheld
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, 52074 Aachen, Germany.
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.
| | - Tim Clarner
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
93
|
Sosunov A, Olabarria M, Goldman JE. Alexander disease: an astrocytopathy that produces a leukodystrophy. Brain Pathol 2019; 28:388-398. [PMID: 29740945 DOI: 10.1111/bpa.12601] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/02/2018] [Indexed: 02/02/2023] Open
Abstract
Alexander Disease (AxD) is a degenerative disorder caused by mutations in the GFAP gene, which encodes the major intermediate filament of astrocytes. As other cells in the CNS do not express GFAP, AxD is a primary astrocyte disease. Astrocytes acquire a large number of pathological features, including changes in morphology, the loss or diminution of a number of critical astrocyte functions and the activation of cell stress and inflammatory pathways. AxD is also characterized by white matter degeneration, a pathology that has led it to be included in the "leukodystrophies." Furthermore, variable degrees of neuronal loss take place. Thus, the astrocyte pathology triggers alterations in other cell types. Here, we will review the neuropathology of AxD and discuss how a disease of astrocytes can lead to severe pathologies in non-astrocytic cells. Our knowledge of the pathophysiology of AxD will also lead to a better understanding of how astrocytes interact with other CNS cells and how astrocytes in the gliosis that accompanies many neurological disorders can damage the function and survival of other cells.
Collapse
Affiliation(s)
| | - Markel Olabarria
- Departments of Pathology and Cell Biology, Columbia University, New York, NY
| | - James E Goldman
- Departments of Pathology and Cell Biology, Columbia University, New York, NY
| |
Collapse
|
94
|
Mike EV, Makinde HM, Gulinello M, Vanarsa K, Herlitz L, Gadhvi G, Winter DR, Mohan C, Hanly JG, Mok CC, Cuda CM, Putterman C. Lipocalin-2 is a pathogenic determinant and biomarker of neuropsychiatric lupus. J Autoimmun 2019; 96:59-73. [PMID: 30174216 PMCID: PMC6310639 DOI: 10.1016/j.jaut.2018.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 11/22/2022]
Abstract
Neuropsychiatric manifestations in lupus (NPSLE) affect ∼20-40% of patients. In the central nervous system, lipocalin-2 (LCN2) can promote injury through mechanisms directly linked to NPSLE, including brain barrier disruption, neurotoxicity, and glial activation. Since LCN2 is elevated in lupus and has been implicated in neuroinflammation, we investigated whether LCN2 is required for the pathogenesis of NPSLE. Here, we investigated the effects of LCN2 deficiency on the development of neurobehavioral deficits in the B6.Sle1.Sle3 (Sle1,3) mouse lupus model. Sle1,3 mice exhibited depression-like behavior and impaired spatial and recognition memory, and these deficits were attenuated in Sle1,3-LCN2KO mice. Whole-brain flow cytometry showed a significant increase in brain infiltrating leukocytes in Sle1,3 mice that was not reduced by LCN2 deficiency. RNA sequencing on sorted microglia revealed that several genes differentially expressed between B6 and Sle1,3 mice were regulated by LCN2, and that these genes are key mediators of the neuroinflammatory cascade. Importantly, LCN2 is upregulated in the cerebrospinal fluid of NPSLE patients across 2 different ethnicities. Our findings establish the Sle1,3 strain as an NPSLE model, demonstrate that LCN2 is a major regulator of the detrimental neuroimmune response in NPSLE, and identify CSF LCN2 as a novel biomarker for NPSLE.
Collapse
Affiliation(s)
- Elise V Mike
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hadijat M Makinde
- Division of Rheumatology, Northwestern University School of Medicine, Chicago, IL, USA
| | - Maria Gulinello
- Dominick P. Purpura Department of Neuroscience Animal Behavioral Core, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kamala Vanarsa
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Leal Herlitz
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, 44915, USA
| | - Gaurav Gadhvi
- Division of Rheumatology, Northwestern University School of Medicine, Chicago, IL, USA
| | - Deborah R Winter
- Division of Rheumatology, Northwestern University School of Medicine, Chicago, IL, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - John G Hanly
- Division of Rheumatology, Department of Medicine and Department of Pathology, Dalhousie University and Queen Elizabeth II Health Sciences Center, Halifax, Nova Scotia, Canada
| | - C C Mok
- Division of Rheumatology, Tuen Mun Hospital, Hong Kong, China
| | - Carla M Cuda
- Division of Rheumatology, Northwestern University School of Medicine, Chicago, IL, USA
| | - Chaim Putterman
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
95
|
Coxiella burnetii Blocks Intracellular Interleukin-17 Signaling in Macrophages. Infect Immun 2018; 86:IAI.00532-18. [PMID: 30061378 DOI: 10.1128/iai.00532-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 12/15/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterium and the etiological agent of Q fever. Successful host cell infection requires the Coxiella type IVB secretion system (T4BSS), which translocates bacterial effector proteins across the vacuole membrane into the host cytoplasm, where they manipulate a variety of cell processes. To identify host cell targets of Coxiella T4BSS effector proteins, we determined the transcriptome of murine alveolar macrophages infected with a Coxiella T4BSS effector mutant. We identified a set of inflammatory genes that are significantly upregulated in T4BSS mutant-infected cells compared to mock-infected cells or cells infected with wild-type (WT) bacteria, suggesting that Coxiella T4BSS effector proteins downregulate the expression of these genes. In addition, the interleukin-17 (IL-17) signaling pathway was identified as one of the top pathways affected by the bacteria. While previous studies demonstrated that IL-17 plays a protective role against several pathogens, the role of IL-17 during Coxiella infection is unknown. We found that IL-17 kills intracellular Coxiella in a dose-dependent manner, with the T4BSS mutant exhibiting significantly more sensitivity to IL-17 than WT bacteria. In addition, quantitative PCR confirmed the increased expression of IL-17 downstream signaling genes in T4BSS mutant-infected cells compared to WT- or mock-infected cells, including the proinflammatory cytokine genes Il1a, Il1b, and Tnfa, the chemokine genes Cxcl2 and Ccl5, and the antimicrobial protein gene Lcn2 We further confirmed that the Coxiella T4BSS downregulates macrophage CXCL2/macrophage inflammatory protein 2 and CCL5/RANTES protein levels following IL-17 stimulation. Together, these data suggest that Coxiella downregulates IL-17 signaling in a T4BSS-dependent manner in order to escape the macrophage immune response.
Collapse
|
96
|
Patel R, Muir M, Cvetkovic C, Krencik R. Concepts toward directing human astroplasticity to promote neuroregeneration. Dev Dyn 2018; 248:21-33. [DOI: 10.1002/dvdy.24655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
| | | | - Caroline Cvetkovic
- Center for Neuroregeneration, Department of Neurosurgery; Houston Methodist Research Institute; Houston Texas
| | - Robert Krencik
- Center for Neuroregeneration, Department of Neurosurgery; Houston Methodist Research Institute; Houston Texas
| |
Collapse
|
97
|
Förstner P, Rehman R, Anastasiadou S, Haffner-Luntzer M, Sinske D, Ignatius A, Roselli F, Knöll B. Neuroinflammation after Traumatic Brain Injury Is Enhanced in Activating Transcription Factor 3 Mutant Mice. J Neurotrauma 2018; 35:2317-2329. [PMID: 29463176 DOI: 10.1089/neu.2017.5593] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injury (TBI) induces a neuroinflammatory response resulting in astrocyte and microglia activation at the lesion site. This involves upregulation of neuroinflammatory genes, including chemokines and interleukins. However, so far, there is lack of knowledge on transcription factors (TFs) modulating this TBI-associated gene expression response. Herein, we analyzed activating transcription factor 3 (ATF3), a TF encoding a regeneration-associated gene (RAG) predominantly studied in peripheral nervous system (PNS) injury. ATF3 contributes to PNS axon regeneration and was shown before to regulate inflammatory processes in other injury models. In contrast to PNS injury, data on ATF3 in central nervous system (CNS) injury are sparse. We used Atf3 mouse mutants and a closed-head weight-drop-based TBI model in adult mice to target the rostrolateral cortex resulting in moderate injury severity. Post-TBI, ATF3 was upregulated already at early time points (i.e,. 1-4 h) post-injury in the brain. Mortality and weight loss upon TBI were slightly elevated in Atf3 mutants. ATF3 deficiency enhanced TBI-induced paresis and hematoma formation, suggesting that ATF3 limits these injury outcomes in wild-type mice. Next, we analyzed TBI-associated RAG and inflammatory gene expression in the cortical impact area. In contrast to the PNS, only some RAGs (Atf3, Timp1, and Sprr1a) were induced by TBI, and, surprisingly, some RAG encoding neuropeptides were downregulated. Notably, we identified ATF3 as TF-regulating proneuroinflammatory gene expression, including CCL and CXCL chemokines (Ccl2, Ccl3, Ccl4, and Cxcl1) and lipocalin. In Atf3 mutant mice, mRNA abundance was further enhanced upon TBI compared to wild-type mice, suggesting immune gene repression by wild-type ATF3. In accord, more immune cells were present in the lesion area of ATF3-deficient mice. Overall, we identified ATF3 as a new TF-mediating TBI-associated CNS inflammatory responses.
Collapse
Affiliation(s)
- Philip Förstner
- 1 Institute of Physiological Chemistry, Ulm University , Ulm, Germany
| | - Rida Rehman
- 2 Department of Neurology, Ulm University , Ulm, Germany .,3 Department of Biomedical Engineering and Sciences (BMES), School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST) , H-12, Islamabad, Pakistan
| | | | - Melanie Haffner-Luntzer
- 4 Institute of Orthopaedic Research and Biomechanics, Center for Trauma Research Ulm, University of Ulm , Ulm, Germany
| | - Daniela Sinske
- 1 Institute of Physiological Chemistry, Ulm University , Ulm, Germany
| | - Anita Ignatius
- 4 Institute of Orthopaedic Research and Biomechanics, Center for Trauma Research Ulm, University of Ulm , Ulm, Germany
| | | | - Bernd Knöll
- 1 Institute of Physiological Chemistry, Ulm University , Ulm, Germany
| |
Collapse
|
98
|
Zhang Y, Liu J, Yang B, Zheng Y, Yao M, Sun M, Xu L, Lin C, Chang D, Tian F. Ginkgo biloba Extract Inhibits Astrocytic Lipocalin-2 Expression and Alleviates Neuroinflammatory Injury via the JAK2/STAT3 Pathway After Ischemic Brain Stroke. Front Pharmacol 2018; 9:518. [PMID: 29867513 PMCID: PMC5964562 DOI: 10.3389/fphar.2018.00518] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/30/2018] [Indexed: 12/29/2022] Open
Abstract
Background: Astrogliosis has the potential to lead to harmful effects, namely, neuroinflammation, and to interfere with synapse sprouting. Previous studies have suggested that Lipocalin-2 (LCN2) acts as a key target in regulating the reaction of astrocytes. However, the underlying molecular mechanism is not fully elucidated. In the present study, we examined the neuroprotective and anti-inflammatory effects of Ginkgo biloba extract (EGB), a well-known extract with potential immunoregulatory properties in the nervous system. Methods: Triphenyltetrazolium chloride staining, hematoxylin-eosin staining, electron microscopy, and neurological assessments were performed in a microsphere-embolized rat model. Human astrocytes exposed to oxygen glucose deprivation (OGD) were used for in vitro experiments. Inflammatory cytokines, multi-labeling immunofluorescence, and Western blotting were used to investigate the molecular mechanisms underlying the EGB-mediated anti-inflammatory effects in vivo and in vitro. Results: EGB markedly attenuated cerebral infarction and neuronal apoptosis, reduced the inflammatory cytokine level, and alleviated neurological deficiencies in cerebral ischemic rats. After surgery, EGB significantly inhibited astrocyte activation, reduced the phosphorylation of STAT3 and JAK2 and decreased LCN2 expression. In vitro, EGB blocked OGD-induced STAT3 activation and the generation of pro-inflammatory cytokines in human astrocytes, and these effects were significantly enhanced by LCN2 overexpression. EGB downregulated these effects enhanced by LCN2 overexpression. Conclusion: EGB is demonstrated to mediate neuroinflammation, which protects against ischemic brain injury by inhibiting astrogliosis and suppresses neuroinflammation via the LCN2-JAK2/STAT3 pathway, providing insight into a promising therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Yehao Zhang
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Institute of Complementary Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Bin Yang
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongqiu Zheng
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingjiang Yao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingqian Sun
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Xu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chengren Lin
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dennis Chang
- National Institute of Complementary Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Fangze Tian
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
99
|
Thrombomodulin, alarmin signaling, and copeptin: cross-talk between obesity and acute ischemic stroke initiation and severity in Egyptians. Neurol Sci 2018; 39:1093-1104. [DOI: 10.1007/s10072-018-3396-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/28/2018] [Indexed: 12/16/2022]
|
100
|
Maysinger D, Ji J, Moquin A, Hossain S, Hancock MA, Zhang I, Chang PK, Rigby M, Anthonisen M, Grütter P, Breitner J, McKinney RA, Reimann S, Haag R, Multhaup G. Dendritic Polyglycerol Sulfates in the Prevention of Synaptic Loss and Mechanism of Action on Glia. ACS Chem Neurosci 2018; 9:260-271. [PMID: 29078046 DOI: 10.1021/acschemneuro.7b00301] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dendritic polyglycerols (dPG), particularly dendritic polyglycerol sulfates (dPGS), have been intensively studied due to their intrinsic anti-inflammatory activity. As related to brain pathologies involving neuroinflammation, the current study examined if dPG and dPGS can (i) regulate neuroglial activation, and (ii) normalize the morphology and function of excitatory postsynaptic dendritic spines adversely affected by the neurotoxic 42 amino acid amyloid-β (Aβ42) peptide of Alzheimer disease (AD). The exact role of neuroglia, such as microglia and astrocytes, remains controversial especially their positive and negative impact on inflammatory processes in AD. To test dPGS effectiveness in AD models we used primary neuroglia and organotypic hippocampal slice cultures exposed to Aβ42 peptide. Overall, our data indicate that dPGS is taken up by both microglia and astrocytes in a concentration- and time-dependent manner. The mechanism of action of dPGS involves binding to Aβ42, i.e., a direct interaction between dPGS and Aβ42 species interfered with Aβ fibril formation and reduced the production of the neuroinflammagen lipocalin-2 (LCN2) mainly in astrocytes. Moreover, dPGS normalized the impairment of neuroglia and prevented the loss of dendritic spines at excitatory synapses in the hippocampus. In summary, dPGS has desirable therapeutic properties that may help reduce amyloid-induced neuroinflammation and neurotoxicity in AD.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Jeff Ji
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Alexandre Moquin
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Shireen Hossain
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Mark A. Hancock
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Issan Zhang
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Philip K.Y. Chang
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Matthew Rigby
- Department
of Physics, McGill University, Montreal, Canada H3A 2T8
| | | | - Peter Grütter
- Department
of Physics, McGill University, Montreal, Canada H3A 2T8
| | - John Breitner
- Douglas
Hospital Research Centre, McGill University, Montreal, Canada H4H 1R3
| | - R. Anne McKinney
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Sabine Reimann
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Rainer Haag
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gerhard Multhaup
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| |
Collapse
|