51
|
Song G, Wang H, Xu H, Poon CS. Kölliker–Fuse neurons send collateral projections to multiple hypoxia-activated and nonactivated structures in rat brainstem and spinal cord. Brain Struct Funct 2012; 217:835-58. [PMID: 22286911 PMCID: PMC3459144 DOI: 10.1007/s00429-012-0384-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/13/2012] [Indexed: 02/07/2023]
Abstract
The Kölliker–Fuse nucleus (KFN) in dorsolateral pons has been implicated in many physiological functions via its extensive efferent connections. Here, we combine iontophoretic anterograde tracing with posthypoxia c-Fos immunohistology to map KFN axonal terminations among hypoxia-activated/nonactivated brain stem and spinal structures in rats. Using a set of stringent inclusion/exclusion criteria to align visualized axons across multiple coronal brain sections, we were able to unequivocally trace axonal trajectories over a long rostrocaudal distance perpendicular to the coronal plane. Structures that were both richly innervated by KFN axonal projections and immunopositive to c-Fos included KFN (contralateral side), ventrolateral pontine area, areas ventral to rostral compact/subcompact ambiguus nucleus, caudal (lateral) ambiguus nucleus, nucleus retroambiguus, and commissural–medial subdivisions of solitary tract nucleus. The intertrigeminal nucleus, facial and hypoglossal nuclei, retrotrapezoid nucleus, parafacial region and spinal cord segment 5 were also richly innervated by KFN axonal projections but were only weakly (or not) immunopositive to c-Fos. The most striking finding was that some descending axons from KFN sent out branches to innervate multiple (up to seven) pontomedullary target structures including facial nucleus, trigeminal sensory nucleus, and various parts of ambiguus nucleus and its surrounding areas. The extensive axonal fan-out from single KFN neurons to multiple brainstem and spinal cord structures("one-to-many relationship"’) provides anatomical evidence that KFN may coordinate diverse physiological functions including hypoxic and hypercapnic respiratory responses, respiratory pattern generation and motor output,diving reflex, modulation of upper airways patency,coughing and vomiting abdominal expiratory reflex, as well as cardiovascular regulation and cardiorespiratory coupling.
Collapse
Affiliation(s)
- Gang Song
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | |
Collapse
|
52
|
Bochorishvili G, Stornetta RL, Coates MB, Guyenet PG. Pre-Bötzinger complex receives glutamatergic innervation from galaninergic and other retrotrapezoid nucleus neurons. J Comp Neurol 2012; 520:1047-61. [PMID: 21935944 PMCID: PMC3925347 DOI: 10.1002/cne.22769] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The retrotrapezoid nucleus (RTN) contains CO(2) -responsive neurons that regulate breathing frequency and amplitude. These neurons (RTN-Phox2b neurons) contain the transcription factor Phox2b, vesicular glutamate transporter 2 (VGLUT2) mRNA, and a subset contains preprogalanin mRNA. We wished to determine whether the terminals of RTN-Phox2b neurons contain galanin and VGLUT2 proteins, to identify the specific projections of the galaninergic subset, to test whether RTN-Phox2b neurons contact neurons in the pre-Bötzinger complex, and to identify the ultrastructure of these synapses. The axonal projections of RTN-Phox2b neurons were traced by using biotinylated dextran amine (BDA), and many BDA-ir boutons were found to contain galanin immunoreactivity. RTN galaninergic neurons had ipsilateral projections that were identical with those of this nucleus at large: the ventral respiratory column, the caudolateral nucleus of the solitary tract, and the pontine Kölliker-Fuse, intertrigeminal region, and lateral parabrachial nucleus. For ultrastructural studies, RTN-Phox2b neurons (galaninergic and others) were transfected with a lentiviral vector that expresses mCherry almost exclusively in Phox2b-ir neurons. After spinal cord injections of a catecholamine neuron-selective toxin, there was a depletion of C1 neurons in the RTN area; thus it was determined that the mCherry-positive terminals located in the pre-Bötzinger complex originated almost exclusively from the RTN-Phox2b (non-C1) neurons. These terminals were generally VGLUT2-immunoreactive and formed numerous close appositions with neurokinin-1 receptor-ir pre-Bötzinger complex neurons. Their boutons (n = 48) formed asymmetric synapses filled with small clear vesicles. In summary, RTN-Phox2b neurons, including the galaninergic subset, selectively innervate the respiratory pattern generator plus a portion of the dorsolateral pons. RTN-Phox2b neurons establish classic excitatory glutamatergic synapses with pre-Bötzinger complex neurons presumed to generate the respiratory rhythm.
Collapse
Affiliation(s)
| | - Ruth L. Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Melissa B. Coates
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Patrice G. Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
53
|
Panneton WM, Gan Q, Sun DW. Persistence of the nasotrigeminal reflex after pontomedullary transection. Respir Physiol Neurobiol 2012; 180:230-6. [PMID: 22154693 PMCID: PMC3273655 DOI: 10.1016/j.resp.2011.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 11/25/2022]
Abstract
Most behaviors have numerous components based on reflexes, but the neural circuits driving most reflexes rarely are documented. The nasotrigeminal reflex induced by stimulating the nasal mucosa causes an apnea, a bradycardia, and variable changes in mean arterial blood pressure (MABP). In this study we tested the nasotrigeminal reflex after transecting the brainstem at the pontomedullary junction. The nasal mucosae of anesthetized rats were stimulated with ammonia vapors and their brainstems then were transected. Complete transections alone induced an increase in resting heart rate (HR; p<0.001) and MABP (p<0.001), but no significant change in ventilation. However, the responses to nasal stimulation after transection were similar to those seen prior to transection. HR still dropped significantly (p<0.001), duration of apnea remained the same, as did changes in MABP. Results from rats whose transection were incomplete are discussed. These data implicate that the neuronal circuitry driving the nasotrigeminal reflex, and indirectly the diving response, is intrinsic to the medulla and spinal cord.
Collapse
Affiliation(s)
- W Michael Panneton
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, MO 63104-1004, United States.
| | | | | |
Collapse
|
54
|
Torterolo P, Sampogna S, Chase MH. A restricted parabrachial pontine region is active during non-rapid eye movement sleep. Neuroscience 2011; 190:184-93. [PMID: 21704676 DOI: 10.1016/j.neuroscience.2011.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 05/10/2011] [Accepted: 06/08/2011] [Indexed: 01/09/2023]
Abstract
The principal site that generates both rapid eye movement (REM) sleep and wakefulness is located in the mesopontine reticular formation, whereas non-rapid eye movement (NREM) sleep is primarily dependent upon the functioning of neurons that are located in the preoptic region of the hypothalamus. In the present study, we were interested in determining whether the occurrence of NREM might also depend on the activity of mesopontine structures, as has been shown for wakefulness and REM sleep. Adult cats were maintained in one of the following states: quiet wakefulness (QW), alert wakefulness (AW), NREM, or REM sleep induced by microinjections of carbachol into the nucleus pontis oralis (REM-carbachol). Subsequently, they were euthanized and single-labeling immunohistochemical studies were undertaken to determine state-dependent patterns of neuronal activity in the brainstem based upon the expression of the protein Fos. In addition, double-labeling immunohistochemical studies were carried out to detect neurons that expressed Fos as well as choline acetyltransferase, tyrosine hydroxylase, or GABA. During NREM, only a few Fos-immunoreactive cells were present in different regions of the brainstem; however, a discrete cluster of Fos+ neurons was observed in the caudolateral parabrachial region (CLPB). The number of Fos+ neurons in the CLPB during NREM was significantly greater (67.9±10.9, P<0.0001) compared with QW (8.0±6.7), AW (5.2±4.2), or REM-carbachol (8.0±4.7). In addition, there was a positive correlation (R=0.93) between the time the animals spent in NREM and the number of Fos+ neurons in the CLPB. Fos-immunoreactive neurons in the CLPB were neither cholinergic nor catecholaminergic; however, about 50% of these neurons were GABAergic. We conclude that a group of GABAergic and unidentified neurons in the CLPB are active during NREM and likely involved in the control of this behavioral state. These data open new avenues for the study of NREM, as well as for the explorations of interactions between these neurons that are activated during NREM and cells of the adjacent pontine tegmentum that are involved in the generation of REM sleep.
Collapse
Affiliation(s)
- P Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, 11800 Montevideo-Uruguay.
| | | | | |
Collapse
|
55
|
Pagliardini S, Janczewski WA, Tan W, Dickson CT, Deisseroth K, Feldman JL. Active expiration induced by excitation of ventral medulla in adult anesthetized rats. J Neurosci 2011; 31:2895-905. [PMID: 21414911 PMCID: PMC3142740 DOI: 10.1523/jneurosci.5338-10.2011] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/02/2010] [Accepted: 12/21/2010] [Indexed: 11/21/2022] Open
Abstract
Data from perinatal and juvenile rodents support our hypothesis that the preBötzinger complex generates inspiratory rhythm and the retrotrapezoid nucleus-parafacial respiratory group (RTN/pFRG) generates active expiration (AE). Although the role of the RTN/pFRG in adulthood is disputed, we hypothesized that its rhythmogenicity persists but is typically silenced by synaptic inhibition. We show in adult anesthetized rats that local pharmacological disinhibition or optogenetic excitation of the RTN/pFRG can generate AE and transforms previously silent RTN/pFRG neurons into rhythmically active cells whose firing is correlated with late-phase active expiration. Brief excitatory stimuli also reset the respiratory rhythm, indicating strong coupling of AE to inspiration. The AE network location in adult rats overlaps with the perinatal pFRG and appears lateral to the chemosensitive region of adult RTN. We suggest that (1) the RTN/pFRG contains a conditional oscillator that generates AE, and (2) at rest and in anesthesia, synaptic inhibition of RTN/pFRG suppresses AE.
Collapse
Affiliation(s)
- Silvia Pagliardini
- Systems Neurobiology Laboratory, Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1763
| | - Wiktor A. Janczewski
- Systems Neurobiology Laboratory, Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1763
| | - Wenbin Tan
- Systems Neurobiology Laboratory, Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1763
| | - Clayton T. Dickson
- Departments of Psychology
- Physiology, and
- Centre for Neuroscience, University of Alberta, Edmonton, Alberta T6G 2E9, Canada, and
| | - Karl Deisseroth
- Departments of Bioengineering and
- Psychiatry, Stanford University, Stanford, California 94305
| | - Jack L. Feldman
- Systems Neurobiology Laboratory, Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1763
| |
Collapse
|
56
|
Topchiy I, Radulovacki M, Waxman J, Carley DW. Impact of the vagal feedback on cardiorespiratory coupling in anesthetized rats. Respir Physiol Neurobiol 2010; 175:375-82. [PMID: 21199691 DOI: 10.1016/j.resp.2010.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 12/27/2010] [Accepted: 12/28/2010] [Indexed: 12/22/2022]
Abstract
Cardiorespiratory coupling can be significantly influenced by both pontine and vagal modulation of medullary motor and premotor areas. We investigated influences of the pontine intertrigeminal region (ITR) and peripheral vagal pathways on the coupling between systolic blood pressure (SBP) and respiration in 9 anesthetized rats. Glutamate injection into the ITR perturbed both respiration and SBP and decreased SBP-respiratory coherence (0.95±0.01 vs 0.89±0.02; (p=0.01). Intravenous infusion of serotonin (5-HT) produced apnea and hypertension and also decreased SBP-respiratory coherence (0.95±0.01 vs 0.72±0.06; p=0.04). Bilateral vagotomy eliminated the cardiorespiratory coherence perturbations induced by central (glutamate injection into the ITR: 0.89±0.03 vs 0.86±0.03; p=0.63) and peripheral (5-HT infusion: 0.89±0.03 vs 0.88±0.02; p=0.98) pharmacologic manipulations. Glutamate stimulation of the ITR postvagotomy increased the relative spectral power density of SBP in the respiratory frequency range (0.25±0.08 vs 0.55±0.06; p=0.01). The data suggest that SBP-respiratory coupling is largely mediated within the central nervous system, with vagal systems acting in a way that disrupts coherence during transient cardiorespiratory disturbances. Although decreased cardiorespiratory coherence may increase cardiac work during perturbations, this may be physiologically advantageous in restoring homeostatic equilibrium of respiration and blood pressure.
Collapse
Affiliation(s)
- Irina Topchiy
- Center for Narcolepsy, Sleep and Health Research, M/C 802, University of Illinois at Chicago, 845 South Damen Ave., Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
57
|
Zagami CJ, Stifani S. Molecular characterization of the mouse superior lateral parabrachial nucleus through expression of the transcription factor Runx1. PLoS One 2010; 5:e13944. [PMID: 21085653 PMCID: PMC2978708 DOI: 10.1371/journal.pone.0013944] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 10/18/2010] [Indexed: 01/27/2023] Open
Abstract
Background The ability to precisely identify separate neuronal populations is essential to the understanding of the development and function of different brain structures. This necessity is particularly evident in regions such as the brainstem, where the anatomy is quite complex and little is known about the identity, origin, and function of a number of distinct nuclei due to the lack of specific cellular markers. In this regard, the gene encoding the transcription factor Runx1 has emerged as a specific marker of restricted neuronal populations in the murine central and peripheral nervous systems. The aim of this study was to precisely characterize the expression of Runx1 in the developing and postnatal mouse brainstem. Methods and Principal Findings Anatomical and immunohistochemical studies were used to characterize mouse Runx1 expression in the brainstem. It is shown here that Runx1 is expressed in a restricted population of neurons located in the dorsolateral rostral hindbrain. These neurons define a structure that is ventromedial to the dorsal nucleus of the lateral lemniscus, dorsocaudal to the medial paralemniscal nucleus and rostral to the cerebellum. Runx1 expression in these cells is first observed at approximately gestational day 12.5, persists into the adult brain, and is lost in knockout mice lacking the transcription factor Atoh1, an important regulator of the development of neuronal lineages of the rhombic lip. Runx1-expressing neurons in the rostral hindbrain produce cholecystokinin and also co-express members of the Groucho/Transducin-like Enhancer of split protein family. Conclusion Based on the anatomical and molecular characteristics of the Runx1-expressing cells in the rostral hindbrain, we propose that Runx1 expression in this region of the mouse brain defines the superior lateral parabrachial nucleus.
Collapse
Affiliation(s)
- Chrissandra J. Zagami
- Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Stefano Stifani
- Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
58
|
Active inspiratory-expiratory phase switching mechanism exists in the neonatal nucleus parabrachialis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010. [PMID: 20217336 DOI: 10.1007/978-1-4419-5692-7_27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
|
59
|
Bonis JM, Neumueller SE, Krause KL, Kiner T, Smith A, Marshall BD, Qian B, Pan LG, Forster HV. The pontine respiratory group, particularly the Kölliker-Fuse nucleus, mediates phases of the hypoxic ventilatory response in unanesthetized goats. J Appl Physiol (1985) 2010; 108:1321-35. [PMID: 20167677 PMCID: PMC2867534 DOI: 10.1152/japplphysiol.00935.2009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 02/12/2010] [Indexed: 11/22/2022] Open
Abstract
The objective of the present study was to test the hypothesis that, in the in vivo awake goat model, perturbation/lesion in the pontine respiratory group (PRG) would decrease the sensitivity to hypercapnia and hypoxia. The study reported herein was part of two larger studies in which cholinergic modulation in the PRG was attenuated by microdialysis of atropine and subsequently ibotenic acid injections neurotoxically lesioned the PRG. In 14 goats, cannula were bilaterally implanted into either the lateral (n=4) or medial (n=4) parabrachial nuclei or the Kölliker-Fuse nucleus (KFN, n=6). Before and after cannula implantation, microdialysis of atropine, and injection of ibotenic acid, hypercapnic and hypoxic ventilatory sensitivities were assessed. Hypercapnic sensitivity was assessed by three 5-min periods at 3, 5, and 7% inspired CO2. In all groups of goats, CO2 sensitivity was unaffected (P>0.05) by any PRG perturbations/lesions. Hypoxic sensitivity was assessed with a 30-min period at 10.8% inspired O2. The response to hypoxia was typically triphasic, with a phase 1 increase in pulmonary ventilation, a phase 2 roll-off, and a phase 3 prolonged increase associated with shivering and increased metabolic rate and body temperature. In all groups of goats, the phase 1 of the hypoxic ventilatory responses was unaffected by any PRG perturbations/lesions, and there were no consistent effects on the phase 2 responses. However, in the KFN group of goats, the phase 3 ventilatory, shivering, metabolic rate, and temperature responses were markedly attenuated after the atropine dialysis studies, and the attenuation persisted after the ibotenic acid studies. These findings support an integrative or modulatory role for the KFN in the phase 3 responses to hypoxia.
Collapse
Affiliation(s)
- J. M. Bonis
- Department of Physiology, Medical College of Wisconsin
| | | | - K. L. Krause
- Department of Physiology, Medical College of Wisconsin
| | - T. Kiner
- Department of Physiology, Medical College of Wisconsin
| | - A. Smith
- Department of Physiology, Medical College of Wisconsin
| | | | - B. Qian
- Department of Physiology, Medical College of Wisconsin
| | - L. G. Pan
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin
| | - H. V. Forster
- Department of Physiology, Medical College of Wisconsin
- Department of Veterans Affairs Medical Center, and
| |
Collapse
|
60
|
Boon JA, Milsom WK. The role of the pontine respiratory complex in the response to intermittent hypoxia. Respir Physiol Neurobiol 2010; 171:90-100. [PMID: 20223300 DOI: 10.1016/j.resp.2010.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 11/19/2022]
Abstract
These experiments were designed to determine the effects of EEG state on the response of rats to intermittent hypoxia and to test the hypotheses that short-term potentiation (STP) and ventilatory long term facilitation (vLTF) are state dependent; and that neurons with NMDA receptors in the dorso-ventral pontine respiratory group (dvPRG) modulate the development of STP and vLTF in rats. Low-doses of urethane anaesthesia (<1.3g/kg) that do not cause significant respiratory depression or reductions in sensitivity to hypoxia result in cycling between EEG states that superficially resemble wake and slow wave sleep in rats and are accompanied by changes in breathing pattern that closely resemble those seen when unanaesthetized rats cycle between wake and SWS. When changes between these states were accounted for, intermittent, poikilocapnic hypoxia did not produce a significant vLTF. However, there was a persistent STP of tidal volume and vLTF did develop after blockade of NMDAr in the region of the PBrKF complex by microinjection of MK-801. Blockade of NMDA-type glutamate receptor-mediated processes in the dorsal pons also caused animals to cycle into State III, but did not alter the response to either continuous or intermittent hypoxia indicating that the response to hypoxia was not state dependent. This shows that neurons in the region of the PRG inhibit STP and vLTF, but no longer do so if PRG NMDA receptor activation is blocked.
Collapse
Affiliation(s)
- Joyce A Boon
- University of British Columbia Okanagan, Unit 2, 3333 University Way, Kelowna, BC, Canada.
| | | |
Collapse
|
61
|
McKay LC, Critchley HD, Murphy K, Frackowiak RS, Corfield DR. Sub-cortical and brainstem sites associated with chemo-stimulated increases in ventilation in humans. Neuroimage 2010; 49:2526-35. [DOI: 10.1016/j.neuroimage.2009.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 01/29/2023] Open
|
62
|
Mustapic S, Radocaj T, Sanchez A, Dogas Z, Stucke AG, Hopp FA, Stuth EAE, Zuperku EJ. Clinically relevant infusion rates of mu-opioid agonist remifentanil cause bradypnea in decerebrate dogs but not via direct effects in the pre-Bötzinger complex region. J Neurophysiol 2009; 103:409-18. [PMID: 19906886 DOI: 10.1152/jn.00188.2009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Systemic administration of mu-opioids at clinical doses for analgesia typically slows respiratory rate. Mu-opioid receptors (MORs) on pre-Bötzinger Complex (pre-BötC) respiratory neurons, the putative kernel of respiratory rhythmogenesis, are potential targets. The purpose of this study was to determine the contribution of pre-BötC MORs to the bradypnea produced in vivo by intravenous administration of clinically relevant infusion rates of remifentanil (remi), a short-acting, potent mu-opioid analgesic. In decerebrate dogs, multibarrel micropipettes were used to record pre-BötC neuronal activity and to eject the opioid antagonist naloxone (NAL, 0.5 mM), the glutamate agonist D-homocysteic acid (DLH, 20 mM), or the MOR agonist [D-Ala(2), N-Me-Phe(4), gly-ol(5)]-enkephalin (DAMGO, 100 microM). Inspiratory and expiratory durations (T(I) and T(E)) and peak phrenic nerve activity (PPA) were measured from the phrenic neurogram. The pre-BötC was functionally identified by its rate altering response (typically tachypnea) to DLH microinjection. During intravenous remi-induced bradypnea (approximately 60% decrease in central breathing frequency, f(B)), bilateral injections of NAL in the pre-BötC did not change T(I), T(E), f(B), and PPA. Also, NAL picoejected onto single pre-BötC neurons depressed by intravenous remi had no effect on their discharge. In contrast, approximately 60 microg/kg of intravenous NAL rapidly reversed all remi-induced effects. In a separate group of dogs, microinjections of DAMGO in the pre-BötC increased f(B) by 44%, while subsequent intravenous remi infusion more than offset this DAMGO induced tachypnea. These results indicate that mu-opioids at plasma concentrations that cause profound analgesia produce their bradypneic effect via MORs located outside the pre-BötC region.
Collapse
Affiliation(s)
- Sanda Mustapic
- Department of Anesthesiology, Medical College of Wisconsin, Clement J. Zablocki VA Medical Center, 5000 W. National Ave., Milwaukee, WI 53295, USA
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Ito Y, Saiki C, Makino M, Matsumoto S. Ventrolateral lesions at the ponto-medullary junction and the effects of noradrenaline on respiratory rhythm in rat brainstem-spinal cord preparations. Life Sci 2009; 85:322-6. [PMID: 19567253 DOI: 10.1016/j.lfs.2009.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Revised: 05/26/2009] [Accepted: 06/22/2009] [Indexed: 11/30/2022]
Abstract
AIMS We examined whether responses of respiratory frequency (fR) to noradrenaline (NA) were eliminated by mechanical lesions in the ventrolateral area at the ponto-medullary junction in preparations of newborn rat pons-medulla-spinal cord (PMS). MAIN METHODS Preparations obtained from 2- to 4-day-old rats were superfused with artificial cerebrospinal fluid that was equilibrated with oxygenated (95% O2 plus 5% CO2 gas, and fR was monitored at the C4 ventral root at 24 degrees C. Bilateral lesions were made in the ventrolateral area between the VIth cranial nerve root and the anterior inferior cerebellar artery in PMS (n=11). The resting fR and response to exogenous NA (7 microM) were compared with those of medulla-spinal cord (MS) preparations (n=6). Immunohistochemistry of PMS preparations was performed to detect tyrosine hydroxylase (TH)-positive neurons at the ponto-medullary junction. KEY FINDINGS PMS preparations with the lesions had (1) a significantly higher resting fR but 2 significantly less fR facilitation after NA application than those of intact PMS preparations, and (3) significantly lower resting fR and (4) significantly less fR reduction after NA application than those of MS preparations. TH-positive neurons were detected in the region from the rostral dorsolateral to the caudal ventrolateral pons (the A5 area), as well as in the ventral area near the facial nucleus. SIGNIFICANCE Results suggest that ventrolateral area at ponto-medullary junction plays a significant role in exogenous NA-induced fR changes under the influence of pons-induced tonic fR inhibition in newborn rat brainstem-spinal cord preparations.
Collapse
Affiliation(s)
- Yasuo Ito
- Department of Physiology, Nippon Dental University, School of Life Dentistry at Tokyo, 1-9-20, Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| | | | | | | |
Collapse
|
64
|
Arata A. Respiratory activity of the neonatal dorsolateral pons in vitro. Respir Physiol Neurobiol 2009; 168:144-52. [PMID: 19616645 DOI: 10.1016/j.resp.2009.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 07/07/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
Abstract
The lateral and medial parabrachial and the Kölliker-Fuse nuclei (NPB/KF) are well known respiratory modulating centers in adulthood, but their role in neonates is largely unknown. We examined the role of the NPB/KF using hemi-sectioned pons-brainstem-spinal cord preparations in neonatal rats. Electrical stimulation applied at various intensities and delays in relation to the onset of spontaneous inspiratory C4 bursts, evoked transient depression or termination of C4 activity. This depression/termination was greatly attenuated either after perfusion of the NMDA-receptor antagonists (MK-801 or APV) or after microinjecting MK-801 into NPB/KF. Furthermore systemic application of the GABA-A receptor antagonist bicuculline reduced NPB/KF evoked inhibition of the C4 burst. Finally, we identified inspiratory, tonic inspiratory, expiratory, and inspiratory-expiratory (I-E) neurons which was major in the recorded neurons in the NPB/KF using the whole-cell patch-clamp method. MK-801 significantly decreased the driving potential and burst duration of I-E neurons. We conclude that neonatal NPB/KF mediated inspiratory off-switch operates on similar synaptic mechanisms as an adult.
Collapse
Affiliation(s)
- Akiko Arata
- Laboratory for Memory and Learning, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
65
|
Photostimulation of retrotrapezoid nucleus phox2b-expressing neurons in vivo produces long-lasting activation of breathing in rats. J Neurosci 2009; 29:5806-19. [PMID: 19420248 DOI: 10.1523/jneurosci.1106-09.2009] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The retrotrapezoid "nucleus" (RTN), located in the rostral ventrolateral medullary reticular formation, contains a bilateral cluster of approximately 1000 glutamatergic noncatecholaminergic Phox2b-expressing propriobulbar neurons that are activated by CO(2) in vivo and by acidification in vitro. These cells are thought to function as central respiratory chemoreceptors, but this theory still lacks a crucial piece of evidence, namely that stimulating these particular neurons selectively in vivo increases breathing. The present study performed in anesthetized rats seeks to test whether this expectation is correct. We injected into the left RTN a lentivirus that expresses the light-activated cationic channel ChR2 (channelrhodopsin-2) (H134R mutation; fused to the fluorescent protein mCherry) under the control of the Phox2-responsive promoter PRSx8. Transgene expression was restricted to 423 +/- 38 Phox2b-expressing neurons per rat consisting of noncatecholaminergic and C1 adrenergic neurons (3:2 ratio). Photostimulation delivered to the RTN region in vivo via a fiberoptic activated the CO(2)-sensitive neurons vigorously, produced a long-lasting (t(1/2) = 11 s) increase in phrenic nerve activity, and caused a small and short-lasting cardiovascular stimulation. Selective lesions of the C1 cells eliminated the cardiovascular response but left the respiratory stimulation intact. In rats with C1 cell lesions, the mCherry-labeled axon terminals originating from the transfected noncatecholaminergic neurons were present exclusively in the lower brainstem regions that contain the respiratory pattern generator. These results provide strong evidence that the Phox2b-expressing noncatecholaminergic neurons of the RTN region function as central respiratory chemoreceptors.
Collapse
|
66
|
Stornetta RL. Identification of neurotransmitters and co-localization of transmitters in brainstem respiratory neurons. Respir Physiol Neurobiol 2009; 164:18-27. [PMID: 18722563 DOI: 10.1016/j.resp.2008.07.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 07/15/2008] [Accepted: 07/17/2008] [Indexed: 11/18/2022]
Abstract
Identifying the major ionotropic neurotransmitter in a respiratory neuron is of critical importance in determining how the neuron fits into the respiratory system, whether in producing or modifying respiratory drive and rhythm. There are now several groups of respiratory neurons whose major neurotransmitters have been identified and in some of these cases, more than one transmitter has been identified in particular neurons. This review will describe the physiologically identified neurons in major respiratory areas that have been phenotyped for major ionotropic transmitters as well as those where more than one transmitter has been identified. Although the purpose of the additional transmitter has not been elucidated for any of the respiratory neurons, some examples from other systems will be discussed.
Collapse
Affiliation(s)
- R L Stornetta
- Department of Pharmacology, University of Virginia Health System, P.O. Box 800735, 1300 Jefferson Park Avenue, Charlottesville, VA 22908, USA.
| |
Collapse
|
67
|
Stoiljkovic M, Radulovacki M, Carley DW. Local antagonism of intertrigeminal region metabotropic glutamate receptors exacerbates apneic responses to intravenous serotonin. Respir Physiol Neurobiol 2009; 165:137-42. [PMID: 19026767 PMCID: PMC2773821 DOI: 10.1016/j.resp.2008.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 10/24/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
Abstract
Injections of a broad spectrum glutamate receptor antagonist into the pontine intertrigeminal region (ITR) exacerbate vagal reflex apnea produced by intravenous serotonin infusion. This effect is not reproduced by ITR injections with either NMDA or AMPA receptor antagonists. Here, we tested the hypothesis that ITR injection with a metabotropic glutamate antagonist would alter respiratory responses to serotonin (5-HT) intravenous infusions. In anesthetized adult male rats (N=20; Sprague-Dawley) AIDA (1-aminoindan-1,5-dicarboxylic acid), a specific antagonist of the type 1 metabotropic glutamate receptor (mGlu1R), was microinjected unilaterally into the ITR to block 5-HT evoked apnea. Respiratory pattern changes evoked by ITR-glutamate injection and by intravenous serotonin (5-HT) infusion (0.5 microl, 0.05 M; or 2.5x10(-8) mol) were characterized according to apnea expression and duration, as well as coefficients of variation for breath duration (CVTT) and amplitude (CVVT) before and after ITR AIDA injection. Unilateral AIDA blockade of the ITR significantly increased the duration of apnea evoked by 5-HT infusion (p<0.03 for each dose tested) during the 30s following infusion in a dose-dependent fashion, with the two highest doses resulting in intermittent apneas for at least 10 min following a bolus 5-HT infusion. Similar prolonged increases in CVTT and CVVT with respect to control were associated with ITR AIDA injections. These findings suggest that brief perturbations of vagal afferent pathways can produce ongoing respiratory dysrhythmia, including spontaneous apnea, and that glutamatergic neurotransmission within ITR may be important for damping such disturbances. The present observations also suggest that such respiratory damping may be mediated by mGlu1 receptors. These findings extend our understanding of the role of the intertrigeminal region in modulating respiratory reflexes.
Collapse
Affiliation(s)
- Milan Stoiljkovic
- Center for Narcolepsy, Sleep and Health Research, Colleges of Nursing and Medicine, University of Illinois at Chicago M/C 802, 845 S. Damen Avenue, Chicago, IL 60612, United States
| | | | | |
Collapse
|
68
|
The distribution of gamma-hydroxybutyrate-induced Fos expression in rat brain: comparison with baclofen. Neuroscience 2008; 158:441-55. [PMID: 18996447 DOI: 10.1016/j.neuroscience.2008.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 09/26/2008] [Accepted: 11/05/2008] [Indexed: 11/20/2022]
Abstract
gamma-Hydroxybutyrate (GHB) is a euphoric, prosocial and sleep inducing drug that binds with high affinity to its own GHB receptor site and also more weakly to GABA(B) receptors. GHB is efficacious in the treatment of narcolepsy and alcoholism, but heavy use can lead to dependence and withdrawal. Many effects of GHB (sedation, hypothermia, catalepsy) are mimicked by GABA(B) receptor agonists (e.g. baclofen). However other effects (euphoric and prosocial effects and a therapeutic effect in narcolepsy) are not. The present study used Fos immunohistochemistry to assess the neural activation produced in rat brain by medium to high doses of GHB (250, 500 and 1000 mg/kg) and a high dose of baclofen (10 mg/kg) that produced similar sedation to 500 mg/kg GHB. Results showed many common regions of activation with these two drugs including the supraoptic, paraventricular, median preoptic and ventral premammillary nuclei of the hypothalamus, the central nucleus of the amygdala, Edinger-Westphal nucleus, lateral parabrachial nucleus, locus coeruleus, and nucleus of the solitary tract. GHB (500 mg/kg), but not baclofen (10 mg/kg), induced significant Fos expression in the median raphe nucleus and lateral habenula, while a higher dose of GHB (1000 mg/kg) induced additional Fos expression in the islands of Calleja, dentate gyrus (polymorphic layer) and arcuate nucleus, and in various regions implicated in rapid and non-rapid eye movement sleep (laterodorsal tegmental nucleus, tuberomammillary nucleus and the ventrolateral and anterodorsal preoptic nuclei). Surprisingly, Fos immunoreactivity was not observed with either GHB or baclofen in reward-relevant regions such as the nucleus accumbens, striatum and ventral tegmental area. Overall these results indicate a distinctive signature of brain activation with GHB that may be only partly due to GABA(B) receptor effects. This confirms a unique neuropharmacological profile for GHB and indicates key neural substrates that may underlie its characteristic influence on sleep, body temperature, sociability and endocrine function.
Collapse
|
69
|
GABAergic neurons in the ventrolateral subnucleus of the nucleus tractus solitarius are in contact with Kölliker-Fuse nucleus neurons projecting to the rostral ventral respiratory group and phrenic nucleus in the rat. Brain Res 2008; 1228:113-26. [PMID: 18634761 DOI: 10.1016/j.brainres.2008.06.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/16/2008] [Accepted: 06/18/2008] [Indexed: 12/29/2022]
Abstract
After ipsilateral injections of biotinylated dextran amine (BDA) into the ventrolateral subnucleus of the nucleus tractus solitarius (vlNTS) and Fluoro-gold (FG) into the rostral ventral respiratory group (rVRG) region or into the phrenic nucleus (PhN) region in the rat, an overlapping distribution of BDA-labeled axon terminals and FG-labeled neurons was found in the Kölliker-Fuse (KF) nucleus ipsilateral to the injection sites. Using retrograde tracing combined with immunohistochemistry for glutamic acid decarboxylase isoform 67 (GAD67), we indicated that as many as 40% of the vlNTS neurons projecting to the KF were immunoreactive for GAD67. Using a combination of anterograde and retrograde tracing techniques, and immunohistochemistry for GAD67, we further demonstrated that the vlNTS axon terminals with GAD67 immunoreactivity established close contact to the rVRG- or PhN-projecting KF neurons. The present results suggest that GABAergic vlNTS fibers may exert inhibitory influences on the rVRG- as well as PhN-projecting KF neurons and these circuits may be involved in the respiratory reflexes such as the Hering-Breuer reflex.
Collapse
|
70
|
Verner TA, Pilowsky PM, Goodchild AK. Retrograde projections to a discrete apneic site in the midline medulla oblongata of the rat. Brain Res 2008; 1208:128-36. [DOI: 10.1016/j.brainres.2008.02.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 02/10/2008] [Accepted: 02/13/2008] [Indexed: 11/28/2022]
|
71
|
McKay LC, Adams L, Frackowiak RS, Corfield DR. A bilateral cortico-bulbar network associated with breath holding in humans, determined by functional magnetic resonance imaging. Neuroimage 2008; 40:1824-32. [DOI: 10.1016/j.neuroimage.2008.01.058] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 12/19/2007] [Accepted: 01/23/2008] [Indexed: 02/05/2023] Open
|
72
|
Takahashi M, Tsunemi T, Miyayosi T, Mizusawa H. Reversible central neurogenic hyperventilation in an awake patient with multiple sclerosis. J Neurol 2007; 254:1763-4. [DOI: 10.1007/s00415-007-0662-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 05/16/2007] [Accepted: 05/23/2007] [Indexed: 10/22/2022]
|
73
|
Yamanishi T, Koizumi H, Komaki M, Ishihama K, Adachi T, Enomoto A, Takao K, Iida S, Kogo M. Possible involvement of neurons in locus coeruleus in inhibitory effect on glossopharyngeal expiratory activity in a neonatal rat brainstem-spinal cord preparation in vitro. Neurosci Res 2007; 60:2-9. [PMID: 18053604 DOI: 10.1016/j.neures.2007.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 08/20/2007] [Accepted: 09/03/2007] [Indexed: 10/22/2022]
Abstract
In this study, we found that a certain motor branch of glossopharyngeal (IX) motor nerves stably exhibits not only inspiratory activity but also expiratory activity with pons removal in neonatal rat brainstem-spinal cord preparations in vitro. Because this finding indicates that IX expiratory activity is masked by an inhibitory mechanism operating in the pons, we sought to determine the candidate neurons that exert an inhibitory effect on IX expiratory activity. IX expiratory activity was observed when only the pons was perfused with noradrenaline (NA) or clonidine (alpha2 adrenergic receptor agonist), but not when NA and yohimbine (alpha2 adrenergic receptor antagonist) were perfused together. IX expiratory activity was also observed following the removal of the dorsal pons but not the ventral pons. The local administration of clonidine into the bilateral locus coeruleus (LC) evoked burst discharges during the expiratory phase in the IX motor rootlet. These results suggest that neurons in the LC that possess an alpha2 adrenergic receptor on the membrane surface exert a tonic inhibitory effect on IX expiratory activity in neonatal rat brainstem-spinal cord preparations.
Collapse
Affiliation(s)
- Tadashi Yamanishi
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
McDowall LM, Horiuchi J, Dampney RAL. Effects of disinhibition of neurons in the dorsomedial hypothalamus on central respiratory drive. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1728-35. [PMID: 17715179 DOI: 10.1152/ajpregu.00503.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurons within the dorsomedial hypothalamus (DMH) play a critical role in subserving the cardiovascular and neuroendocrine response to psychological stress. An increase in respiratory activity is also a characteristic feature of the physiological response to psychological stress, but there have been few studies of the role of DMH neurons in regulating respiratory activity. In this study we determined the effects of activation of DMH neurons on respiratory activity (assessed by measuring phrenic nerve activity, PNA) and the relationship between evoked changes in respiratory activity and changes in sympathetic vasomotor activity in spontaneously breathing urethane-anesthetized rats. Microinjections of bicuculline (4-40 pmol in 20 nl) into the DMH evoked dose-dependent increases in PNA burst frequency and amplitude. These were accompanied by dose-dependent decreases in mean tracheal CO(2) levels, indicative of hyperventilation. In control experiments, microinjections of bicuculline into sites adjacent to the DMH evoked much smaller or no changes in PNA. In experiments where renal sympathetic nerve activity (RSNA) was also measured, cycle-triggered averaging revealed that RSNA under resting conditions was partly correlated with the PNA, but in response to DMH disinhibition there was no consistent change in the amplitude of the respiratory-related variations in RSNA. The results indicate that DMH neurons can exert a powerful stimulatory effect on respiratory activity, causing hyperventilation. This is not associated with an increase in the degree of coupling between PNA and RSNA, indicating that the DMH-evoked increase in RSNA is not a consequence of increased central respiratory drive.
Collapse
Affiliation(s)
- Lachlan M McDowall
- Physiology, School of Medical Sciences and Bosch Institute, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
75
|
Benarroch EE. Brainstem respiratory control: substrates of respiratory failure of multiple system atrophy. Mov Disord 2007; 22:155-61. [PMID: 17133520 DOI: 10.1002/mds.21236] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Multiple system atrophy may manifest with severe respiratory disorders, including sleep apnea and laryngeal stridor, which reflect a failure of automatic control of respiration. This function depends on a pontomedullary network of interconnected neurons located in the parabrachial/Kölliker Fuse nucleus in the pons, nucleus of the solitary tract, and ventrolateral medulla. Neurons in the preBötzinger complex expressing neurokinin-1 receptors are critically involved in respiratory rhythmogenesis, whereas serotonergic neurons in the medullary raphe and glutamatergic neurons located close to the ventral medullary surface are involved in central chemosensitivity to hypercapnia, hypoxia, or both. Pathological studies using selective neurochemical markers indicate that these neuronal groups are affected in multiple system atrophy. This finding may provide potential anatomical substrates for the respiratory manifestations of the disease.
Collapse
|
76
|
Say M, Machaalani R, Waters KA. Changes in serotoninergic receptors 1A and 2A in the piglet brainstem after intermittent hypercapnic hypoxia (IHH) and nicotine. Brain Res 2007; 1152:17-26. [PMID: 17451658 DOI: 10.1016/j.brainres.2007.03.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 03/06/2007] [Accepted: 03/10/2007] [Indexed: 11/22/2022]
Abstract
We studied the effects of intermittent hypercapnic hypoxia (IHH) and/or nicotine on the immunoreactivity of serotoninergic (5-HT) receptors 1A and 2A in the piglet brainstem. These exposures were developed to mimic two common risk factors for Sudden Infant Death Syndrome (SIDS); prone sleeping (IHH) and cigarette smoke exposure (nicotine). Immunoreactivity for 5-HT(1A)R and 5-HT(2A)R were studied in four nuclei of the caudal medulla. Three exposure groups were compared to controls (n=14): IHH (n=10), nicotine (n=14), and nicotine+IHH (n=14). In control piglets, the immunoreactivity of 5-HT(1A)R was highest in the hypoglossal nucleus (XII), followed by inferior olivary nucleus (ION), nucleus of the solitary tract (NTS) and dorsal motor nucleus of the vagus (DMNV), whereas for 5-HT(2A)R, the immunoreactivity was highest in DMNV/NTS and then ION. Compared to controls, IHH reduced 5-HT(1A)R immunoreactivity in all studied nuclei (p<0.05) but had no effect on 5-HT(2A)R immunoreactivity. Nicotine reduced 5-HT(1A)R immunoreactivity in the DMNV, ION and NTS (p<0.001), and reduced 5-HT(2A)R immunoreactivity in DMNV/NTS (p<0.05). Nicotine+IHH reduced 5-HT(1A)R in DMNV, ION and NTS (p<0.001) but had no effect on 5-HT(2A)R immunoreactivity. Effects of nicotine on the DMNV were more significant in males compared to the females. These results show for the first time that IHH and/or nicotine can reduce 5-HT receptor immunoreactivity within functionally important nuclei of the piglet medulla. The findings support our hypothesis that 5-HT receptor abnormalities may be caused by postnatal exposures to clinically-relevant stimuli such as cigarette smoke exposure and/or prone sleeping.
Collapse
Affiliation(s)
- Meichien Say
- Department of Paediatrics and Child Health, University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
77
|
Rosin DL, Chang DA, Guyenet PG. Afferent and efferent connections of the rat retrotrapezoid nucleus. J Comp Neurol 2006; 499:64-89. [PMID: 16958085 DOI: 10.1002/cne.21105] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The rat retrotrapezoid nucleus (RTN) contains candidate central chemoreceptors that have extensive dendrites within the marginal layer (ML). This study describes the axonal projections of RTN neurons and their probable synaptic inputs. The ML showed a dense plexus of nerve terminals immunoreactive (ir) for markers of glutamatergic (vesicular glutamate transporters VGLUT1-3), gamma-aminobutyric acid (GABA)-ergic, adrenergic, serotonergic, cholinergic, and peptidergic transmission. The density of VGLUT3-ir terminals tracked the location of RTN chemoreceptors. The efferent and afferent projections of RTN were studied by placing small iontophoretic injections of anterograde (biotinylated dextran amine; BDA) and retrograde (cholera toxin B) tracers where RTN chemoreceptors have been previously recorded. BDA did not label the nearby C1 cells. BDA-ir varicosities were found in the solitary tract nucleus (NTS), all ventral respiratory column (VRC) subdivisions, A5 noradrenergic area, parabrachial complex, and spinal cord. In each target region, a large percentage of the BDA-ir varicosities was VGLUT2-ir (41-83%). Putative afferent input to RTN originated from spinal cord, caudal NTS, area postrema, VRC, dorsolateral pons, raphe nuclei, lateral hypothalamus, central amygdala, and insular cortex. The results suggest that 1) whether or not the ML is specialized for CO(2) sensing, its complex neuropil likely regulates the activity of RTN chemosensitive neurons; 2) the catecholaminergic, cholinergic, and serotonergic innervation of RTN represents a possible substrate for the known state-dependent control of RTN chemoreceptors; 3) VGLUT3-ir terminals are a probable marker of RTN; and 4) the chemosensitive neurons of RTN may provide a chemical drive to multiple respiratory outflows, insofar as RTN innervates the entire VRC.
Collapse
Affiliation(s)
- Diane L Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
78
|
Dutschmann M, Herbert H. The Kölliker-Fuse nucleus gates the postinspiratory phase of the respiratory cycle to control inspiratory off-switch and upper airway resistance in rat. Eur J Neurosci 2006; 24:1071-84. [PMID: 16930433 DOI: 10.1111/j.1460-9568.2006.04981.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lesion or pharmacological manipulation of the dorsolateral pons can transform the breathing pattern to apneusis (pathological prolonged inspiration). Apneusis reflects a disturbed inspiratory off-switch mechanism (IOS) leading to a delayed phase transition from inspiration to expiration. Under intact conditions the IOS is irreversibly mediated via activation of postinspiratory (PI) neurons within the respiratory network. In parallel, populations of laryngeal premotoneurons manifest the IOS by a brief glottal constriction during the PI phase. We investigated effects of pontine excitation (glutamate injection) or temporary lesion after injection of a GABA-receptor agonist (isoguvacine) on the strength of PI-pool activity determined from respiratory motor outputs or kinesiological measurements of laryngeal resistance in a perfused brainstem preparation. Glutamate microinjections into distinct parts of the pontine Kölliker-Fuse nucleus (KF) evoked a tonic excitation of PI-motor activity or sustained laryngeal constriction accompanied by prolongation of the expiratory phase. Subsequent isoguvacine microinjections at the same loci abolished PI-motor or laryngeal constrictor activity, triggered apneusis and established a variable and decreased breathing frequency. In summary, we revealed that excitation or inhibition of defined areas within the KF activated and blocked PI activity and, consequently, IOS. Therefore, we conclude, first, that descending KF inputs are essential to gate PI activity required for a proper pattern formation and phase control within the respiratory network, at least during absence of pulmonary stretch receptor activity and, secondly, that the KF contains large numbers of laryngeal PI premotor neurons that might have a key role in the regulation of upper airway resistance during reflex control and vocalization.
Collapse
Affiliation(s)
- Mathias Dutschmann
- Department of Neuro and Sensory Physiology, Georg August University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| | | |
Collapse
|
79
|
Waters KA, Machaalani R. Role of NMDA receptors in development of respiratory control. Respir Physiol Neurobiol 2005; 149:123-30. [PMID: 15908286 DOI: 10.1016/j.resp.2005.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 03/15/2005] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
The N-methyl-D-aspartate (NMDA) receptor has many functions throughout the central nervous system (CNS) including its role within the centers controlling respiration. Although NMDA receptors are important for normal breathing, they are specifically active under conditions of stress, such as hypoxia. Consistent with its role in other neurological functions, the NMDA receptor is also important to the prenatal development of normal neurological pathways for the control of ventilation. The importance of NMDA receptors to both normal breathing and stress responses is demonstrated by recent observations of antenatal effects of disturbances to the NMDA receptor which disrupts normal breathing as well as causing reduced ventilatory responses during stress in newborns. These characteristics fit with the known NMDA influences on neuronal development and plasticity. The methods used to evaluate these functions have mainly included pharmacological agents for activation (agonists) or depression (antagonists) of NMDA receptors. NMDA receptor expression has also been measured histologically, and more recently knockout animal models have been used to provide additional functional information.
Collapse
Affiliation(s)
- Karen A Waters
- Department of Medicine, Room 206, Blackburn Building, DO6, University of Sydney, NSW 2006, Australia.
| | | |
Collapse
|
80
|
Kobayashi S, Onimaru H, Inoue M, Inoue T, Sasa R. Localization and properties of respiratory neurons in the rostral pons of the newborn rat. Neuroscience 2005; 134:317-25. [PMID: 15939541 DOI: 10.1016/j.neuroscience.2005.03.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 03/02/2005] [Accepted: 03/19/2005] [Indexed: 10/25/2022]
Abstract
The distribution and discharge pattern of respiratory neurons in the 'pneumotaxic center' of the rostral pons in the rat has remained unknown. We performed optical recordings and whole-cell patch clamp recordings to clarify respiratory neuron activity in the rostral pons of a brainstem-spinal cord preparation from a newborn rat. Inspiratory nerve activity was recorded in the 4th cervical nerve and used as a trigger signal for optical recordings. Respiratory neuron activity was detected in the limited region of the rostral-lateral pons. The main active region was presumed to be primarily the Kölliker-Fuse nucleus. The location of respiratory neurons was further confirmed by Lucifer Yellow staining after conducting whole-cell recordings. From a membrane potential analysis of the respiratory neurons in the rostral pons, the respiratory neurons were divided into four types: inspiratory neuron (71.9%), pre-inspiratory neuron (5.3%), post-inspiratory neuron (19.3%), and expiratory neuron (3.5%). A noticeable difference between pontine and medullary respiratory neurons was that post-inspiratory neurons were more frequently encountered in the pons. Application of a mu-opioid agonist, [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin, transformed the burst pattern of post-inspiratory neurons into that of pre-inspiratory neurons. The electrical stimulation of the sensory root of the trigeminal nerve induced three types of responses in 85% of pontine respiratory neurons: inhibitory postsynaptic potentials (42.7%), excitatory postsynaptic potentials (37.7%) and no response (15.1%). Our findings provide the first evidence in the rat for the presence of respiratory neurons in the rostral pons, with localization in the lateral region approximately overlapping with the Kölliker-Fuse nucleus.
Collapse
Affiliation(s)
- S Kobayashi
- Department of Pediatric Dentistry, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ohta-ku, Tokyo 145-8515, Japan
| | | | | | | | | |
Collapse
|
81
|
Gestreau C, Dutschmann M, Obled S, Bianchi AL. Activation of XII motoneurons and premotor neurons during various oropharyngeal behaviors. Respir Physiol Neurobiol 2005; 147:159-76. [PMID: 15919245 DOI: 10.1016/j.resp.2005.03.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 03/11/2005] [Accepted: 03/13/2005] [Indexed: 12/11/2022]
Abstract
Neural control of tongue muscles plays a crucial role in a broad range of oropharyngeal behaviors. Tongue movements must be rapidly and accurately adjusted in response to the demands of multiple complex motor tasks including licking/mastication, swallowing, vocalization, breathing and protective reflexes such as coughing. Yet, central mechanisms responsible for motor and premotor control of hypoglossal (XII) activity during these behaviors are still largely unknown. The aim of this article is to review the functional organization of the XII motor nucleus with particular emphasis on breathing, coughing and swallowing. Anatomical localization of XII premotor neurons is also considered. We discuss results concerned with multifunctional activity of medullary and pontine populations of XII premotor neurons, representing a single network that can be reconfigured to produce different oromotor response patterns. In this context, we introduce new data on swallowing-related activity of XII (and trigeminal) motoneurons, and finally suggest a prominent role for the pontine Kölliker-Fuse nucleus in the control of inspiratory-related activity of XII motoneurons supplying tongue protrusor and retrusor muscles.
Collapse
Affiliation(s)
- Christian Gestreau
- Laboratoire de Physiologie Neurovégétative, UMR CNRS 6153 INRA 1147, Université Paul Cézanne Aix-Marseille III, Av. Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France.
| | | | | | | |
Collapse
|
82
|
Alheid GF, Milsom WK, McCrimmon DR. Pontine influences on breathing: an overview. Respir Physiol Neurobiol 2005; 143:105-14. [PMID: 15519548 DOI: 10.1016/j.resp.2004.06.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2004] [Indexed: 11/17/2022]
Abstract
Historical and contemporary views of the functional organization of the lateral pontine regions influencing breathing are reviewed. In vertebrates, the rhombencephalon generates a breathing rhythm and detailed motor pattern that persist throughout life. Key to this process is an essentially continuous column of neurons extending from the spino-medullary border through the ventrolateral medulla, continuing through the ventral pons and arcing into the dorsolateral medulla. Comparative neuroanatomy and physiology indicate this is a richly interconnected network divided into serial, functionally distinct compartments. Serial compartmentalization of pontomedullary structures related to breathing also reflects the developmental segmentation of the rhombencephalon. However, with migration of cell groups such as the facial nucleus from the pons to the medulla during ontogeny, the boundaries of the adult pons are sometimes difficult to precisely define. Accordingly, a working definition of rostral and caudal pontine boundaries for adult mammals is depicted.
Collapse
Affiliation(s)
- George F Alheid
- Department of Physiology and Institute for Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611-3008, USA.
| | | | | |
Collapse
|