51
|
Xing G, Woo AYH, Pan L, Lin B, Cheng MS. Recent Advances in β 2-Agonists for Treatment of Chronic Respiratory Diseases and Heart Failure. J Med Chem 2020; 63:15218-15242. [PMID: 33213146 DOI: 10.1021/acs.jmedchem.0c01195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
β2-Adrenoceptor (β2-AR) agonists are widely used as bronchodilators. The emerge of ultralong acting β2-agonists is an important breakthrough in pulmonary medicine. In this review, we will provide mechanistic insights into the application of β2-agonists in asthma, chronic obstructive pulmonary disease (COPD), and heart failure (HF). Recent studies in β-AR signal transduction have revealed opposing functions of the β1-AR and the β2-AR on cardiomyocyte survival. Thus, β2-agonists and β-blockers in combination may represent a novel strategy for HF management. Allosteric modulation and biased agonism at the β2-AR also provide a theoretical basis for developing drugs with novel mechanisms of action and pharmacological profiles. Overlap of COPD and HF presents a substantial clinical challenge but also a unique opportunity for evaluation of the cardiovascular safety of β2-agonists. Further basic and clinical research along these lines can help us develop better drugs and innovative strategies for the management of these difficult-to-treat diseases.
Collapse
Affiliation(s)
- Gang Xing
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Anthony Yiu-Ho Woo
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li Pan
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Lin
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mao-Sheng Cheng
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
52
|
In vitro and in silico studies of 8(17),12E,14-labdatrien-18-oic acid in airways smooth muscle relaxation: new molecular insights about its mechanism of action. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:885-902. [PMID: 33205250 DOI: 10.1007/s00210-020-02010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
In the field of experimental pharmacology, researchers continuously investigate new relaxant agents of the airway smooth muscle cells (ASMCs), since the pathophysiology of respiratory illnesses, such as asthma, involves hyperresponsiveness and changes in ASMC homeostasis. In this scenario, labdane-type diterpenes, like forskolin (FSK), are a class of compounds known for their relaxing action on smooth muscle cells (SMCs), being this phenomenon related to the direct activation of AC-cAMP-PKA pathway. Considering the continuous effort of our group to study the mechanism of action and prospecting for compounds isolated from natural sources, in this paper, we presented how the diterpene 8(17),12E,14-labdatrien-18-oic acid (LBD) promotes relaxant effect on ASMC, performing in vitro experiments using isolated guinea pig trachea and in silico molecular docking/dynamics simulations. In vitro experiments showed that in the presence of aminophylline, FSK and LBD had their relaxant effect potentiated (EC50 from 1.4 ± 0.2 × 10-5 M to 1.5 ± 0.3 × 10-6 M for LBD and from 2.0 ± 0.2 × 10-7 M to 6.4 ± 0.4 × 10-8 M for FSK) while in the presence of Rp-cAMPS this effect was attenuated (EC50 from 1.4 ± 0.2 × 10-5 M to 3 × 10-4 M for LBD and from 2.0 ± 0.2 × 10-7 to 3.1 ± 1.0 × 10-6 M for FSK). Additionally, in silico simulations evidenced that the lipophilic character of LBD is probably responsible for its stability on AC binding site. LBD presented two preferential orientations, where the double bonds of the isoprene moiety as well as the unique polar group (carboxylic acid) in this compound form important anchoring points. In this sense, we consider that the LBD can interact stabilizing the catalytic dimmer of AC as the FSK, although less efficiently.
Collapse
|
53
|
Bergantin LB. Common issues among asthma, epilepsy, and schizophrenia: from inflammation to Ca2+/cAMP signalling. Antiinflamm Antiallergy Agents Med Chem 2020; 20:229-232. [PMID: 33176668 DOI: 10.2174/1871523019999201110192029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND A large amount of evidence has described that asthma may be associated with a high epilepsy risk, and epilepsy may be linked with a high asthma risk, especially among children and individuals in their 30s. Curiously, asthma has also been associated with an increased risk for schizophrenia. Most interestingly, a bidirectional link between schizophrenia and epilepsy has also been established, and has been of interest for many years. OBJECTIVE Bearing in mind the experience of our group in the field of Ca2+/cAMP signalling pathways, this article discussed, beyond inflammation, the role of these signalling pathways in this link among epilepsy, asthma, and schizophrenia. METHODS Publications involving these signalling pathways, asthma, epilepsy, and schizophrenia (alone or combined) were collected by searching PubMed and EMBASE. RESULTS AND CONCLUSION There is a clear relationship between Ca2+ signalling, e.g. increased Ca2+ signals, and inflammatory responses. In addition to Ca2+, cAMP regulates pro- and anti-inflammatory responses. Then, beyond inflammation, the comprehension of the link among epilepsy, asthma and schizophrenia could improve the drug therapy.
Collapse
Affiliation(s)
- Leandro Bueno Bergantin
- Department of Pharmacology - Escola Paulista de Medicina - Universidade Federal de São Paulo, Rua Pedro de Toledo, 669 - Vila Clementino, São Paulo - SP,. Brazil
| |
Collapse
|
54
|
Bergantin LB. A link among schizophrenia, diabetes, and asthma: Role of Ca2 +/cAMP signaling. Brain Circ 2020; 6:145-151. [PMID: 33210037 PMCID: PMC7646390 DOI: 10.4103/bc.bc_66_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 06/29/2020] [Accepted: 08/13/2020] [Indexed: 01/18/2023] Open
Abstract
Asthma has been associated with an increased risk for developing schizophrenia. In addition, schizophrenia has been associated with an increased risk for developing type 2 diabetes mellitus, resulting in an elevated cardiovascular risk and in a limited life expectancy. It is well discussed that dysregulations related to Ca2+ signaling could link these diseases, in addition to cAMP signaling pathways. Thus, revealing this interplay among schizophrenia, diabetes, and asthma may provide novel insights into the pathogenesis of these diseases. Publications involving Ca2+ and cAMP signaling pathways, schizophrenia, diabetes, and asthma (alone or combined) were collected by searching PubMed and EMBASE. Both Ca2+ and cAMP signaling pathways (Ca2+/cAMP signaling) control the release of neurotransmitters and hormones, in addition to airway smooth muscle contractility, then dysregulations of these cellular processes may be involved in these diseases. Taking into consideration, the experience of our group in this field, this narrative review debated the involvement of Ca2+/cAMP signaling in this link among schizophrenia, diabetes, and asthma, including its pharmacological implications.
Collapse
Affiliation(s)
- Leandro Bueno Bergantin
- Department of Pharmacology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
55
|
He P, Gelissen IC, Ammit AJ. Regulation of ATP binding cassette transporter A1 (ABCA1) expression: cholesterol-dependent and - independent signaling pathways with relevance to inflammatory lung disease. Respir Res 2020; 21:250. [PMID: 32977800 PMCID: PMC7519545 DOI: 10.1186/s12931-020-01515-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
The role of the ATP binding cassette transporter A1 (ABCA1) in maintaining cellular lipid homeostasis in cardiovascular disease is well established. More recently, the important beneficial role played by ABCA1 in modulating pathogenic disease mechanisms, such as inflammation, in a broad range of chronic conditions has been realised. These studies position ABCA1 as a potential therapeutic target in a diverse range of diseases where inflammation is an underlying cause. Chronic respiratory conditions such as asthma and chronic obstructive pulmonary disease (COPD) are driven by inflammation, and as such, there is now a growing recognition that we need a greater understanding of the signaling pathways responsible for regulation of ABCA1 expression in this clinical context. While the signaling pathways responsible for cholesterol-mediated ABCA1 expression have been clearly delineated through decades of studies in the atherosclerosis field, and thus far appear to be translatable to the respiratory field, less is known about the cholesterol-independent signaling pathways that can modulate ABCA1 expression in inflammatory lung disease. This review will identify the various signaling pathways and ligands that are associated with the regulation of ABCA1 expression and may be exploited in future as therapeutic targets in the setting of chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Patrick He
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Ingrid C Gelissen
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
56
|
Matera MG, Page CP, Calzetta L, Rogliani P, Cazzola M. Pharmacology and Therapeutics of Bronchodilators Revisited. Pharmacol Rev 2020; 72:218-252. [PMID: 31848208 DOI: 10.1124/pr.119.018150] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bronchodilators remain the cornerstone of the treatment of airway disorders such as asthma and chronic obstructive pulmonary disease (COPD). There is therefore considerable interest in understanding how to optimize the use of our existing classes of bronchodilator and in identifying novel classes of bronchodilator drugs. However, new classes of bronchodilator have proved challenging to develop because many of these have no better efficacy than existing classes of bronchodilator and often have unacceptable safety profiles. Recent research has shown that optimization of bronchodilation occurs when both arms of the autonomic nervous system are affected through antagonism of muscarinic receptors to reduce the influence of parasympathetic innervation of the lung and through stimulation of β 2-adrenoceptors (β 2-ARs) on airway smooth muscle with β 2-AR-selective agonists to mimic the sympathetic influence on the lung. This is currently achieved by use of fixed-dose combinations of inhaled long-acting β 2-adrenoceptor agonists (LABAs) and long-acting muscarinic acetylcholine receptor antagonists (LAMAs). Due to the distinct mechanisms of action of LAMAs and LABAs, the additive/synergistic effects of using these drug classes together has been extensively investigated. More recently, so-called "triple inhalers" containing fixed-dose combinations of both classes of bronchodilator (dual bronchodilation) and an inhaled corticosteroid in the same inhaler have been developed. Furthermore, a number of so-called "bifunctional drugs" having two different primary pharmacological actions in the same molecule are under development. This review discusses recent advancements in knowledge on bronchodilators and bifunctional drugs for the treatment of asthma and COPD. SIGNIFICANCE STATEMENT: Since our last review in 2012, there has been considerable research to identify novel classes of bronchodilator drugs, to further understand how to optimize the use of the existing classes of bronchodilator, and to better understand the role of bifunctional drugs in the treatment of asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- M G Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - C P Page
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - L Calzetta
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - P Rogliani
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - M Cazzola
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| |
Collapse
|
57
|
An C, Zhang K, Zhu W, Bi Y, Wu T, Tao C, Wang Y, Yang S. Molecular cloning, sequence characteristics, and tissue expression analysis of glucagon receptor gene in Bama minipig. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have shown that the glucagon receptor (GCGR) plays an important role in the development of type 2 diabetes mellitus. Both pigs and humans exhibit significantly similar behaviors in their glucose and lipid metabolism. In this study, the obtained Bama minipig GCGR coding sequence was 1437 bp encoding 479 amino acids (AA), which demonstrated higher sequence homology with humans than other species. It showed the highest expression profile in the liver, followed by the lung and kidney. In addition, the three-dimensional structure analysis showed that the porcine GCGR protein also had a classic sevenfold transmembrane region and a stalk region at the N-terminus for ligand binding. The stalk region of GCGR possessed five AA variations. The ligand binding pocket of GCGR has one AA variation in the key region, none of which affected the glucagon binding verified by the crystal structure mutagenesis in humans. There was no variation found in the region of membrane anchoring, hydrophobic bond, salt bridge, and hydrogen bond. However, the Gly40Ser mutation in mice resulted in major diseases, meaning that pigs are more suitable for the evaluation of GCGR-related drugs than mice.
Collapse
Affiliation(s)
- Cuiping An
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People’s Republic of China
| | - Kaiyi Zhang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People’s Republic of China
| | - Wenjuan Zhu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People’s Republic of China
| | - Yanzhen Bi
- Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, People’s Republic of China
| | - Tianwen Wu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People’s Republic of China
| | - Cong Tao
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People’s Republic of China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People’s Republic of China
| | - Shulin Yang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction (Poultry), Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People’s Republic of China
| |
Collapse
|
58
|
Insight into the Mechanisms Underlying the Tracheorelaxant Properties of the Sideritis raeseri Extract. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6510708. [PMID: 32908564 PMCID: PMC7475741 DOI: 10.1155/2020/6510708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/15/2020] [Indexed: 11/17/2022]
Abstract
Sideritis raeseri Boiss. and Heldr. (Lamiaceae), known as “mountain tea,” is a native plant from the Mediterranean region, which is widely used in traditional medicine. This study evaluates the effects of the ethanol extract of Sideritis raeseri (SR) on airway smooth muscle activity and identifies the underlying mechanism. The S. raeseri extract (SRE) was extracted from air-dried parts of the shoot system of SR. The SRE (0.3–2 mg/mL) was tested in isolated rabbit tracheal rings, suspended in the organ bath, filled with Krebs solution, and bubbled with the carbogen mixture (95% O2/5% CO2) under a resting tension of 1 g in 37°C. In in vitro experiments, the SRE relaxed against acetylcholine-induced constriction in tracheal rings. Furthermore, SRE inhibited Ca2+-induced contractions in carbachol (CCh, 1 μM) as well as in the K+-depolarized trachea (80 mM). Our findings showed the NO/cGMP involvement in tracheorelaxant effects of SR. To this end, the effect of the SRE was potentiated by bradykinin (nitric oxide (NO) synthase activator, 100 nM), whereas it was inhibited by ODQ (inhibitor of NO-sensitive guanylyl cyclase, 10 μM) and L-NAME (NO synthase inhibitor, 100 μM), as well as indomethacin (cyclooxygenase inhibitor, 10 μM). These data suggest that the tracheorelaxant effect of the SRE is mediated at least partly by NO/cyclic guanosine monophosphate and cyclooxygenase-1-prostaglandin E2-dependent signaling. These findings indicate that the SRE may be used in various respiratory disorders.
Collapse
|
59
|
Castaneda PG, Cecchetelli AD, Pettit HN, Cram EJ. Gα/GSA-1 works upstream of PKA/KIN-1 to regulate calcium signaling and contractility in the Caenorhabditis elegans spermatheca. PLoS Genet 2020; 16:e1008644. [PMID: 32776941 PMCID: PMC7444582 DOI: 10.1371/journal.pgen.1008644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/20/2020] [Accepted: 06/29/2020] [Indexed: 11/18/2022] Open
Abstract
Correct regulation of cell contractility is critical for the function of many biological systems. The reproductive system of the hermaphroditic nematode C. elegans contains a contractile tube of myoepithelial cells known as the spermatheca, which stores sperm and is the site of oocyte fertilization. Regulated contraction of the spermatheca pushes the embryo into the uterus. Cell contractility in the spermatheca is dependent on actin and myosin and is regulated, in part, by Ca2+ signaling through the phospholipase PLC-1, which mediates Ca2+ release from the endoplasmic reticulum. Here, we describe a novel role for GSA-1/Gαs, and protein kinase A, composed of the catalytic subunit KIN-1/PKA-C and the regulatory subunit KIN-2/PKA-R, in the regulation of Ca2+ release and contractility in the C. elegans spermatheca. Without GSA-1/Gαs or KIN-1/PKA-C, Ca2+ is not released, and oocytes become trapped in the spermatheca. Conversely, when PKA is activated through either a gain of function allele in GSA-1 (GSA-1(GF)) or by depletion of KIN-2/PKA-R, the transit times and total numbers, although not frequencies, of Ca2+ pulses are increased, and Ca2+ propagates across the spermatheca even in the absence of oocyte entry. In the spermathecal-uterine valve, loss of GSA-1/Gαs or KIN-1/PKA-C results in sustained, high levels of Ca2+ and a loss of coordination between the spermathecal bag and sp-ut valve. Additionally, we show that depleting phosphodiesterase PDE-6 levels alters contractility and Ca2+ dynamics in the spermatheca, and that the GPB-1 and GPB-2 Gβ subunits play a central role in regulating spermathecal contractility and Ca2+ signaling. This work identifies a signaling network in which Ca2+ and cAMP pathways work together to coordinate spermathecal contractions for successful ovulations.
Collapse
Affiliation(s)
- Perla G. Castaneda
- Department of Biology, Northeastern University, Boston, MA, United States
| | | | - Hannah N. Pettit
- Department of Biology, Northeastern University, Boston, MA, United States
| | - Erin J. Cram
- Department of Biology, Northeastern University, Boston, MA, United States
| |
Collapse
|
60
|
Occupational exposures and genetic susceptibility to occupational exposures are related to sickness absence in the Lifelines cohort study. Sci Rep 2020; 10:12963. [PMID: 32737337 DOI: 10.1038/s41598-020-69372-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/17/2020] [Indexed: 11/09/2022] Open
Abstract
In this cross-sectional study, we investigated the association between occupational exposures and sickness absence (SA), the mediating role of respiratory symptoms, and whether genetic susceptibility to SA upon occupational exposures exists. Logistic regression was used to examine associations and structural equation modelling was used for mediation analyses. Genetic susceptibility was investigated by including interactions between occupational exposures and 11 candidate single nucleotide polymorphisms (SNPs). Biological dust, mineral dust, and pesticides exposure were associated with a lower prevalence of any SA (OR (95% CI) = 0.72 (0.58-0.89), 0.88 (0.78-0.99), and 0.70 (0.55-0.89), respectively) while gases/fumes exposure was associated with a higher prevalence of long-term SA (1.46 (1.11-1.91)). Subjects exposed to solvents and metals had a higher prevalence of any (1.14 (1.03-1.26) and 1.68 (1.26-2.24)) and long-term SA (1.26 (1.08-1.46) and 1.75 (1.15-2.67)). Chronic cough and chronic phlegm mediated the association between high gases/fumes exposure and long-term SA. Two of 11 SNPs investigated had a positive interaction with exposure on SA and one SNP negatively interacted with exposure on SA. Exposure to metals and gases/fumes showed a clear dose-response relationship with a higher prevalence of long-term SA; contrary, exposure to pesticides and biological/mineral dust showed a protective effect on any SA. Respiratory symptoms mediated the association between occupational exposures and SA. Moreover, gene-by-exposure interactions exist.
Collapse
|
61
|
Giorgi M, Cardarelli S, Ragusa F, Saliola M, Biagioni S, Poiana G, Naro F, Massimi M. Phosphodiesterase Inhibitors: Could They Be Beneficial for the Treatment of COVID-19? Int J Mol Sci 2020; 21:ijms21155338. [PMID: 32727145 PMCID: PMC7432892 DOI: 10.3390/ijms21155338] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
In March 2020, the World Health Organization declared the severe acute respiratory syndrome corona virus 2 (SARS-CoV2) infection to be a pandemic disease. SARS-CoV2 was first identified in China and, despite the restrictive measures adopted, the epidemic has spread globally, becoming a pandemic in a very short time. Though there is growing knowledge of the SARS-CoV2 infection and its clinical manifestations, an effective cure to limit its acute symptoms and its severe complications has not yet been found. Given the worldwide health and economic emergency issues accompanying this pandemic, there is an absolute urgency to identify effective treatments and reduce the post infection outcomes. In this context, phosphodiesterases (PDEs), evolutionarily conserved cyclic nucleotide (cAMP/cGMP) hydrolyzing enzymes, could emerge as new potential targets. Given their extended distribution and modulating role in nearly all organs and cellular environments, a large number of drugs (PDE inhibitors) have been developed to control the specific functions of each PDE family. These PDE inhibitors have already been used in the treatment of pathologies that show clinical signs and symptoms completely or partially overlapping with post-COVID-19 conditions (e.g., thrombosis, inflammation, fibrosis), while new PDE-selective or pan-selective inhibitors are currently under study. This review discusses the state of the art of the different pathologies currently treated with phosphodiesterase inhibitors, highlighting the numerous similarities with the disorders linked to SARS-CoV2 infection, to support the hypothesis that PDE inhibitors, alone or in combination with other drugs, could be beneficial for the treatment of COVID-19.
Collapse
Affiliation(s)
- Mauro Giorgi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (M.S.); (S.B.); (G.P.)
- Correspondence: (M.G.); (M.M.)
| | - Silvia Cardarelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University, 00185 Rome, Italy; (S.C.); (F.N.)
| | - Federica Ragusa
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Michele Saliola
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (M.S.); (S.B.); (G.P.)
| | - Stefano Biagioni
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (M.S.); (S.B.); (G.P.)
| | - Giancarlo Poiana
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (M.S.); (S.B.); (G.P.)
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University, 00185 Rome, Italy; (S.C.); (F.N.)
| | - Mara Massimi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Correspondence: (M.G.); (M.M.)
| |
Collapse
|
62
|
Stanfield Z, Amini P, Wang J, Yi L, Tan H, Chance MR, Koyutürk M, Mesiano S. Interplay of transcriptional signaling by progesterone, cyclic AMP, and inflammation in myometrial cells: implications for the control of human parturition. Mol Hum Reprod 2020; 25:408-422. [PMID: 31211832 DOI: 10.1093/molehr/gaz028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/11/2019] [Accepted: 05/20/2019] [Indexed: 11/13/2022] Open
Abstract
Parturition involves cellular signaling changes driven by the complex interplay between progesterone (P4), inflammation, and the cyclic adenosine monophosphate (cAMP) pathway. To characterize this interplay, we performed comprehensive transcriptomic studies utilizing eight treatment combinations on myometrial cell lines and tissue samples from pregnant women. We performed genome-wide RNA-sequencing on the hTERT-HM${}^{A/B}$ cell line treated with all combinations of P4, forskolin (FSK) (induces cAMP), and interleukin-1$\beta$ (IL-1$\beta$). We then performed gene set enrichment and regulatory network analyses to identify pathways commonly, differentially, or synergistically regulated by these treatments. Finally, we used tissue similarity index (TSI) to characterize the correspondence between cell lines and tissue phenotypes. We observed that in addition to their individual anti-inflammatory effects, P4 and cAMP synergistically blocked specific inflammatory pathways/regulators including STAT3/6, CEBPA/B, and OCT1/7, but not NF$\kappa$B. TSI analysis indicated that FSK + P4- and IL-1$\beta$-treated cells exhibit transcriptional signatures highly similar to non-laboring and laboring term myometrium, respectively. Our results identify potential therapeutic targets to prevent preterm birth and show that the hTERT-HM${}^{A/B}$ cell line provides an accurate transcriptional model for term myometrial tissue.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark R Chance
- Center for Proteomics and Bioinformatics.,Department of Nutrition.,Case Comprehensive Cancer Center
| | - Mehmet Koyutürk
- Center for Proteomics and Bioinformatics.,Department of Electrical Engineering and Computer Science
| | - Sam Mesiano
- Department of Physiology and Biophysics.,Department of Reproductive Biology.,Department of Obstetrics and Gynecology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
63
|
Kim N, Lee SH, Joe Y, Kim T, Shin H, Oh YJ. Effects of Inhaled Iloprost on Lung Mechanics and Myocardial Function During One-Lung Ventilation in Chronic Obstructive Pulmonary Disease Patients Combined With Poor Lung Oxygenation. Anesth Analg 2020; 130:1407-1414. [PMID: 32167976 DOI: 10.1213/ane.0000000000004733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The ventilation/perfusion mismatch in chronic obstructive pulmonary disease (COPD) patients can exacerbate cardiac function as well as pulmonary oxygenation. We hypothesized that inhaled iloprost can ameliorate pulmonary oxygenation with lung mechanics and myocardial function during one-lung ventilation (OLV) in COPD patients combined with poor lung oxygenation. METHODS A total of 40 patients with moderate to severe COPD, who exhibited the ratio of partial pressure of arterial oxygen to the fraction of inspired oxygen (PaO2/FIO2) <150 mm Hg 30 minutes after initiating OLV, were enrolled in this study. Patients were randomly allocated into either ILO group (n = 20) or Control group (n = 20), in which iloprost (20 μg) and saline were inhaled, respectively. The PaO2/FIO2 ratio, dead space, dynamic compliance, and tissue Doppler imaging with myocardial performance index (MPI) were assessed 30 minutes after initiating OLV (pre-Tx) and 30 minutes after completion of drug inhalation (post-Tx). Repeated variables were analyzed using a linear mixed-model between the groups. RESULTS At pre-Tx, no differences were observed in measured parameters between the groups. At post-Tx, PaO2/FIO2 ratio (P < .001) and dynamic compliance (P = .023) were significantly higher and dead space ventilation was significantly lower (P = .001) in iloprost group (ILO group) compared to Control group. Left (P = .003) and right ventricular MPIs (P < .001) significantly decreased in ILO group compared to Control group. CONCLUSIONS Inhaled iloprost improved pulmonary oxygenation, lung mechanics, and cardiac function simultaneously during OLV in COPD patients with poor lung oxygenation.
Collapse
Affiliation(s)
- Namo Kim
- From the Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su Hyun Lee
- Department of Anesthesiology and Pain Medicine, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Youngeun Joe
- From the Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Taelim Kim
- From the Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heesoo Shin
- From the Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Jun Oh
- From the Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
64
|
Chinn AM, Insel PA. Cyclic AMP in dendritic cells: A novel potential target for disease-modifying agents in asthma and other allergic disorders. Br J Pharmacol 2020; 177:3363-3377. [PMID: 32372523 DOI: 10.1111/bph.15095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Allergic diseases are immune disorders that are a global health problem, affecting a large portion of the world's population. Allergic asthma is a heterogeneous disease that alters the biology of the airway. A substantial portion of patients with asthma do not respond to conventional therapies; thus, new and effective therapeutics are needed. Dendritic cells (DCs), antigen presenting cells that regulate helper T cell differentiation, are key drivers of allergic inflammation but are not the target of current therapies. Here we review the role of dendritic cells in allergic conditions and propose a disease-modifying strategy for treating allergic asthma: cAMP-mediated inhibition of dendritic cells to blunt allergic inflammation. This approach contrasts with current treatments that focus on treating clinical manifestations of airway inflammation. Disease-modifying agents that target cAMP and its signalling pathway in dendritic cells may provide a novel means to treat asthma and other allergic diseases.
Collapse
Affiliation(s)
- Amy M Chinn
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Paul A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
65
|
Ružena Č, Jindra V, Renáta H. Chirality of β2-agonists. An overview of pharmacological activity, stereoselective analysis, and synthesis. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Abstractβ2-Agonists (β2-adrenergic agonists, bronchodilatants, and sympathomimetic drugs) are a group of drugs that are mainly used in asthma and obstructive pulmonary diseases. In practice, the substances used to contain one or more stereogenic centers in their structure and their enantiomers exhibit different pharmacological properties. In terms of bronchodilatory activity, (R)-enantiomers showed higher activity. The investigation of stereoselectivity in action and disposition of chiral drugs together with the preparation of pure enantiomer drugs calls for efficient stereoselective analytical methods. The overview focuses on the stereoselectivity in pharmacodynamics and pharmacokinetics of β2-agonists and summarizes the stereoselective analytical methods for the enantioseparation of racemic beta-agonists (HPLC, LC-MS, GC, TLC, CE). Some methods of the stereoselective synthesis for β2-agonists preparation are also presented.
Collapse
Affiliation(s)
- Čižmáriková Ružena
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Valentová Jindra
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Horáková Renáta
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| |
Collapse
|
66
|
Effects of Spirulina platensis on insulin secretion, dipeptidyl peptidase IV activity and both carbohydrate digestion and absorption indicate potential as an adjunctive therapy for diabetes. Br J Nutr 2020; 124:1021-1034. [PMID: 32517842 PMCID: PMC7547908 DOI: 10.1017/s0007114520002111] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Spirulina platensis has been found to be useful in the treatment of type 2 diabetes. The present study aims to elucidate the effects of ethanol extract and butanol fraction of S. platensis on insulin release and glucose homoeostasis in type 2 diabetic rats, together with their mechanism of actions. In vitro and in vivo methods were used including cellular studies to determine potential role of ion channels and cAMP in the insulinotropic actions of the extracts. The ethanol extract and butanol fraction stimulated insulin release from mouse islets and pancreatic β-cells in a concentration-dependent manner. The butanol fraction also similarly stimulated insulin release from perfused rat pancreas. The insulin-releasing action was augmented by glucose, isobutylmethylxanthine, tolbutamide and a depolarising concentration of KCl. The insulin secretory effect was attenuated with diazoxide and verapamil and by omission of extracellular Ca2+. Butanol fraction was found to significantly inhibit dipeptidyl peptidase IV enzyme activity. Moreover, butanol fraction improved glucose tolerance following oral glucose administration (2·5 g/kg body weight (b.w.)). The butanol fraction was tested on 24 h starved rats given an oral sucrose load (2·5 g/kg b.w.) to examine possible effects on carbohydrate digestion and absorption. S. platensis substantially decreased postprandial hyperglycaemia after oral sucrose load and increased unabsorbed sucrose content throughout the gut. During in situ intestinal perfusion with glucose, the butanol fraction reduced glucose absorption and promoted gut motility. Finally, chronic oral administration of butanol fraction for 28 d significantly decreased blood glucose, increased plasma insulin, pancreatic insulin stores, liver glycogen and improved lipid profile. The characterisation of active compounds from butanol fraction revealed the presence of p-coumaric acid, β-carotene, catechin and other antioxidant polyphenols. In conclusion, S. platensis could be an adjunctive therapy for the management of type 2 diabetes.
Collapse
|
67
|
A Novel, Pan-PDE Inhibitor Exerts Anti-Fibrotic Effects in Human Lung Fibroblasts via Inhibition of TGF-β Signaling and Activation of cAMP/PKA Signaling. Int J Mol Sci 2020; 21:ijms21114008. [PMID: 32503342 PMCID: PMC7312375 DOI: 10.3390/ijms21114008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 12/24/2022] Open
Abstract
Phosphodiesterase (PDE) inhibitors are currently a widespread and extensively studied group of anti-inflammatory and anti-fibrotic compounds which may find use in the treatment of numerous lung diseases, including asthma and chronic obstructive pulmonary disease. Several PDE inhibitors are currently in clinical development, and some of them, e.g., roflumilast, are already recommended for clinical use. Due to numerous reports indicating that elevated intracellular cAMP levels may contribute to the alleviation of inflammation and airway fibrosis, new and effective PDE inhibitors are constantly being sought. Recently, a group of 7,8-disubstituted purine-2,6-dione derivatives, representing a novel and prominent pan-PDE inhibitors has been synthesized. Some of them were reported to modulate transient receptor potential ankyrin 1 (TRPA1) ion channels as well. In this study, we investigated the effect of selected derivatives (832—a pan-PDE inhibitor, 869—a TRPA1 modulator, and 145—a pan-PDE inhibitor and a weak TRPA1 modulator) on cellular responses related to airway remodeling using MRC-5 human lung fibroblasts. Compound 145 exerted the most considerable effect in limiting fibroblast to myofibroblasts transition (FMT) as well as proliferation, migration, and contraction. The effect of this compound appeared to depend mainly on its strong PDE inhibitory properties, and not on its effects on TRPA1 modulation. The strong anti-remodeling effects of 145 required activation of the cAMP/protein kinase A (PKA)/cAMP response element-binding protein (CREB) pathway leading to inhibition of transforming growth factor type β1 (TGF-β1) and Smad-dependent signaling in MRC-5 cells. These data suggest that the TGF-β pathway is a major target for PDE inhibitors leading to inhibitory effects on cell responses involved in airway remodeling. These potent, pan-PDE inhibitors from the group of 7,8-disubstituted purine-2,6-dione derivatives, thus represent promising anti-remodeling drug candidates for further research.
Collapse
|
68
|
Chu S, Liu W, Lu Y, Yan M, Guo Y, Chang N, Jiang M, Bai G. Sinigrin Enhanced Antiasthmatic Effects of Beta Adrenergic Receptors Agonists by Regulating cAMP-Mediated Pathways. Front Pharmacol 2020; 11:723. [PMID: 32508648 PMCID: PMC7251054 DOI: 10.3389/fphar.2020.00723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/30/2020] [Indexed: 12/02/2022] Open
Abstract
Millions of patients suffer from asthma worldwide. However, the first-line drugs used to treat asthma, namely, the beta-adrenergic receptors agonists (β-agonists), are not recommended for use as monotherapy because of their severe dose-related side effects. This limitation has prompted the search for new therapies, which can be used in conjunction with β--agonists so that lower doses can be administered. Sinigrin is a major compound found in many antiasthmatic medicinal plants. In this study, we explored the antiasthmatic activity of sinigrin when used in combination with β-agonists and its underlying mechanism. Sinigrin enhanced the asthma-relieving effects of isoproterenol and reduced the effective isoproterenol dose in an acute-asthma model in guinea pigs. Mechanistically, sinigrin enhanced the cAMP levels induced by β-agonists by inhibiting PDE4. The resulting increase in cAMP levels stimulated the activity of the downstream effector protein kinase A, which would be expected to ultimately induce the relaxation of airway smooth muscle. In conclusion, sinigrin enhances the asthma-relieving effects of β-agonists by regulating the cAMP signaling pathway and represents a potential add-on drug to β-agonists for the treatment of asthma.
Collapse
Affiliation(s)
- Simeng Chu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Wenjuan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yujie Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Menglin Yan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yingying Guo
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nianwei Chang
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
69
|
Luo M, Yu P, Ni K, Jin Y, Liu L, Li J, Pan Y, Deng L. Sanguinarine Rapidly Relaxes Rat Airway Smooth Muscle Cells Dependent on TAS2R Signaling. Biol Pharm Bull 2020; 43:1027-1034. [PMID: 32404582 DOI: 10.1248/bpb.b19-00825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Excessive contraction of airway smooth muscle cells (ASMCs) is a hallmark feature of asthma. Intriguing, the activation of bitter taste receptor (TAS2R) in ASMCs can relax ASMCs. However, there is a lack of potent TAS2R agonists that can be used in asthma therapies since those tested agonists cannot relax ASMCs at the dose below a few hundred micromolar. Considering that sanguinarine (SA) is a bitter substance often used in small doses for the treatment of asthma in folk medicine, the present study was to determine the rapid relaxation effect of SA on ASMCs and to reveal the underlying mechanisms associated with TAS2R signaling. Here, cell stiffness, traction force, calcium signaling, cAMP levels, and the mRNA expression were evaluated by using optical magnetic twisting cytometry, traction force microscopy, Fluo-4/AM labeling, enzyme-linked immunosorbent assay (ELISA), and quantitative (q)RT-PCR, respectively. We found that 0.5 µM SA immediately decreased cell stiffness and traction force, which is comparable with the effect of 5 µM isoproterenol. In addition, 0.5 µM SA immediately increased intracellular free calcium concentration ([Ca2+]i) and decreased the mRNA expression of contractile proteins such as calponin and α-smooth muscle actin after the treatment for 24 h. Furthermore, SA-mediated decrease in cell stiffness/traction force and increase in [Ca2+]i were significantly blunted by inhibiting the TAS2Rs signaling. These findings establish the rapid relaxation effect of SA at low concentration (<1 µM) on cultured ASMCs depending on TAS2R signaling, indicating that SA might be developed as a useful bronchodilator in asthma therapy.
Collapse
Affiliation(s)
- Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University
| | - Peili Yu
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University
| | - Kai Ni
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University
| | - Yang Jin
- Key Lab of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University
| | - Lei Liu
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University
| | - Jingjing Li
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University
| | - Yan Pan
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University
| |
Collapse
|
70
|
Ansari P, Azam S, Hannan JMA, Flatt PR, Abdel Wahab YHA. Anti-hyperglycaemic activity of H. rosa-sinensis leaves is partly mediated by inhibition of carbohydrate digestion and absorption, and enhancement of insulin secretion. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112647. [PMID: 32035878 DOI: 10.1016/j.jep.2020.112647] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/15/2020] [Accepted: 02/01/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hibiscus rosa-sinensis (HRS) is a tropical flowery plant, widely distributed in Asian region and an important traditional medicine used in many diseases including cough, diarrhoea and diabetes. AIM OF THIS STUDY Hibiscus rosa-sinensis (HRS) leaves have been reported to possess anti-hyperglycaemic activity, but little is known concerning the underlying mechanism. This study investigated effects of ethanol extract of HRS on insulin release and glucose homeostasis in a type 2 diabetic rat model. MATERIALS & METHODS Effects of ethanol extract of grinded H. rosa-sinensis (HRS) leaves on insulin release, membrane potential and intracellular calcium were determined using rat clonal β-cells (BRIN-BD11 cells) and isolated mouse pancreatic islets. Effects on DPP-IV enzyme activity were investigated in vitro. Acute effects of HRS on glucose tolerance, gut perfusion in situ, sucrose content, intestinal disaccharidase activity and gut motility were measured. Streptozotocin induced type 2 diabetic rats treated for 28 days with ethanol extract of HRS leaf (250 and 500 mg/kg) were used to assess glucose homeostasis. RESULTS HRS, significantly increased insulin release from clonal rat BRIN-BD11 cells and this action was confirmed using isolated mouse pancreas islets with stimulatory effects equivalent to GLP-1. HRS induced membrane depolarization and increased intracellular Ca2+ in BRIN BD11 cells and significantly inhibited DPP-IV enzyme activity in vitro. HRS administration in vivo improved glucose tolerance in type 2 diabetic rats, inhibited both glucose absorption during gut perfusion and postprandial hyperglycaemia and it reversibly increased unabsorbed sucrose passage through the gut following sucrose ingestion. HRS decreased intestinal disaccharidase activity and increased gastrointestinal motility in non-diabetic rats. In a chronic 28-day study with type 2 diabetic rats, HRS, at 250 or 500 mg/kg, significantly decreased serum glucose, cholesterol, triglycerides and increased circulating insulin, HDL cholesterol and hepatic glycogen without increasing body weight. CONCLUSION These data suggest the antihyperglycaemic activity of HRS is mediated by inhibiting carbohydrate digestion and absorption, while significantly enhancing insulin secretion in a dose dependent manner. This suggests that HRS has potential as a novel antidiabetic therapy or a dietary supplement for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Prawej Ansari
- School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, Co, Londonderry, Northern Ireland, United Kingdom
| | - Shofiul Azam
- Department of Integrated Bioscience, Graduate School, Konkuk University, Chungju, 27478, Republic of Korea
| | - J M A Hannan
- Department of Pharmacy, Independent University, Bangladesh (IUB), Bashundhara R/A, Dhaka, 1229, Bangladesh
| | - Peter R Flatt
- School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, Co, Londonderry, Northern Ireland, United Kingdom
| | - Yasser H A Abdel Wahab
- School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, Co, Londonderry, Northern Ireland, United Kingdom.
| |
Collapse
|
71
|
Ojiaku CA, Chung E, Parikh V, Williams JK, Schwab A, Fuentes AL, Corpuz ML, Lui V, Paek S, Bexiga NM, Narayan S, Nunez FJ, Ahn K, Ostrom RS, An SS, Panettieri RA. Transforming Growth Factor-β1 Decreases β 2-Agonist-induced Relaxation in Human Airway Smooth Muscle. Am J Respir Cell Mol Biol 2020; 61:209-218. [PMID: 30742476 DOI: 10.1165/rcmb.2018-0301oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Helper T effector cytokines implicated in asthma modulate the contractility of human airway smooth muscle (HASM) cells. We have reported recently that a profibrotic cytokine, transforming growth factor (TGF)-β1, induces HASM cell shortening and airway hyperresponsiveness. Here, we assessed whether TGF-β1 affects the ability of HASM cells to relax in response to β2-agonists, a mainstay treatment for airway hyperresponsiveness in asthma. Overnight TGF-β1 treatment significantly impaired isoproterenol (ISO)-induced relaxation of carbachol-stimulated, isolated HASM cells. This single-cell mechanical hyporesponsiveness to ISO was corroborated by sustained increases in myosin light chain phosphorylation. In TGF-β1-treated HASM cells, ISO evoked markedly lower levels of intracellular cAMP. These attenuated cAMP levels were, in turn, restored with pharmacological and siRNA inhibition of phosphodiesterase 4 and Smad3, respectively. Most strikingly, TGF-β1 selectively induced phosphodiesterase 4D gene expression in HASM cells in a Smad2/3-dependent manner. Together, these data suggest that TGF-β1 decreases HASM cell β2-agonist relaxation responses by modulating intracellular cAMP levels via a Smad2/3-dependent mechanism. Our findings further define the mechanisms underlying β2-agonist hyporesponsiveness in asthma, and suggest TGF-β1 as a potential therapeutic target to decrease asthma exacerbations in severe and treatment-resistant asthma.
Collapse
Affiliation(s)
- Christie A Ojiaku
- 1Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,2Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Elena Chung
- 2Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Vishal Parikh
- 2Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | | | - Anthony Schwab
- 2Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Ana Lucia Fuentes
- 2Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Maia L Corpuz
- 4Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Victoria Lui
- 5Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sam Paek
- 5Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Natalia M Bexiga
- 5Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,6Department of Pharmaceutical Biochemistry Technology, University of Sao Paulo, Sao Paulo, Brazil
| | - Shreya Narayan
- 5Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Francisco J Nunez
- 4Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Kwangmi Ahn
- 7National Institutes of Health, Bethesda, Maryland
| | - Rennolds S Ostrom
- 4Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| | - Steven S An
- 5Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,8Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland; and.,9Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Reynold A Panettieri
- 1Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,2Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
72
|
Hu M, Bogoyevitch MA, Jans DA. Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiol Rev 2020; 100:1527-1594. [PMID: 32216549 DOI: 10.1152/physrev.00030.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of viral respiratory tract infection in infants, the elderly, and the immunocompromised worldwide, causing more deaths each year than influenza. Years of research into RSV since its discovery over 60 yr ago have elucidated detailed mechanisms of the host-pathogen interface. RSV infection elicits widespread transcriptomic and proteomic changes, which both mediate the host innate and adaptive immune responses to infection, and reflect RSV's ability to circumvent the host stress responses, including stress granule formation, endoplasmic reticulum stress, oxidative stress, and programmed cell death. The combination of these events can severely impact on human lungs, resulting in airway remodeling and pathophysiology. The RSV membrane envelope glycoproteins (fusion F and attachment G), matrix (M) and nonstructural (NS) 1 and 2 proteins play key roles in modulating host cell functions to promote the infectious cycle. This review presents a comprehensive overview of how RSV impacts the host response to infection and how detailed knowledge of the mechanisms thereof can inform the development of new approaches to develop RSV vaccines and therapeutics.
Collapse
Affiliation(s)
- MengJie Hu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
73
|
Chan TO, Armen RS, Yadav S, Shah S, Zhang J, Tiegs BC, Keny N, Blumhof B, Deshpande DA, Rodeck U, Penn RB. A tripartite cooperative mechanism confers resistance of the protein kinase A catalytic subunit to dephosphorylation. J Biol Chem 2020; 295:3316-3329. [PMID: 31964716 DOI: 10.1074/jbc.ra119.010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/28/2019] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of specific residues in the activation loops of AGC kinase group (protein kinase A, G, and C families) is required for activity of most of these kinases, including the catalytic subunit of PKA (PKAc). Although many phosphorylated AGC kinases are sensitive to phosphatase-mediated dephosphorylation, the PKAc activation loop uniquely resists dephosphorylation, rendering it "constitutively" phosphorylated in cells. Previous biophysical experiments and structural modeling have suggested that the N-terminal myristoylation signal and the C-terminal FXXF motif in PKAc regulate its thermal stability and catalysis. Here, using site-directed mutagenesis, molecular modeling, and in cell-free and cell-based systems, we demonstrate that substitutions of either the PKAc myristoylation signal or the FXXF motif only modestly reduce phosphorylation and fail to affect PKAc function in cells. However, we observed that these two sites cooperate with an N-terminal FXXW motif to cooperatively establish phosphatase resistance of PKAc while not affecting kinase-dependent phosphorylation of the activation loop. We noted that this tripartite cooperative mechanism of phosphatase resistance is functionally relevant, as demonstrated by changes in morphology, adhesion, and migration of human airway smooth muscle cells transfected with PKAc variants containing amino acid substitutions in these three sites. These findings establish that three allosteric sites located at the PKAc N and C termini coordinately regulate the phosphatase sensitivity of this enzyme. This cooperative mechanism of phosphatase resistance of AGC kinase opens new perspectives toward therapeutic manipulation of kinase signaling in disease.
Collapse
Affiliation(s)
- Tung O Chan
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107; Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| | - Roger S Armen
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Santosh Yadav
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Sushrut Shah
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Jin Zhang
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Brian C Tiegs
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Nikhil Keny
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Brian Blumhof
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Deepak A Deshpande
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Ulrich Rodeck
- Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107; Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Raymond B Penn
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
74
|
Clyne A, Yang L, Yang M, May B, Yang AWH. Molecular docking and network connections of active compounds from the classical herbal formula Ding Chuan Tang. PeerJ 2020; 8:e8685. [PMID: 32185106 PMCID: PMC7060917 DOI: 10.7717/peerj.8685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/04/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Ding Chuan Tang (DCT), a traditional Chinese herbal formula, has been consistently prescribed for the therapeutic management of wheezing and asthma-related indications since the Song Dynasty (960-1279 AD). This study aimed to identify molecular network pharmacology connections to understand the biological asthma-linked mechanisms of action of DCT and potentially identify novel avenues for asthma drug development. METHODS Employing molecular docking (AutoDock Vina) and computational analysis (Cytoscape 3.6.0) strategies for DCT compounds permitted examination of docking connections for proteins that were targets of DCT compounds and asthma genes. These identified protein targets were further analyzed to establish and interpret network connections associated with asthma disease pathways. RESULTS A total of 396 DCT compounds and 234 asthma genes were identified through database search. Computational molecular docking of DCT compounds identified five proteins (ESR1, KDR, LTA4H, PDE4D and PPARG) mutually targeted by asthma genes and DCT compounds and 155 docking connections associated with cellular pathways involved in the biological mechanisms of asthma. CONCLUSIONS DCT compounds directly target biological pathways connected with the pathogenesis of asthma including inflammatory and metabolic signaling pathways.
Collapse
Affiliation(s)
- Allison Clyne
- Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Liping Yang
- Department of Pharmacy, Beijing Hospital, Beijing, China
- National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Yang
- National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Clinical Trial Center, Beijing Hospital, Beijing, China
| | - Brian May
- Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Angela Wei Hong Yang
- Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
75
|
Noland D, Drisko JA, Wagner L. Respiratory. INTEGRATIVE AND FUNCTIONAL MEDICAL NUTRITION THERAPY 2020. [PMCID: PMC7120155 DOI: 10.1007/978-3-030-30730-1_51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lung disease rivals the position for the top cause of death worldwide. Causes and pathology of the myriad lung diseases are varied, yet nutrition can either affect the outcome or support treatment in the majority of cases. This chapter explores the modifiable risk factors, from lifestyle changes to dietary intake to specific nutrients, anti-nutrients, and toxins helpful for the nutritionist or dietitian working with lung disease patients. General lung health is discussed, and three major disease states are explored in detail, including alpha-1 antitrypsin deficiency, asthma, and idiopathic pulmonary fibrosis. Although all lung diseases have diverse causes, many integrative and functional medical nutrition therapies are available and are not being utilized in practice today. This chapter begins the path toward better nutrition education for the integrative and functional medicine professional.
Collapse
Affiliation(s)
| | - Jeanne A. Drisko
- Professor Emeritus, School of Medicine, University of Kansas Health System, Kansas City, KS USA
| | - Leigh Wagner
- Department of Dietetics & Nutrition, University of Kansas Medical Center, Kansas City, KS USA
| |
Collapse
|
76
|
Chen YF, Huang G, Wang YM, Cheng M, Zhu FF, Zhong JN, Gao YD. Exchange protein directly activated by cAMP (Epac) protects against airway inflammation and airway remodeling in asthmatic mice. Respir Res 2019; 20:285. [PMID: 31852500 PMCID: PMC6921488 DOI: 10.1186/s12931-019-1260-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Background β2 receptor agonists induce airway smooth muscle relaxation by increasing intracellular cAMP production. PKA is the traditional downstream signaling pathway of cAMP. Exchange protein directly activated by cAMP (Epac) was identified as another important signaling molecule of cAMP recently. The role of Epac in asthmatic airway inflammation and airway remodeling is unclear. Methods We established OVA-sensitized and -challenged acute and chronic asthma mice models to explore the expression of Epac at first. Then, airway inflammation and airway hyperresponsiveness in acute asthma mice model and airway remodeling in chronic asthma mice model were observed respectively after treatment with Epac-selective cAMP analogue 8-pCPT-2′-O-Me-cAMP (8pCPT) and Epac inhibitor ESI-09. Next, the effects of 8pCPT and ESI-09 on the proliferation and apoptosis of in vitro cultured mouse airway smooth muscle cells (ASMCs) were detected with CCK-8 assays and Annexin-V staining. Lastly, the effects of 8pCPT and ESI-09 on store-operated Ca2+ entry (SOCE) of ASMCs were examined by confocal Ca2+ fluorescence measurement. Results We found that in lung tissues of acute and chronic asthma mice models, both mRNA and protein expression of Epac1 and Epac2, two isoforms of Epac, were lower than that of control mice. In acute asthma mice model, the airway inflammatory cell infiltration, Th2 cytokines secretion and airway hyperresponsiveness were significantly attenuated by 8pCPT and aggravated by ESI-09. In chronic asthma mice model, 8pCPT decreased airway inflammatory cell infiltration and airway remodeling indexes such as collagen deposition and airway smooth muscle cell proliferation, while ESI-09 increased airway inflammation and airway remodeling. In vitro cultured mice ASMCs, 8pCPT dose-dependently inhibited, whereas ESI-09 promoted ASMCs proliferation. Interestingly, 8pCPT promoted the apoptosis of ASMCs, whereas ESI-09 had no effect on ASMCs apoptosis. Lastly, confocal Ca2+ fluorescence examination found that 8pCPT could inhibit SOCE in ASMCs at 100 μM, and ESI-09 promoted SOCE of ASMCs at 10 μM and 100 μM. In addition, the promoting effect of ESI-09 on ASMCs proliferation was inhibited by store-operated Ca2+ channel blocker, SKF-96365. Conclusions Our results suggest that Epac has a protecting effect on asthmatic airway inflammation and airway remodeling, and Epac reduces ASMCs proliferation by inhibiting SOCE in part.
Collapse
Affiliation(s)
- Yi-Fei Chen
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Ge Huang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Yi-Min Wang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Ming Cheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Fang-Fang Zhu
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Jin-Nan Zhong
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China
| | - Ya-Dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
77
|
Novel phosphodiesterases inhibitors from the group of purine-2,6-dione derivatives as potent modulators of airway smooth muscle cell remodelling. Eur J Pharmacol 2019; 865:172779. [PMID: 31705904 DOI: 10.1016/j.ejphar.2019.172779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022]
Abstract
Airway remodelling (AR) is an important pathological feature of chronic asthma and chronic obstructive pulmonary disease. The etiology of AR is complex and involves both lung structural and immune cells. One of the main contributors to airway remodelling is the airway smooth muscle (ASM), which is thickened by asthma, becomes more contractile and produces more extracellular matrix. As a second messenger, adenosine 3',5'-cyclic monophosphate (cAMP) has been shown to contribute to ASM cell (ASMC) relaxation as well as to anti-remodelling effects in ASMC. Phosphodiesterase (PDE) inhibitors have drawn attention as an interesting new group of potential anti-inflammatory and anti-remodelling drugs. Recently, new hydrazide and amide purine-2,6-dione derivatives with anti-inflammatory properties have been synthesized by our team (compounds 1 and 2). We expanded our study of their PDE selectivity profile, ability to increase intracellular cAMP levels, metabolic stability and, above all, their capacity to modulate cell responses associated with ASMC remodelling. The results show that both compounds have subtype specificity for several PDE isoforms (including inhibition of PDE1, PDE3, PDE4 and PDE7). Interestingly, such combined PDE subtype inhibition exerts improved anti-remodelling efficacies against several ASMC-induced responses such as proliferation, contractility, extracellular matrix (ECM) protein expression and migration when compared to other non-selective and selective PDE inhibitors. Our findings open novel perspectives in the search for new chemical entities with dual anti-inflammatory and anti-remodelling profiles in the group of purine-2,6-dione derivatives as broad-spectrum PDE inhibitors.
Collapse
|
78
|
Zuo H, Faiz A, van den Berge M, Mudiyanselage SNHR, Borghuis T, Timens W, Nikolaev VO, Burgess JK, Schmidt M. Cigarette smoke exposure alters phosphodiesterases in human structural lung cells. Am J Physiol Lung Cell Mol Physiol 2019; 318:L59-L64. [PMID: 31664853 DOI: 10.1152/ajplung.00319.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cigarette smoke (CS), a highly complex mixture containing more than 4,000 compounds, causes aberrant cell responses leading to tissue damage around the airways and alveoli, which underlies various lung diseases. Phosphodiesterases (PDEs) are a family of enzymes that hydrolyze cyclic nucleotides. PDE inhibition induces bronchodilation, reduces the activation and recruitment of inflammatory cells, and the release of various cytokines. Currently, the selective PDE4 inhibitor roflumilast is an approved add-on treatment for patients with severe chronic obstructive pulmonary disease with chronic bronchitis and a history of frequent exacerbations. Additional selective PDE inhibitors are being tested in preclinical and clinical studies. However, the effect of chronic CS exposure on the expression of PDEs is unknown. Using mRNA isolated from nasal and bronchial brushes and lung tissues of never smokers and current smokers, we compared the gene expression of 25 PDE coding genes. Additionally, the expression and distribution of PDE3A and PDE4D in human lung tissues was examined. This study reveals that chronic CS exposure modulates the expression of various PDE members. Thus, CS exposure may change the levels of intracellular cyclic nucleotides and thereby impact the efficiency of PDE-targeted therapies.
Collapse
Affiliation(s)
- Haoxiao Zuo
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Alen Faiz
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, Department of Pulmonary Diseases, University Medical Center Groningen, Groningen, The Netherlands.,Emphysema Center, Woolcock Institute of Medical Research, The University of Sydney, Glebe, New South Wales, Australia.,Faculty of Science, University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology, Ultimo, New South Wales, Australia
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, Department of Pulmonary Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Theo Borghuis
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,German Center for Cardiovascular Research, Hamburg, Germany
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Martina Schmidt
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| |
Collapse
|
79
|
Zhang P, Mak JC, Man RY, Leung SW. Flavonoids reduces lipopolysaccharide-induced release of inflammatory mediators in human bronchial epithelial cells: Structure-activity relationship. Eur J Pharmacol 2019; 865:172731. [PMID: 31610186 DOI: 10.1016/j.ejphar.2019.172731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/16/2022]
Abstract
Flavonoids are polyphenolic compounds that are widely present in food and Chinese medicine. The aim of the present study was to identify the flavonoids with anti-inflammatory effects in the airway; and to determine the role of anti-oxidant and cyclic adenosine monophosphate (cAMP) in the anti-inflammatory effect. Human bronchial epithelial BEAS-2B cells were exposed to bacterial endotoxin lipopolysaccharide (LPS) in the absence or presence of different flavonoids, which are categorized according to their chemical structures in seven subclasses [anthocyanidins, chalcones, flavanes, flavanones, flavones, flavonols, isoflavones]. Among the 17 flavonoids tested, only apigenin (flavones), luteolin (flavones), daidzein (isoflavones) and genistein (isoflavones) reduced LPS-induced release of inflammatory cytokines/chemokines interleukin (IL)-6, IL-8 and monocyte chemoattractant protein-1 in BEAS-2B cells. Quercetin caused further increase in LPS-induced IL-6 and IL-8 levels. It alone significantly increased nuclear factor-kappa B (NF-κB) p65 activity and the cellular oxidative stress marker malondialdehyde (MDA) level in BEAS-2B cells. By contrast, apigenin and genistein reduced LPS-induced increases in nuclear NF-κB activity and MDA level. Apigenin and genistein, but not quercetin, increased the cAMP level in BEAS-2B cells, and the cell-permeable cAMP analogue, 8-Br-cAMP, inhibited LPS-induced increase of IL-8 level. These findings suggest that the presence of C5-OH, C7-OH, C2=C3 and C4=O functional groups in the flavonoids is associated with greater anti-inflammatory effect, while that of C3-OH or glycosylation group at the A-ring greatly decreased the anti-inflammatory effect. The anti-inflammatory effect of these flavonoids may be related to their anti-oxidant properties, and partly to their ability in increasing cAMP level.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China
| | - Judith Cw Mak
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China; Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China
| | - Ricky Yk Man
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China
| | - Susan Ws Leung
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China.
| |
Collapse
|
80
|
Regulation of Airway Smooth Muscle Contraction in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:381-422. [PMID: 31183836 DOI: 10.1007/978-981-13-5895-1_16] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Airway smooth muscle (ASM) extends from the trachea throughout the bronchial tree to the terminal bronchioles. In utero, spontaneous phasic contraction of fetal ASM is critical for normal lung development by regulating intraluminal fluid movement, ASM differentiation, and release of key growth factors. In contrast, phasic contraction appears to be absent in the adult lung, and regulation of tonic contraction and airflow is under neuronal and humoral control. Accumulating evidence suggests that changes in ASM responsiveness contribute to the pathophysiology of lung diseases with lifelong health impacts.Functional assessments of fetal and adult ASM and airways have defined pharmacological responses and signaling pathways that drive airway contraction and relaxation. Studies using precision-cut lung slices, in which contraction of intrapulmonary airways and ASM calcium signaling can be assessed simultaneously in situ, have been particularly informative. These combined approaches have defined the relative importance of calcium entry into ASM and calcium release from intracellular stores as drivers of spontaneous phasic contraction in utero and excitation-contraction coupling.Increased contractility of ASM in asthma contributes to airway hyperresponsiveness. Studies using animal models and human ASM and airways have characterized inflammatory and other mechanisms underlying increased reactivity to contractile agonists and reduced bronchodilator efficacy of β2-adrenoceptor agonists in severe diseases. Novel bronchodilators and the application of bronchial thermoplasty to ablate increased ASM within asthmatic airways have the potential to overcome limitations of current therapies. These approaches may directly limit excessive airway contraction to improve outcomes for difficult-to-control asthma and other chronic lung diseases.
Collapse
|
81
|
Agarwal SR, Fiore C, Miyashiro K, Ostrom RS, Harvey RD. Effect of Adenylyl Cyclase Type 6 on Localized Production of cAMP by β-2 Adrenoceptors in Human Airway Smooth-Muscle Cells. J Pharmacol Exp Ther 2019; 370:104-110. [PMID: 31068382 DOI: 10.1124/jpet.119.256594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
β 2-Adrenoceptors (β 2ARs) are concentrated in caveolar lipid raft domains of the plasma membrane in airway smooth-muscle (ASM) cells, along with adenylyl cyclase type 6 (AC6). This is believed to contribute to how these receptors can selectively regulate certain types of cAMP-dependent responses in these cells. The goal of the present study was to test the hypothesis that β 2AR production of cAMP is localized to specific subcellular compartments using fluorescence resonance energy transfer-based cAMP biosensors targeted to different microdomains in human ASM cells. Epac2-MyrPalm and Epac2-CAAX biosensors were used to measure responses associated with lipid raft and nonraft regions of the plasma membrane, respectively. Activation of β 2ARs with isoproterenol produced cAMP responses that are most readily detected in lipid raft domains. Furthermore, overexpression of AC6 somewhat paradoxically inhibited β 2AR production of cAMP in lipid raft domains without affecting β 2AR responses detected in other subcellular locations or cAMP responses to EP2 prostaglandin receptor activation, which were confined primarily to nonraft domains of the plasma membrane. The inhibitory effect of overexpressing AC6 was blocked by inhibition of phosphodiesterase type 4 (PDE4) activity with rolipram, inhibition of protein kinase A (PKA) activity with H89, and inhibition of A kinase anchoring protein (AKAP) interactions with the peptide inhibitor Ht31. These results support the idea that overexpression of AC6 leads to enhanced feedback activation of PDE4 via phosphorylation by PKA that is part of an AKAP-dependent signaling complex. This provides insight into the molecular basis for localized regulation of cAMP signaling in human ASM cells.
Collapse
Affiliation(s)
- Shailesh R Agarwal
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada (S.R.A., C.F., K.M., R.D.H.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.)
| | - Chase Fiore
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada (S.R.A., C.F., K.M., R.D.H.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.)
| | - Kathryn Miyashiro
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada (S.R.A., C.F., K.M., R.D.H.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.)
| | - Rennolds S Ostrom
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada (S.R.A., C.F., K.M., R.D.H.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.)
| | - Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada (S.R.A., C.F., K.M., R.D.H.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.)
| |
Collapse
|
82
|
Sengupta S, Mehta G. Natural products as modulators of the cyclic-AMP pathway: evaluation and synthesis of lead compounds. Org Biomol Chem 2019; 16:6372-6390. [PMID: 30140804 DOI: 10.1039/c8ob01388h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is now well recognized that the normal cellular response in mammalian cells is critically regulated by the cyclic-AMP (cAMP) pathway through the appropriate balance of adenylyl cyclase (AC) and phosphodiesterase-4 (PDE4) activities. Dysfunctions in the cAMP pathway have major implications in various diseases like CNS disorders, inflammation and cardiac syndromes and, hence, the modulation of cAMP signalling through appropriate intervention of AC/PDE4 activities has emerged as a promising new drug discovery strategy of current interest. In this context, synthetic small molecules have had limited success so far and therefore parallel efforts on natural product leads have been actively pursued. The early promise of using the diterpene forskolin and its semi-synthetic analogs as AC activators has given way to new leads in the last decade from novel natural products like the marine sesterterpenoids alotaketals and ansellones and the 9,9'-diarylfluorenone cored selaginpulvilins, etc. and their synthesis has drawn much attention. This review captures these contemporary developments, particularly total synthesis campaigns and structure-guided analog design in the context of AC and PDE-4 modulating attributes and the scope for future possibilities.
Collapse
Affiliation(s)
- Saumitra Sengupta
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad - 5000 046, Telengana, India.
| | | |
Collapse
|
83
|
Zuo H, Cattani-Cavalieri I, Musheshe N, Nikolaev VO, Schmidt M. Phosphodiesterases as therapeutic targets for respiratory diseases. Pharmacol Ther 2019; 197:225-242. [PMID: 30759374 DOI: 10.1016/j.pharmthera.2019.02.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and asthma, affect millions of people all over the world. Cyclic adenosine monophosphate (cAMP) which is one of the most important second messengers, plays a vital role in relaxing airway smooth muscles and suppressing inflammation. Given its vast role in regulating intracellular responses, cAMP provides an attractive pharmaceutical target in the treatment of chronic respiratory diseases. Phosphodiesterases (PDEs) are enzymes that hydrolyze cyclic nucleotides and help control cyclic nucleotide signals in a compartmentalized manner. Currently, the selective PDE4 inhibitor, roflumilast, is used as an add-on treatment for patients with severe COPD associated with bronchitis and a history of frequent exacerbations. In addition, other novel PDE inhibitors are in different phases of clinical trials. The current review provides an overview of the regulation of various PDEs and the potential application of selective PDE inhibitors in the treatment of COPD and asthma. The possibility to combine various PDE inhibitors as a way to increase their therapeutic effectiveness is also emphasized.
Collapse
Affiliation(s)
- Haoxiao Zuo
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Isabella Cattani-Cavalieri
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nshunge Musheshe
- Department of Molecular Pharmacology, University of Groningen, the Netherlands
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; German Center for Cardiovascular Research (DZHK), 20246 Hamburg, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
84
|
Kim NJ, Baek JH, Lee J, Kim H, Song JK, Chun KH. A PDE1 inhibitor reduces adipogenesis in mice via regulation of lipolysis and adipogenic cell signaling. Exp Mol Med 2019; 51:1-15. [PMID: 30635550 PMCID: PMC6329698 DOI: 10.1038/s12276-018-0198-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 09/03/2018] [Accepted: 09/11/2018] [Indexed: 12/15/2022] Open
Abstract
Vinpocetine, a phosphodiesterase (PDE) type-1 inhibitor, increases cAMP and cGMP levels and is currently used for the management of cerebrovascular disorders, such as stroke, cerebral hemorrhage, and cognitive dysfunctions. In this study, we first determined that vinpocetine effectively suppressed adipogenesis and lipid accumulation. However, we questioned which molecular mechanism is involved because the role of PDE in adipogenesis is still controversial. Vinpocetine decreased adipogenic cell signaling, including the phosphorylation of ERK, AKT, JAK2, and STAT3, and adipokine secretion, including IL-6, IL-10, and IFN-α. Interestingly, vinpocetine increased the phosphorylation of HSL, suggesting the induction of the lipolysis pathway. Moreover, vinpocetine increased UCP1 expression via increasing cAMP and PKA phosphorylation. The administration of vinpocetine with a normal-chow diet (NFD) or a high-fat diet (HFD) in mice attenuated body weight gain in mice fed both the NFD and HFD. These effects were larger in the HFD-fed mice, without a difference in food intake. Vinpocetine drastically decreased fat weight and adipocyte cell sizes in gonadal and inguinal white adipose tissues and in the liver in both diet groups. Serum triacylglycerol levels and fasting blood glucose levels were reduced by vinpocetine treatment. This study suggested that vinpocetine prevents adipocyte differentiation through the inhibition of adipogenesis-associated cell signaling in the early stages of adipogenesis. Moreover, upregulating cAMP levels leads to an increase in lipolysis and UCP1 expression and then inhibits lipid accumulation. Therefore, we suggest that vinpocetine could be an effective agent for treating obesity, as well as improving cognition and cardiovascular function in older individuals. A compound extracted from the periwinkle plant can limit the over-production of fat cells and may be a useful agent for treating obesity. Being overweight is the result of changes in the size and number of fat cells, or adipocytes, in the body. Scientists are searching for molecules that can limit the growth and replication of adipocytes, but many anti-obesity agents found to date have unpleasant side-effects. Kyung-Hee Chun at Yonsei University in Seoul, South Korea and co-workers examined the effects of 502 naturally occuring compounds on adipocyte differentiation in cell culture. One compound called vincamine, which is safely used to treat vascular diseases in the brain, decreased cell signaling pathways involved in adipocyte generation in mice and also lowered fasting blood glucose levels.
Collapse
Affiliation(s)
- Nam-Jun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Jung-Hwan Baek
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - JinAh Lee
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - HyeNa Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.,Tumor Microenvironment Research Branch, Division of Cancer Biology, National Cancer Center, Goyang, Republic of Korea
| | - Jun-Kyu Song
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea. .,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
85
|
Amini P, Wilson R, Wang J, Tan H, Yi L, Koeblitz WK, Stanfield Z, Romani AMP, Malemud CJ, Mesiano S. Progesterone and cAMP synergize to inhibit responsiveness of myometrial cells to pro-inflammatory/pro-labor stimuli. Mol Cell Endocrinol 2019; 479:1-11. [PMID: 30118888 DOI: 10.1016/j.mce.2018.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022]
Abstract
Progesterone (P4) acting through the P4 receptor (PR) isoforms, PR-A and PR-B, promotes uterine quiescence for most of pregnancy, in part, by inhibiting the response of myometrial cells to pro-labor inflammatory stimuli. This anti-inflammatory effect is inhibited by phosphorylation of PR-A at serine-344 and -345 (pSer344/345-PRA). Activation of the cyclic adenosine monophosphate (cAMP) signaling pathway also promotes uterine quiescence and myometrial relaxation. This study examined the cross-talk between P4/PR and cAMP signaling to exert anti-inflammatory actions and control pSer344/345-PRA generation in myometrial cells. In the hTERT-HMA/B immortalized human myometrial cell line P4 inhibited responsiveness to interleukin (IL)-1β and forskolin (increases cAMP) and 8-Br-cAMP increased this effect in a concentration-dependent and synergistic manner that was mediated by activation of protein kinase A (PKA). Forskolin also inhibited the generation of pSer344/345-PRA and expression of key contraction-associated genes. Generation of pSer344/345-PRA was catalyzed by stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK). Forskolin inhibited pSer344/345-PRA generation, in part, by increasing the expression of dual specificity protein phosphatase 1 (DUSP1), a phosphatase that inactivates mitogen-activated protein kinases (MAPKs) including SAPK/JNK. P4/PR and forskolin increased DUSP1 expression. The data suggest that P4/PR promotes uterine quiescence via cross-talk and synergy with cAMP/PKA signaling in myometrial cells that involves DUSP1-mediated inhibition of SAPK/JNK activation.
Collapse
Affiliation(s)
- Peyvand Amini
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Rachel Wilson
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Junye Wang
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Huiqing Tan
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Lijuan Yi
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH, USA
| | - William K Koeblitz
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Zachary Stanfield
- Systems Biology and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA
| | - Andrea M P Romani
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Charles J Malemud
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH, USA; Department of Obstetrics and Gynecology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
86
|
Borsi H, Raji H, Shoushtari MH, Tavakol H, Haghighizadeh MH, Mal-Amir MD. Investigating the effect of sildenafil on improving lung function and quality of life in the patients with severe asthma. J Family Med Prim Care 2019; 8:2361-2363. [PMID: 31463257 PMCID: PMC6691445 DOI: 10.4103/jfmpc.jfmpc_334_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction: Phosphodiesterase inhibitors (PDEs) increase intracellular cyclic adenosine monophosphate, which results in a wide range of anti-inflammatory effects and pathologically leads to improve asthma disease. Because no human study has surveyed the effect of PDEs on pulmonary function, except some case reports and animal researches, we decided to perform a pilot study for evaluating the effect of sildenafil (PDE5) on pulmonary function in patients with severe asthma. Methods: This randomized controlled trials study was conducted on 20 patients with severe asthma in 2019 in Iran. For case group, was prescribed sildenafil (50 mg) daily and the control group received the placebo. In the beginning of the study and one month later, volume parameters, 6-minute walk distance (6MWD), and the quality-of-life questionnaire were measured and compared in the two groups. Results: Twenty patients were entered into this study. 8 patients (40%) were male and 12 (60%) were female. The results showed that mean forced vital capacity 1 in the sildenafil group turned from 1259 ± 170 to 1603 ± 527, while in the placebo group it changed from 1135 ± 125 to 1365 ± 251 (P-value = 0.215). There is no statistically significant difference between two groups. In addition, in comparison with placebo, sildenafil did not show any significant improvement in the volume parameters, the quality-of-life questionnaire scale, and 6MWD at the end of the study. Conclusion: According to present result can be concluded that sildenafil does not improve the severity of asthma and the quality of life in patients with severe asthma.
Collapse
Affiliation(s)
- Hamid Borsi
- Department of Pulmonology, Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hanieh Raji
- Department of Pulmonology, Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Haddadzadeh Shoushtari
- Department of Pulmonology, Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heshmatollah Tavakol
- Department of Pulmonology, Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Hossein Haghighizadeh
- Department of Statistics and Epidemiology, Faculty of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrdad Dargahi Mal-Amir
- Department of Pulmonology, Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
87
|
Stamatiou R, Paraskeva E, Vasilaki A, Hatziefthimiou A. The muscarinic antagonist gallamine induces proliferation of airway smooth muscle cells regardless of the cell phenotype. Pharmacol Rep 2018; 71:225-232. [PMID: 30785060 DOI: 10.1016/j.pharep.2018.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 10/04/2018] [Accepted: 10/19/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Muscarinic receptor antagonists are a usual treatment for chronic airway diseases, with increased bronchoconstriction, like asthma and chronic obstructive pulmonary disease. These diseases are usually accompanied by airway remodeling, involving airway smooth muscle cell (ASMC) proliferation. The purpose of this study was to examine the effect of the muscarinic receptor modulator gallamine on rabbit tracheal ASMC proliferation. METHODS ASMCs were incubated with gallamine (1 nM-10 mM), atropine (1 fM-10 mM), and/or acetylcholine (1 nM-1 mM), in the presence or absence of FBS (1% or 10%). Cell proliferation was estimated by incorporation of radioactive thymidine, the Cell Titer AQueous One Solution method and cell number counting after Trypan blue exclusion. The mechanisms mediating cell proliferation were studied using the PI3K and MAPK inhibitors LY294002 (20 μM) and PD98059 (100 μM), respectively. Cell phenotype was studied by indirect immunofluorescence for α-actin, Myosin Heavy Chain and desmin. RESULTS ASMC incubation with the muscarinic receptor allosteric modulator gallamine or the muscarinic receptor antagonist atropine increased methyl-[3H]thymidine incorporation and cell number in a dose-dependent manner. ASMC proliferation was mediated via PI3K and MAPK activation and was transient. Gallamine antagonized the mitogenic effect of 1% FBS. Furthermore, gallamine had a similar effect on contractile ASMCs, without synergizing with or affecting acetylcholine induced proliferation, or altering the percentage of ASMCs expressing contractile phenotype marker proteins. CONCLUSIONS Gallamine, in the absence of any agonist, has a transient mitogenic effect on ASMCs, regardless of the cell phenotype, mediated by the PI3K and the MAPK signaling pathways.
Collapse
Affiliation(s)
- Rodopi Stamatiou
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece.
| | - Efrosini Paraskeva
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece.
| | - Anna Vasilaki
- Laboratory of Pharmacology, Department of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece.
| | - Apostolia Hatziefthimiou
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece.
| |
Collapse
|
88
|
Cyclic stretch enhances reorientation and differentiation of 3-D culture model of human airway smooth muscle. Biochem Biophys Rep 2018; 16:32-38. [PMID: 30258989 PMCID: PMC6153119 DOI: 10.1016/j.bbrep.2018.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023] Open
Abstract
Activation of airway smooth muscle (ASM) cells plays a central role in the pathophysiology of asthma. Because ASM is an important therapeutic target in asthma, it is beneficial to develop bioengineered ASM models available for assessing physiological and biophysical properties of ASM cells. In the physiological condition in vivo, ASM cells are surrounded by extracellular matrix (ECM) and exposed to mechanical stresses such as cyclic stretch. We utilized a 3-D culture model of human ASM cells embedded in type-I collagen gel. We further examined the effects of cyclic mechanical stretch, which mimics tidal breathing, on cell orientation and expression of contractile proteins of ASM cells within the 3-D gel. ASM cells in type-I collagen exhibited a tissue-like structure with actin stress fiber formation and intracellular Ca2+ mobilization in response to methacholine. Uniaxial cyclic stretching enhanced alignment of nuclei and actin stress fibers of ASM cells. Moreover, expression of mRNAs for contractile proteins such as α-smooth muscle actin, calponin, myosin heavy chain 11, and transgelin of stretched ASM cells was significantly higher than that under the static condition. Our findings suggest that mechanical force and interaction with ECM affects development of the ASM tissue-like construct and differentiation to the contractile phenotype in a 3-D culture model.
Collapse
|
89
|
Wahlang B, McClain C, Barve S, Gobejishvili L. Role of cAMP and phosphodiesterase signaling in liver health and disease. Cell Signal 2018; 49:105-115. [PMID: 29902522 PMCID: PMC6445381 DOI: 10.1016/j.cellsig.2018.06.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 02/06/2023]
Abstract
Liver disease is a significant health problem worldwide with mortality reaching around 2 million deaths a year. Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are the major causes of chronic liver disease. Pathologically, NAFLD and ALD share similar patterns of hepatic disorders ranging from simple steatosis to steatohepatitis, fibrosis and cirrhosis. It is becoming increasingly important to identify new pharmacological targets, given that there is no FDA-approved therapy yet for either NAFLD or ALD. Since the evolution of liver diseases is a multifactorial process, several mechanisms involving parenchymal and non-parenchymal hepatic cells contribute to the initiation and progression of liver pathologies. Moreover, certain protective molecular pathways become repressed during liver injury including signaling pathways such as the cyclic adenosine monophosphate (cAMP) pathway. cAMP, a key second messenger molecule, regulates various cellular functions including lipid metabolism, inflammation, cell differentiation and injury by affecting gene/protein expression and function. This review addresses the current understanding of the role of cAMP metabolism and consequent cAMP signaling pathway(s) in the context of liver health and disease. The cAMP pathway is extremely sophisticated and complex with specific cellular functions dictated by numerous factors such abundance, localization and degradation by phosphodiesterases (PDEs). Furthermore, because of the distinct yet divergent roles of both of its effector molecules, the cAMP pathway is extensively targeted in liver injury to modify its role from physiological to therapeutic, depending on the hepatic condition. This review also examines the behavior of the cAMP-dependent pathway in NAFLD, ALD and in other liver diseases and focuses on PDE inhibition as an excellent therapeutic target in these conditions.
Collapse
Affiliation(s)
- Banrida Wahlang
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA
| | - Craig McClain
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, USA; Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, KY, USA; Robley Rex Louisville VAMC, Louisville, KY, USA
| | - Shirish Barve
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, USA; Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, KY, USA
| | - Leila Gobejishvili
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, USA; Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, KY, USA.
| |
Collapse
|
90
|
Matsuyama N, Shibata S, Matoba A, Kudo TA, Danielsson J, Kohjitani A, Masaki E, Emala CW, Mizuta K. The dopamine D 1 receptor is expressed and induces CREB phosphorylation and MUC5AC expression in human airway epithelium. Respir Res 2018; 19:53. [PMID: 29606146 PMCID: PMC5879645 DOI: 10.1186/s12931-018-0757-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Nao Matsuyama
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba, Sendai, Miyagi, 9808575, Japan
| | - Sumire Shibata
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba, Sendai, Miyagi, 9808575, Japan
| | - Atsuko Matoba
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba, Sendai, Miyagi, 9808575, Japan
| | - Tada-Aki Kudo
- Department of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Jennifer Danielsson
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Atsushi Kohjitani
- Department of Dental Anesthesiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Eiji Masaki
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba, Sendai, Miyagi, 9808575, Japan
| | - Charles W Emala
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Kentaro Mizuta
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba, Sendai, Miyagi, 9808575, Japan. .,Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY, USA.
| |
Collapse
|
91
|
Zuo H, Schmidt M, Gosens R. PDE8: A Novel Target in Airway Smooth Muscle. Am J Respir Cell Mol Biol 2018; 58:426-427. [DOI: 10.1165/rcmb.2017-0427ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Haoxiao Zuo
- Department of Molecular PharmacologyUniversity of GroningenGroningen, the Netherlandsand
- GRIAC Research InstituteUniversity of GroningenGroningen, the Netherlands
| | - Martina Schmidt
- Department of Molecular PharmacologyUniversity of GroningenGroningen, the Netherlandsand
- GRIAC Research InstituteUniversity of GroningenGroningen, the Netherlands
| | - Reinoud Gosens
- Department of Molecular PharmacologyUniversity of GroningenGroningen, the Netherlandsand
- GRIAC Research InstituteUniversity of GroningenGroningen, the Netherlands
| |
Collapse
|
92
|
Selectively targeting prostanoid E (EP) receptor-mediated cell signalling pathways: Implications for lung health and disease. Pulm Pharmacol Ther 2018; 49:75-87. [DOI: 10.1016/j.pupt.2018.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/05/2018] [Accepted: 01/25/2018] [Indexed: 12/18/2022]
|
93
|
Batabyal RA, O’Connell K. Improving Management of Severe Asthma: BiPAP and Beyond. CLINICAL PEDIATRIC EMERGENCY MEDICINE 2018. [DOI: 10.1016/j.cpem.2018.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
94
|
Toki S, Goleniewska K, Reiss S, Zhang J, Bloodworth MH, Stier MT, Zhou W, Newcomb DC, Ware LB, Stanwood GD, Galli A, Boyd KL, Niswender KD, Peebles RS. Glucagon-like peptide 1 signaling inhibits allergen-induced lung IL-33 release and reduces group 2 innate lymphoid cell cytokine production in vivo. J Allergy Clin Immunol 2018; 142:1515-1528.e8. [PMID: 29331643 DOI: 10.1016/j.jaci.2017.11.043] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 10/19/2017] [Accepted: 11/01/2017] [Indexed: 01/26/2023]
Abstract
BACKGROUND IL-33 is one of the most consistently associated gene candidates for asthma identified by using a genome-wide association study. Studies in mice and in human cells have confirmed the importance of IL-33 in inducing type 2 cytokine production from both group 2 innate lymphoid cells (ILC2s) and TH2 cells. However, there are no pharmacologic agents known to inhibit IL-33 release from airway cells. OBJECTIVE We sought to determine the effect of glucagon-like peptide 1 receptor (GLP-1R) signaling on aeroallergen-induced airway IL-33 production and release and on innate type 2 airway inflammation. METHODS BALB/c mice were challenged intranasally with Alternaria extract for 4 consecutive days. GLP-1R agonist or vehicle was administered starting either 2 days before the first Alternaria extract challenge or 1 day after the first Alternaria extract challenge. RESULTS GLP-1R agonist treatment starting 2 days before the first Alternaria extract challenge decreased IL-33 release in the bronchoalveolar lavage fluid and dual oxidase 1 (Duox1) mRNA expression 1 hour after the first Alternaria extract challenge and IL-33 expression in lung epithelial cells 24 hours after the last Alternaria extract challenge. Furthermore, GLP-1R agonist significantly decreased the number of ILC2s expressing IL-5 and IL-13, lung protein expression of type 2 cytokines and chemokines, the number of perivascular eosinophils, mucus production, and airway responsiveness compared with vehicle treatment. GLP-1R agonist treatment starting 1 day after the first Alternaria extract challenge also significantly decreased eosinophilia and type 2 cytokine and chemokine expression in the airway after 4 days of Alternaria extract challenge. CONCLUSION These results reveal that GLP-1R signaling might be a therapy to reduce IL-33 release and inhibit the ILC2 response to protease-containing aeroallergens, such as Alternaria.
Collapse
Affiliation(s)
- Shinji Toki
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Kasia Goleniewska
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Sara Reiss
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Jian Zhang
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Melissa H Bloodworth
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Matthew T Stier
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Weisong Zhou
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Dawn C Newcomb
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Gregg D Stanwood
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University, Tallahassee, Fla
| | - Aurelio Galli
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tenn; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Kelli L Boyd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Kevin D Niswender
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tenn; Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University School of Medicine, Nashville, Tenn; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tenn.
| | - R Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tenn.
| |
Collapse
|
95
|
Alexandrova E, Nassa G, Corleone G, Buzdin A, Aliper AM, Terekhanova N, Shepelin D, Zhavoronkov A, Tamm M, Milanesi L, Miglino N, Weisz A, Borger P. Large-scale profiling of signalling pathways reveals an asthma specific signature in bronchial smooth muscle cells. Oncotarget 2018; 7:25150-61. [PMID: 26863634 PMCID: PMC5039037 DOI: 10.18632/oncotarget.7209] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/26/2016] [Indexed: 02/06/2023] Open
Abstract
Background Bronchial smooth muscle (BSM) cells from asthmatic patients maintain in vitro a distinct hyper-reactive (“primed”) phenotype, characterized by increased release of pro-inflammatory factors and mediators, as well as hyperplasia and/or hypertrophy. This “primed” phenotype helps to understand pathogenesis of asthma, as changes in BSM function are essential for manifestation of allergic and inflammatory responses and airway wall remodelling. Objective To identify signalling pathways in cultured primary BSMs of asthma patients and non-asthmatic subjects by genome wide profiling of differentially expressed mRNAs and activated intracellular signalling pathways (ISPs). Methods Transcriptome profiling by cap-analysis-of-gene-expression (CAGE), which permits selection of preferentially capped mRNAs most likely to be translated into proteins, was performed in human BSM cells from asthmatic (n=8) and non-asthmatic (n=6) subjects and OncoFinder tool were then exploited for identification of ISP deregulations. Results CAGE revealed >600 RNAs differentially expressed in asthma vs control cells (p≤0.005), with asthma samples showing a high degree of similarity among them. Comprehensive ISP activation analysis revealed that among 269 pathways analysed, 145 (p<0.05) or 103 (p<0.01) are differentially active in asthma, with profiles that clearly characterize BSM cells of asthmatic individuals. Notably, we identified 7 clusters of coherently acting pathways functionally related to the disease, with ISPs down-regulated in asthma mostly targeting cell death-promoting pathways and up-regulated ones affecting cell growth and proliferation, inflammatory response, control of smooth muscle contraction and hypoxia-related signalization. Conclusions These first-time results can now be exploited toward development of novel therapeutic strategies targeting ISP signatures linked to asthma pathophysiology.
Collapse
Affiliation(s)
- Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi (SA), Italy.,Genomix4Life Srl, Campus of Medicine, University of Salerno, Baronissi (SA), Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi (SA), Italy
| | - Giacomo Corleone
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi (SA), Italy
| | - Anton Buzdin
- Laboratory of Bioinformatics, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR
| | - Alexander M Aliper
- Laboratory of Bioinformatics, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR
| | | | - Denis Shepelin
- Pathway Pharmaceuticals, Wan Chai, Hong Kong, Hong Kong SAR.,Group for Genomic Regulation of Cell Signalling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - Michael Tamm
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, Segregate (MI), Italy
| | - Nicola Miglino
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi (SA), Italy.,Molecular Pathology and Medical Genomics Unit, 'SS. Giovanni di Dio e Ruggi d'Aragona - Schola Medica Salernitana' University Hospital, Salerno (SA), Italy
| | - Pieter Borger
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
96
|
Patai Z, Guttman A, Mikus EG. Assessment of the Airway Smooth Muscle Relaxant Effect of Drotaverine. Pharmacology 2018; 101:163-169. [PMID: 29301136 DOI: 10.1159/000485921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/29/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Drotaverine, a type 4 cyclic nucleotide phosphodiesterase (PDE4) inhibitor, blocks the degradation of 3',5'-cyclic adenosine monophosphate. However, published receptor binding data showed that drotaverin also binds to the L-type voltage-operated calcium channel (L-VOCC). Based on these molecular mechanisms of action, a direct and indirect (by blocking the constrictor response) relaxant effect on airway smooth muscle can be predicted, which has not yet been assessed. SUMMARY Accordingly, drotaverine and reference agents were tested both on the histamine-, methacholine-, or KCl-induced contraction response and on precontracted guinea pig tracheal preparations. It was found that drotaverine not only relaxed the precontracted tracheal preparations but also decreased mediator-induced contraction. These effects of drotaverine were concentration dependent, with a significantly higher potency on the KCl-induced response, than on either the histamine or methacholine induced one. A similar result was noted for nifedipine. The PDE inhibitor, theophylline, also relaxed the precontracted preparations but was ineffective on the mediator-induced contraction in a physiologically relevant concentration range. Moreover, theophylline did not show selectivity and was the least potent relaxant among the 3 tested molecules. Key Message: These results show that drotaverine is a more potent airway smooth muscle relaxant molecule than theophylline. This enhanced potency on relaxation and inhibition of the constrictor response, at least partly, may be explained by the combined L-VOCC blocking and PDE inhibitory potential of drotaverine.
Collapse
Affiliation(s)
- Zoltán Patai
- LabMagister Training and Science Ltd., Budapest, Hungary.,Horvath Csaba Laboratory of Bioseparation Sciences, MMKK, University of Debrecen, Debrecen, Hungary
| | - András Guttman
- Horvath Csaba Laboratory of Bioseparation Sciences, MMKK, University of Debrecen, Debrecen, Hungary.,MTA-PA Translational Glycomics Research Group, MUKKI, University of Pannonia, Veszprém, Hungary
| | - Endre G Mikus
- LabMagister Training and Science Ltd., Budapest, Hungary
| |
Collapse
|
97
|
Hamacher J, Hadizamani Y, Borgmann M, Mohaupt M, Männel DN, Moehrlen U, Lucas R, Stammberger U. Cytokine-Ion Channel Interactions in Pulmonary Inflammation. Front Immunol 2018; 8:1644. [PMID: 29354115 PMCID: PMC5758508 DOI: 10.3389/fimmu.2017.01644] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
The lungs conceptually represent a sponge that is interposed in series in the bodies’ systemic circulation to take up oxygen and eliminate carbon dioxide. As such, it matches the huge surface areas of the alveolar epithelium to the pulmonary blood capillaries. The lung’s constant exposure to the exterior necessitates a competent immune system, as evidenced by the association of clinical immunodeficiencies with pulmonary infections. From the in utero to the postnatal and adult situation, there is an inherent vital need to manage alveolar fluid reabsorption, be it postnatally, or in case of hydrostatic or permeability edema. Whereas a wealth of literature exists on the physiological basis of fluid and solute reabsorption by ion channels and water pores, only sparse knowledge is available so far on pathological situations, such as in microbial infection, acute lung injury or acute respiratory distress syndrome, and in the pulmonary reimplantation response in transplanted lungs. The aim of this review is to discuss alveolar liquid clearance in a selection of lung injury models, thereby especially focusing on cytokines and mediators that modulate ion channels. Inflammation is characterized by complex and probably time-dependent co-signaling, interactions between the involved cell types, as well as by cell demise and barrier dysfunction, which may not uniquely determine a clinical picture. This review, therefore, aims to give integrative thoughts and wants to foster the unraveling of unmet needs in future research.
Collapse
Affiliation(s)
- Jürg Hamacher
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Internal Medicine V - Pneumology, Allergology, Respiratory and Environmental Medicine, Faculty of Medicine, Saarland University, Saarbrücken, Germany.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Yalda Hadizamani
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Michèle Borgmann
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland
| | - Markus Mohaupt
- Internal Medicine, Sonnenhofspital Bern, Bern, Switzerland
| | | | - Ueli Moehrlen
- Paediatric Visceral Surgery, Universitäts-Kinderspital Zürich, Zürich, Switzerland
| | - Rudolf Lucas
- Department of Pharmacology and Toxicology, Vascular Biology Center, Medical College of Georgia, Augusta, GA, United States
| | - Uz Stammberger
- Lungen- und Atmungsstiftung Bern, Bern, Switzerland.,Novartis Institutes for Biomedical Research, Translational Clinical Oncology, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
98
|
Tran QT, Wong WF, Chai CL. Labdane diterpenoids as potential anti-inflammatory agents. Pharmacol Res 2017; 124:43-63. [PMID: 28751221 DOI: 10.1016/j.phrs.2017.07.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 01/20/2023]
|
99
|
Liang X, Wang J, Chen W, Ma X, Wang Y, Nagao N, Weng W, Huang J, Liu J. Inhibition of airway remodeling and inflammation by isoforskolin in PDGF-induced rat ASMCs and OVA-induced rat asthma model. Biomed Pharmacother 2017; 95:275-286. [PMID: 28850927 DOI: 10.1016/j.biopha.2017.08.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 12/28/2022] Open
Abstract
Isoforskolin (ISOF) has been reported to play an important role in many illnesses including respiratory, cardiovascular and ophthalmologic diseases. In our study, we aimed to investigate how ISOF regulates airway remodeling and inflammation in asthma. Based on SO2-stimulated mouse cough model, we assessed the role of ISOF in cough and secretion of phlegm. Afterwards, platelet derived growth factor (PDGF)-induced primary rat airway smooth muscle cell (ASMC) model and ovalbumin (OVA)-induced rat asthma model were used to continue our following research. Our results showed that ISOF could prolong the cough latent period, reduce the cough times in two minutes, and increase the excretion of red phenol, which suggested the antitussive and expectorant effects of ISOF. Besides, ISOF pretreatment reversed the hypotonicity and cytoskeleton remodeling in PDGF-induced ASMCs, and reduced mucus hypersecretion and collagen overdeposition in OVA-induced rat asthma model, which indicated its inhibition on airway remodeling in vitro and in vivo. Moreover, ISOF reduced the invasion of inflammatory cells into bronchoalveolar lavage fluid (BALF) and lungs, which revealed its inhibitory role in airway inflammation. The down-regulation of transforming growth factor β1 (TGF-β1) and interleukin-1β (IL-1β) upon ISOF treatment might be responsible for its anti-remodeling and anti-inflammation roles. In conclusion, ISOF can reduce cough and sputum, as well as inhibit airway remodeling and inflammation by regulating the expression of TGF-β1 and IL-1β. These data indicate the potency of ISOF in treating asthma and also provide insights into the development of new anti-asthma agent.
Collapse
Affiliation(s)
- Xin Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, PR China
| | - Jingjing Wang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, PR China
| | - Weiwei Chen
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, PR China
| | - Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, PR China
| | - Yaqin Wang
- School of Pharmacy, Fudan University,826 Zhangheng Road, Shanghai 201203, PR China
| | - Norio Nagao
- Department of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, 727-0023, Japan
| | - Weiyu Weng
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, PR China.
| | - Jianming Huang
- School of Pharmacy, Fudan University,826 Zhangheng Road, Shanghai 201203, PR China.
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
100
|
Zhu W, Liu X, Wang Y, Tong Y, Hu Y. Discovery of a novel series of α-terpineol derivatives as promising anti-asthmatic agents: Their design, synthesis, and biological evaluation. Eur J Med Chem 2017; 143:419-425. [PMID: 29202404 DOI: 10.1016/j.ejmech.2017.07.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 12/31/2022]
Abstract
A series of novel α-terpineol derivatives were designed and synthesized through structural derivatization of the tertiary hydroxyl moiety or reduction of the double bond. Of the resulting compounds, eight compounds enhanced relaxation of airway smooth muscle (ASM) compared to the α-terpineol precursor, and four compounds (4a, 4d, 4e, and 4i)were superior or comparable to aminophylline at a concentration of 0.75 mmol/L. Assays for 3'-5'-Cyclic adenosine monophpsphate (cAMP) activation revealed that some representative α-terpineol derivatives in this series were capable of upregulating the level of cAMP in ASM cells. Further in vivo investigation using the asthmatic rat model, illustrated that treatment with the compounds 4a and 4e resulted in significantly lowered lung resistance (RL) and enhanced dynamic lung compliance (Cldyn), two important parameters for lung fuction. Moreover, treatment with 4e downregulated the levels of both IL-4 and IL-17. Due to its several favorable physiological functions, including ASM relaxation activity, cAMP activation capability, and in vivo anti-asthmatic efficacy, 4e is a promising remedy for bronchial asthma, meriting extensive development.
Collapse
Affiliation(s)
- Wanping Zhu
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China; ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xia Liu
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Yuji Wang
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Yeling Tong
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Yongzhou Hu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|