51
|
Wang H, Lv LB, Chen LP, Xiao JL, Shen J, Gao B, Zhao JG, Han DM, Chen BX, Wang S, Liu G, Xin AG, Xiao P, Gao H. Hemolysin Co-Regulatory Protein 1 Enhances the Virulence of Clinically Isolated Escherichia coli in KM Mice by Increasing Inflammation and Inducing Pyroptosis. Toxins (Basel) 2023; 15:171. [PMID: 36977062 PMCID: PMC10058142 DOI: 10.3390/toxins15030171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Hemolysin-coregulated protein 1 (Hcp1) is an effector released by the type VI secretion system (T6SS) in certain pathogenic strains of Escherichia coli (E. coli) that causes apoptosis and contributes to the development of meningitis. The exact toxic consequences of Hcp1 and whether it intensifies the inflammatory response by triggering pyroptosis are yet unknown. Here, utilizing the CRISPR/Cas9 genome editing method, we removed the gene expressing Hcp1 from wild-type E. coli W24 and examined the impact of Hcp1 on E. coli virulence in Kunming (KM) mice. It was found that Hcp1-sufficient E. coli was more lethal, exacerbating acute liver injury (ALI) and acute kidney injury (AKI) or even systemic infections, structural organ damage, and inflammatory factor infiltration. These symptoms were alleviated in mice infected with W24Δhcp1. Additionally, we investigated the molecular mechanism by which Hcp1 worsens AKI and found that pyroptosis is involved, manifested as DNA breaks in many renal tubular epithelial cells. Genes or proteins closely related to pyroptosis are abundantly expressed in the kidney. Most importantly, Hcp1 promotes the activation of the NLRP3 inflammasome and the expression of active caspase-1, thereby cleaving GSDMD-N and accelerating the release of active IL-1β and ultimately leading to pyroptosis. In conclusion, Hcp1 enhances the virulence of E. coli, aggravates ALI and AKI, and promotes the inflammatory response; moreover, Hcp1-induced pyroptosis is one of the molecular mechanisms of AKI.
Collapse
Affiliation(s)
- Hao Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Long-Bao Lv
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Li-Ping Chen
- College of Foreign Languages, Yunnan Agricultural University, Kunming 650201, China
| | - Jin-Long Xiao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Jue Shen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Gao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jin-Gang Zhao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Dong-Mei Han
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Bin-Xun Chen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Shuai Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Gen Liu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Ai-Guo Xin
- National Foot-and-Mouth Disease Para-Reference Laboratory (Kunming), Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Peng Xiao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Hong Gao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
52
|
Yang X, Guo T, Du Z, Qin X, Wang K, Kebreab E, Wang D, Lyu L. Protective effects of MNQ against Lipopolysaccharide-induced inflammatory damage in bovine ovarian follicular granulosa cells in Vitro. J Steroid Biochem Mol Biol 2023; 230:106274. [PMID: 36813140 DOI: 10.1016/j.jsbmb.2023.106274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023]
Abstract
Inflammation of the reproductive tract in dairy cows lead to functional disorders of follicular granulosa cells (GCs) in mammalian ovaries resulting in infertility and serious losses to the livestock industry. Lipopolysaccharide (LPS) can induce an inflammatory response in follicular granulosa cells in vitro. The aim of this study was to investigate the cellular regulatory mechanism of MNQ (2-methoxy-1,4-naphthoquinone) on eliminating the inflammatory response and restoring normal functions for bovine ovarian follicular GCs cultured in vitro exposed to LPS. The cytotoxicity of MNQ and LPS on GCs were detected by MTT method to determine the safe concentration. The relative expression of inflammatory factors and steroid synthesis-related genes were detected by qRT-PCR. The concentration of steroid hormones in the culture broth were detected by ELISA. Differential gene expressions were analyzed by RNA-seq. There were no toxic effects on GCs at MNQ and LPS concentrations of less than 3 µM and 10 µg/mL, respectively and treated in 12 h. The relative expressions of IL-6, IL-1β and TNF-α were significantly higher in the LPS group compared with the CK group when GCs cultured in vitro were treated with the above concentrations and times (P < 0.05), but significantly lower in the MNQ+LPS group compared with the LPS group (P < 0.05). The levels of E2 and P4 in the culture solution were significantly reduced in the LPS group compared to the CK group (P < 0.05), and restored in the MNQ+LPS group. The relative expressions of CYP19A1, CYP11A1, 3β-HSD, and STAR were significantly decreased in the LPS group compared with the CK group (P < 0.05), while the MNQ+LPS group also recovered to some extent. There were 407 differential genes shared by LPS vs CK and MNQ+LPS vs LPS by RNA-seq analysis, which were mainly enriched in steroid biosynthesis and TNF signaling pathway. We screened 10 genes for analysis and found consistent results for RNA-seq and qRT-PCR. In this study, we confirmed the protective effect of MNQ, an extract from Impatiens balsamina L, on LPS-induced inflammatory responses in bovine follicular granulosa cells in vitro as well as functional damage, and acted through steroid biosynthesis and TNF signaling pathways.
Collapse
Affiliation(s)
- Xiaofeng Yang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Department of Biology, Xinzhou Normal University, Xinzhou, Shanxi 034000, China
| | - Tong Guo
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Zhangsheng Du
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiaowei Qin
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Kai Wang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Ermias Kebreab
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA
| | - Dong Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lihua Lyu
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
53
|
Sun Y, Ye F, Li D, Yang H, Xu T, Zhong X, Lu Y, Zhou H, Pan J. Fibroblast growth factor 2 (FGF2) ameliorates the coagulation abnormalities in sepsis. Toxicol Appl Pharmacol 2023; 460:116364. [PMID: 36621722 DOI: 10.1016/j.taap.2023.116364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
BACKGROUND Sepsis is defined as a life-threatening organ dysfunction caused by dysregulation of the host response to infection. There is still a lack of specific treatment for sepsis. Here, we report that Fibroblast growth factor-2 (FGF2) can reduce the mortality of sepsis by ameliorating the coagulation abnormalities. METHODS FGF2 was intraperitoneally injected into septic mice induced by lipopolysaccharide (LPS) and then assessed for coagulation response, organ damage and survival. RAW264.7 cells with or without FGF2 pretreating were exposed to LPS, and then changes in coagulation related factors expression and signaling were tested. RESULTS The findings showed that intraperitoneal injection of FGF2 inhibited coagulation activity, reduced lung and liver damage, and increased survival in septic mice. In RAW264.7 cells, LPS upregulated the expression of tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1); however, pretreatment with FGF2 prevented this upregulation, while FGF2 knockdown exacerbated TF upregulation. Moreover, FGF2 suppressing the AKT/mTOR/S6K1 signaling pathway in septic mice and RAW264.7 cells stimulated by LPS. CONCLUSIONS This study revealed a therapeutic role of FGF2 in ameliorating the coagulation abnormalities during sepsis.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China
| | - Fanrong Ye
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China
| | - Ding Li
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China
| | - Hongjing Yang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China
| | - Tingting Xu
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China
| | - Xincun Zhong
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China
| | - Yilun Lu
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China
| | - Hongmin Zhou
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China
| | - Jingye Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, China; Collaborative Innovation Center for Intelligence Medical Education, Wenzhou, China; Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, China.
| |
Collapse
|
54
|
Paul AK, Lim CL, Apu MAI, Dolma KG, Gupta M, de Lourdes Pereira M, Wilairatana P, Rahmatullah M, Wiart C, Nissapatorn V. Are Fermented Foods Effective against Inflammatory Diseases? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2481. [PMID: 36767847 PMCID: PMC9915096 DOI: 10.3390/ijerph20032481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Fermented foods have been used over the centuries in various parts of the world. These foods are rich in nutrients and are produced naturally using various biological tools like bacteria and fungi. Fermentation of edible foods has been rooted in ancient cultures to keep food for preservation and storage for a long period of time with desired or enhanced nutritional values. Inflammatory diseases like rheumatoid arthritis, osteoarthritis, and chronic inflammatory pain are chronic disorders that are difficult to treat, and current treatments for these disorders fail due to various adverse effects of prescribed medications over a long period of time. Fermented foods containing probiotic bacteria and fungi can enhance the immune system, improve gastrointestinal health, and lower the risk of developing various inflammatory diseases. Foods prepared from vegetables by fermentation, like kimchi, sauerkraut, soy-based foods, or turmeric, lack proper clinical and translational experimental studies. The current review has focused on the effectiveness of various fermented foods or drinks used over centuries against inflammation, arthritis, and oxidative stress. We also described potential limitations on the efficacies or usages of these fermented products to provide an overarching picture of the research field.
Collapse
Affiliation(s)
- Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Md. Aminul Islam Apu
- Department of Nutrition and Hospitality Management, The University of Mississippi, Oxford, MS 38677, USA
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Re-search University, New Delhi 110017, India
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh
| | - Christophe Wiart
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
55
|
Deng X, Lei HY, Ren YS, Ai J, Li YQ, Liang S, Chen LL, Liao MC. A novel strategy for active compound efficacy status identification in multi-tropism Chinese herbal medicine (Scutellaria baicalensis Georgi) based on multi-indexes spectrum-effect gray correlation analysis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115677. [PMID: 36064148 DOI: 10.1016/j.jep.2022.115677] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/14/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bioactive substance identification is always the focal point and the main challenge in Chinese herbal medicine (CHM). Most CHM present multiple efficacies and multiple tropisms, which has improved the application accuracy of CHM, and is worthy of further study. In this article, the concept of "multi-tropism efficacy of CHM" has been proposed for the first time. In addition, it is hypothesized that the different components in CHM can be classified based on their efficacy status. AIM OF THE STUDY The spectrum-effect relationship between the fingerprint and efficacy was established to identify the efficacy status of components. This provided a practical, efficient and accurate way to identify the bioactive substances from a complex CHM system. MATERIALS AND METHODS The network pharmacology approach was applied to preliminarily analyze the potential antibacterial compounds and mechanisms of HQ. Furthermore, its chemical fingerprint was established and the characteristic peaks were identified by LC-MS/MS. The antibacterial and anti-inflammatory bioactivities of HQ were determined to evaluate its pharmacological effect of heat-clearing and detoxification, and its anticoagulation activity was determined to evaluate its heat-clearing and tocolysis effects. The spectrum-effect relationships were assessed by gray correlation analysis to discriminate the status of active components in HQ with different efficacies. RESULTS Network pharmacology analysis revealed apigenin, wogonin, baicalein, acacetin, β-sitosterol, baicalin, eugenol, moslosooflavone, palmitic acid, oroxylin-A 7-O-glucuronide, and scutevulin as the potential active compounds responsible for the efficacy of HQ against both E. coli and S. aureus. The spectrum-effect relationship was utilized to reveal the orientation activities, with the results as follows: 1) The main basic-efficacy components in HQ with antibacterial, anti-inflammatory, and anticoagulant effects were P5, P8, P9, P15, P18, P19, P20; while the general basic-efficacy components were P2, P3, P6, P7, P11, P14, P21, P22, P28. 2) The main efficacy-oriented components in HQ with antibacterial effects on E. coli were P1, P12, P17, while the general efficacy-oriented compound was P10, P24, P25, P26, P27; the main efficacy-oriented in HQ with antibacterial effects on S. aureus were P14 and the general efficacy-oriented components were P1, P12, P26, P29, P30, respectively. 3) The main efficacy-oriented components with anti-inflammatory activity were P14, P24, P25, P27, and P30, while the general efficacy-oriented components were P13, P23, P26. 4) The main efficacy-oriented compounds in HQ with effects on anticoagulation were P6 and P22; these acted by prolonging APTT through the intrinsic coagulation pathway and PT through the extrinsic coagulation pathway, respectively. 5) The pharmacodynamic status classification of Scutellaria baicalensis ingredients were confirmed by nine reference compounds exemplarily. CONCLUSION This work established a novel strategy for active compound efficacy status identification in multi-tropism Chinese herbal medicine (Scutellaria baicalensis Georgi) based on multi-indexes spectrum-effect gray correlation analysis, the method is scientific feasible and can be applied to the effective substances identification and quality control of other CHM.
Collapse
Affiliation(s)
- Xin Deng
- School of Pharmacy, South-Central Minzu University, Wuhan, China; State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Hong-Yuan Lei
- School of Pharmacy, South-Central Minzu University, Wuhan, China
| | - Yong-Shen Ren
- School of Pharmacy, South-Central Minzu University, Wuhan, China.
| | - Jiao Ai
- School of Pharmacy, South-Central Minzu University, Wuhan, China
| | - Yan-Qiu Li
- School of Pharmacy, South-Central Minzu University, Wuhan, China
| | - Shuai Liang
- School of Pharmacy, South-Central Minzu University, Wuhan, China
| | - Lin-Lin Chen
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
| | - Mao-Chuan Liao
- School of Pharmacy, South-Central Minzu University, Wuhan, China
| |
Collapse
|
56
|
Li Z, Zhao T, Ding J, Gu H, Wang Q, Wang Y, Zhang D, Gao C. A reactive oxygen species-responsive hydrogel encapsulated with bone marrow derived stem cells promotes repair and regeneration of spinal cord injury. Bioact Mater 2023; 19:550-568. [PMID: 35600969 PMCID: PMC9108756 DOI: 10.1016/j.bioactmat.2022.04.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 10/29/2022] Open
Abstract
Spinal cord injury (SCI) is an overwhelming and incurable disabling event accompanied by complicated inflammation-related pathological processes, such as excessive reactive oxygen species (ROS) produced by the infiltrated inflammatory immune cells and released to the extracellular microenvironment, leading to the widespread apoptosis of the neuron cells, glial and oligodendroctyes. In this study, a thioketal-containing and ROS-scavenging hydrogel was prepared for encapsulation of the bone marrow derived mesenchymal stem cells (BMSCs), which promoted the neurogenesis and axon regeneration by scavenging the overproduced ROS and re-building a regenerative microenvironment. The hydrogel could effectively encapsulate BMSCs, and played a remarkable neuroprotective role in vivo by reducing the production of endogenous ROS, attenuating ROS-mediated oxidative damage and downregulating the inflammatory cytokines such as interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), resulting in a reduced cell apoptosis in the spinal cord tissue. The BMSCs-encapsulated ROS-scavenging hydrogel also reduced the scar formation, and improved the neurogenesis of the spinal cord tissue, and thus distinctly enhanced the motor functional recovery of SCI rats. Our work provides a combinational strategy against ROS-mediated oxidative stress, with potential applications not only in SCI, but also in other central nervous system diseases with similar pathological conditions.
Collapse
|
57
|
Effects of Continuous LPS Induction on Oxidative Stress and Liver Injury in Weaned Piglets. Vet Sci 2022; 10:vetsci10010022. [PMID: 36669023 PMCID: PMC9865882 DOI: 10.3390/vetsci10010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Due to imperfections in their immune and digestive systems, weaned piglets are susceptible to invasions of the external environment and diseases, especially bacterial infections, which lead to slow growth, tissue damage, and even the death of piglets. Here, a model of weaned piglets induced by Escherichia coli lipopolysaccharide (LPS) was established to explore the effects of continuous low-dose LPS induction on the mechanism of liver injury. A total of forty-eight healthy 28-day-old weaned piglets (weight = 6.65 ± 1.19 kg) were randomly divided into two groups: the CON group and LPS group. During the experimental period of thirteen days, the LPS group was injected intraperitoneally with LPS (100 μg/kg) once per day, and the CON group was treated with the same volume of 0.9% NaCl solution. On the 1st, 5th, 9th, and 13th days, the serum and liver of the piglets were collected for the determination of serum biochemical indexes, an antioxidant capacity evaluation, and histopathological examinations. In addition, the mRNA expression levels of the TLR4 pathway and inflammatory cytokines were detected. The results showed that the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) in the serum increased after LPS induction. The activities of total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-Px) in the serum and liver homogenate of the LPS group were lower than those of the CON group, while the malondialdehyde (MDA) content in the serum and the activities of catalase (CAT) and superoxide dismutase (SOD) in the liver of the LPS group were higher than those in the CON group. At the same time, morphological impairment of the livers occurred, including hepatocyte caryolysis, hepatocyte vacuolization, karyopycnosis, and inflammatory cell infiltration, and the mRNA expression levels of TLR4, MyD88, NF-κB, TNF-α, IL-6, and IL-10 were upregulated in the livers after LPS induction. The above results were more obvious on the 1st and 5th days of LPS induction, while the trend during the later period was not significant. It was concluded that the oxidative stress and liver injury occurred at the early stage of LPS induction, while the liver damage weakened at the later stage. The weaned piglets probably gradually developed tolerance to the endotoxin after the continuous low-dose induction of LPS.
Collapse
|
58
|
Kwon OY, Lee SH. Ishige okamurae Attenuates Neuroinflammation and Cognitive Deficits in Mice Intracerebroventricularly Injected with LPS via Regulating TLR-4/MyD88-Dependent Pathways. Antioxidants (Basel) 2022; 12:antiox12010078. [PMID: 36670940 PMCID: PMC9854571 DOI: 10.3390/antiox12010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Neuroinflammation is one of the critical causes of neuronal loss and cognitive impairment. We aimed to evaluate the anti-neuroinflammatory properties of Ishige okamuae using mice intracerebroventricularly injected with lipopolysaccharides (LPS) and LPS-treated C6 glioma cells. We found that the short- and long-term memory deficits of LPS-injected mice were improved by oral administration of Ishige okamurae extracts (IOE). LPS-induced neuronal loss, increase in amyloid-β plaque, and expression of COX-2 and iNOS were restored by IOE. In addition, LPS-induced activation of Toll-like receptor-4 (TLR-4) and its downstream molecules, such as MyD88, NFκB, and mitogen-activated protein kinases (MAPKs), were significantly attenuated in the brains of mice fed with IOE. We found that pretreatment of IOE to C6 glioma cells ameliorated LPS-induced expression of TLR-4 and its inflammatory cascades, such as MyD88 expression, reactive oxygen species production, MAPKs phosphorylation, and NFκB phosphorylation with consequent downregulation of COX-2, iNOS, proinflammatory cytokines, and nitric oxide expression. Furthermore, IOE (0.2 µg/mL) was found to have equivalent efficacy with 10 μM of MyD88 inhibitor in preventing LPS-induced inflammatory responses in C6 glioma cells. Taken together, these results strongly suggest that IOE could be developed as a promising anti-neuroinflammatory agent which is able to control the TLR-4/MyD88-dependent signaling pathways.
Collapse
|
59
|
Wuliangye Baijiu but not ethanol reduces cardiovascular disease risks in a zebrafish thrombosis model. NPJ Sci Food 2022; 6:55. [PMID: 36470888 PMCID: PMC9723178 DOI: 10.1038/s41538-022-00170-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Understanding how Baijiu facilitates blood circulation and prevents blood stasis is crucial for revealing the mechanism of Baijiu for cardiovascular disease (CVD) risk reduction. Here we established a zebrafish thrombosis model induced using arachidonic acid (AA) to quantitatively evaluate the antithrombotic effect of Wuliangye Baijiu. The prevention and reduction effects of aspirin, Wuliangye, and ethanol on thrombosis were compared using imaging and molecular characterization. Wuliangye Baijiu reduces thrombotic risks and oxidative stress in the AA-treated zebrafish, while ethanol with the same concentration has no similar effect. The prevention and reduction effects of Wuliangye on thrombosis are attributed to the change in the metabolic and signaling pathways related to platelet aggregation and adhesion, oxidative stress and inflammatory response.
Collapse
|
60
|
Bayazid AB, Lim BO. Quercetin Is An Active Agent in Berries against Neurodegenerative Diseases Progression through Modulation of Nrf2/HO1. Nutrients 2022; 14:5132. [PMID: 36501161 PMCID: PMC9737775 DOI: 10.3390/nu14235132] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Berries are well-known fruits for their antioxidant effects due to their high content of flavonoids, and quercetin is one of the potent bioactive flavonoids. Although oxidative stress is an inevitable outcome in cells due to energy uptake and metabolism and other factors, excessive oxidative stress is considered a pivotal mediator for the cell death and leads to the progression of neurodegenerative diseases (NDDs). Furthermore, oxidative stress triggers inflammation that leads to neuronal cell loss. Alzheimer's, Parkinson's, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and so on are the main neurodegenerative diseases. Hence, AD and PD are the most affected NDDs and cause the most lethality without any effective cure. Since AD and PD are the most common NDDs, therefore, in this study, we will describe the effect of oxidative stress on AD and PD. Targeting oxidative stress could be a very effective way to prevent and cure NDDs. Thus, the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO1) are potent endogenous antioxidant modulatory pathways, which also show cytoprotective activities. Modulation of Nrf2/HO1 signaling pathways through a biological approach could be an effective way to treat with NDDs. Quercetin is a natural polyphenol, which protects neurodegeneration, remarkably by suppressing oxidative stress and inflammation. Thus, quercetin could be a very effective agent against NDDs. We will discuss the benefits and challenges of quercetin to treat against NDDs, focusing on molecular biology.
Collapse
Affiliation(s)
- Al Borhan Bayazid
- Medicinal Biosciences, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Beong Ou Lim
- Medicinal Biosciences, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
- Human Bioscience Corporate R&D Center, Human Bioscience Corp. 268 Chungwondaero, Chungju 27478, Republic of Korea
| |
Collapse
|
61
|
Wang PC, Wang SX, Yan XL, He YY, Wang MC, Zheng HZ, Shi XG, Tan YH, Wang LS. Combination of paeoniflorin and calycosin-7-glucoside alleviates ischaemic stroke injury via the PI3K/AKT signalling pathway. PHARMACEUTICAL BIOLOGY 2022; 60:1469-1477. [PMID: 35938509 PMCID: PMC9361763 DOI: 10.1080/13880209.2022.2102656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Paeoniflorin (PF) and calycosin-7-glucoside (CG, Paeonia lactiflora Pall. extract) have demonstrated protective effects in ischaemic stroke. OBJECTIVE To investigate the synergistic effects of PF + CG on ischaemia/reperfusion injury in vivo and in vitro. MATERIALS AND METHODS Male Sprague-Dawley rats were subjected to the middle cerebral artery occlusion/reperfusion (MCAO/R). After MCAO/R for 24 h, rats were randomly subdivided into 5 groups: sham, model (MCAO/R), study treatment (PF + CG, 40 + 20 mg/kg), LY294002 (20 mg/kg), and study treatment + LY294002. Males were given via intragastric administration; the duration of the in vivo experiment was 8 days. Neurologic deficits, cerebral infarction, brain edoema, and protein levels were assessed in vivo. Hippocampal neurons (HT22) were refreshed with glucose-free DMEM and placed in an anaerobic chamber for 8 h. Subsequently, HT22 cells were reoxygenated in a 37 °C incubator with 5% CO2 for 6 h. SOD, MDA, ROS, LDH and protein levels were measured in vitro. RESULTS PF + CG significantly reduced neurobehavioral outcomes (21%), cerebral infarct volume (44%), brain edoema (1.6%) compared with the MCAO/R group. Moreover, PF + CG increased p-PI3K/PI3K (4.69%, 7.4%), p-AKT/AKT (6.25%, 60.6%) and Bcl-2/BAX (33%, 49%) expression in vivo and in vitro, and reduced GSK-3β (10.5%, 9.6%) expression. In vitro, PF + CG suppressed apoptosis in HT22 cells and decreased ROS and MDA levels (20%, 50%, respectively). CONCLUSIONS PF + CG showed a synergistic protective effect against ischaemic brain injury, potentially being a future treatment for ischaemic stroke.
Collapse
Affiliation(s)
- Peng-Cheng Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Sheng-Xin Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Xiang-Li Yan
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Ying-Ying He
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Min-Chun Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Hao-Zhen Zheng
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Xu-Guang Shi
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yong-Heng Tan
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Li-Sheng Wang
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong, China
- CONTACT Li-Sheng Wang College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, 232 Outer Circle Road East, Panyu District, Guangdong, Guangzhou510006, China
| |
Collapse
|
62
|
Wang Y, Wang H, Zhang Y, Xu F, Wang J, Zhang F. Stepwise Strategy to Identify Thrombin as a Hydrolytic Substrate for Nattokinase. J Chem Inf Model 2022; 62:5780-5793. [PMID: 36330712 DOI: 10.1021/acs.jcim.2c00978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nattokinase (NK) is a serine protease with a potent thrombolytic activity that possesses multiple cardiovascular disease (CVD) preventative and treatment activities. In light of its advanced beneficial cardiovascular effects and its nature as a serine protease, characterizing its biological substrates is essential for informing and ultimately delineating the molecular mechanism of its thrombolytic and anticoagulant activities that will unlock the powerful strategic design of effective therapies for CVDs. Given the efficacy of NK to break the vicious loop between inflammation, oxidative stress, and thrombosis, and the extensive role of thrombin in the loop, a stepwise computational strategy was developed to investigate the cleavage events of NK, including both a protein-protein complex model for protein substrate recognition and a protease-peptide complex model for the cleavage site identification, whereby their contact region was sited to allow for the prediction of the corresponding cleavage site that was successfully verified by both mass spectrometry (MS)-based N-terminal sequencing and various functional assays. Collectively, thrombin was predicted and identified to be a novel biological substrate of NK, which expanded the comprehensive antithrombus mechanism of NK via breaking the vicious loop between inflammation, oxidative stress, and thrombosis. This study not only provided insight into the interaction characteristics between NK and its hydrolytic substrate for a better understanding toward its catalytic mechanism but also developed a comprehensive computational strategy to elucidate the proteolytic targets of NK for the breakthrough of feature drug development.
Collapse
Affiliation(s)
- Ying Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang110016, People's Republic of China
| | - Huan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang110016, People's Republic of China
| | - Yupeng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang110016, People's Republic of China
| | - Feng Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang110016, People's Republic of China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang110016, People's Republic of China
| | - Fengjiao Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang110016, People's Republic of China
| |
Collapse
|
63
|
Liang M, Zhang J, Yang Y, Xia Y, Liu L, Liu L, Wang Q, Gao X. Nattokinase enhances the preventive effects of Escherichia coli Nissle 1917 on dextran sulfate sodium-induced colitis in mice. World J Microbiol Biotechnol 2022; 39:8. [PMID: 36350434 DOI: 10.1007/s11274-022-03452-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Nattokinase with excellent anti-thrombotic, anti-inflammatory, anti-tumor, and anti-hypertension properties has been used in the development of several healthcare products in many countries. The probiotic Escherichia coli Nissle 1917 (EcN) with anti-inflammatory effect is commonly used to treat inflammatory bowel disease. To determine whether nattokinase could enhance the therapeutic efficacy of EcN in colitis, a recombinant E. coli Nissle 1917 strain (EcNnatto) with nattokinase-expressing ability was successfully constructed, and the protective effect of the engineered strain on mice with experimental chronic colitis was investigated. Although both EcN and EcNnatto strains substantially alleviated the clinical symptoms and pathological abnormalities in colitis mice by regulating gut flora and maintaining intestinal barrier function, the EcNnatto strain was found to perform better than the control strain, based on a further increase in colon length and a downregulation in pro-inflammatory cytokines (IL-6 and TNF-α). Nattokinase expressed in EcN attenuated DSS-induced epithelial damage and restored the mucosal integrity by upregulating the levels of tight junction proteins, including ZO-1 and occludin. The expression level of Lgr5, a marker of intestinal stem cells, was also increased. Moreover, constitutively expressed nattokinase in EcN reversed the gut microbial richness and diversity in colitis mice. Based on our findings, nattokinase could strengthen the capacity of EcN to treat intestinal inflammation.
Collapse
Affiliation(s)
- Manyu Liang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jing Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yanhong Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yi Xia
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lintao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Li Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qin Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaowei Gao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
64
|
Zhang W, Zhang J, Huang H. Exosomes from adipose-derived stem cells inhibit inflammation and oxidative stress in LPS-acute kidney injury. Exp Cell Res 2022; 420:113332. [PMID: 36084668 DOI: 10.1016/j.yexcr.2022.113332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022]
Abstract
Acute renal damage presents a significant danger to kidney health. Previous research has found that acute kidney injury shows high levels of oxidative stress and inflammation caused by sepsis. Although mesenchymal stem cells (MSCs) can repair acute kidney injury. However, involvement of MSCs exosomes generated from adipose tissue and bone marrow in lipopolysaccharide-induced acute kidney damage is not clear. LPS (7.5 mg/kg) intraperitoneal injection was used to produce AKI, and 30 min before the LPS administration, adipose-derived MSCs (ADSCs) exosomes (1 × 105 and 5 × 105) and bone marrow-derived MSCs(BMSCs) exosomes (1 × 105 and 5 × 105) were delivered individually. The function of the rat kidney was explored. Inflammation, oxidative stress, and autophagy levels were further investigated. Both adipose-derived and bone marrow-derived MSCs can enhance renal function and structural damage, such as BUN, Creatinine, and cystatin C levels, as well as tubular damage scores. These findings indicate that both adipose-derived MSCs exosomes and bone marrow-derived MSCs exosomes decrease oxidative stress and inflammation, as well as make a substantial influence on kidney tissue in autophagy levels. Furthermore, compared to bone marrow-derived MSCs exosomes, adipose-derived MSCs exosomes improved kidney function and structure more significantly. We discovered that adipose-derived MSCs exosomes protect against LPS-induced AKI by inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Wen Zhang
- Department of General Practice, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Jian Zhang
- Department of Radiology the First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471000, China
| | - Hua Huang
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
65
|
Yao M, Yang Y, Fan J, Ma C, Liu X, Wang Y, Wang B, Sun Z, McClements DJ, Zhang J, Liu L, Xia G, Zhang N, Sun Q. Production, purification, and functional properties of microbial fibrinolytic enzymes produced by microorganism obtained from soy-based fermented foods: developments and challenges. Crit Rev Food Sci Nutr 2022; 64:3725-3750. [PMID: 36315047 DOI: 10.1080/10408398.2022.2134980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
According to the World Health Organization, cardiovascular disease (CVD) has become a major cause of chronic illness around the globe. It has been reported that soy-based fermented food (SFF) is very effective in preventing thrombus (one of the most important contributing factors to CVD), which are mainly attributed to the bioactive substances, especially the fibrinolytic enzymes (FE) generated by microorganisms during the fermentation process of soybean food. This paper therefore mainly reviewed the microbial fibrinolytic enzymes (MFE) from SFF. We first discuss the use of microbial fermentation to produce FE, with an emphasis on the strains involved. The production, purification, physicochemical properties, structure-functional attributes, functional properties and possible application of MFE from SFF are then discussed. Finally, current limitations and future perspectives for the production, purification, and the practical application of MFE are discussed. MFE from SFF pose multiple health benefits, including thrombolysis, antihypertension, anti-inflammatory, anti-hyperlipidemia, anticancer, neuroprotective, antiviral and other activities. Therefore, they exhibit great potential for functional foods and nutraceutical applications, especially foods with CVDs prevention potential.
Collapse
Affiliation(s)
- Mingjing Yao
- School of Food Engineering, Harbin University of Commerce, Harbin, China
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yang Yang
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Jing Fan
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Chunmin Ma
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xiaofei Liu
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yan Wang
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Bing Wang
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Zhihui Sun
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | | | - Jiaxiang Zhang
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Liping Liu
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Guanghua Xia
- College of Food Science and Technology, Hainan University, Hainan, China
| | - Na Zhang
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Quancai Sun
- Department of Food Science and Technology, National University of Singapore, Singapore
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
66
|
Shafiey SI, Abo-Saif AA, Abo-Youssef AM, Mohamed WR. Protective effects of rivaroxaban against cisplatin-induced testicular damage in rats: Impact on oxidative stress, coagulation, and p-NF-κB/VCAM-1 signaling. Food Chem Toxicol 2022; 169:113419. [PMID: 36122812 DOI: 10.1016/j.fct.2022.113419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Coagulation is a main pathway in various diseases pathogenesis including testicular damage. This study evaluated rivaroxaban (RVX) protective effects in testicular impairment by cisplatin (CP). Rats were randomly allocated into five groups: Control, RVX (7 mg/kg/day), CP (10 mg/kg), RVX 5 mg + CP and RVX 7 mg + CP. Serum testosterone and testicular ALT, AST, and ALP were assessed. Testicular oxidative stress and antioxidant parameters and inflammatory indicators including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were assessed. qRT-PCR was used to determine mRNA expression of 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β-hydroxysteroid dehydrogenase (17β-HSD), and steroidogenic acute regulatory protein (stAR). Protein expressions of p-Nuclear factor kappa B (p- NF-κB) and vascular cell adhesion protein-1 (VCAM-1) were analyzed by Western blot analysis. Tissue factor (TF) expression was immunohistochemically analyzed. Results revealed that RVX significantly increased serum testosterone and sperm count while significantly reduced IL-1β and TNF-α. It significantly decreased tissue MDA and NO contents while increased SOD and GPx. In addition, RVX attenuated CP-induced histopathological aberrations and normalized TF. It also decreased the VCAM-1 and p-NF-κB expression and showed strong expression of 3β-HSD, 17β-HSD, and stAR, indicating improvement of steroidogenesis. In conclusion, RVX counteracted testicular damage by CP via suppressing oxidative stress, inflammation, and coagulation and downregulating p-NF-κB/VCAM-1 signaling.
Collapse
Affiliation(s)
- Sara I Shafiey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, 62514, Egypt
| | - Ali A Abo-Saif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, 62514, Egypt
| | - Amira M Abo-Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
67
|
Zhang L, Wu JL, Xu P, Guo S, Zhou T, Li N. Soy protein degradation drives diversity of amino-containing compounds via Bacillus subtilis natto fermentation. Food Chem 2022; 388:133034. [PMID: 35483288 DOI: 10.1016/j.foodchem.2022.133034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/12/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022]
Abstract
Food fermentation has been playing an important role in producing bioactive components (e.g., peptides), which exert many healthy effects. In this study, it was observed that natto possessed significantly higher angiotensin I-converting enzyme (ACE) inhibitory effect than soybean. Meanwhile, a total of 246 amino-containing compounds were identified via LC-Q-TOF-MS/MS, including amino acids, dipeptides, tripeptides, O-methyl-peptide, and biogenic amines, 187 of them were only detected in natto. Of the list, dipeptides, with ACE inhibitory abilities or potentials, were found to be the most significantly up-regulated class and positively correlated with significantly increased ACE inhibitory activity of natto. Moreover, dynamic profiling elucidated the increased dipeptides were generated from water soluble and insoluble protein via Bacillus subtilis natto fermentation. Taken together, this study enriches the chemical diversity of natto and provides an in-depth insight into the degradation mechanism of soy protein during natto fermentation, which can be extended to other functional foods.
Collapse
Affiliation(s)
- Lili Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China.
| | - Pan Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingting Zhou
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China.
| |
Collapse
|
68
|
Wu H, Xu T, Chen T, Liu J, Xu S. Oxidative stress mediated by the TLR4/NOX2 signalling axis is involved in polystyrene microplastic-induced uterine fibrosis in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155825. [PMID: 35597360 DOI: 10.1016/j.scitotenv.2022.155825] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs), as a new environmental pollutant, have received widespread attention worldwide. Uterine fibrosis is one of the main factors of female reproductive disorders. However, it is unclear whether the female reproductive disorders caused by MPs are related to uterine fibrosis. Therefore, in this study, we constructed female mouse models exposed to polystyrene microplastics (PS-MPs). We found that PS-MP exposure resulted in endometrial thinning and severe collagen fibre deposition in female mice. Further mechanistic studies found that PS-MP exposure increased the expression of high mobility group Box 1 (HMGB1) and acetyl-HMGB1, further activating the Toll-like receptor 4/NADPH oxidase 2 (TLR4/NOX2) signalling axis and eventually causing oxidative stress. Afterwards, oxidative stress elicited the activation of Notch and the transforming growth factor β (TGF-β) signalling pathway, leading to increased levels of fibrotic proteins and collagen. Correspondingly, PS-MP treatment upregulated the expression of TLR4 and NOX2 and the level of reactive oxygen species (ROS) and increased the levels of fibrotic protein and collagen in mouse endometrial epithelial cells cultured in vitro. Conversely, inhibition of the TLR4/NOX2 signalling pathway effectively reduced the level of ROS in cells, weakened the upregulation of Notch and TGF-β signalling by PS-MPs, and efficiently reduced the expression of fibrotic and collagen genes. In summary, we demonstrated a new mechanism by which MPs induce uterine fibrosis in mice, that is, by inducing oxidative stress to activate the Notch and TGF-β signalling pathways by triggering the TLR4/NOX2 signalling axis. Targeting TLR4/NOX2 signalling may consequently prove to be an innovative therapeutic option that is effective in alleviating the reproductive toxicity of PS-MPs. Our study sheds new light on the reproductive toxicity of MPs and provides suggestions and references for comparative medicine and clinical medicine.
Collapse
Affiliation(s)
- Hao Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, PR China
| | - Ting Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
69
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
70
|
Abstract
Thrombosis is a common disorder with a relevant burden of morbidity and mortality worldwide, particularly among elderly patients. Growing evidence demonstrated a direct role of oxidative stress in thrombosis, with various cell types contributing to this process. Among them, erythrocytes produce high quantities of intracellular reactive oxygen species (ROS) by NADPH oxidase activation and haemoglobin autoxidation. Concomitantly, extracellular ROS released by other cells in the blood flow can be uptaken and accumulate within erythrocytes. This oxidative milieu can alter erythrocyte membrane structure, leading to an impaired erythrocyte function, and promoting erythrocytes lysis, binding to endothelial cells, activation of platelet and of coagulation factors, phosphatidylserine exposure and release of microvesicles. Moreover, these abnormal erythrocytes are able to adhere to the vessel wall, contributing to thrombin generation within the thrombus. This process results in accelerated haemolysis and in a hypercoagulable state, in which structurally impaired erythrocytes contribute to increase thrombus size, to reduce its permeability and susceptibility to lysis. However, the wide plethora of mechanisms by which oxidised erythrocytes contribute to thrombosis is not completely elucidated. This review discusses the main biochemical aspects linking erythrocytes, oxidative stress and thrombosis, addressing their potential implication for clinical and therapeutic management.
Collapse
|
71
|
Žarković N, Jastrząb A, Jarocka-Karpowicz I, Orehovec B, Baršić B, Tarle M, Kmet M, Lukšić I, Łuczaj W, Skrzydlewska E. The Impact of Severe COVID-19 on Plasma Antioxidants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165323. [PMID: 36014561 PMCID: PMC9416063 DOI: 10.3390/molecules27165323] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
Several studies suggested the association of COVID-19 with systemic oxidative stress, in particular with lipid peroxidation and vascular stress. Therefore, this study aimed to evaluate the antioxidant signaling in the plasma of eighty-eight patients upon admission to the Clinical Hospital Dubrava in Zagreb, of which twenty-two died within a week, while the other recovered. The differences between the deceased and the survivors were found, especially in the reduction of superoxide dismutases (SOD-1 and SOD-2) activity, which was accompanied by the alteration in glutathione-dependent system and the intensification of the thioredoxin-dependent system. Reduced levels of non-enzymatic antioxidants, especially tocopherol, were also observed, which correlated with enhanced lipid peroxidation (determined by 4-hydroxynonenal (4-HNE) and neuroprostane levels) and oxidative modifications of proteins assessed as 4-HNE-protein adducts and carbonyl groups. These findings confirm the onset of systemic oxidative stress in patients with severe SARS-CoV-2, especially those who died from COVID-19, as manifested by strongly reduced tocopherol level and SOD activity associated with lipid peroxidation. Therefore, we propose that preventive and/or supplementary use of antioxidants, especially of lipophilic nature, could be beneficial for the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Neven Žarković
- Laboratory for Oxidative Stress (LabOS), Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
- Correspondence:
| | - Anna Jastrząb
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Iwona Jarocka-Karpowicz
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Biserka Orehovec
- Clinical Department of Laboratory Diagnostics, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
| | - Bruno Baršić
- Department of Internal Medicine, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
| | - Marko Tarle
- Department of Maxillofacial Surgery, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
| | - Marta Kmet
- Clinical Department of Laboratory Diagnostics, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
| | - Ivica Lukšić
- Department of Maxillofacial Surgery, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
72
|
Li Y, Tang X, Chen L, Xu X, Li J. Characterization of a Nattokinase from the Newly Isolated Bile Salt-Resistant Bacillus mojavensis LY-06. Foods 2022; 11:foods11162403. [PMID: 36010402 PMCID: PMC9407603 DOI: 10.3390/foods11162403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 12/20/2022] Open
Abstract
Nattokinase is a potential new thrombolytic drug because of its strong thrombolytic effect, high safety, and low cost. However, there is no research reporting on bile salt-tolerant nattokinase-producing probiotics. In this study, the bile salt-tolerant nattokinase-producing strain Bacillus mojavensis LY-06 was isolated from local Xinjiang douchi, and the fermentation yield of nattokinase of 1434.64 U/mL was obtained by both a single factor experiment and an orthogonal experiment. A gene responsible for fibrinolysis (aprY) was cloned from the genome of strain Bacillus mojavensis LY-06, and the soluble expression of this gene in Escherichia coli (rAprY, fused with His-tag at C-terminus) was achieved; molecular docking elucidates the cause of insoluble expression of rAprY. The optimal pH and temperature for the fibrinolysis activity of nattokinase AprY fermented by Bacillus mojavensis LY-06 were determined to be pH 6.0 and 50 °C, respectively. However, the optimal pH of rAprY expressed in Escherichia coli was 8, and its acid stability, thermal stability, and fibrinolytic activity were lower than those of AprY. Bioinformatics analysis found that the His-tag carried at the C-terminus of rAprY could affect its acidic stability by changing the isoelectric point and surface charge of the enzyme; in contrast to AprY, changes in the number of internal hydrogen bonds and the flexibility of the loop region in the structure of rAprY resulted in lower fibrinolytic activity and poorer thermal stability.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Xiyu Tang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Liangqi Chen
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Xinran Xu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jinyao Li
- Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
- Correspondence:
| |
Collapse
|
73
|
Hosseinzadeh A, Bagherifard A, Koosha F, Amiri S, Karimi-Behnagh A, Reiter RJ, Mehrzadi S. Melatonin effect on platelets and coagulation: Implications for a prophylactic indication in COVID-19. Life Sci 2022; 307:120866. [PMID: 35944663 PMCID: PMC9356576 DOI: 10.1016/j.lfs.2022.120866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022]
Abstract
Severe COVID-19 is associated with the dynamic changes in coagulation parameters. Coagulopathy is considered as a major extra-pulmonary risk factor for severity and mortality of COVID-19; patients with elevated levels of coagulation biomarkers have poorer in-hospital outcomes. Oxidative stress, alterations in the activity of cytochrome P450 enzymes, development of the cytokine storm and inflammation, endothelial dysfunction, angiotensin-converting enzyme 2 (ACE2) enzyme malfunction and renin–angiotensin system (RAS) imbalance are among other mechanisms suggested to be involved in the coagulopathy induced by severe acute respiratory syndrome coronavirus (SARS-CoV-2). The activity and function of coagulation factors are reported to have a circadian component. Melatonin, a multipotential neurohormone secreted by the pineal gland exclusively at night, regulates the cytokine system and the coagulation cascade in infections such as those caused by coronaviruses. Herein, we review the mechanisms and beneficial effects of melatonin against coagulopathy induced by SARS-CoV-2 infection.
Collapse
|
74
|
Gao C, Tang S, Zhang H, Zhang H, Zhang T, Bao B, Zhu Y, Wu W. A Novel Marine Pyran-Isoindolone Compound Enhances Fibrin Lysis Mediated by Single-Chain Urokinase-Type Plasminogen Activator. Mar Drugs 2022; 20:md20080495. [PMID: 36005498 PMCID: PMC9410493 DOI: 10.3390/md20080495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
Fungi fibrinolytic compound 1 (FGFC1) is a rare pyran-isoindolone derivative with fibrinolytic activity. The aim of this study was to further determine the effect of FGFC1 on fibrin clots lysis in vitro. We constructed a fibrinolytic system containing single-chain urokinase-type plasminogen activator (scu-PA) and plasminogen to measure the fibrinolytic activity of FGFC1 using the chromogenic substrate method. After FITC-fibrin was incubated with increasing concentrations of FGFC1, the changes in the fluorescence intensity and D-dimer in the lysate were measured using a fluorescence microplate reader. The fibrin clot structure induced by FGFC1 was observed and analyzed using a scanning electron microscope and laser confocal microscope. We found that the chromogenic reaction rate of the mixture system increased from (15.9 ± 1.51) × 10−3 min−1 in the control group to (29.7 ± 1.25) × 10−3 min−1 for 12.8 μM FGFC1(p < 0.01). FGFC1 also significantly increased the fluorescence intensity and d-dimer concentration in FITC fibrin lysate. Image analysis showed that FGFC1 significantly reduced the fiber density and increased the fiber diameter and the distance between protofibrils. These results show that FGFC1 can effectively promote fibrin lysis in vitro and may represent a novel candidate agent for thrombolytic therapy.
Collapse
Affiliation(s)
- Chunli Gao
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.G.); (S.T.); (H.Z.); (H.Z.); (T.Z.); (B.B.)
| | - Simin Tang
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.G.); (S.T.); (H.Z.); (H.Z.); (T.Z.); (B.B.)
| | - Haixing Zhang
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.G.); (S.T.); (H.Z.); (H.Z.); (T.Z.); (B.B.)
| | - Huishu Zhang
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.G.); (S.T.); (H.Z.); (H.Z.); (T.Z.); (B.B.)
| | - Tian Zhang
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.G.); (S.T.); (H.Z.); (H.Z.); (T.Z.); (B.B.)
| | - Bin Bao
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.G.); (S.T.); (H.Z.); (H.Z.); (T.Z.); (B.B.)
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Yuping Zhu
- Basic Medical Experimental Teaching Center, Basic Medical College, Naval Medical University, PLA, Shanghai 200433, China
- Correspondence: (Y.Z.); (W.W.)
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.G.); (S.T.); (H.Z.); (H.Z.); (T.Z.); (B.B.)
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
- Correspondence: (Y.Z.); (W.W.)
| |
Collapse
|
75
|
Pérez S, Rius-Pérez S. Macrophage Polarization and Reprogramming in Acute Inflammation: A Redox Perspective. Antioxidants (Basel) 2022; 11:antiox11071394. [PMID: 35883885 PMCID: PMC9311967 DOI: 10.3390/antiox11071394] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022] Open
Abstract
Macrophage polarization refers to the process by which macrophages can produce two distinct functional phenotypes: M1 or M2. The balance between both strongly affects the progression of inflammatory disorders. Here, we review how redox signals regulate macrophage polarization and reprogramming during acute inflammation. In M1, macrophages augment NADPH oxidase isoform 2 (NOX2), inducible nitric oxide synthase (iNOS), synaptotagmin-binding cytoplasmic RNA interacting protein (SYNCRIP), and tumor necrosis factor receptor-associated factor 6 increase oxygen and nitrogen reactive species, which triggers inflammatory response, phagocytosis, and cytotoxicity. In M2, macrophages down-regulate NOX2, iNOS, SYNCRIP, and/or up-regulate arginase and superoxide dismutase type 1, counteract oxidative and nitrosative stress, and favor anti-inflammatory and tissue repair responses. M1 and M2 macrophages exhibit different metabolic profiles, which are tightly regulated by redox mechanisms. Oxidative and nitrosative stress sustain the M1 phenotype by activating glycolysis and lipid biosynthesis, but by inhibiting tricarboxylic acid cycle and oxidative phosphorylation. This metabolic profile is reversed in M2 macrophages because of changes in the redox state. Therefore, new therapies based on redox mechanisms have emerged to treat acute inflammation with positive results, which highlights the relevance of redox signaling as a master regulator of macrophage reprogramming.
Collapse
|
76
|
Yuan L, Liangqi C, Xiyu T, Jinyao L. Biotechnology, Bioengineering and Applications of Bacillus Nattokinase. Biomolecules 2022; 12:biom12070980. [PMID: 35883536 PMCID: PMC9312984 DOI: 10.3390/biom12070980] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Thrombosis has threatened human health in past decades. Bacillus nattokinase is a potential low-cost thrombolytic drug without side-effects and has been introduced into the consumer market as a functional food or dietary supplement. This review firstly summarizes the biodiversity of sources and the fermentation process of nattokinase, and systematically elucidates the structure, catalytic mechanism and enzymatic properties of nattokinase. In view of the problems of low fermentation yield, insufficient activity and stability of nattokinase, this review discusses the heterologous expression of nattokinase in different microbial hosts and summarizes the protein and genetic engineering progress of nattokinase-producing strains. Finally, this review summarizes the clinical applications of nattokinase.
Collapse
Affiliation(s)
- Li Yuan
- Department of Materia Medica, Xinjiang University, Urumqi 830017, China;
| | - Chen Liangqi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (C.L.); (T.X.)
| | - Tang Xiyu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (C.L.); (T.X.)
| | - Li Jinyao
- Department of Materia Medica, Xinjiang University, Urumqi 830017, China;
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (C.L.); (T.X.)
- Correspondence: ; Tel.: +86-130-0968-6488
| |
Collapse
|
77
|
Mitochondrial DNA Efflux Maintained in Gingival Fibroblasts of Patients with Periodontitis through ROS/mPTP Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1000213. [PMID: 35720188 PMCID: PMC9201712 DOI: 10.1155/2022/1000213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/24/2022] [Indexed: 12/22/2022]
Abstract
Mitochondria have their own mitochondrial DNA (mtDNA). Aberrant mtDNA is associated with inflammatory diseases. mtDNA is believed to induce inflammation via the abnormal mtDNA release. Periodontitis is an infectious, oral inflammatory disease. Human gingival fibroblasts (HGFs) from patients with chronic periodontitis (CP) have shown to generate higher reactive oxygen species (ROS) that cause oxidative stress and have decreased mtDNA copy number. Firstly, cell-free mtDNA was identified in plasma from CP mice through qRT-PCR. Next, we investigated whether mtDNA efflux was maintained in primary cultures of HGFs from CP patients and the possible underlying mechanisms using adenovirus-mediated transduction live cell imaging and qRT-PCR analysis. Here, we reported that mtDNA was increased in plasma from the CP mice. Additionally, we confirmed that CP HGFs had significant mtDNA efflux from mitochondria compared with healthy HGFs. Furthermore, lipopolysaccharide (LPS) from Porphyromonas gingivalis can also cause mtDNA release in healthy HGFs. Mechanistically, LPS upregulated ROS levels and mitochondrial permeability transition pore (mPTP) opening by inhibition of pyruvate dehydrogenase kinase (PDK)2 expression, resulting in mtDNA release. Importantly, mtDNA efflux was even persistent in HGFs after LPS was removed and cells were passaged to the next three generations, indicating that mtDNA abnormalities were retained in HGFs in vitro, similar to the primary hosts. Taken together, our results elucidate that mtDNA efflux was maintained in HGFs from periodontitis patients through abnormal ROS/mPTP activity. Therefore, our work indicates that persistent mtDNA efflux may be a possible diagnostic and therapeutic target for patients with periodontitis.
Collapse
|
78
|
Wu H, Guo J, Yao Y, Xu S. Polystyrene nanoplastics induced cardiomyocyte apoptosis and myocardial inflammation in carp by promoting ROS production. FISH & SHELLFISH IMMUNOLOGY 2022; 125:1-8. [PMID: 35504440 DOI: 10.1016/j.fsi.2022.04.048] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Nanoplastics (NPs) existing in aquatic ecosystem is an emerging environmental pollutant, which has become a nagging serious environmental problem. Miniaturized plastic fragments with different diameters have different penetration capabilities to body tissues, and thus may have different toxicity to the target organs. However, the specific toxicological effects and mechanisms of NPs with different particle sizes on aquatic animal hearts are still unknown. To this end, carps were directly exposed to the aqueous environment of polystyrene NPs (1000 μg/L, PS-NPs) with three particle sizes (50 nm, 100 nm and 400 nm), respectively, for 28 days. H&E and TUNEL staining displayed that exposed to PS-NPs of three diameters all caused myocardial tissue inflammation and cardiomyocyte apoptosis in carps. Of note, at the same exposure concentration, the damage caused by PS-NPs with particle size of 50 nm was more serious than that of 100 nm and 400 nm. Further research found that, in carp hearts exposed to PS-NPs, the levels of carp innate immunity-related components TLR4 and NOX2 were significantly higher than those in controls and were negatively correlated with the exposed particle size. The content of ROS increased significantly, the activities of antioxidant enzymes (CAT, SOD1 and Gpx1) decreased, and MDA accumulated. In addition, as the particle size of PS-NPs decreased, Th1 cells gradually replaced Th2 cells to dominate, the Th1/Th2 balance was dysregulated, and the expression of apoptosis-inducing pathway IGFBP3/p53/ACHE-related genes was increased, markedly. Overall, our study results demonstrated that PS-NPs exposure caused oxidative stress, resulting in inflammation and apoptosis in carp heart, and the degree of damage was negatively correlated with the particle size of PS-NPs. Our work enriched the theoretical basis for NPs toxicological research and shed new light on the risk of NPs exposure.
Collapse
Affiliation(s)
- Hao Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jinming Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
79
|
N-trimethyl chitosan coated targeting nanoparticles improve the oral bioavailability and antioxidant activity of vitexin. Carbohydr Polym 2022; 286:119273. [DOI: 10.1016/j.carbpol.2022.119273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 01/03/2023]
|
80
|
Wang X, Wang X, Liang F, Yu Y, Han R. Safety and efficacy of intravenous or topical tranexamic acid administration in surgery: a protocol for a systematic review and network meta-analysis. BMJ Open 2022; 12:e058093. [PMID: 35534082 PMCID: PMC9086642 DOI: 10.1136/bmjopen-2021-058093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Tranexamic acid (TXA) has become a widely used antifibrinolytic drug for reducing bleeding in surgery. However, adverse events, such as seizures, pulmonary embolism and deep vein thrombosis, limit its application. To date, insufficient attention has been devoted to determining the optimal dosage and administration route of TXA in the field of surgery. Thus, this study uses the network meta-analysis method, relying on its characteristics of combining direct comparison and indirect comparison, to analyse the safety and efficacy of different doses (high, medium, low) of intravenous injection or of topical application of TXA. METHODS AND ANALYSIS We will search the PubMed, Cochrane Central Register of Controlled Trials, Embase, Web of Science and China National Knowledge Internet databases using a strategy that combines the terms TXA, randomised controlled trials and embolism (or haemorrhage, blood transfusion, seizure, mortality). Two reviewers will independently screen all identified abstracts for eligibility and evaluate the risk-of-bias of the included studies using the Cochrane risk of bias tool for randomised controlled studies. We will conduct a systematic review and network meta-analysis. We plan to investigate heterogeneity by performing subgroup analysis and sensitivity analysis, and we will also consider the dose-response relationship between the optimal dose and a better routine. We will assess the overall certainty of the evidence for each outcome using the Grading Recommendations Assessment, Development and Evaluation approach ETHICS AND DISSEMINATION: No ethics approval will be sought, as no original data will be collected for this review. Findings will be disseminated through peer-reviewed publications and conference presentations. PROSPERO REGISTRATION NUMBER CRD42021281206.
Collapse
Affiliation(s)
- Xinyan Wang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinxin Wang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fa Liang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yun Yu
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruquan Han
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
81
|
Yuan Y, Hu Q, Liu L, Xie F, Yang L, Li Y, Zhang C, Chen H, Tang J, Shen X. Dehydrocostus Lactone Suppresses Dextran Sulfate Sodium-Induced Colitis by Targeting the IKKα/β-NF-κB and Keap1-Nrf2 Signalling Pathways. Front Pharmacol 2022; 13:817596. [PMID: 35321327 PMCID: PMC8936814 DOI: 10.3389/fphar.2022.817596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022] Open
Abstract
Dehydrocostus lactone (DCL) is a major sesquiterpene lactone isolated from Aucklandia lappa Decne, a traditional Chinese herbal medicine that used to treat gastrointestinal diseases. This study aimed to examine the therapeutic effects of DCL on dextran sulfate sodium (DSS)-induced colitis with a focus on identifying the molecular mechanisms involved in DCL-mediated anti-inflammatory activity in macrophages. First, oral administration of DCL (5–15 mg/kg) not only ameliorated symptoms of colitis and colonic barrier injury, but also inhibited the expression of proinflammatory cytokines and myeloperoxidase in colon tissues in DSS-challenged mice. Furthermore, DCL also exhibited significant anti-inflammatory activity in LPS/IFNγ-stimulated RAW264.7 macrophages. Importantly, DCL significantly suppressed the phosphorylation and degradation of IκBα and subsequent NF-κB nuclear translocation, and enhanced the nuclear accumulation of Nrf2 in LPS/IFNγ-treated RAW264.7 cells. Mechanistically, DCL could directly interact with IKKα/β and Keap1, thereby leading to the inhibition of NF-κB signalling and the activation of Nrf2 pathway. Furthermore, DCL-mediated actions were abolished by dithiothreitol, suggesting a thiol-mediated covalent linkage between DCL and IKKα/β or Keap1. These findings demonstrated that DCL ameliorates colitis by targeting NF-κB and Nrf2 signalling, suggesting that DCL may be a promising candidate in the clinical treatment of colitis.
Collapse
Affiliation(s)
- Yun Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luyao Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuchen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongqing Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofei Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaofei Shen,
| |
Collapse
|
82
|
Driving role of macrophages in transition from acute kidney injury to chronic kidney disease. Chin Med J (Engl) 2022; 135:757-766. [PMID: 35671177 PMCID: PMC9276339 DOI: 10.1097/cm9.0000000000002100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Acute kidney injury (AKI), characterized by acute renal dysfunction, is an increasingly common clinical problem and an important risk factor in the subsequent development of chronic kidney disease (CKD). Regardless of the initial insults, the progression of CKD after AKI involves multiple types of cells, including renal resident cells and immune cells such as macrophages. Recently, the involvements of macrophages in AKI-to-CKD transition have garnered significant attention. Furthermore, substantial progress has also been made in elucidating the pathophysiological functions of macrophages from the acute kidney to repair or fibrosis. In this review, we highlight current knowledge regarding the roles and mechanisms of macrophage activation and phenotypic polarization, and transdifferentiation in the development of AKI-to-CKD transition. In addition, the potential of macrophage-based therapy for preventing AKI-to-CKD transition is also discussed.
Collapse
|
83
|
Zhao C, Zhang H, Zhou J, Lu Q, Zhang Y, Yu X, Wang S, Liu R, Pu Y, Yin L. Metabolomics-based molecular signatures reveal the toxic effect of co-exposure to nitrosamines in drinking water. ENVIRONMENTAL RESEARCH 2022; 204:111997. [PMID: 34506781 DOI: 10.1016/j.envres.2021.111997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Nitrosamines, a group of emerging nitrogenous pollutants, are ubiquitously found in the drinking water system. However, less is known about how systemic biological responses resist or tolerate nitrosamines, especially long-term co-exposure at low concentrations. In this study, untargeted metabolomics was used to investigate the metabolic perturbations in human esophageal epithelial Het-1A cells induced by a mixture of nine common nitrosamines in drinking water at environmentally relevant, human-internal-exposure, and genotoxic concentrations. Generally, the disrupted metabolic spectrum became complicated with nitrosamines dose increasing. Notably, two inflammation-associated pathways, namely, cysteine (Cys) and methionine (MET) metabolism, and nicotinate and nicotinamide metabolism, changed significantly under the action of nitrosamines, even at the environmentally relevant level. Furthermore, targeted metabolomics and molecular biology indicators in cells were identified in mice synchronously. For one thing, the up-regulated Cys and MET metabolism provided methyl donors for histone methylation in the context of pro-inflammatory response. For another, the down-regulated NAD+/NADH ratio inhibited the deacetylation of NF-кB p65 and eventually activated the NF-кB signaling pathway. Taken collectively, the metabolomics molecular signatures were important indicative markers for nitrosamines-induced inflammation. The potential crosstalk between the inflammatory cascade and metabolic regulation also requires further studies. These findings suggest that more attention should be paid to long-term co-exposure at low concentrations in the control of nitrosamines pollution in drinking water. Additionally, this study also highlights a good prospect of the combined metabolomic-molecular biology approach in environmental toxicology.
Collapse
Affiliation(s)
- Chao Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jingjing Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Qiang Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Xiaojin Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China; School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
84
|
Combination of Colchicine and Ticagrelor Inhibits Carrageenan-Induced Thrombi in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3087198. [PMID: 35082966 PMCID: PMC8786461 DOI: 10.1155/2022/3087198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/04/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022]
Abstract
The formation of a thrombus is closely related to oxidative stress and inflammation. Colchicine is one of the most commonly prescribed medication for gout treatment, with anti-inflammation and antioxidative stress properties. Therefore, we speculated that it is possible for colchicine to treat thrombosis. In this study, we used carrageenan to induce thrombosis in BALB/c mice and fed mice with colchicine, ticagrelor, and their combination, respectively. We found colchicine inhibited carrageenan-induced thrombi in mouse tail, and the inhibition was enhanced by ticagrelor. In vitro, colchicine inhibited thrombin-induced retraction of human platelet clots. Mechanically, colchicine inhibited platelet activation by reducing the expression of platelet receptors, protease-activated receptor 4 (PAR4) and CD36, and inactivating of AKT and ERK1/2 pathways. Furthermore, in human umbilical vein endothelial cells (HUVECs), colchicine showed antioxidative stress effects through increasing protein expression of glutathione peroxidase-1 (GPx-1), and mRNA levels of forkhead box O3 (FOXO3a) and superoxide dismutase 2 (SOD2). In RAW264.7 cells, colchicine reduced LPS-enhanced inflammatory response through attenuating toll-like receptor 4 (TLR4) activation. In addition, colchicine reduced LPS or ox-LDL-induced monocyte adhesion to HUVECs by inhibiting intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1) levels. Taken together, our study demonstrates that colchicine exerts antithrombotic function by attenuating platelet activation and inhibiting oxidative stress and inflammation. We also provide a potential new strategy for clinical treatment.
Collapse
|
85
|
Atif M, Naz F, Akhtar J, Imran M, Saleem S, Akram J, Imran M, Ullah MI. From Molecular Pathology of COVID 19 to Nigella Sativum as a Treatment Option: Scientific Based Evidence of Its Myth or Reality. Chin J Integr Med 2022; 28:88-95. [PMID: 34586557 PMCID: PMC8479716 DOI: 10.1007/s11655-021-3311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 11/06/2022]
Abstract
COVID-19 virus is a causative agent of viral pandemic in human beings which specifically targets respiratory system of humans and causes viral pneumonia. This unusual viral pneumonia is rapidly spreading to all parts of the world, currently affecting about 105 million people with 2.3 million deaths. Current review described history, genomic characteristics, replication, and pathogenesis of COVID-19 with special emphasis on Nigella sativum (N. sativum) as a treatment option. N. sativum seeds are historically and religiously used over the centuries, both for prevention and treatment of different diseases. This review summarizes the potential role of N. sativum seeds against COVID-19 infection at levels of in silico, cell lines and animal models.
Collapse
Affiliation(s)
- Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 75471, Saudi Arabia
| | - Farrah Naz
- Department of Microbiology, Government College University, Faisalabad, 38000, Pakistan
| | - Junaid Akhtar
- Department of Microbiology, University of Health Sciences, Lahore, 54600, Pakistan
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, 40100, Pakistan
| | - Muhammad Imran
- Department of Microbiology, University of Health Sciences, Lahore, 54600, Pakistan
| | - Sidrah Saleem
- Department of Microbiology, University of Health Sciences, Lahore, 54600, Pakistan
| | - Javed Akram
- University of Health Sciences, Lahore, 54600, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, 54590, Pakistan.
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 75471, Saudi Arabia
| |
Collapse
|
86
|
Zhang W, Zhou Y, Fan Y, Cao R, Xu Y, Weng Z, Ye J, He C, Zhu Y, Wang X. Metal-Organic-Framework-Based Hydrogen-Release Platform for Multieffective Helicobacter Pylori Targeting Therapy and Intestinal Flora Protective Capabilities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105738. [PMID: 34655499 DOI: 10.1002/adma.202105738] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Helicobacter pylori (H. pylori) infection is the leading cause of chronic gastritis, peptic ulcer, and gastric cancer. Antibiotics, as traditional method for eliminating H. pylori, have no targeting effect, which causes serious bacterial resistance and gut dysbacteriosis. Moreover, antibiotics can hardly address hyperactive inflammatory response or damaged gastric mucosal barrier caused by H. pylori infection. Here, a pH-responsive metal-organic framework hydrogen-generation nanoparticle (Pd(H) @ ZIF-8) is reported, which is encapsulated with ascorbate palmitate (AP) hydrogel. Both in vitro and in vivo experiments demonstrate that the outer AP hydrogel can target and adhere to the inflammatory site through electrostatic interactions, and is then hydrolyzed by matrix metalloproteinase (MMP) enriching in inflammatory sites. The released Pd(H) @ ZIF-8 nanoparticles are further decomposed by gastric acid to generate zinc ions (Zn2+ ) and hydrogen, thus effectively killing H. pylori, alleviating inflammation and restoring impaired gastric mucosa simultaneously. Unexpectedly, this metal-organic framework hydrogen-generation platform (Pd(H) @ ZIF-8 @ AP) also has an effect toward avoiding the imbalance of intestinal flora, which thus provides a more precise, effective, and healthy strategy for the treatment of H. pylori infection.
Collapse
Affiliation(s)
- Wei Zhang
- College of Chemistry of Nanchang University, Nanchang University, Nanchang, 330088, China
| | - Yanan Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330088, China
| | - Yating Fan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, China
| | - Rui Cao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, China
| | - Yingying Xu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, China
| | - Zhenzhen Weng
- College of Chemistry of Nanchang University, Nanchang University, Nanchang, 330088, China
| | - Jing Ye
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, China
| | - Cong He
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330088, China
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330088, China
| | - Xiaolei Wang
- College of Chemistry of Nanchang University, Nanchang University, Nanchang, 330088, China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, China
| |
Collapse
|
87
|
Amini MA, Karimi J, Talebi SS, Piri H. The Association of COVID-19 and Reactive Oxygen Species Modulator 1 (ROMO1) with Oxidative Stress. Chonnam Med J 2022; 58:1-5. [PMID: 35169552 PMCID: PMC8813649 DOI: 10.4068/cmj.2022.58.1.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/04/2022] Open
Abstract
There is no denying that the massive spread of COVID-19 around the world has worried everyone. The virus can cause mild to severe symptoms in various organs, especially the lungs. The virus affects oxidative stress in the cells. Reactive Oxygen Species modulator 1 (ROMO1) is one of the most important mitochondrial proteins that plays a critical regulatory role in the production of Reactive Oxygen Species (ROS). According to the studies, COVID-19 can promote oxidative stress through some important pathways, for instance, TNF-α and NF-κB routes. Furthermore, ROMO1 is closely related to these pathways and its dysfunction may affect these routes, then promote oxidative stress, and ultimately cause tissue damage, especially in the lungs. Another factor to consider is that the TNF-α and NF-κB pathways are associated with ROMO1, COVID-19, and oxidative stress. To summarize, it is hypothesized that COVID-19 may increase oxidative stress by affecting ROMO1. Understanding the exact molecular mechanisms of ROMO1 in the pathogenesis of COVID-19 can pave the way to find better therapeutic strategies.
Collapse
Affiliation(s)
- Mohammad Amin Amini
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Saman Talebi
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hosein Piri
- Department of Biochemistry and Nutrition, School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| |
Collapse
|
88
|
Widowati W, Kusuma HSW, Arumwardana S, Afifah E, Wahyuni CD, Wijayanti CR, Maulana MA, Rizal R. Corilagin potential in inhibiting oxidative and inflammatory stress in LPS-induced murine macrophage cell lines (RAW 264.7). IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1656-1665. [PMID: 35432805 PMCID: PMC8976907 DOI: 10.22038/ijbms.2021.59348.13174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Inflammation is thought to be the common pathophysiological basis for several disorders. Corilagin is one of the major active compounds which showed broad-spectrum biological and therapeutic activities, such as antitumor, hepatoprotective, anti-oxidant, and anti-inflammatory. This study aimed to evaluate the anti-oxidant and anti-inflammatory activities of corilagin in LPS-induced RAW264.7 cells. MATERIALS AND METHODS Anti-oxidant activities were examined by free radical scavenging of H2O2, NO, and *OH. The safe concentrations of corilagin on RAW264.7 were determined by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay on RAW264.7 cell lines. The inflammation cells model was induced with LPS. The anti-inflammatory activities measured IL-6, TNF-α, NO, IL-1β, PGE-2, iNOS, and COX-2 levels using ELISA assay. RESULTS The results showed that corilagin had a significant inhibition activity dose-dependently in scavenging activities toward H2O2, *OH, and NO with IC50 values 76.85 µg/ml, 26.68 µg/ml, and 66.64 µg/ml, respectively. The anti-inflammatory activity of corilagin also showed a significant decrease toward IL-6, TNF-α, NO, IL-1β, PGE-2, iNOS, and COX-2 levels at the highest concentration (75 µM) compared with others concentration (50 and 25 µM) with the highest inhibition activities being 48.09%, 42.37%, 65.69%, 26.47%, 46.88%, 56.22%, 59.99%, respectively (P<0.05). CONCLUSION Corilagin has potential as anti-oxidant and anti-inflammatory in LPS-induced RAW 264.7 cell lines by its ability to scavenge free radical NO, *OH, and H2O2 and also suppress the production of proinflammatory mediators including COX-2, IL-6, IL-1β, and TNF-α in RAW 264.7 murine macrophage cell lines.
Collapse
Affiliation(s)
- Wahyu Widowati
- Faculty of Medicine, Maranatha Christian University, Jl. Surya Sumantri No. 65, Bandung 40164, West Java, Indonesia,Corresponding author: Wahyu Widowati. Medical Research Center, Faculty of Medicine, Maranatha Christian University, Prof. Drg. Suria Sumantri 65, Bandung, 40164, West Java, Indonesia. Tel: +6281910040010;
| | - Hanna Sari Widya Kusuma
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Jl Babakan Jeruk II No. 9, Bandung 40163, West Java, Indonesia
| | - Seila Arumwardana
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Jl Babakan Jeruk II No. 9, Bandung 40163, West Java, Indonesia
| | - Ervi Afifah
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Jl Babakan Jeruk II No. 9, Bandung 40163, West Java, Indonesia
| | - Cintani Dewi Wahyuni
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Jl Babakan Jeruk II No. 9, Bandung 40163, West Java, Indonesia
| | - Cahyaning Riski Wijayanti
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Jl Babakan Jeruk II No. 9, Bandung 40163, West Java, Indonesia
| | - Muhamad Aldi Maulana
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Jl Babakan Jeruk II No. 9, Bandung 40163, West Java, Indonesia
| | - Rizal Rizal
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Jl Babakan Jeruk II No. 9, Bandung 40163, West Java, Indonesia,Biomedical Engineering, Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16426, West Java, Indonesia
| |
Collapse
|
89
|
Al-Gburi S, Beissert S, Günther C. Molecular mechanisms of vasculopathy and coagulopathy in COVID-19. Biol Chem 2021; 402:1505-1518. [PMID: 34657406 DOI: 10.1515/hsz-2021-0245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/06/2021] [Indexed: 01/08/2023]
Abstract
COVID-19 primarily affects the respiratory system and may lead to severe systemic complications, such as acute respiratory distress syndrome (ARDS), multiple organ failure, cytokine storm, and thromboembolic events. Depending on the immune status of the affected individual early disease control can be reached by a robust type-I-interferon (type-I-IFN) response restricting viral replication. If type-I-IFN upregulation is impaired, patients develop severe COVID-19 that involves profound alveolitis, endothelitis, complement activation, recruitment of immune cells, as well as immunothrombosis. In patients with proper initial disease control there can be a second flare of type-I-IFN release leading to post-COVID manifestation such as chilblain-like lesions that are characterized by thrombosis of small vessels in addition to an inflammatory infiltrate resembling lupus erythematosus (LE). Mechanistically, SARS-CoV-2 invades pneumocytes and endothelial cells by acting on angiotensin-II-converting enzyme 2 (ACE2). It is hypothesized, that viral uptake might downregulate ACE2 bioavailability and enhance angiotensin-II-derived pro-inflammatory and pro-thrombotic state. Since ACE2 is encoded on the X chromosome these conditions might also be influenced by gender-specific regulation. Taken together, SARS-CoV-2 infection affects the vascular compartment leading to variable thrombogenic or inflammatory response depending on the individual immune response status.
Collapse
Affiliation(s)
- Suzan Al-Gburi
- University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Stefan Beissert
- University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Claudia Günther
- University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| |
Collapse
|
90
|
Zhang J, Tang Y, Yuan T, Yang M, Fang W, Li L, Fei F, Gong A. Nattokinase crude extract enhances oral mucositis healing. BMC Oral Health 2021; 21:555. [PMID: 34717590 PMCID: PMC8556967 DOI: 10.1186/s12903-021-01914-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/10/2021] [Indexed: 11/10/2022] Open
Abstract
Background Nattokinase (NK) is a promising alternative in the prevention and treatment of cardiovascular diseases due to its potent fibrinolytic activity. In this study, we investigated the effect of crude nattokinase extract on the healing of acetic acid-induced oral mucositis in mice. Methods Bacillus subtilis culture media (BSCM) was isolated into the supernatant, named nattokinase crude extract (NCE), and the pellet was named Bacillus subtilis mass (BSM). An oral mucositis model was established in mice by applying 50% glacial acetic acid to the buccal mucosa. According to the treatment conditions, the mice were divided into BSCM, NCE, BSM and phosphate buffered saline (PBS) groups. The weight of the mice, oral mucositis healing score and histopathological examination were used to evaluate the treatment. Results Fibrinolytic activities of BSCM, NCE and BSM were approximately 8069, 10,800 and 80 U/ml, respectively. The weight gain of mice in the NCE group was significantly different from the PBS group after three days’ treatment (p < 0.05). The oral mucositis score of NCE group was significantly higher than other groups (p < 0.05). The differences in histopathology scores between the NCE and other groups were statistically significant (p < 0.01). Conclusions NCE could possess remarkable potential to reduce pain and promote oral mucositis healing with minimal safety concerns. In this study, we first report that NCE from the supernatant of Bacillus subtilis can promote the healing of oral mucositis, which extends the application scope of NK.
Collapse
Affiliation(s)
- Junyao Zhang
- Department of Cell Biology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212003, China
| | - Yu Tang
- Department of Cell Biology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212003, China
| | - Tao Yuan
- Department of Cell Biology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212003, China
| | - Mengting Yang
- Department of Cell Biology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212003, China
| | - Wenjing Fang
- Department of Cell Biology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212003, China
| | - Li Li
- Department of Cell Biology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212003, China
| | - Fei Fei
- Department of Cell Biology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212003, China
| | - Aihua Gong
- Department of Cell Biology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212003, China.
| |
Collapse
|
91
|
Chen L, Zhang S, Wu S, Ren Z, Liu G, Wu J. Synergistic Protective Effect of Konjac Mannan Oligosaccharides and Bacillus subtilis on Intestinal Epithelial Barrier Dysfunction in Caco-2 Cell Model and Mice Model of Lipopolysaccharide Stimulation. Front Immunol 2021; 12:696148. [PMID: 34603279 PMCID: PMC8484872 DOI: 10.3389/fimmu.2021.696148] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/31/2021] [Indexed: 01/11/2023] Open
Abstract
As the first line of defense against intestinal bacteria and toxins, intestinal epithelial cells are always exposed to bacteria or lipopolysaccharide (LPS), whereas pathogenic bacteria or LPS can cause intestinal epithelial cell damage. Previous studies have shown that konjac mannan oligosaccharides (KMOS) have a positive effect on maintaining intestinal integrity, and Bacillus subtilis (BS) can promote the barrier effect of the intestine. However, it is still unknown whether KMOS and BS have a synergistic protective effect on the intestines. In this study, we used the LPS-induced Caco-2 cell injury model and mouse intestinal injury model to study the synergistic effects of KMOS and BS. Compared with KMOS or BS alone, co-treatment with KMOS and BS significantly enhanced the activity and antioxidant capacity of Caco-2 cell, protected mouse liver and ileum from LPS-induced oxidative damage, and repaired tight junction and mucus barrier damage by up-regulating the expression of Claudin-1, ZO-1 and MUC-2. Our results demonstrate that the combination of KMOS and BS has a synergistic repair effect on inflammatory and oxidative damage of Caco-2 cells and aIIeviates LPS-induced acute intestinal injury in mice.
Collapse
Affiliation(s)
- Lupeng Chen
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuai Zhang
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shi Wu
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhuqing Ren
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Guoquan Liu
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jian Wu
- College of Animal Sciences & Technology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
92
|
Cheng CK, Huang Y. The gut-cardiovascular connection: new era for cardiovascular therapy. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:23-46. [PMID: 37724079 PMCID: PMC10388818 DOI: 10.1515/mr-2021-0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/02/2021] [Indexed: 09/20/2023]
Abstract
Our gut microbiome is constituted by trillions of microorganisms including bacteria, archaea and eukaryotic microbes. Nowadays, gut microbiome has been gradually recognized as a new organ system that systemically and biochemically interact with the host. Accumulating evidence suggests that the imbalanced gut microbiome contributes to the dysregulation of immune system and the disruption of cardiovascular homeostasis. Specific microbiome profiles and altered intestinal permeability are often observed in the pathophysiology of cardiovascular diseases. Gut-derived metabolites, toxins, peptides and immune cell-derived cytokines play pivotal roles in the induction of inflammation and the pathogenesis of dysfunction of heart and vasculature. Impaired crosstalk between gut microbiome and multiple organ systems, such as gut-vascular, heart-gut, gut-liver and brain-gut axes, are associated with higher cardiovascular risks. Medications and strategies that restore healthy gut microbiome might therefore represent novel therapeutic options to lower the incidence of cardiovascular and metabolic disorders.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science; The Chinese University of Hong Kong, Hong Kong SAR999077, China
- Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR999077, China
| | - Yu Huang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science; The Chinese University of Hong Kong, Hong Kong SAR999077, China
- Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR999077, China
| |
Collapse
|
93
|
Research progress on the utilisation of embedding technology and suitable delivery systems for improving the bioavailability of nattokinase: A review. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
94
|
Zhou JT, Ren KD, Hou J, Chen J, Yang G. α‑rhamnrtin‑3‑α‑rhamnoside exerts anti‑inflammatory effects on lipopolysaccharide‑stimulated RAW264.7 cells by abrogating NF‑κB and activating the Nrf2 signaling pathway. Mol Med Rep 2021; 24:799. [PMID: 34523697 PMCID: PMC8456313 DOI: 10.3892/mmr.2021.12439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/11/2021] [Indexed: 01/03/2023] Open
Abstract
α-rhamnrtin-3-α-rhamnoside (ARR) is the principal compound extracted from Loranthus tanakae Franch. & Sav. However, its underlying pharmacological properties remain undetermined. Inflammation is a defense mechanism of the body; however, the excessive activation of the inflammatory response can result in physical injury. The present study aimed to investigate the effects of ARR on lipopolysaccharide (LPS)-induced RAW264.7 macrophages and to determine the underlying molecular mechanism. A Cell Counting Kit-8 assay was performed to assess cytotoxicity. Nitric oxide (NO) production was measured via a NO colorimetric kit. Levels of prostaglandin E2 (PGE2) and proinflammatory cytokines, IL-1β and IL-6, were detected using ELISAs. Reverse transcription-quantitative (RT-q)PCR analysis was performed to detect the mRNA expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), IL-6 and IL-1β in LPS-induced RAW246.7 cells. Western blotting, immunofluorescence and immunohistochemistry analyses were performed to measure the expression levels of NF-κB and nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway-related proteins to elucidate the molecular mechanisms of the inflammatory response. The results of the cytotoxicity assay revealed that doses of ARR ≤200 µg/ml exhibited no significant effect on the viability of RAW264.7 cells. The results of the Griess assay demonstrated that ARR inhibited the production of NO. In addition, the results of the ELISAs and RT-qPCR analysis discovered that ARR reduced the production of the proinflammatory cytokines, IL-1β and IL-6, as well as the proinflammatory mediators, PGE2, iNOS and COX-2, in LPS-induced RAW264.7 cells. Immunohistochemical analysis demonstrated that ARR inhibited LPS-induced activation of TNF-associated factor 6 (TRAF6) and NF-κB p65 signaling molecules, while reversing the downregulation of the NOD-like receptor family CARD domain containing 3 (NLRC3) signaling molecule, which was consistent with the results of the western blotting analysis. Immunofluorescence results indicated that ARR reduced the increase of NF-κB p65 nuclear expression induced by LPS. Furthermore, the results of the western blotting experiments also revealed that ARR upregulated heme oxygenase-1, NAD(P)H quinone dehydrogenase 1 and Nrf2 pathway molecules. In conclusion, the results of the present study suggested that ARR may exert anti-inflammatory effects by downregulating NF-κB and activating Nrf2-mediated inflammatory responses, suggesting that ARR may be an attractive anti-inflammatory candidate drug.
Collapse
Affiliation(s)
- Jiang Tao Zhou
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Kai Da Ren
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Jing Hou
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Jie Chen
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Guan'e Yang
- Department of Chinese Medicine, School of Pharmaceutical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| |
Collapse
|
95
|
Abstract
Cancer is a multidimensional and challenging disease to handle. Current statistics reveal that we are far from satisfying cancer treatment. Taking advantage of different therapeutic agents that affect multiple pathways has been established as highly productive. Nevertheless, owing to several hindrances to conventional combination therapy, such as lack of tumor targeting, non-uniform pharmacokinetic of the combined drugs, and off-target side effects, it is well documented that this treatment approach is unlikely to address all the difficulties observed in monotherapy. Co-delivery systems could enhance the therapeutic efficacy of the combination therapy by targeting cancer cells and improving the pharmacokinetic and physicochemical properties of the therapeutic agents. Nevertheless, it seems that present knowledge in responding to the challenges in cancer treatment is still inadequate and far from optimal treatment, which highlights the urgent need for systematic studies direct to identify various aspects of co-delivery systems. Accordingly, to gather informative data, save time, and achieve superior results, the following steps are necessary: (1) implementing computational methods to predict drug-drug interactions (DDIs) in vitro and in vivo, (2) meticulous cancer studies at the cellular and molecular levels to obtain specific criteria for selecting preclinical and clinical models, (3) extensive physiological and pharmacokinetic study of nanocarriers behavior in preclinical models, and (4) finding the optimal formulation and analyzing its behavior in cellular and animal models facilitates bridging in vivo models to clinical trials. This review aims to deliver an overview of co-delivery systems, rationales, and suggestions for further studies in this field.
Collapse
|
96
|
Wang C, Chen Y, Cheng NT, Yang ZT, Tang HX, Xu M. MicroRNA-762 Modulates Lipopolysaccharide-induced Acute Lung Injury via SIRT7. Immunol Invest 2021; 51:1407-1422. [PMID: 34251977 DOI: 10.1080/08820139.2021.1951753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: Inflammation and oxidative stress contribute to the pathogenesis of lipopolysaccharide (LPS)-induced acute lung injury (ALI). MicroRNA-762 (miR-762) has been implicated in the progression of inflammation and oxidative stress; however, its role in ALI remains unclear. In this study, we aim to investigate the role and underlying mechanisms of miR-762 in LPS-induced ALI. Methods: Mice were intravenously injected with miR-762 antagomir, agomir or the negative controls for 3 consecutive days and then received a single intratracheal instillation of LPS (5 mg/kg) for 12 h to establish ALI model. Adenoviral vectors were used to knock down the endogenous SIRT7 expression. Results: An increased miR-762 expression was detected in LPS-treated lungs. miR-762 antagomir significantly reduced inflammation, oxidative stress and ALI in mice, while the mice with miR-762 agomir treatment exhibited a deleterious phenotype. Besides, we found that SIRT7 upregulation was essential for the pulmonoprotective effects of miR-762 antagomir, and that SIRT7 silence completely abolished the anti-inflammatory and anti-oxidant capacities of miR-762 antagomir. Conclusion: miR-762 is implicated in the pathogenesis of LPS-induced ALI via modulating inflammation and oxidative stress, which depends on its regulation of SIRT7 expression. It might be a valuable therapeutic target for the treatment of ALI.
Collapse
Affiliation(s)
- Cong Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yun Chen
- Department of Thoracic Surgery, Xishui People's Hospital Affiliated to Hubei University of Science and Technology, Huanggang, Hubei, China
| | - Ni-Tao Cheng
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ze-Tian Yang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - He-Xiao Tang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ming Xu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
97
|
Gallelli G, Di Mizio G, Palleria C, Siniscalchi A, Rubino P, Muraca L, Cione E, Salerno M, De Sarro G, Gallelli L. Data Recorded in Real Life Support the Safety of Nattokinase in Patients with Vascular Diseases. Nutrients 2021; 13:nu13062031. [PMID: 34199189 PMCID: PMC8231931 DOI: 10.3390/nu13062031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/30/2022] Open
Abstract
Nattokinase (NK) is a serine protease enzyme with fibrinolytic activity. Even if it could be used for the treatment of several diseases, no data have been published supporting its use patients who underwent vascular surgery. In this study, we evaluated both the efficacy and the safety of nattokinase (100 mg/day per os) in patients admitted to vascular surgery. Patients were of both sexes, >18 years of age, with vascular diseases (i.e., deep vein thrombosis, superficial vein thrombosis, venous insufficiency), and naïve to specific pharmacological treatments (anticoagulants or anti-platelets). Patients were divided into three groups. Group 1: patients with deep vein thrombosis, treated with fondaparinux plus nattokinase. Group 2: patients with phlebitis, treated with enoxaparin plus nattokinase. Group 3: patients with venous insufficiency after classical surgery, treated with nattokinase one day later. During the study, we enrolled 153 patients (age 22–92 years), 92 females (60.1%) and 61 males (39.9%;), and documented that nattokinase was able to improve the clinical symptoms (p < 0.01) without the development of adverse drug reactions or drug interactions. Among the enrolled patients, during follow-up, we did not record new cases of vascular diseases. Attention to patients’ clinical evolution, monitoring of the INR, and timely and frequent adjustment of dosages represent the cornerstones of the safety of care for patients administered fibrinolytic drugs as a single treatment or in pharmacological combination. Therefore, we can conclude that the use of nattokinase represents an efficient and safe treatment able to both prevent and treat patients with vascular diseases.
Collapse
Affiliation(s)
- Giuseppe Gallelli
- Department of Vascular Surgery, Pugliese Ciaccio Hospital, 88100 Catanzaro, Italy; (G.G.); (P.R.)
| | - Giulio Di Mizio
- Forensic Medicine, Department of Law, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| | - Caterina Palleria
- Department of Health Science, School of Medicine, University of Catanzaro, Clinical Pharmacology and Pharmacovigilance Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (C.P.); (G.D.S.); (L.G.)
| | - Antonio Siniscalchi
- Department of Neurology and Stroke Unit, Annunziata Hospital of Cosenza, 87100 Cosenza, Italy;
| | - Paolo Rubino
- Department of Vascular Surgery, Pugliese Ciaccio Hospital, 88100 Catanzaro, Italy; (G.G.); (P.R.)
| | - Lucia Muraca
- Department of General Medicine, ASP 7 Catanzaro, 88100 Catanzaro, Italy;
| | - Erika Cione
- Department of Pharmacy Helath and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, 87036 Rende, Italy;
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95041 Catania, Italy;
| | - Giovambattista De Sarro
- Department of Health Science, School of Medicine, University of Catanzaro, Clinical Pharmacology and Pharmacovigilance Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (C.P.); (G.D.S.); (L.G.)
- Department of Health Science, School of Medicine, Clinical Pharmacology Research Center FAS@UMG, University of Catanzaro, 88100 Catanzaro, Italy
| | - Luca Gallelli
- Department of Health Science, School of Medicine, University of Catanzaro, Clinical Pharmacology and Pharmacovigilance Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (C.P.); (G.D.S.); (L.G.)
- Department of Health Science, School of Medicine, Clinical Pharmacology Research Center FAS@UMG, University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
98
|
Gasmi A, Bjørklund G, Peana M, Mujawdiya PK, Pivina L, Ongenae A, Piscopo S, Severin B. Phosphocalcic metabolism and the role of vitamin D, vitamin K2, and nattokinase supplementation. Crit Rev Food Sci Nutr 2021; 62:7062-7071. [PMID: 33966563 DOI: 10.1080/10408398.2021.1910481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Calcium is involved in bone metabolism, regulation of nerve signaling, and release of neurotransmitters. Phosphorus is a structural component of ATP, participates in metabolic energy regulation, and ensures stability to biological membranes and cells. Vitamin D and vitamin K are important for intestinal absorption and renal excretion of calcium and phosphorus. Vitamin D plays a regulatory role in bone formation, carbohydrate metabolism, immune responses, and cardiovascular regulation. Research has linked vitamin D deficiency to the development of diabetes mellitus, hypertension, cancer, and osteoporosis. Vitamin K has been associated with a reduced risk of osteoporosis, cancer, and cardiovascular diseases (due to improved vascular elasticity). This review highlights the importance of vitamins D and K in the metabolism of calcium and phosphorus and explores various molecular mechanisms that help maintain the system's mineral homeostasis. Moreover, the paper reviews the enzyme nattokinase's role in thrombotic prevention due to its fibrinolytic activity.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | | | - Lyudmila Pivina
- Semey Medical University, Semey, Kazakhstan.,CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Adrien Ongenae
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Salva Piscopo
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Beatrice Severin
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| |
Collapse
|
99
|
Huang Z, Ng TK, Chen W, Sun X, Huang D, Zheng D, Yi J, Xu Y, Zhuang X, Chen S. Nattokinase Attenuates Retinal Neovascularization Via Modulation of Nrf2/HO-1 and Glial Activation. Invest Ophthalmol Vis Sci 2021; 62:25. [PMID: 34036312 PMCID: PMC8164371 DOI: 10.1167/iovs.62.6.25] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 05/04/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Nattokinase (NK), an active ingredient extracted from traditional food Natto, has been studied for prevention and treatment of cardiovascular diseases due to various vasoprotective effects, including fibrinolytic, antihypertensive, anti-atherosclerotic, antiplatelet, and anti-inflammatory activities. Here, we reported an antineovascular effect of NK against experimental retinal neovascularization. METHODS The inhibitory effect of NK against retinal neovascularization was evaluated using an oxygen-induced retinopathy murine model. Expressions of Nrf2/HO-1 signaling and glial activation in the NK-treated retinae were measured. We also investigated cell proliferation and migration of human umbilical vein endothelial cells (HUVECs) after NK administration. RESULTS NK treatment significantly attenuated retinal neovascularization in the OIR retinae. Consistently, NK suppressed VEGF-induced cell proliferation and migration in a concentration-dependent manner in cultured vascular endothelial cells. NK ameliorated ischemic retinopathy partially via activating Nrf2/HO-1. In addition, NK orchestrated reactive gliosis and promoted microglial activation toward a reparative phenotype in ischemic retina. Treatment of NK exhibited no cell toxicity or anti-angiogenic effects in the normal retina. CONCLUSIONS Our results revealed the anti-angiogenic effect of NK against retinal neovascularization via modulating Nrf2/HO-1, glial activation and neuroinflammation, suggesting a promising alternative treatment strategy for retinal neovascularization.
Collapse
Affiliation(s)
- Zijing Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Weiqi Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Xiaowei Sun
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Dingguo Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Dezhi Zheng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Jingsheng Yi
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Xi Zhuang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Shaolang Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| |
Collapse
|
100
|
Li N, Chen J, Wang P, Fan H, Hou S, Gong Y. Major signaling pathways and key mediators of macrophages in acute kidney injury (Review). Mol Med Rep 2021; 23:455. [PMID: 33880578 PMCID: PMC8072315 DOI: 10.3892/mmr.2021.12094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) has become a global public health problem with high morbidity and mortality rates, as well as high healthcare costs. Immune cells, particularly macrophages, which regulate tissue development, destroy pathogens, control homeostasis and repair wounds, play crucial and complex roles in AKI. In various types of AKI, numerous rapidly recruited monocytes and tissue-resident macrophages act in a coordinated manner. Thus, elucidating the phenotypic and functional characteristics of macrophages in AKI is essential for identifying potential therapeutic targets. Macrophage-sensing mediators and macrophage-derived mediators participate in the major macrophage-related signaling pathways in AKI, which regulate macrophage polarization and determine disease progression. In conclusion, macrophages change their roles and regulatory mechanisms during the occurrence and development of AKI. The aim of the present review was to contribute to an improved understanding of AKI and to the identification of novel therapeutic targets for this condition.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Jiale Chen
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Pengtao Wang
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
| | - Haojun Fan
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Shike Hou
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Yanhua Gong
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|