51
|
Yan Z, Zhang Z, Chen Y, Xu J, Wang J, Wang Z. Enhancing cancer therapy: the integration of oncolytic virus therapy with diverse treatments. Cancer Cell Int 2024; 24:242. [PMID: 38992667 PMCID: PMC11238399 DOI: 10.1186/s12935-024-03424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
As one of the significant challenges to human health, cancer has long been a focal point in medical treatment. With ongoing advancements in the field of medicine, numerous methodologies for cancer therapy have emerged, among which oncolytic virus therapy has gained considerable attention. However, oncolytic viruses still exhibit limitations. Combining them with various therapies can further enhance the efficacy of cancer treatment, offering renewed hope for patients. In recent research, scientists have recognized the promising prospect of amalgamating oncolytic virus therapy with diverse treatments, potentially surmounting the restrictions of singular approaches. The central concept of this combined therapy revolves around leveraging oncolytic virus to incite localized tumor inflammation, augmenting the immune response for immunotherapeutic efficacy. Through this approach, the patient's immune system can better recognize and eliminate cancer cells, simultaneously reducing tumor evasion mechanisms against the immune system. This review delves deeply into the latest research progress concerning the integration of oncolytic virus with diverse treatments and its role in various types of cancer therapy. We aim to analyze the mechanisms, advantages, potential challenges, and future research directions of this combination therapy. By extensively exploring this field, we aim to instill renewed hope in the fight against cancer.
Collapse
Affiliation(s)
- Zhuo Yan
- Department of Clinical Medical Laboratory Center, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Zhengbo Zhang
- Department of Clinical Medical Laboratory Center, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, Zhejiang, China
| | - Yanan Chen
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Jianghua Xu
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Jilong Wang
- Department of Clinical Medical Laboratory Center, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, Zhejiang, China.
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China.
| | - Zhangquan Wang
- Department of Clinical Medical Laboratory Center, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, Zhejiang, China.
| |
Collapse
|
52
|
Chattopadhyay S, Hazra R, Mallick A, Gayen S, Roy S. A review exploring the fusion of oncolytic viruses and cancer immunotherapy: An innovative strategy in the realm of cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189110. [PMID: 38754793 DOI: 10.1016/j.bbcan.2024.189110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Oncolytic viruses (OVs) are increasingly recognized as potent tools in cancer therapy, effectively targeting and eradicating oncogenic conditions while sparing healthy cells. They enhance antitumor immunity by triggering various immune responses throughout the cancer cycle. Genetically engineered OVs swiftly destroy cancerous tissues and activate the immune system by releasing soluble antigens like danger signals and interferons. Their ability to stimulate both innate and adaptive immunity makes them particularly attractive in cancer immunotherapy. Recent advancements involve combining OVs with other immune therapies, yielding promising results. Transgenic OVs, designed to enhance immunostimulation and specifically target cancer cells, further improve immune responses. This review highlights the intrinsic mechanisms of OVs and underscores their synergistic potential with other immunotherapies. It also proposes strategies for optimizing armed OVs to bolster immunity against tumors.
Collapse
Affiliation(s)
- Soumyadeep Chattopadhyay
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Rudradeep Hazra
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Arijit Mallick
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India.
| |
Collapse
|
53
|
Ramapriyan R, Vykunta VS, Vandecandelaere G, Richardson LGK, Sun J, Curry WT, Choi BD. Altered cancer metabolism and implications for next-generation CAR T-cell therapies. Pharmacol Ther 2024; 259:108667. [PMID: 38763321 DOI: 10.1016/j.pharmthera.2024.108667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
This review critically examines the evolving landscape of chimeric antigen receptor (CAR) T-cell therapy in treating solid tumors, with a particular focus on the metabolic challenges within the tumor microenvironment. CAR T-cell therapy has demonstrated remarkable success in hematologic malignancies, yet its efficacy in solid tumors remains limited. A significant barrier is the hostile milieu of the tumor microenvironment, which impairs CAR T-cell survival and function. This review delves into the metabolic adaptations of cancer cells and their impact on immune cells, highlighting the competition for nutrients and the accumulation of immunosuppressive metabolites. It also explores emerging strategies to enhance CAR T-cell metabolic fitness and persistence, including genetic engineering and metabolic reprogramming. An integrated approach, combining metabolic interventions with CAR T-cell therapy, has the potential to overcome these constraints and improve therapeutic outcomes in solid tumors.
Collapse
Affiliation(s)
- Rishab Ramapriyan
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Vivasvan S Vykunta
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; Medical Scientist Training Program, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gust Vandecandelaere
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Leland G K Richardson
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jing Sun
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - William T Curry
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Bryan D Choi
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
54
|
Garlisi B, Lauks S, Aitken C, Ogilvie LM, Lockington C, Petrik D, Eichhorn JS, Petrik J. The Complex Tumor Microenvironment in Ovarian Cancer: Therapeutic Challenges and Opportunities. Curr Oncol 2024; 31:3826-3844. [PMID: 39057155 PMCID: PMC11275383 DOI: 10.3390/curroncol31070283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) in ovarian cancer (OC) has much greater complexity than previously understood. In response to aggressive pro-angiogenic stimulus, blood vessels form rapidly and are dysfunctional, resulting in poor perfusion, tissue hypoxia, and leakiness, which leads to increased interstitial fluid pressure (IFP). Decreased perfusion and high IFP significantly inhibit the uptake of therapies into the tumor. Within the TME, there are numerous inhibitor cells, such as myeloid-derived suppressor cells (MDSCs), tumor association macrophages (TAMs), regulatory T cells (Tregs), and cancer-associated fibroblasts (CAFs) that secrete high numbers of immunosuppressive cytokines. This immunosuppressive environment is thought to contribute to the lack of success of immunotherapies such as immune checkpoint inhibitor (ICI) treatment. This review discusses the components of the TME in OC, how these characteristics impede therapeutic efficacy, and some strategies to alleviate this inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (B.G.); (S.L.); (C.A.); (L.M.O.); (C.L.); (D.P.); (J.S.E.)
| |
Collapse
|
55
|
Zhang J, Miao G, Ta MH, Zhao B, Wang W, Xing Y, Qian H, Huang D, Chen W, Zhong Y. Photothermal-controlled NO-releasing Nanogels reverse epithelial-mesenchymal transition and restore immune surveillance against cancer metastasis. J Control Release 2024; 371:16-28. [PMID: 38763388 DOI: 10.1016/j.jconrel.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Metastasis leads to high mortality among cancer patients. It is a complex, multi-step biological process that involves the dissemination of cancer cells from the primary tumor and their systemic spread throughout the body, primarily through the epithelial-mesenchymal transition (EMT) program and immune evasion mechanisms. It presents a challenge in how to comprehensively treat metastatic cancer cells throughout the entire stage of the metastatic cascade using a simple system. Here, we fabricate a nanogel (HNO-NG) by covalently crosslinking a macromolecular nitric oxide (NO) donor with a photothermal IR780 iodide-containing hyaluronic acid derivative via a click reaction. This enables stable storage and tumor-targeted, photothermia-triggered release of NO to combat tumor metastasis throughout all stages. Upon laser irradiation (HNO-NG+L), the surge in NO production within tumor cells impairs the NF-κB/Snail/RKIP signaling loop that promotes the EMT program through S-nitrosylation, thus inhibiting cell dissemination from the primary tumor. On the other hand, it induces immunogenic cell death (ICD) and thereby augments anti-tumor immunity, which is crucial for killing both the primary tumor and systemically distributed tumor cells. Therefore, HNO-NG+L, by fully leveraging EMT reversal, ICD induction, and the lethal effect of NO, achieved impressive eradication of the primary tumor and significant prevention of lung metastasis in a mouse model of orthotropic 4T1 breast tumor that spontaneously metastasizes to the lungs, extending the NO-based therapeutic approach against tumor metastasis.
Collapse
Affiliation(s)
- Junmei Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Guizhi Miao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - My Hanh Ta
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yanran Xing
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
56
|
Chen T. Unveiling the significance of inducible nitric oxide synthase: Its impact on cancer progression and clinical implications. Cancer Lett 2024; 592:216931. [PMID: 38701892 DOI: 10.1016/j.canlet.2024.216931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/14/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
The intricate role of inducible nitric oxide synthase (iNOS) in cancer pathophysiology has garnered significant attention, highlighting the complex interplay between tumorigenesis, immune response, and cellular metabolism. As an enzyme responsible for producing nitric oxide (NO) in response to inflammatory stimuli. iNOS is implicated in various aspects of cancer development, including DNA damage, angiogenesis, and evasion of apoptosis. This review synthesizes the current findings from both preclinical and clinical studies on iNOS across different cancer types, reflecting the variability depending on cellular context and tumor microenvironment. We explore the molecular mechanisms by which iNOS modulates cancer cell growth, survival, and metastasis, emphasizing its impact on immune surveillance and response to treatment. Additionally, the potential of targeting iNOS as a therapeutic strategy in cancer treatment is examined. By integrating insights from recent advances, this review aims to elucidate the significant role of iNOS in cancer and pave the way for novel diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Tong Chen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
57
|
Cutolo EA, Campitiello R, Caferri R, Pagliuca VF, Li J, Agathos SN, Cutolo M. Immunomodulatory Compounds from the Sea: From the Origins to a Modern Marine Pharmacopoeia. Mar Drugs 2024; 22:304. [PMID: 39057413 PMCID: PMC11278107 DOI: 10.3390/md22070304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
From sea shores to the abysses of the deep ocean, marine ecosystems have provided humanity with valuable medicinal resources. The use of marine organisms is discussed in ancient pharmacopoeias of different times and geographic regions and is still deeply rooted in traditional medicine. Thanks to present-day, large-scale bioprospecting and rigorous screening for bioactive metabolites, the ocean is coming back as an untapped resource of natural compounds with therapeutic potential. This renewed interest in marine drugs is propelled by a burgeoning research field investigating the molecular mechanisms by which newly identified compounds intervene in the pathophysiology of human diseases. Of great clinical relevance are molecules endowed with anti-inflammatory and immunomodulatory properties with emerging applications in the management of chronic inflammatory disorders, autoimmune diseases, and cancer. Here, we review the historical development of marine pharmacology in the Eastern and Western worlds and describe the status of marine drug discovery. Finally, we discuss the importance of conducting sustainable exploitation of marine resources through biotechnology.
Collapse
Affiliation(s)
- Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Rosanna Campitiello
- Laboratory of Experimental Rheumatology and Academic, Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Roberto Caferri
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Vittorio Flavio Pagliuca
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Jian Li
- Qingdao Innovation and Development Base, Harbin Engineering University, No. 1777 Sansha Road, Qingdao 150001, China; (J.L.); (S.N.A.)
| | - Spiros Nicolas Agathos
- Qingdao Innovation and Development Base, Harbin Engineering University, No. 1777 Sansha Road, Qingdao 150001, China; (J.L.); (S.N.A.)
- Bioengineering Laboratory, Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic, Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
58
|
Li Y, Xu M, Chen J, Huang J, Cao J, Chen H, Zhang J, Luo Y, Wang Y, Sun J. Ameliorating and refining islet organoids to illuminate treatment and pathogenesis of diabetes mellitus. Stem Cell Res Ther 2024; 15:188. [PMID: 38937834 PMCID: PMC11210168 DOI: 10.1186/s13287-024-03780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
Diabetes mellitus, a significant global public health challenge, severely impacts human health worldwide. The organoid, an innovative in vitro three-dimensional (3D) culture model, closely mimics tissues or organs in vivo. Insulin-secreting islet organoid, derived from stem cells induced in vitro with 3D structures, has emerged as a potential alternative for islet transplantation and as a possible disease model that mirrors the human body's in vivo environment, eliminating species difference. This technology has gained considerable attention for its potential in diabetes treatment. Despite advances, the process of stem cell differentiation into islet organoid and its cultivation demonstrates deficiencies, prompting ongoing efforts to develop more efficient differentiation protocols and 3D biomimetic materials. At present, the constructed islet organoid exhibit limitations in their composition, structure, and functionality when compared to natural islets. Consequently, further research is imperative to achieve a multi-tissue system composition and improved insulin secretion functionality in islet organoid, while addressing transplantation-related safety concerns, such as tumorigenicity, immune rejection, infection, and thrombosis. This review delves into the methodologies and strategies for constructing the islet organoid, its application in diabetes treatment, and the pivotal scientific challenges within organoid research, offering fresh perspectives for a deeper understanding of diabetes pathogenesis and the development of therapeutic interventions.
Collapse
Affiliation(s)
- Yushan Li
- Department of Endocrinology, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Meiqi Xu
- Department of Biomedical Engineering, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jiali Chen
- Department of Endocrinology, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiansong Huang
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiaying Cao
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Huajing Chen
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiayi Zhang
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yukun Luo
- Department of Endocrinology, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yazhuo Wang
- Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
| | - Jia Sun
- Department of Endocrinology, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
59
|
Cazzaniga M, Cardinali M, Di Pierro F, Zonzini GB, Palazzi CM, Gregoretti A, Zerbinati N, Guasti L, Matera MR, Cavecchia I, Bertuccioli A. The Role of Short-Chain Fatty Acids, Particularly Butyrate, in Oncological Immunotherapy with Checkpoint Inhibitors: The Effectiveness of Complementary Treatment with Clostridium butyricum 588. Microorganisms 2024; 12:1235. [PMID: 38930617 PMCID: PMC11206605 DOI: 10.3390/microorganisms12061235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
The discovery of immune checkpoints (CTLA-4, PD-1, and PD-L1) and their impact on the prognosis of oncological diseases have paved the way for the development of revolutionary oncological treatments. These treatments do not combat tumors with drugs "against" cancer cells but rather support and enhance the ability of the immune system to respond directly to tumor growth by attacking the cancer cells with lymphocytes. It has now been widely demonstrated that the presence of an adequate immune response, essentially represented by the number of TILs (tumor-infiltrating lymphocytes) present in the tumor mass decisively influences the response to treatments and the prognosis of the disease. Therefore, immunotherapy is based on and cannot be carried out without the ability to increase the presence of lymphocytic cells at the tumor site, thereby limiting and nullifying certain tumor evasion mechanisms, particularly those expressed by the activity (under positive physiological conditions) of checkpoints that restrain the response against transformed cells. Immunotherapy has been in the experimental phase for decades, and its excellent results have made it a cornerstone of treatments for many oncological pathologies, especially when combined with chemotherapy and radiotherapy. Despite these successes, a significant number of patients (approximately 50%) do not respond to treatment or develop resistance early on. The microbiota, its composition, and our ability to modulate it can have a positive impact on oncological treatments, reducing side effects and increasing sensitivity and effectiveness. Numerous studies published in high-ranking journals confirm that a certain microbial balance, particularly the presence of bacteria capable of producing short-chain fatty acids (SCFAs), especially butyrate, is essential not only for reducing the side effects of chemoradiotherapy treatments but also for a better response to immune treatments and, therefore, a better prognosis. This opens up the possibility that favorable modulation of the microbiota could become an essential complementary treatment to standard oncological therapies. This brief review aims to highlight the key aspects of using precision probiotics, such as Clostridium butyricum, that produce butyrate to improve the response to immune checkpoint treatments and, thus, the prognosis of oncological diseases.
Collapse
Affiliation(s)
- Massimiliano Cazzaniga
- Scientific & Research Department, Velleja Research, 20125 Milan, Italy; (M.C.); (F.D.P.)
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
| | - Marco Cardinali
- Department of Internal Medicine, Infermi Hospital, AUSL Romagna, 47921 Rimini, Italy;
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy;
| | - Francesco Di Pierro
- Scientific & Research Department, Velleja Research, 20125 Milan, Italy; (M.C.); (F.D.P.)
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Giordano Bruno Zonzini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy;
| | - Chiara Maria Palazzi
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
| | - Aurora Gregoretti
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Luigina Guasti
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Maria Rosaria Matera
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
| | - Ilaria Cavecchia
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
| | - Alexander Bertuccioli
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.G.); (M.R.M.); (I.C.); (A.B.)
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy;
| |
Collapse
|
60
|
Desponds E, Kioseoglou K, Zdimerova H, Ongaro M, Verdeil G, Leblond MM. Development of Traceable Mouse Models of Advanced and Metastatic Bladder Cancer. Cancers (Basel) 2024; 16:2245. [PMID: 38927950 PMCID: PMC11202260 DOI: 10.3390/cancers16122245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Bladder cancer (BC) is the fourth most common cancer in men, with a poor patient prognosis for advanced disease. The poor survival of patients with muscle-invasive bladder cancer (MIBC) and metastatic status emphasizes the urgent need to develop new therapies. Lacking in the field of BC is the availability of relevant advanced BC mouse models, especially metastatic ones, that accurately recapitulate the complexities of human pathology to test and study new therapeutic strategies. Addressing this need, we developed a traceable mouse model of BC that expresses tumor-associated antigens within the context of advanced muscle-invasive BC. This novel system was achieved through the deletion of the tp53 and pten genes, alongside the incorporation of the fusion construct of Firefly luciferase (Luc) and the SIYRYYGL (SIY) T-cell antigen. We validate that the presence of the transgene did not impact on the development of the tumors while allowing us to measure tumor progression by bioluminescence. We show that the transgene did not influence the composition of the immune tumor microenvironment. More importantly, we report that this model was unresponsive to anti-PD-1 treatment, as in the majority of patients with BC. We also develop a new model based on the orthotopic injection of BC clonal cell lines derived from our first model. We demonstrate that this new model invades the muscle layer and has a metastasis development rate of 83%. The advantage of this model is that we can visualize tumor growth and metastasis development in vivo. These mouse models' characteristics, displaying many similarities with the human pathology, provide a valuable tool for tracking tumor progression, metastasis spread in vivo, and treatment resistance, as well as exploring fundamental and translational aspects of BC biology. This work contributes to the improvement in the landscape of mouse models of advanced BC for testing new therapeutic strategies.
Collapse
Affiliation(s)
- Emma Desponds
- Department of Oncology, Lausanne University Hospital (CHUV), University of Lausanne, 1015 Lausanne, Switzerland; (E.D.); (K.K.); (H.Z.); (M.O.)
- Ludwig Institute for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland
| | - Konstantina Kioseoglou
- Department of Oncology, Lausanne University Hospital (CHUV), University of Lausanne, 1015 Lausanne, Switzerland; (E.D.); (K.K.); (H.Z.); (M.O.)
- Ludwig Institute for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland
| | - Hana Zdimerova
- Department of Oncology, Lausanne University Hospital (CHUV), University of Lausanne, 1015 Lausanne, Switzerland; (E.D.); (K.K.); (H.Z.); (M.O.)
- Ludwig Institute for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland
| | - Marco Ongaro
- Department of Oncology, Lausanne University Hospital (CHUV), University of Lausanne, 1015 Lausanne, Switzerland; (E.D.); (K.K.); (H.Z.); (M.O.)
- Ludwig Institute for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland
| | - Grégory Verdeil
- Department of Oncology, Lausanne University Hospital (CHUV), University of Lausanne, 1015 Lausanne, Switzerland; (E.D.); (K.K.); (H.Z.); (M.O.)
- Ludwig Institute for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland
| | - Marine M. Leblond
- Department of Oncology, Lausanne University Hospital (CHUV), University of Lausanne, 1015 Lausanne, Switzerland; (E.D.); (K.K.); (H.Z.); (M.O.)
- Ludwig Institute for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
61
|
Iyer K, Ivanov J, Tenchov R, Ralhan K, Rodriguez Y, Sasso JM, Scott S, Zhou QA. Emerging Targets and Therapeutics in Immuno-Oncology: Insights from Landscape Analysis. J Med Chem 2024; 67:8519-8544. [PMID: 38787632 PMCID: PMC11181335 DOI: 10.1021/acs.jmedchem.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
In the ever-evolving landscape of cancer research, immuno-oncology stands as a beacon of hope, offering novel avenues for treatment. This study capitalizes on the vast repository of immuno-oncology-related scientific documents within the CAS Content Collection, totaling over 350,000, encompassing journals and patents. Through a pioneering approach melding natural language processing with the CAS indexing system, we unveil over 300 emerging concepts, depicted in a comprehensive "Trend Landscape Map". These concepts, spanning therapeutic targets, biomarkers, and types of cancers among others, are hierarchically organized into eight major categories. Delving deeper, our analysis furnishes detailed quantitative metrics showcasing growth trends over the past three years. Our findings not only provide valuable insights for guiding future research endeavors but also underscore the merit of tapping the vast and unparalleled breadth of existing scientific information to derive profound insights.
Collapse
Affiliation(s)
| | - Julian Ivanov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | - Yacidzohara Rodriguez
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Janet M. Sasso
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Sabina Scott
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
62
|
Li M, Li H, Yuan T, Liu Z, Li Y, Tan Y, Long Y. MUC21: a new target for tumor treatment. Front Oncol 2024; 14:1410761. [PMID: 38933439 PMCID: PMC11199685 DOI: 10.3389/fonc.2024.1410761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
MUC21, also known as Epiglycanin, is a high-molecular-weight glycoprotein with transmembrane mucin properties. It consists of a tandem repeat domain, a stem domain, a transmembrane domain and a cytoplasmic tail. MUC21 is expressed is observed in normal tissues in organs like the thymus, testes, lungs, and large intestine. Research has shown that MUC21 is expressed in esophageal squamous cell carcinoma, lung adenocarcinoma, glioblastoma, thyroid cancer, melanoma, and various other malignant tumors in distinctive manner. Additionally, tumor invasion, metastasis, and poor prognosis are linked to it. Some researchers believe that MUC21 has the potential to become a new target in cancer treatment. This review aims to deliver a comprehensive overview of the glycosylation, function, and research progress of MUC21 in multiple types of cancer and infectious diseases.
Collapse
Affiliation(s)
- Miao Li
- Jishou University Zhuzhou Clinical College, Medical College, Jishou University, Zhuzhou, Hunan, China
- Medical College, Jishou University, Jishou, Xiangxi Tujia and Miao Autonomous Prefecture, Hunan, China
| | - Hui Li
- Medical College, Jishou University, Jishou, Xiangxi Tujia and Miao Autonomous Prefecture, Hunan, China
| | - Ting Yuan
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Zhi Liu
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yingzheng Tan
- Jishou University Zhuzhou Clinical College, Medical College, Jishou University, Zhuzhou, Hunan, China
- Medical College, Jishou University, Jishou, Xiangxi Tujia and Miao Autonomous Prefecture, Hunan, China
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yunzhu Long
- Jishou University Zhuzhou Clinical College, Medical College, Jishou University, Zhuzhou, Hunan, China
- Medical College, Jishou University, Jishou, Xiangxi Tujia and Miao Autonomous Prefecture, Hunan, China
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| |
Collapse
|
63
|
Hong W, Wang Z, Yao W, Zhang X, Zhang L, Liang B. Efficacy and Safety of Transarterial Chemoembolization and Repeated Partial Splenic Embolization for Hepatocellular Carcinoma with Hypersplenism and Thrombocytopenia. J Hepatocell Carcinoma 2024; 11:1065-1078. [PMID: 38882439 PMCID: PMC11179653 DOI: 10.2147/jhc.s455461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Aim Partial splenic embolization (PSE) combined with transarterial chemoembolization (TACE) has been reported in treatment of hepatocellular carcinoma (HCC) with cirrhotic hypersplenism and thrombocytopenia. However, efficacy and safety of repeated PSE when required are unclear. This study aims to investigate post-procedural changes in peripheral blood cell and hepatic function, progression-free survival (PFS), and safety of HCC patients with hypersplenism received TACE and repeated PSE compared to those received TACE alone. Methods This retrospective study included 102 HCC patients with hypersplenism who received TACE (n = 73) or TACE+PSE (n = 29) from January 2014 to December 2021. Changes in peripheral blood cell and hepatic function were investigated at 1 week, 2, 6, 12, 18, and 24 months. TACE procedure sessions and adverse events were recorded. PFS and prognostic factors were analyzed. Results Despite response to initial PSE being limited, repeated PSE increased platelet (PLT) again, which peaked at 18 months. It also continued to improve red blood cell (RBC) and hemoglobin, which showed significant differences in changes from baseline between two groups until 24 months, as well as Child-Pugh scores at 12 and 18 months. Mean TACE procedure sessions were significantly higher in TACE+PSE group than that in TACE alone group (4.55 vs 3.26, P = 0.019). TACE+PSE group had longer median PFS (19.4 vs 9.5 months, P = 0.023) than TACE alone group, where PSE was an independent protective factor (HR, 0.508; P = 0.014). Initial and repeated PSE showed no significant differences in safety. Conclusion Repeated PSE is effective in increasing PLT again and improving RBC, hemoglobin and liver function. It contributed to performing serial TACE procedures thereafter. TACE combined with repeated PSE has significantly longer PFS than TACE alone, where PSE was an independent protective factor. Moreover, the safety of repeated PSE was comparable to initial PSE.
Collapse
Affiliation(s)
- Wei Hong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei, People's Republic of China
| | - Zizhuo Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei, People's Republic of China
| | - Wei Yao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei, People's Republic of China
| | - Xin Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei, People's Republic of China
| | - Lijie Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei, People's Republic of China
| | - Bin Liang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
64
|
Layer N, Bunse L, Venkataramani V. Neural deception: Breast cancer co-opts neuronal mechanisms to evade the immune system. Cancer Cell 2024; 42:936-938. [PMID: 38821062 DOI: 10.1016/j.ccell.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Cellular mechanisms mediating immunotherapy resistances are incompletely understood. In this issue, Li et al. reveal how breast cancer hijacks neuronal mechanisms of neuroprotection to shield itself from the immune system. Secretion of N-acetylaspartate impairs immune synapse formation in both neuroinflammation and breast cancer models, paving the way for novel therapeutic approaches.
Collapse
Affiliation(s)
- Nikolas Layer
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Lukas Bunse
- Department of Neurology, Medical Faculty Mannheim, MCTN Heidelberg University, Mannheim, Germany; Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
65
|
Liu S, Dai W, Jin B, Jiang F, Huang H, Hou W, Lan J, Jin Y, Peng W, Pan J. Effects of super-enhancers in cancer metastasis: mechanisms and therapeutic targets. Mol Cancer 2024; 23:122. [PMID: 38844984 PMCID: PMC11157854 DOI: 10.1186/s12943-024-02033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Metastasis remains the principal cause of cancer-related lethality despite advancements in cancer treatment. Dysfunctional epigenetic alterations are crucial in the metastatic cascade. Among these, super-enhancers (SEs), emerging as new epigenetic regulators, consist of large clusters of regulatory elements that drive the high-level expression of genes essential for the oncogenic process, upon which cancer cells develop a profound dependency. These SE-driven oncogenes play an important role in regulating various facets of metastasis, including the promotion of tumor proliferation in primary and distal metastatic organs, facilitating cellular migration and invasion into the vasculature, triggering epithelial-mesenchymal transition, enhancing cancer stem cell-like properties, circumventing immune detection, and adapting to the heterogeneity of metastatic niches. This heavy reliance on SE-mediated transcription delineates a vulnerable target for therapeutic intervention in cancer cells. In this article, we review current insights into the characteristics, identification methodologies, formation, and activation mechanisms of SEs. We also elaborate the oncogenic roles and regulatory functions of SEs in the context of cancer metastasis. Ultimately, we discuss the potential of SEs as novel therapeutic targets and their implications in clinical oncology, offering insights into future directions for innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Shenglan Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Wei Dai
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Bei Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Feng Jiang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Hao Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Wen Hou
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Jinxia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Yanli Jin
- College of Pharmacy, Jinan University Institute of Tumor Pharmacology, Jinan University, Guangzhou, 510632, China
| | - Weijie Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China.
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
66
|
Liu YT, Mao ZW, Ding Y, Wang WL. Macrophages as Targets in Hepatocellular Carcinoma Therapy. Mol Cancer Ther 2024; 23:780-790. [PMID: 38310642 DOI: 10.1158/1535-7163.mct-23-0660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/16/2023] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with a complex and diverse immunosuppressive microenvironment. Tumor-associated macrophages (TAM) are an essential component of the tumor immune microenvironment. TAMs typically exist in two primary states: anti-tumor M1 macrophages and protumor M2 macrophages. Remarkably, TAMs possess high plasticity, enabling them to switch between different subtypes or alter their biological functions in response to the tumor microenvironment. Based on research into the biological role of TAMs in the occurrence and development of malignant tumors, including HCC, TAMs are emerging as promising targets for novel tumor treatment strategies. In this review, we provide a detailed introduction to the origin and subtypes of TAMs, elucidate their interactions with other cells in the complex tumor microenvironment of HCC, and describe the biological roles, characteristics, and mechanisms of TAMs in the progression of HCC. Furthermore, we furnish an overview of the latest therapeutic strategies targeting TAMs.
Collapse
Affiliation(s)
- Yu-Ting Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang 310009
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
| | - Zheng-Wei Mao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang 310009
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
| | - Wei-Lin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang 310009
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, China
| |
Collapse
|
67
|
Dwivedi R, Jain A, Gupta S, Chandra S. Immunotherapy: The Fourth Domain in Oral Cancer Therapeutics. Indian J Otolaryngol Head Neck Surg 2024; 76:2257-2272. [PMID: 38883453 PMCID: PMC11169205 DOI: 10.1007/s12070-024-04565-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/16/2024] [Indexed: 06/18/2024] Open
Abstract
Owing to high global prevalence, incidence and associated mortality, cancer of head and neck particularly oral cancer remains a cardinal domain for research and trials. Immune-modulatory therapies that employ patients own immune system for therapeutic benefits in oral cancer seems promising. The aim of this review is to gauge the potential of immunotherapy as fourth domain of Oral cancer therapeutics. Articles were searched using suitable search terms in MEDLINE and Google Scholar database to include clinical trials, meta-analyses, and research in humans/animals/cell lines published in peer reviewed journals. A total of 97 articles were included in this review. Literature has several studies and trials where different types of immunotherapies has been attempted but it is crucial to identify precise biomarkers of genome based targeted agents and to find parameters to select patients who might benefit from immunotherapy. Also further research is required to estimate predictive value of tumor mutational burden and mutational signatures so as to aid in personalized prediction of oral cancer therapeutic response.
Collapse
Affiliation(s)
- Ruby Dwivedi
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, King George's Medical University, Shahmina Road, Chowk, Lucknow, Uttar Pradesh 226003 India
| | - Ayushi Jain
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, King George's Medical University, Shahmina Road, Chowk, Lucknow, Uttar Pradesh 226003 India
| | - Shalini Gupta
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, King George's Medical University, Shahmina Road, Chowk, Lucknow, Uttar Pradesh 226003 India
| | - Shaleen Chandra
- Atal Bihari Vajpayee Medical University, Lucknow, Uttar Pradesh India
| |
Collapse
|
68
|
Liu X, Wang M, Wang Q, Zhang H. A ubiquitin-proteasome system-related signature to predict prognosis, immune infiltration, and therapy efficacy for breast cancer. Immunol Res 2024; 72:368-382. [PMID: 38036900 DOI: 10.1007/s12026-023-09440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023]
Abstract
The ubiquitin-proteasome system (UPS) is an essential regulatory system for maintaining homeostasis, and its dysfunction may cause various diseases. The activity of proteasome and ubiquitin-conjugating enzymes has been found to be greatly increased in breast cancer (BC), indicating that the heterogeneity of UPS may be related to the progression of BC. Gene data was obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases and performed in multiple algorithms to construct a UPS-related signature for BC. Patients in the UPS low-risk group had greater overall and recurrence-free survival probability than those in the UPS high-risk group. This signature was closely associated with functional enrichment. Some high metabolism-related pathways were more active in the UPS high-risk group. The UPS low-risk group had more abundant anti-tumor immune cells, while in the UPS high-risk group, immunosuppressive cells were dominant. More importantly, we found that the UPS low-risk group was more sensitive to immunotherapy, while the UPS high-risk group responded better to radiotherapy. Drug sensitivity analysis identified more effective chemotherapy drugs in different UPS-related risk groups. This UPS-related signature may serve as a novel biomarker and independent prognostic factor for BC. It can effectively predict prognosis, immune infiltration, and therapy efficacy, providing new strategies for individualized treatment.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Meihuan Wang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qian Wang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Huawei Zhang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
69
|
Hu Y, Gu Y, Song Y, Zhao Y, Wang J, Ma J, Sui F. Differential expression and prognostic value of TLR4 in kidney renal clear cell carcinoma. Mol Cell Probes 2024; 75:101959. [PMID: 38579915 DOI: 10.1016/j.mcp.2024.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
Human Toll-like receptor (TLR) family plays a crucial role in immunity and cancer progression. However, the specific role of human Toll-like receptor 4 (TLR4) in kidney renal clear cell carcinoma (KIRC) remains obscure. Thus, we used single-cell RNA sequencing (RNA-seq) and bulk RNA-seq data combined with in vitro studies to evaluate the expression and prognostic value of TLR4 in KIRC. In our study, we observed that TLR4 was over expressed in KIRC tissues compared to normal renal tissues. And the expression of TLR4 was higher in macrophages/monocytes than other cell types. Besides, there is a close association between TLR4 expression and immune cell infiltration (Neutrophils, Macrophages, T cells and B cells) in KIRC. Immunohistochemical staining also showed that TLR4 was overexpressed in inflammatory infiltration renal tissue compared with normal tissue. Meanwhile, high expression of TLR4 exhibited correlations with improved survival, lower tumor grade and stage. Interestingly, the protective significance of TLR4 only showed in female patients (HR = 0.37, P < 0.01), other than male patients (HR = 0.71, P = 0.08) with KIRC. Consistently, KIRC samples with lymph node metastasis showed lower expression of TLR4. Knockdown of TLR4 in 786-O cell line increased cell proliferation and clonogenic capacity. In summary, this study found TLR4 could inhibit the progression of kidney cancer and was associated with improved survival in KIRC. The overexpression of TLR4 in macrophages and the close association between TLR4 and immune cell infiltration also underline the critical role of TLR4 in building the immune microenvironment for kidney cancer. These results may offer insights into the mechanism and immune microenvironment of kidney cancer.
Collapse
Affiliation(s)
- Yaguang Hu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-ta West Road, Xi'an, Shaanxi, 710061, China
| | - Yanan Gu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-ta West Road, Xi'an, Shaanxi, 710061, China; Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-ta West Road, Xi'an, Shaanxi, 710061, China
| | - Yichen Song
- Xi'an Jiaotong University, 277 Yan-ta West Road, Xi'an, Shaanxi, 710061, China
| | - Yuelei Zhao
- Xi'an Jiaotong University, 277 Yan-ta West Road, Xi'an, Shaanxi, 710061, China
| | - Jiachen Wang
- Xi'an Jiaotong University, 277 Yan-ta West Road, Xi'an, Shaanxi, 710061, China
| | - Junchi Ma
- School of Information Engineering, Chang'an University, Xi'an, China.
| | - Fang Sui
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-ta West Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
70
|
Guo Q, Zhang G, Zhou W, Lu Y, Chen X, Deng Z, Li J, Bi H, Wu M, Xie M, Yan Y, Zhang J. m 6A modification of lncRNA PHKA1-AS1 enhances Actinin Alpha 4 stability and promotes non-small cell lung cancer metastasis. MedComm (Beijing) 2024; 5:e547. [PMID: 38764726 PMCID: PMC11099756 DOI: 10.1002/mco2.547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/21/2024] Open
Abstract
Cancer is a disease with molecular heterogeneity that is closely related to gene mutations and epigenetic changes. The principal histological subtype of lung cancer is non-small cell lung cancer (NSCLC). Long noncoding RNA (lncRNA) is a kind of RNA that is without protein coding function, playing a critical role in the progression of cancer. In this research, the regulatory mechanisms of lncRNA phosphorylase kinase regulatory subunit alpha 1 antisense RNA 1 (PHKA1-AS1) in the progression of NSCLC were explored. The increased level of N6-methyladenosine (m6A) modification in NSCLC caused the high expression of PHKA1-AS1. Subsequently, high-expressed PHKA1-AS1 significantly facilitated the proliferation and metastasis of NSCLC cells, and these effects could be reversed upon the inhibition of PHKA1-AS1 expression, both in vivo and in vitro. Additionally, the target protein of PHKA1-AS1 was actinin alpha 4 (ACTN4), which is known as an oncogene. Herein, PHKA1-AS1 could enhance the protein stability of ACTN4 by inhibiting its ubiquitination degradation process, thus exerting the function of ACTN4 in promoting the progress of NSCLC. In conclusion, this research provided a theoretical basis for further exploring the potential mechanism of NSCLC metastasis and searching novel biomarkers related to the pathogenesis and progression of NSCLC.
Collapse
Affiliation(s)
- Qiao‐Ru Guo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
| | - Guo‐Bin Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
| | - Wen‐Min Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
| | - Yu Lu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
| | - Xin‐Zhu Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
| | - Zhuo‐Fen Deng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
| | - Jin‐Shuo Li
- School of MedicineShanxi Datong UniversityDatongP.R. China
| | - Hong Bi
- Department of PathologyShanxi Provincial People's HospitalTaiyuanP.R. China
| | - Ming‐Sheng Wu
- Department of Thoracic SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiP.R. China
| | - Ming‐Ran Xie
- Department of Thoracic SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiP.R. China
| | - Yan‐Yan Yan
- School of MedicineShanxi Datong UniversityDatongP.R. China
| | - Jian‐Ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
- The Affiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuanP.R. China
| |
Collapse
|
71
|
Halpert MM, Burns BA, Rosario SR, Withers HG, Trivedi AJ, Hofferek CJ, Gephart BD, Wang H, Vazquez-Perez J, Amanya SB, Hyslop ST, Yang J, Kemnade JO, Sandulache VC, Konduri V, Decker WK. Multifactoral immune modulation potentiates durable remission in multiple models of aggressive malignancy. FASEB J 2024; 38:e23644. [PMID: 38738472 PMCID: PMC11155525 DOI: 10.1096/fj.202302675r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
Tumors typically lack canonical danger signals required to activate adaptive immunity and also frequently employ substantial immunomodulatory mechanisms that downregulate adaptive responses and contribute to escape from immune surveillance. Given the variety of mechanisms involved in shielding tumors from immune recognition, it is not surprising that single-agent immunomodulatory approaches have been largely unsuccessful in generating durable antitumor responses. Here we report a unique combination of immunomodulatory and cytostatic agents that recondition the tumor microenvironment and eliminate complex and/or poor-prognosis tumor types including the non-immunogenic 4T-1 model of TNBC, the aggressive MOC-2 model of HNSCC, and the high-risk MYCN-amplified model of neuroblastoma. A course of therapy optimized for TNBC cured a majority of tumors in both ectopic and orthotopic settings and eliminated metastatic spread in all animals tested at the highest doses. Immune responses were transferable between therapeutic donor and naïve recipient through adoptive transfer, and a sizeable abscopal effect on distant, untreated lesions could be demonstrated experimentally. Similar results were observed in HNSCC and neuroblastoma models, with characteristic remodeling of the tumor microenvironment documented in all model systems. scRNA-seq analysis implicated upregulation of innate immune responses and antigen presentation in tumor cells and the myeloid cell compartment as critical early events. This analysis also highlighted the potential importance of the autonomic nervous system in the governance of inflammatory processes. The data indicate that the targeting of multiple pathways and mechanisms of action can result in substantial synergistic antitumor effects and suggest follow-up in the neoadjuvant setting may be warranted.
Collapse
Affiliation(s)
- MM Halpert
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - BA Burns
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - SR Rosario
- Department of Biostatistics and Bioinformatics, Baylor College of Medicine, Houston, TX 77030 United States
- Acquired Resistance to Therapy Network (ARTNet) U24/U54 Investigator, Baylor College of Medicine, Houston, TX 77030 United States
| | - HG Withers
- Department of Biostatistics and Bioinformatics, Baylor College of Medicine, Houston, TX 77030 United States
| | - AJ Trivedi
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - CJ Hofferek
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - BD Gephart
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - H Wang
- Department of Medicine, Section of Hematology & Oncology, Baylor College of Medicine, Houston, TX 77030 United States
| | - J Vazquez-Perez
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - SB Amanya
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - ST Hyslop
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - J Yang
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030 United States
| | - JO Kemnade
- Department of Medicine, Section of Hematology & Oncology, Baylor College of Medicine, Houston, TX 77030 United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030 United States
| | - VC Sandulache
- Acquired Resistance to Therapy Network (ARTNet) U24/U54 Investigator, Baylor College of Medicine, Houston, TX 77030 United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030 United States
- Bobby R. Alford Department of Otolaryngology - Head and Neck Surgery, Baylor College of Medicine, Houston, TX 77030 United States
| | - V Konduri
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030 United States
| | - WK Decker
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
- Acquired Resistance to Therapy Network (ARTNet) U24/U54 Investigator, Baylor College of Medicine, Houston, TX 77030 United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030 United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030 United States
| |
Collapse
|
72
|
Luo XX, Li SZ, Wang L, Luo AL, Qiu H, Yuan XL. Prognostic role of MUCIN family and its relationship with immune characteristics and tumor biology in diffuse-type gastric cancer. Heliyon 2024; 10:e31403. [PMID: 38803848 PMCID: PMC11129101 DOI: 10.1016/j.heliyon.2024.e31403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
The main component of O-glycoproteins, mucin, is known to play important roles in physiological conditions and oncogenic processes, particularly correlated with poor prognosis in different carcinomas. Diffuse-type gastric cancer (DGC) has long been associated with genomic stability and unfavorable clinical outcomes. To investigate further, we obtained clinical information and the RNA-seq data of the TCGA-STAD cohort. Through the use of unsupervised clustering methods and GSEA, we identified two distinct clusters, characterized by higher and lower expression of MUC2 and MUC20, denoted as cluster 1 and cluster 2, respectively. Subsequently, employing CIBERSORT, it was determined that cluster 2 exhibited a higher tumor mutation burden (TMB) and a greater abundance of CD8+ T cells and activated CD4+ memory T cells, in addition to immune checkpoints (ICPs). On the other hand, cluster 1 showed a lower TIDE score estimation, indicating a higher probability of tumor immune escape. Furthermore, overexpression of MUC15 and MUC20 was confirmed through qPCR and Western blotting, and their specific roles in mediating the epithelial-mesenchymal transition (EMT) process of GC cells (SNU484 and Hs746t) were validated via CCK-8 assay and wound healing assay in vitro. These findings highlight the potential prognostic value of MUC20 and offer insights into the prospects of immunotherapy for DGC by targeting MUC20.
Collapse
Affiliation(s)
- Xiao-Xiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 30030, China
| | - Shi-Zhen Li
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 30030, China
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 30030, China
| | - Ai-Lin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 30030, China
| | - Xiang-Lin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 30030, China
| |
Collapse
|
73
|
Masucci M, Karlsson C, Blomqvist L, Ernberg I. Bridging the Divide: A Review on the Implementation of Personalized Cancer Medicine. J Pers Med 2024; 14:561. [PMID: 38929782 PMCID: PMC11204735 DOI: 10.3390/jpm14060561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/05/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The shift towards personalized cancer medicine (PCM) represents a significant transformation in cancer care, emphasizing tailored treatments based on the genetic understanding of cancer at the cellular level. This review draws on recent literature to explore key factors influencing PCM implementation, highlighting the role of innovative leadership, interdisciplinary collaboration, and coordinated funding and regulatory strategies. Success in PCM relies on overcoming challenges such as integrating diverse medical disciplines, securing sustainable investment for shared infrastructures, and navigating complex regulatory landscapes. Effective leadership is crucial for fostering a culture of innovation and teamwork, essential for translating complex biological insights into personalized treatment strategies. The transition to PCM necessitates not only organizational adaptation but also the development of new professional roles and training programs, underscoring the need for a multidisciplinary approach and the importance of team science in overcoming the limitations of traditional medical paradigms. The conclusion underscores that PCM's success hinges on creating collaborative environments that support innovation, adaptability, and shared vision among all stakeholders involved in cancer care.
Collapse
Affiliation(s)
- Michele Masucci
- Department of Learning, Informatics, Management and Ethics (LIME), Karolinska Institutet, Tomtebodavägen 18B, 171 65 Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Claes Karlsson
- Department of Oncology-Pathology (Onc-Pat), Karolinska Institutet, Anna Steckséns gata 30A, D2:04, 171 65 Solna, Sweden;
| | - Lennart Blomqvist
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institutet, Anna Steckséns gata 53, 171 65 Solna, Sweden;
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| |
Collapse
|
74
|
Sun YY, Li S, Liu C, Pan Y, Xiao Y. Identification of a methyltransferase-related long noncoding RNA signature as a novel prognosis biomarker for lung adenocarcinoma. Aging (Albany NY) 2024; 16:8747-8771. [PMID: 38771129 PMCID: PMC11164517 DOI: 10.18632/aging.205837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/18/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) accounts for a high proportion of tumor deaths globally, while methyltransferase-related lncRNAs in LUAD were poorly studied. METHODS In our study, we focused on two distinct cohorts, TCGA-LUAD and GSE3021, to establish a signature of methyltransferase-related long non-coding RNAs (MeRlncRNAs) in LUAD. We employed univariate Cox and LASSO regression analyses as our main analytical tools. The GSE30219 cohort served as the validation cohort for our findings. Furthermore, to explore the differential pathway enrichments between groups stratified by risk, we utilized Gene Set Enrichment Analysis (GSEA). Additionally, single-sample GSEA (ssGSEA) was conducted to assess the immune infiltration landscape within each sample. Reverse transcription quantitative PCR (RT-qPCR) was also performed to verify the expression of prognostic lncRNAs in both clinically normal and LUAD samples. RESULTS In LUAD, we identified a set of 32 MeRlncRNAs. We further narrowed our focus to six prognostic lncRNAs to develop gene signatures. The TCGA-LUAD cohort and GSE30219 were utilized to validate the risk score model derived from these signatures. Our analysis showed that the risk score served as an independent prognostic factor, linked to immune-related pathways. Additionally, the analysis of immune infiltration revealed that the immune landscape in high-risk groups was suppressed, which could contribute to poorer prognoses. We also constructed a regulatory network comprising 6 prognostic lncRNAs, 19 miRNAs, and 21 mRNAs. Confirmatory RT-qPCR results aligned with public database findings, verifying the expression of these prognostic lncRNAs in the samples. CONCLUSION The prognostic gene signature of LUAD associated with MeRlncRNAs that we provided, may offer us a comprehensive picture of the prognosis prediction for LUAD patients.
Collapse
Affiliation(s)
- Yang Yong Sun
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Shuang Li
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Chang Liu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Yaqiang Pan
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Ying Xiao
- Department of Emergency, Nanjing Jiangning Hospital, Jiangsu, China
| |
Collapse
|
75
|
Hu T, Cheng B, Matsunaga A, Zhang T, Lu X, Fang H, Mori SF, Fang X, Wang G, Xu H, Shi H, Cowell JK. Single-cell analysis defines highly specific leukemia-induced neutrophils and links MMP8 expression to recruitment of tumor associated neutrophils during FGFR1 driven leukemogenesis. Exp Hematol Oncol 2024; 13:49. [PMID: 38730491 PMCID: PMC11084112 DOI: 10.1186/s40164-024-00514-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Leukemias driven by activated, chimeric FGFR1 kinases typically progress to AML which have poor prognosis. Mouse models of this syndrome allow detailed analysis of cellular and molecular changes occurring during leukemogenesis. We have used these models to determine the effects of leukemia development on the immune cell composition in the leukemia microenvironment during leukemia development and progression. METHODS Single cell RNA sequencing (scRNA-Seq) was used to characterize leukemia associated neutrophils and define gene expression changes in these cells during leukemia progression. RESULTS scRNA-Seq revealed six distinct subgroups of neutrophils based on their specific differential gene expression. In response to leukemia development, there is a dramatic increase in only two of the neutrophil subgroups. These two subgroups show specific gene expression signatures consistent with neutrophil precursors which give rise to immature polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Analysis of gene expression in these precursor cells identified pathways that were specifically upregulated, the most pronounced of which involved matrix metalloproteinases Mmp8 and Mmp9, during leukemia progression. Pharmacological inhibition of MMPs using Ilomastat preferentially restricted in vitro migration of neutrophils from leukemic mice and led to a significantly improved survival in vivo, accompanied by impaired PMN-MDSC recruitment. As a result, levels of T-cells were proportionally increased. In clinically annotated TCGA databases, MMP8 was shown to act as an independent indicator for poor prognosis and correlated with higher neutrophil infiltration and poor pan-cancer prognosis. CONCLUSION We have defined specific leukemia responsive neutrophil subgroups based on their unique gene expression profile, which appear to be the precursors of neutrophils specifically associated with leukemia progression. An important event during development of these neutrophils is upregulation MMP genes which facilitated mobilization of these precursors from the BM in response to cancer progression, suggesting a possible therapeutic approach to suppress the development of immune tolerance.
Collapse
Affiliation(s)
- Tianxiang Hu
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA.
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Atsuko Matsunaga
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA
| | - Ting Zhang
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Xiaocui Lu
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Fang
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Stephanie F Mori
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA
| | - Xuexiu Fang
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA
| | - Gavin Wang
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA
- University of Georgia, Athens, GA, USA
| | - Hongyan Xu
- Department of Biostatistics, Data Science and Epidemiology, School of Public Health, Augusta University, 30912, Augusta, GA, USA
| | - Huidong Shi
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA.
| | - John K Cowell
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA.
| |
Collapse
|
76
|
Huang R, Kang T, Chen S. The role of tumor-associated macrophages in tumor immune evasion. J Cancer Res Clin Oncol 2024; 150:238. [PMID: 38713256 PMCID: PMC11076352 DOI: 10.1007/s00432-024-05777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Tumor growth is closely linked to the activities of various cells in the tumor microenvironment (TME), particularly immune cells. During tumor progression, circulating monocytes and macrophages are recruited, altering the TME and accelerating growth. These macrophages adjust their functions in response to signals from tumor and stromal cells. Tumor-associated macrophages (TAMs), similar to M2 macrophages, are key regulators in the TME. METHODS We review the origins, characteristics, and functions of TAMs within the TME. This analysis includes the mechanisms through which TAMs facilitate immune evasion and promote tumor metastasis. Additionally, we explore potential therapeutic strategies that target TAMs. RESULTS TAMs are instrumental in mediating tumor immune evasion and malignant behaviors. They release cytokines that inhibit effector immune cells and attract additional immunosuppressive cells to the TME. TAMs primarily target effector T cells, inducing exhaustion directly, influencing activity indirectly through cellular interactions, or suppressing through immune checkpoints. Additionally, TAMs are directly involved in tumor proliferation, angiogenesis, invasion, and metastasis. Developing innovative tumor-targeted therapies and immunotherapeutic strategies is currently a promising focus in oncology. Given the pivotal role of TAMs in immune evasion, several therapeutic approaches have been devised to target them. These include leveraging epigenetics, metabolic reprogramming, and cellular engineering to repolarize TAMs, inhibiting their recruitment and activity, and using TAMs as drug delivery vehicles. Although some of these strategies remain distant from clinical application, we believe that future therapies targeting TAMs will offer significant benefits to cancer patients.
Collapse
Affiliation(s)
- Ruizhe Huang
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ting Kang
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Siyu Chen
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
77
|
Song J, Kim D, Jung J, Choi E, Lee Y, Jeong Y, Lee B, Lee S, Shim Y, Won Y, Cho H, Jang DK, Kang HW, Joo JWJ, Jang W. Elucidating immunological characteristics of the adenoma-carcinoma sequence in colorectal cancer patients in South Korea using a bioinformatics approach. Sci Rep 2024; 14:10105. [PMID: 38698020 PMCID: PMC11066069 DOI: 10.1038/s41598-024-56078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/01/2024] [Indexed: 05/05/2024] Open
Abstract
Colorectal cancer (CRC) is one of the top five most common and life-threatening malignancies worldwide. Most CRC develops from advanced colorectal adenoma (ACA), a precancerous stage, through the adenoma-carcinoma sequence. However, its underlying mechanisms, including how the tumor microenvironment changes, remain elusive. Therefore, we conducted an integrative analysis comparing RNA-seq data collected from 40 ACA patients who visited Dongguk University Ilsan Hospital with normal adjacent colons and tumor samples from 18 CRC patients collected from a public database. Differential expression analysis identified 21 and 79 sequentially up- or down-regulated genes across the continuum, respectively. The functional centrality of the continuum genes was assessed through network analysis, identifying 11 up- and 13 down-regulated hub-genes. Subsequently, we validated the prognostic effects of hub-genes using the Kaplan-Meier survival analysis. To estimate the immunological transition of the adenoma-carcinoma sequence, single-cell deconvolution and immune repertoire analyses were conducted. Significant composition changes for innate immunity cells and decreased plasma B-cells with immunoglobulin diversity were observed, along with distinctive immunoglobulin recombination patterns. Taken together, we believe our findings suggest underlying transcriptional and immunological changes during the adenoma-carcinoma sequence, contributing to the further development of pre-diagnostic markers for CRC.
Collapse
Affiliation(s)
- Jaeseung Song
- Department of Life Sciences, Dongguk University, Seoul, 04620, South Korea
| | - Daeun Kim
- Department of Life Sciences, Dongguk University, Seoul, 04620, South Korea
| | - Junghyun Jung
- Department of Life Sciences, Dongguk University, Seoul, 04620, South Korea
- Division of AI Software Convergence, Dongguk University-Seoul, Seoul, 04620, South Korea
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Hollywood, CA, USA
| | - Eunyoung Choi
- Department of Life Sciences, Dongguk University, Seoul, 04620, South Korea
| | - Yubin Lee
- Department of Life Sciences, Dongguk University, Seoul, 04620, South Korea
| | - Yeonbin Jeong
- Department of Life Sciences, Dongguk University, Seoul, 04620, South Korea
| | - Byungjo Lee
- Department of Life Sciences, Dongguk University, Seoul, 04620, South Korea
| | - Sora Lee
- Department of Life Sciences, Dongguk University, Seoul, 04620, South Korea
| | - Yujeong Shim
- Department of Life Sciences, Dongguk University, Seoul, 04620, South Korea
| | - Youngtae Won
- Department of Life Sciences, Dongguk University, Seoul, 04620, South Korea
| | - Hyeki Cho
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, 10326, South Korea
| | - Dong Kee Jang
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, 07061, South Korea
| | - Hyoun Woo Kang
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, 10326, South Korea.
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, 07061, South Korea.
| | - Jong Wha J Joo
- Division of AI Software Convergence, Dongguk University-Seoul, Seoul, 04620, South Korea.
| | - Wonhee Jang
- Department of Life Sciences, Dongguk University, Seoul, 04620, South Korea.
| |
Collapse
|
78
|
Li Y, Li B, Wang Q, Zhang X, Zhang Q, Zhou X, Shi R, Wu Y, Zhai W, Chen Z, Zhou X, Zhao W. Dual targeting of TIGIT and PD-1 with a novel small molecule for cancer immunotherapy. Biochem Pharmacol 2024; 223:116162. [PMID: 38527557 DOI: 10.1016/j.bcp.2024.116162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Immune checkpoint inhibitors have unveiled promising clinical prospects in cancer treatment. Nonetheless, their effectiveness remains restricted, marked by consistently low response rates and affecting only a subset of patients. The co-blockade of TIGIT with PD-1 has exhibited substantial anti-tumor effects. Notably, there is a dearth of reports on small-molecule inhibitors concurrently targeting both TIGIT and PD-1. In this study, we employed Microscale Thermophoresis (MST) to screen our laboratory's existing repository of small molecules. Our findings illuminated Gln(TrT) 's affinity for both TIGIT and PD-1, affirming its potential to effectively inhibit TIGIT/PVR and PD-1/PD-L1 pathways. In vitro co-culture experiments substantiated Gln(TrT)'s proficiency in restoring Jurkat T-cell functionality by blocking both TIGIT/PVR and PD-1/PD-L1 interactions. In the MC38 murine tumor model, Gln(TrT) emerges as a pivotal modulator, promoting the intratumoral infiltration and functional competence of CD8+ T cells. Furthermore, whether used as a monotherapy or in conjunction with radiotherapy, Gln(TrT) substantially impedes MC38 tumor progression, significantly extending the survival of murine subjects.
Collapse
Affiliation(s)
- Yang Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Beibei Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qingchao Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiangrui Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qiongqiong Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ranran Shi
- Department of Basic Medical Sciences, Luohe Medical College, Luohe 462000, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaowen Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
79
|
Li Z, Liu S, Gao Z, Ji L, Jiao J, Zheng N, Li X, Wang G, Qin J, Wang Y. Dynamic Proteomic Changes in Tumor and Immune Organs Reveal Systemic Immune Response to Tumor Development. Mol Cell Proteomics 2024; 23:100756. [PMID: 38554776 PMCID: PMC11060955 DOI: 10.1016/j.mcpro.2024.100756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024] Open
Abstract
In orthotopic mouse tumor models, tumor progression is a complex process, involving interactions among tumor cells, host cell-derived stromal cells, and immune cells. Much attention has been focused on the tumor and its tumor microenvironment, while the host's macroenvironment including immune organs in response to tumorigenesis is poorly understood. Here, we report a temporal proteomic analysis on a subcutaneous tumor and three immune organs (LN, MLN, and spleen) collected on Days 0, 3, 7, 10, 14, and 21 after inoculation of mouse forestomach cancer cells in a syngeneic mouse model. Bioinformatics analysis identified key biological processes during distinct tumor development phases, including an initial acute immune response, the attack by the host immune system, followed by the adaptive immune activation, and the build-up of extracellular matrix. Proteomic changes in LN and spleen largely recapitulated the dynamics of the immune response in the tumor, consistent with an acute defense response on D3, adaptive immune response on D10, and immune evasion by D21. In contrast, the immune response in MLN showed a gradual and sustained activation, suggesting a delayed response from a distal immune organ. Combined analyses of tumors and host immune organs allowed the identification of potential therapeutic targets. A proof-of-concept experiment demonstrated that significant growth reduction can be achieved by dual inhibition of MEK and DDR2. Together, our temporal proteomic dataset of tumors and immune organs provides a useful resource for understanding the interaction between tumors and the immune system and has the potential for identifying new therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Zhike Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Shuwen Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Zhouyong Gao
- Department of Thoracic Surgery, Baodi Clinical College, Tianjin Medical University, Tianjin, China; Department of Child Health Care, Kunshan Maternity and Child Health Care Institute, Kunshan, China
| | - Linlin Ji
- Department of Thoracic Surgery, Baodi Clinical College, Tianjin Medical University, Tianjin, China; Department of Thoracic Surgery, Weifang People's Hospital, Weifang, China
| | - Jiaqi Jiao
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Nairen Zheng
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Xianju Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Guangshun Wang
- Department of Thoracic Surgery, Baodi Clinical College, Tianjin Medical University, Tianjin, China
| | - Jun Qin
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yi Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| |
Collapse
|
80
|
Buruiană A, Gheban BA, Gheban-Roșca IA, Georgiu C, Crișan D, Crișan M. The Tumor Stroma of Squamous Cell Carcinoma: A Complex Environment That Fuels Cancer Progression. Cancers (Basel) 2024; 16:1727. [PMID: 38730679 PMCID: PMC11083853 DOI: 10.3390/cancers16091727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
The tumor microenvironment (TME), a complex assembly of cellular and extracellular matrix (ECM) components, plays a crucial role in driving tumor progression, shaping treatment responses, and influencing metastasis. This narrative review focuses on the cutaneous squamous cell carcinoma (cSCC) tumor stroma, highlighting its key constituents and their dynamic contributions. We examine how significant changes within the cSCC ECM-specifically, alterations in fibronectin, hyaluronic acid, laminins, proteoglycans, and collagens-promote cancer progression, metastasis, and drug resistance. The cellular composition of the cSCC TME is also explored, detailing the intricate interplay of cancer-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), endothelial cells, pericytes, adipocytes, and various immune cell populations. These diverse players modulate tumor development, angiogenesis, and immune responses. Finally, we emphasize the TME's potential as a therapeutic target. Emerging strategies discussed in this review include harnessing the immune system (adoptive cell transfer, checkpoint blockade), hindering tumor angiogenesis, disrupting CAF activity, and manipulating ECM components. These approaches underscore the vital role that deciphering TME interactions plays in advancing cSCC therapy. Further research illuminating these complex relationships will uncover new avenues for developing more effective treatments for cSCC.
Collapse
Affiliation(s)
- Alexandra Buruiană
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Bogdan-Alexandru Gheban
- Department of Histology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Emergency Clinical County Hospital, 400347 Cluj-Napoca, Romania
| | - Ioana-Andreea Gheban-Roșca
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 400129 Cluj-Napoca, Romania;
| | - Carmen Georgiu
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Doința Crișan
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Maria Crișan
- Department of Histology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
81
|
Das R, Woo J. Identifying the Multitarget Pharmacological Mechanism of Action of Genistein on Lung Cancer by Integrating Network Pharmacology and Molecular Dynamic Simulation. Molecules 2024; 29:1913. [PMID: 38731403 PMCID: PMC11085736 DOI: 10.3390/molecules29091913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Food supplements have become beneficial as adjuvant therapies for many chronic disorders, including cancer. Genistein, a natural isoflavone enriched in soybeans, has gained potential interest as an anticancer agent for various cancers, primarily by modulating apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis. However, in lung cancer, the exact impact and mechanism of action of genistein still require clarification. To provide more insight into the mechanism of action of genistein, network pharmacology was employed to identify the key targets and their roles in lung cancer pathogenesis. Based on the degree score, the hub genes AKT1, CASP3, EGFR, STAT3, ESR1, SRC, PTGS2, MMP9, PRAG, and AR were significantly correlated with genistein treatment. AKT1, EGFR, and STAT3 were enriched in the non-small cell lung cancer (NSCLC) pathway according to Kyoto Encyclopedia of Genes and Genomes analysis, indicating a significant connection to lung cancer development. Moreover, the binding affinity of genistein to NSCLC target proteins was further verified by molecular docking and molecular dynamics simulations. Genistein exhibited potential binding to AKT1, which is involved in apoptosis, cell migration, and metastasis, thus holding promise for modulating AKT1 function. Therefore, this study aimed to investigate the mechanism of action of genistein and its therapeutic potential for the treatment of NSCLC.
Collapse
Affiliation(s)
- Raju Das
- Department of Physiology, College of Medicine,, Dongguk University Wise, Gyeongju 38066, Republic of Korea;
| | - Joohan Woo
- Department of Physiology, College of Medicine,, Dongguk University Wise, Gyeongju 38066, Republic of Korea;
- Channelopathy Research Center (CRC), College of Medicine, Dongguk University Wise, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
- Medical Cannabis Research Center, College of Medicine, Dongguk University Wise, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
82
|
Silvestris E, D’Oronzo S, Petracca EA, D’Addario C, Cormio G, Loizzi V, Canosa S, Corrado G. Fertility Preservation in the Era of Immuno-Oncology: Lights and Shadows. J Pers Med 2024; 14:431. [PMID: 38673058 PMCID: PMC11050999 DOI: 10.3390/jpm14040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, immuno-oncology has revolutionized the cancer treatment field by harnessing the immune system's power to counteract cancer cells. While this innovative approach holds great promise for improving cancer outcomes, it also raises important considerations related to fertility and reproductive toxicity. In fact, most young females receiving gonadotoxic anti-cancer treatments undergo iatrogenic ovarian exhaustion, resulting in a permanent illness that precludes the vocation of motherhood as a natural female sexual identity. Although commonly used, oocyte cryopreservation for future in vitro fertilization and even ovarian cortex transplantation are considered unsafe procedures in cancer patients due to their oncogenic risks; whereas, ovarian stem cells might support neo-oogenesis, providing a novel stemness model of regenerative medicine for future fertility preservation programs in oncology. Recent scientific evidence has postulated that immune checkpoint inhibitors (ICIs) might in some way reduce fertility by inducing either primary or secondary hypogonadism, whose incidence and mechanisms are not yet known. Therefore, considering the lack of data, it is currently not possible to define the most suitable FP procedure for young patients who are candidates for ICIs. In this report, we will investigate the few available data concerning the molecular regulation of ICI therapy and their resulting gonadal toxicity, to hypothesize the most suitable fertility preservation strategy for patients receiving these drugs.
Collapse
Affiliation(s)
- Erica Silvestris
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” Bari, 70124 Bari, Italy; (E.A.P.); (G.C.); (V.L.)
| | - Stella D’Oronzo
- Department of Interdisciplinary Medicine (DIM), University of Bari “Aldo Moro”, 70121 Bari, Italy;
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, 70124 Bari, Italy
| | - Easter Anna Petracca
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” Bari, 70124 Bari, Italy; (E.A.P.); (G.C.); (V.L.)
| | - Claudia D’Addario
- Department of Interdisciplinary Medicine (DIM), University of Bari “Aldo Moro”, 70121 Bari, Italy;
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, 70124 Bari, Italy
| | - Gennaro Cormio
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” Bari, 70124 Bari, Italy; (E.A.P.); (G.C.); (V.L.)
- Department of Interdisciplinary Medicine (DIM), University of Bari “Aldo Moro”, 70121 Bari, Italy;
| | - Vera Loizzi
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” Bari, 70124 Bari, Italy; (E.A.P.); (G.C.); (V.L.)
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Stefano Canosa
- IVIRMA, Global Research Alliance, LIVET, 10126 Turin, Italy;
| | - Giacomo Corrado
- Gynecologic Oncology Unit, Department of Woman, Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00136 Roma, Italy;
| |
Collapse
|
83
|
Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther 2024; 9:92. [PMID: 38637540 PMCID: PMC11026526 DOI: 10.1038/s41392-024-01808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Cancer, a complex and multifactorial disease, presents a significant challenge to global health. Despite significant advances in surgical, radiotherapeutic and immunological approaches, which have improved cancer treatment outcomes, drug therapy continues to serve as a key therapeutic strategy. However, the clinical efficacy of drug therapy is often constrained by drug resistance and severe toxic side effects, and thus there remains a critical need to develop novel cancer therapeutics. One promising strategy that has received widespread attention in recent years is drug repurposing: the identification of new applications for existing, clinically approved drugs. Drug repurposing possesses several inherent advantages in the context of cancer treatment since repurposed drugs are typically cost-effective, proven to be safe, and can significantly expedite the drug development process due to their already established safety profiles. In light of this, the present review offers a comprehensive overview of the various methods employed in drug repurposing, specifically focusing on the repurposing of drugs to treat cancer. We describe the antitumor properties of candidate drugs, and discuss in detail how they target both the hallmarks of cancer in tumor cells and the surrounding tumor microenvironment. In addition, we examine the innovative strategy of integrating drug repurposing with nanotechnology to enhance topical drug delivery. We also emphasize the critical role that repurposed drugs can play when used as part of a combination therapy regimen. To conclude, we outline the challenges associated with repurposing drugs and consider the future prospects of these repurposed drugs transitioning into clinical application.
Collapse
Affiliation(s)
- Ying Xia
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
- Division of Gastroenterology and Hepatology, Department of Medicine and, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ming Sun
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China.
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
84
|
El-Tanani M, Rabbani SA, Babiker R, Rangraze I, Kapre S, Palakurthi SS, Alnuqaydan AM, Aljabali AA, Rizzo M, El-Tanani Y, Tambuwala MM. Unraveling the tumor microenvironment: Insights into cancer metastasis and therapeutic strategies. Cancer Lett 2024; 591:216894. [PMID: 38626856 DOI: 10.1016/j.canlet.2024.216894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
This comprehensive review delves into the pivotal role of the tumor microenvironment (TME) in cancer metastasis and therapeutic response, offering fresh insights into the intricate interplay between cancer cells and their surrounding milieu. The TME, a dynamic ecosystem comprising diverse cellular and acellular elements, not only fosters tumor progression but also profoundly affects the efficacy of conventional and emerging cancer therapies. Through nuanced exploration, this review illuminates the multifaceted nature of the TME, elucidating its capacity to engender drug resistance via mechanisms such as hypoxia, immune evasion, and the establishment of physical barriers to drug delivery. Moreover, it investigates innovative therapeutic approaches aimed at targeting the TME, including stromal reprogramming, immune microenvironment modulation, extracellular matrix (ECM)-targeting agents, and personalized medicine strategies, highlighting their potential to augment treatment outcomes. Furthermore, this review critically evaluates the challenges posed by the complexity and heterogeneity of the TME, which contribute to variable therapeutic responses and potentially unintended consequences. This underscores the need to identify robust biomarkers and advance predictive models to anticipate treatment outcomes, as well as advocate for combination therapies that address multiple facets of the TME. Finally, the review emphasizes the necessity of an interdisciplinary approach and the integration of cutting-edge technologies to unravel the intricacies of the TME, thereby facilitating the development of more effective, adaptable, and personalized cancer treatments. By providing critical insights into the current state of TME research and its implications for the future of oncology, this review highlights the dynamic and evolving landscape of this field.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Syed Arman Rabbani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Rasha Babiker
- Physiology Department, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras-al-Khaimah, United Arab Emirates
| | - Imran Rangraze
- Internal Medicine Department, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras-al-Khaimah, United Arab Emirates
| | - Sumedha Kapre
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, 78363, USA
| | - Sushesh Srivastsa Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, 78363, USA
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Manfredi Rizzo
- (D)epartment of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| | - Yahia El-Tanani
- Medical School, St George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK.
| | - Murtaza M Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| |
Collapse
|
85
|
Lu Q, Kou D, Lou S, Ashrafizadeh M, Aref AR, Canadas I, Tian Y, Niu X, Wang Y, Torabian P, Wang L, Sethi G, Tergaonkar V, Tay F, Yuan Z, Han P. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol 2024; 17:16. [PMID: 38566199 PMCID: PMC10986145 DOI: 10.1186/s13045-024-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer immunotherapy and vaccine development have significantly improved the fight against cancers. Despite these advancements, challenges remain, particularly in the clinical delivery of immunomodulatory compounds. The tumor microenvironment (TME), comprising macrophages, fibroblasts, and immune cells, plays a crucial role in immune response modulation. Nanoparticles, engineered to reshape the TME, have shown promising results in enhancing immunotherapy by facilitating targeted delivery and immune modulation. These nanoparticles can suppress fibroblast activation, promote M1 macrophage polarization, aid dendritic cell maturation, and encourage T cell infiltration. Biomimetic nanoparticles further enhance immunotherapy by increasing the internalization of immunomodulatory agents in immune cells such as dendritic cells. Moreover, exosomes, whether naturally secreted by cells in the body or bioengineered, have been explored to regulate the TME and immune-related cells to affect cancer immunotherapy. Stimuli-responsive nanocarriers, activated by pH, redox, and light conditions, exhibit the potential to accelerate immunotherapy. The co-application of nanoparticles with immune checkpoint inhibitors is an emerging strategy to boost anti-tumor immunity. With their ability to induce long-term immunity, nanoarchitectures are promising structures in vaccine development. This review underscores the critical role of nanoparticles in overcoming current challenges and driving the advancement of cancer immunotherapy and TME modification.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Dongquan Kou
- Department of Rehabilitation Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Shenghan Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore
| | - Gautam Sethi
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore, Republic of Singapore
| | - Franklin Tay
- The Graduate School, Augusta University, 30912, Augusta, GA, USA
| | - Zhennan Yuan
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Peng Han
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
| |
Collapse
|
86
|
Zheng X, Qiu L, Huang Y, Cheng R, Huang S, Xu K, Cai W, Deng Y, Wang W, Zhong X, Cui F, Hao Z, Liu J. Exploring the molecular and immune-landscape of lung cancer associated with cystic airspaces. Mol Immunol 2024; 168:75-88. [PMID: 38430689 DOI: 10.1016/j.molimm.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 03/05/2024]
Abstract
To explore the molecular biological characteristics of lung cancer associated with cystic airspaces (LCCA) and its potential roles on prognosis. A total of 165 LCCAs and 201 non-LCCAs were enrolled in this study. Bulk RNA sequencing was implemented in eight LCCAs and nine non-LCCAs to explore the differentially expressed genes. TCGA data were used to analyze LCCA-specific genes that associated with overall survival (OS). The median age was 60 (IQR 53 to 65) years in LCCA cohort. We found LCCA were predominant in men and had less visceral pleura invasion (VPI) or lympho-vascular invasion (LVI). Moreover, LCCA presented with higher histological heterogeneity. Kaplan-Meier analysis showed that patients of age more than 60 and positive VPI had significantly less PFS in LCCA. Cox regression suggested that LCCA, micropapillary subtype proportion and VPI were the independent risk factors for PFS. LCCA had up-regulated pathways associated with EMT, angiogenesis and cell migration. In addition, LCCA displayed higher levels of immunosuppressor infiltration (M2 macrophages, CAFs and MDSCs) and distinct cell death and metabolic patterns. BCR/TCR repertoire analysis revealed less BCR richness, clonality and high-abundance shared clonotypes in LCCA. Finally, Cox regression analysis identified that four cystic-specific genes, KCNK3, NRN1, PARVB and TRHDE-AS1, were associated with OS of lung adenocarcinoma (LUAD). And cystic-specific risk scores (CSRSs) were calculated to construct a nomogram, which performance well. Our study for the first time indicated significantly distinct molecular biological and immune characteristics between LCCA and non-LCCA, which provide complementary prognostic values in early-stage non-small cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Xiang Zheng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China; Department of Oncology, The First Clinical Medical College of Henan University, Kaifeng, China
| | - Li Qiu
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Ying Huang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Ran Cheng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Sihe Huang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Ke Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weipeng Cai
- Department of Thoracic Surgery, Shantou Central Hospital, Shantou, China
| | - Yu Deng
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Wang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Xi Zhong
- Department of Medical Imaging, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Fei Cui
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Zhexue Hao
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Jun Liu
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China.
| |
Collapse
|
87
|
Liu R, Li HF, Li S. PD-1-mediated inhibition of T cell activation: Mechanisms and strategies for cancer combination immunotherapy. CELL INSIGHT 2024; 3:100146. [PMID: 38425643 PMCID: PMC10901852 DOI: 10.1016/j.cellin.2024.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
The programmed cell death 1 (PD-1) immune checkpoint of co-inhibitory signaling plays crucial roles in controlling the magnitude and duration of T cell activation to limit tissue damage and maintain self-tolerance. Cancer cells hijack the co-inhibitory pathway and escape immune surveillance by overexpressing the PD-1 ligand PD-L1. Immune checkpoint inhibitors, such as PD-1 blocking antibody have been approved for tumor immunotherapy. However, not all patients can benefit from PD-1 monotherapy. Combination immunotherapy based on PD-1 axis blockade substantially improves clinical anti-tumor efficacy. In this review, we briefly summarize the current progress on the mechanisms of PD-1-mediated inhibition of T cell activation and strategies for cancer combination immunotherapy.
Collapse
Affiliation(s)
- Rui Liu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan, 430071, China
- Medical Research Institute, Wuhan, 430071, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, 430071, China
- Wuhan University, Wuhan, 430071, China
| | - Hui-Fang Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan, 430071, China
- Medical Research Institute, Wuhan, 430071, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, 430071, China
- Wuhan University, Wuhan, 430071, China
| | - Shu Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan, 430071, China
- Medical Research Institute, Wuhan, 430071, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, 430071, China
- Wuhan University, Wuhan, 430071, China
| |
Collapse
|
88
|
Fan W, Chen Y, Zhou Z, Duan W, Yang C, Sheng S, Wang Y, Wei X, Liu Y, Huang Y. An innovative antibody fusion protein targeting PD-L1, VEGF and TGF-β with enhanced antitumor efficacies. Int Immunopharmacol 2024; 130:111698. [PMID: 38377856 DOI: 10.1016/j.intimp.2024.111698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Immunosuppressive pathways in the tumor microenvironment (TME) are inextricably linked to tumor progression. Mono-therapeutics of immune checkpoint inhibitors (ICIs, e.g. antibodies against programmed cell death protein-1/programmed cell death ligand-1, PD-1/PD-L1) is prone to immune escape while combination therapeutics tends to cause high toxicity and side effects. Therefore, using multi-functional molecules to target multiple pathways simultaneously is becoming a new strategy for cancer therapies. Here, we developed a trifunctional fusion protein, DR30206, composed of Bevacizumab (an antibody against VEGF), and a variable domain of heavy chain of heavy chain antibody (VHH) against PD-L1 and the extracellular domain (ECD) protein of TGF-β receptor II (TGF-β RII), which are fused to the N- and C-terminus of Bevacizumab, respectively. The original intention of DR30206 design was to enhance the immune responses pairs by targeting PD-L1 while inhibiting VEGF and TGF-β in the TME. Our data demonstrated that DR30206 exhibits high antigen-binding affinities and efficient blocking capabilities, the principal drivers of efficacy in antibody therapy. Furthermore, the capability of eliciting antibody-dependent cellular cytotoxicity (ADCC) and mixed lymphocyte reaction (MLR) provides a greater possibility to enhance the immune response. Finally, in vivo experiments showed that the antitumor activity of DR30206 was superior to those of monoclonal antibody of PD-L1 or VEGF, PD-L1 and TGF-β bispecific antibody or the combination inhibition of PD-L1 and VEGF. Our findings suggest there is a great potential for DR30206 to become a therapeutic for the treatment of multiple cancer types, especially lung cancer, colon adenocarcinoma and breast carcinoma.
Collapse
Affiliation(s)
- Wenlu Fan
- Department of Biochemistry, and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, China
| | - Yonglu Chen
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, China
| | - Zhenxing Zhou
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, China
| | - Wenwen Duan
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, China
| | - Chengcheng Yang
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, China
| | - Shimei Sheng
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, China
| | - Yongwei Wang
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, China
| | - Xinru Wei
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, China
| | - Ying Liu
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, China
| | - Yanshan Huang
- Department of Innovative Drug Discovery and Development, Zhejiang Doer Biologics Co., Ltd., Hangzhou, China.
| |
Collapse
|
89
|
Lei K, Sheng Y, Luo M, Liu J, Gong C, Lv S, Tu W, Ye M, Wu M, xiao B, Fang H, Luo H, Liu X, Long X, Zhu X, Huang K, Li J. Comprehensive analyses of m1A regulator-mediated modification patterns determining prognosis in lower-grade glioma (running title: m1A in LGG). Heliyon 2024; 10:e27510. [PMID: 38510043 PMCID: PMC10950614 DOI: 10.1016/j.heliyon.2024.e27510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
N1-methyladenosine (m1A) modification is a crucial post-transcriptional regulatory mechanism of messenger RNA (mRNA) in living organisms. Few studies have focused on analysis of m1A regulators in lower-grade gliomas (LGG). We employed the Nonnegative Matrix Factorization (NMF) technique on The Cancer Genome Atlas (TCGA) dataset to categorize LGG patients into 2 groups. These groups exhibited substantial disparities in terms of both overall survival (OS) and levels of infiltrating immune cells. We collected the significantly differentially expressed immune-related genes between the 2 clusters, and performed LASSO regression analysis to obtain m1AScores, and established an m1A-related immune-related gene signature (m1A-RIGS). Next, we categorized all patients with LGG into high- and low-risk subgroups, predictive significance of m1AScore was confirmed by conducting univariate/multivariate Cox regression analyses. Additionally, we confirmed variations in immune-related cells and ssGSEA and among the high-/low-risk subcategories in the TCGA dataset. Finally, our study characterized the effects of MSR1 and BIRC5 on LGG cells utilizing Edu assay and flow cytometry to explore the effects of modulation of these genes on glioma. The results of this study suggested that m1A-RIGS may be an excellent prognostic indicator for patients with LGG, and could also promote development of novel immune-based treatment strategies for LGG. Additionally, BIRC5 and MSR1 may be potential therapeutic targets for LGG.
Collapse
Affiliation(s)
- Kunjian Lei
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Provincial Key Laboratory of Nervous System Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Yilei Sheng
- Jiangxi Provincial Key Laboratory of Nervous System Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, China
- Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Min Luo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Junzhe Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Chuandong Gong
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Shigang Lv
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Wei Tu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Minhua Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Miaojing Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Bing xiao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Hua Fang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Haitao Luo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xinjun Liu
- People's Hospital of Yingtan City, Jiangxi Province, Yingtan, Jiangxi, 335099, China
| | - Xiaoyan Long
- East China Institute of Digital Medical Engineering, Shangrao, Jiangxi, 334000, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Provincial Key Laboratory of Nervous System Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
- Jiangxi Provincial Key Laboratory of Nervous System Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| |
Collapse
|
90
|
Djajawi TM, Pijpers L, Srivaths A, Chisanga D, Chan KF, Hogg SJ, Neil L, Rivera SM, Bartonicek N, Ellis SL, Lim Kam Sian TCC, Faridi P, Liao Y, Pal B, Behren A, Shi W, Vervoort SJ, Johnstone RW, Kearney CJ. PRMT1 acts as a suppressor of MHC-I and anti-tumor immunity. Cell Rep 2024; 43:113831. [PMID: 38401121 DOI: 10.1016/j.celrep.2024.113831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/31/2023] [Accepted: 02/05/2024] [Indexed: 02/26/2024] Open
Abstract
Cancer immunotherapies have demonstrated remarkable success; however, the majority of patients do not respond or develop resistance. Here, we conduct epigenetic gene-targeted CRISPR-Cas9 screens to identify epigenomic factors that limit CD8+ T cell-mediated anti-tumor immunity. We identify that PRMT1 suppresses interferon gamma (Ifnγ)-induced MHC-I expression, thus dampening CD8+ T cell-mediated killing. Indeed, PRMT1 knockout or pharmacological targeting of type I PRMT with the clinical inhibitor GSK3368715 enhances Ifnγ-induced MHC-I expression through elevated STAT1 expression and activation, while re-introduction of PRMT1 in PRMT1-deficient cells reverses this effect. Importantly, loss of PRMT1 enhances the efficacy of anti-PD-1 immunotherapy, and The Cancer Genome Atlas analysis reveals that PRMT1 expression in human melanoma is inversely correlated with expression of human leukocyte antigen molecules, infiltration of CD8+ T cells, and overall survival. Taken together, we identify PRMT1 as a negative regulator of anti-tumor immunity, unveiling clinical type I PRMT inhibitors as immunotherapeutic agents or as adjuncts to existing immunotherapies.
Collapse
Affiliation(s)
- Tirta M Djajawi
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia
| | - Lizzy Pijpers
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Akash Srivaths
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia
| | - David Chisanga
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia
| | - Kok Fei Chan
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia
| | - Simon J Hogg
- Oncology Discovery, AbbVie, South San Francisco, CA 94080, USA
| | - Liam Neil
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia
| | - Sarahi Mendoza Rivera
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Nenad Bartonicek
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sarah L Ellis
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia
| | - Terry C C Lim Kam Sian
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; Monash Proteomics and Metabolomics Platform, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC 3800, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Science, Monash University, Clayton, VIC 3168, Australia
| | - Pouya Faridi
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Monash Proteomics and Metabolomics Platform, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC 3800, Australia; Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Science, Monash University, Clayton, VIC 3168, Australia
| | - Yang Liao
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia
| | - Bhupinder Pal
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia
| | - Wei Shi
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia
| | - Stephin J Vervoort
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ricky W Johnstone
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Conor J Kearney
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
91
|
Hu A, Sun L, Lin H, Liao Y, Yang H, Mao Y. Harnessing innate immune pathways for therapeutic advancement in cancer. Signal Transduct Target Ther 2024; 9:68. [PMID: 38523155 PMCID: PMC10961329 DOI: 10.1038/s41392-024-01765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 03/26/2024] Open
Abstract
The innate immune pathway is receiving increasing attention in cancer therapy. This pathway is ubiquitous across various cell types, not only in innate immune cells but also in adaptive immune cells, tumor cells, and stromal cells. Agonists targeting the innate immune pathway have shown profound changes in the tumor microenvironment (TME) and improved tumor prognosis in preclinical studies. However, to date, the clinical success of drugs targeting the innate immune pathway remains limited. Interestingly, recent studies have shown that activation of the innate immune pathway can paradoxically promote tumor progression. The uncertainty surrounding the therapeutic effectiveness of targeted drugs for the innate immune pathway is a critical issue that needs immediate investigation. In this review, we observe that the role of the innate immune pathway demonstrates heterogeneity, linked to the tumor development stage, pathway status, and specific cell types. We propose that within the TME, the innate immune pathway exhibits multidimensional diversity. This diversity is fundamentally rooted in cellular heterogeneity and is manifested as a variety of signaling networks. The pro-tumor effect of innate immune pathway activation essentially reflects the suppression of classical pathways and the activation of potential pro-tumor alternative pathways. Refining our understanding of the tumor's innate immune pathway network and employing appropriate targeting strategies can enhance our ability to harness the anti-tumor potential of the innate immune pathway and ultimately bridge the gap from preclinical to clinical application.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Li Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuheng Liao
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, P.R. China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
92
|
Occhiuto CJ, Liby KT. KEAP1-Mutant Lung Cancers Weaken Anti-Tumor Immunity and Promote an M2-like Macrophage Phenotype. Int J Mol Sci 2024; 25:3510. [PMID: 38542481 PMCID: PMC10970780 DOI: 10.3390/ijms25063510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
Considerable advances have been made in lung cancer therapies, but there is still an unmet clinical need to improve survival for lung cancer patients. Immunotherapies have improved survival, although only 20-30% of patients respond to these treatments. Interestingly, cancers with mutations in Kelch-like ECH-associated protein 1 (KEAP1), the negative regulator of the nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor, are resistant to immune checkpoint inhibition and correlate with decreased lymphoid cell infiltration. NRF2 is known for promoting an anti-inflammatory phenotype when activated in immune cells, but the study of NRF2 activation in cancer cells has not been adequately assessed. The objective of this study was to determine how lung cancer cells with constitutive NRF2 activity interact with the immune microenvironment to promote cancer progression. To assess, we generated CRISPR-edited mouse lung cancer cell lines by knocking out the KEAP1 or NFE2L2 genes and utilized a publicly available single-cell dataset through the Gene Expression Omnibus to investigate tumor/immune cell interactions. We show here that KEAP1-mutant cancers promote immunosuppression of the tumor microenvironment. Our data suggest KEAP1 deletion is sufficient to alter the secretion of cytokines, increase expression of immune checkpoint markers on cancer cells, and alter recruitment and differential polarization of immunosuppressive macrophages that ultimately lead to T-cell suppression.
Collapse
Affiliation(s)
- Christopher J. Occhiuto
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Karen T. Liby
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
93
|
Ma M, Li L, Yang SH, Huang C, Zhuang W, Huang S, Xia X, Tang Y, Li Z, Zhao ZB, Chen Q, Qiao G, Lian ZX. Lymphatic endothelial cell-mediated accumulation of CD177 +Treg cells suppresses antitumor immunity in human esophageal squamous cell carcinoma. Oncoimmunology 2024; 13:2327692. [PMID: 38516269 PMCID: PMC10956621 DOI: 10.1080/2162402x.2024.2327692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Regulatory T (Treg) cells are critical in shaping an immunosuppressive microenvironment to favor tumor progression and resistance to therapies. However, the heterogeneity and function of Treg cells in esophageal squamous cell carcinoma (ESCC) remain underexplored. We identified CD177 as a tumor-infiltrating Treg cell marker in ESCC. Interestingly, expression levels of CD177 and PD-1 were mutually exclusive in tumor Treg cells. CD177+ Treg cells expressed high levels of IL35, in association with CD8+ T cell exhaustion, whereas PD-1+ Treg cells expressed high levels of IL10. Pan-cancer analysis revealed that CD177+ Treg cells display increased clonal expansion compared to PD-1+ and double-negative (DN) Treg cells, and CD177+ and PD-1+ Treg cells develop from the same DN Treg cell origin. Importantly, we found CD177+ Treg cell infiltration to be associated with poor overall survival and poor response to anti-PD-1 immunotherapy plus chemotherapy in ESCC patients. Finally, we found that lymphatic endothelial cells are associated with CD177+ Treg cell accumulation in ESCC tumors, which are also decreased after anti-PD-1 immunotherapy plus chemotherapy. Our work identifies CD177+ Treg cell as a tumor-specific Treg cell subset and highlights their potential value as a prognostic marker of survival and response to immunotherapy and a therapeutic target in ESCC.
Collapse
Affiliation(s)
- Min Ma
- Chronic Disease Laboratory, School of Medicine South China University of Technology, Guangzhou, China
- Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Liang Li
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shu-Han Yang
- Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chuan Huang
- Chronic Disease Laboratory, School of Medicine South China University of Technology, Guangzhou, China
- Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Weitao Zhuang
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shujie Huang
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xin Xia
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yong Tang
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zijun Li
- Guangdong Provincial Institute of Geriatrics, Concord Medical Center, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhi-Bin Zhao
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qingyun Chen
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guibin Qiao
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhe-Xiong Lian
- Chronic Disease Laboratory, School of Medicine South China University of Technology, Guangzhou, China
- Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
94
|
Nejo T, Wang L, Leung KK, Wang A, Lakshmanachetty S, Gallus M, Kwok DW, Hong C, Chen LH, Carrera DA, Zhang MY, Stevers NO, Maldonado GC, Yamamichi A, Watchmaker PB, Naik A, Shai A, Phillips JJ, Chang SM, Wiita AP, Wells JA, Costello JF, Diaz AA, Okada H. Challenges in the discovery of tumor-specific alternative splicing-derived cell-surface antigens in glioma. Sci Rep 2024; 14:6362. [PMID: 38493204 PMCID: PMC10944514 DOI: 10.1038/s41598-024-56684-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/09/2024] [Indexed: 03/18/2024] Open
Abstract
Despite advancements in cancer immunotherapy, solid tumors remain formidable challenges. In glioma, profound inter- and intra-tumoral heterogeneity of antigen landscape hampers therapeutic development. Therefore, it is critical to consider alternative sources to expand the repertoire of targetable (neo-)antigens and improve therapeutic outcomes. Accumulating evidence suggests that tumor-specific alternative splicing (AS) could be an untapped reservoir of antigens. In this study, we investigated tumor-specific AS events in glioma, focusing on those predicted to generate major histocompatibility complex (MHC)-presentation-independent, cell-surface antigens that could be targeted by antibodies and chimeric antigen receptor-T cells. We systematically analyzed bulk RNA-sequencing datasets comparing 429 tumor samples (from The Cancer Genome Atlas) and 9166 normal tissue samples (from the Genotype-Tissue Expression project), and identified 13 AS events in 7 genes predicted to be expressed in more than 10% of the patients, including PTPRZ1 and BCAN, which were corroborated by an external RNA-sequencing dataset. Subsequently, we validated our predictions and elucidated the complexity of the isoforms using full-length transcript amplicon sequencing on patient-derived glioblastoma cells. However, analyses of the RNA-sequencing datasets of spatially mapped and longitudinally collected clinical tumor samples unveiled remarkable spatiotemporal heterogeneity of the candidate AS events. Furthermore, proteomics analysis did not reveal any peptide spectra matching the putative antigens. Our investigation illustrated the diverse characteristics of the tumor-specific AS events and the challenges of antigen exploration due to their notable spatiotemporal heterogeneity and elusive nature at the protein levels. Redirecting future efforts toward intracellular, MHC-presented antigens could offer a more viable avenue.
Collapse
Affiliation(s)
- Takahide Nejo
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Lin Wang
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Albert Wang
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Senthilnath Lakshmanachetty
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Marco Gallus
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Darwin W Kwok
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Lee H Chen
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Diego A Carrera
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Michael Y Zhang
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Nicholas O Stevers
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Gabriella C Maldonado
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Akane Yamamichi
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Payal B Watchmaker
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Akul Naik
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Anny Shai
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron A Diaz
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- The Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
95
|
Chen DL, Chen N, Sheng H, Zhang DS. Circular RNA circNCOA3 promotes tumor progression and anti-PD-1 resistance in colorectal cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:9. [PMID: 38510750 PMCID: PMC10951830 DOI: 10.20517/cdr.2023.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Aim: Circular RNAs (circRNAs) have been found to be involved in tumor progression, but their role in colorectal cancer (CRC) immune escape remains to be elucidated. Methods: circRNAs differentially expressed in responsive and resistant CRC tissues to programmed cell death 1 (PD-1) antibody therapy were identified by microarray analysis. The clinical and pathological significance of circNCOA3 was validated in a separate cohort of CRC samples. The function of circNCOA3 was explored experimentally. RNA immunoprecipitation and luciferase activity assays were conducted to identify downstream targets of circNCOA3. Results: The circNCOA3 was markedly overexpressed in CRC samples resistant to PD-1 blockade. circNCOA3 expression was significantly correlated with adverse tumor phenotypes and poor outcomes in CRC patients. Knockdown of circNCOA3 expression markedly suppressed the proliferative and invasive capability of CRC cells. Moreover, knockdown of circNCOA3 increased the proportion of CD8+ T cells while decreasing the proportion of myeloid-derived suppressor cells (MDSCs). Knockdown of circNCOA3 inhibited tumor growth and increased the sensitivity to PD-1 antibody treatment in mouse tumor models. Further studies revealed that circNCOA3 acted as a competing endogenous RNA (ceRNA) for miR-203a-3p.1 to influence the level of CXCL1. Conclusion: Our findings indicate that circNCOA3 might be useful as a potential biomarker to predict the efficacy and prognosis of CRC patients treated with anti-PD-1 therapy.
Collapse
Affiliation(s)
- Dong-Liang Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | | | | | | |
Collapse
|
96
|
Sharma A, Verwilst P, Li M, Ma D, Singh N, Yoo J, Kim Y, Yang Y, Zhu JH, Huang H, Hu XL, He XP, Zeng L, James TD, Peng X, Sessler JL, Kim JS. Theranostic Fluorescent Probes. Chem Rev 2024; 124:2699-2804. [PMID: 38422393 PMCID: PMC11132561 DOI: 10.1021/acs.chemrev.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The ability to gain spatiotemporal information, and in some cases achieve spatiotemporal control, in the context of drug delivery makes theranostic fluorescent probes an attractive and intensely investigated research topic. This interest is reflected in the steep rise in publications on the topic that have appeared over the past decade. Theranostic fluorescent probes, in their various incarnations, generally comprise a fluorophore linked to a masked drug, in which the drug is released as the result of certain stimuli, with both intrinsic and extrinsic stimuli being reported. This release is then signaled by the emergence of a fluorescent signal. Importantly, the use of appropriate fluorophores has enabled not only this emerging fluorescence as a spatiotemporal marker for drug delivery but also has provided modalities useful in photodynamic, photothermal, and sonodynamic therapeutic applications. In this review we highlight recent work on theranostic fluorescent probes with a particular focus on probes that are activated in tumor microenvironments. We also summarize efforts to develop probes for other applications, such as neurodegenerative diseases and antibacterials. This review celebrates the diversity of designs reported to date, from discrete small-molecule systems to nanomaterials. Our aim is to provide insights into the potential clinical impact of this still-emerging research direction.
Collapse
Affiliation(s)
- Amit Sharma
- Amity
School of Chemical Sciences, Amity University
Punjab, Sector 82A, Mohali 140 306, India
| | - Peter Verwilst
- Rega
Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Mingle Li
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
| | - Dandan Ma
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nem Singh
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiyoung Yoo
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Yujin Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Ying Yang
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Jing-Hui Zhu
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haiqiao Huang
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xi-Le Hu
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Peng He
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- National
Center for Liver Cancer, the International Cooperation Laboratory
on Signal Transduction, Eastern Hepatobiliary
Surgery Hospital, Shanghai 200438, China
| | - Lintao Zeng
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Xiaojun Peng
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Jonathan L. Sessler
- Department
of Chemistry, The University of Texas at
Austin, Texas 78712-1224, United
States
| | - Jong Seung Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
- TheranoChem Incorporation, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
97
|
Baston C, Parosanu AI, Mihai M, Moldoveanu O, Stanciu IM, Nitipir C. Tumor-to-Tumor Metastasis of Lung Cancer to Kidney Cancer: A Review of the Literature and Our Experience. Diagnostics (Basel) 2024; 14:553. [PMID: 38473025 DOI: 10.3390/diagnostics14050553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Tumor-to-tumor metastasis (TTM) is a rare phenomenon documented in patients with multiple primary cancers. This condition is defined as a metastasis between two true primary tumors. The most frequently reported recipient tumor is renal cell carcinoma (RCC), and the lung carcinomas are the most common metastatic tumor donors. Therefore, this paper attempts to address the current gap in knowledge about this rare phenomenon. The first part of this review outlines the recently proposed models and mechanisms involved in the TTM process. The second part then summarizes and analyzes previous case reports in the literature. We also present our experience with the case of lung cancer that metastasized into RCC. Given the sporadic incidence of TTM, no specific management guidelines exist. Therefore, considering TTM in patients with multiple primary tumors is important as it could potentially modify the oncological management offered.
Collapse
Affiliation(s)
- Catalin Baston
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
- Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Andreea Ioana Parosanu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Mihaela Mihai
- Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Oana Moldoveanu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
- Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ioana Miruna Stanciu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Cornelia Nitipir
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| |
Collapse
|
98
|
Enzler T, Shi J, McGue J, Griffith BD, Sun L, Sahai V, Nathan H, Frankel TL. A Comparison of Spatial and Phenotypic Immune Profiles of Pancreatic Ductal Adenocarcinoma and Its Precursor Lesions. Int J Mol Sci 2024; 25:2953. [PMID: 38474199 PMCID: PMC10932200 DOI: 10.3390/ijms25052953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a 5-year survival rate of 12.5%. PDAC predominantly arises from non-cystic pancreatic intraepithelial neoplasia (PanIN) and cystic intraductal papillary mucinous neoplasm (IPMN). We used multiplex immunofluorescence and computational imaging technology to characterize, map, and compare the immune microenvironments (IMEs) of PDAC and its precursor lesions. We demonstrate that the IME of IPMN was abundantly infiltrated with CD8+ T cells and PD-L1-positive antigen-presenting cells (APCs), whereas the IME of PanIN contained fewer CD8+ T cells and fewer PD-L1-positive APCs but elevated numbers of immunosuppressive regulatory T cells (Tregs). Thus, immunosuppression in IPMN and PanIN seems to be mediated by different mechanisms. While immunosuppression in IPMN is facilitated by PD-L1 expression on APCs, Tregs seem to play a key role in PanIN. Our findings suggest potential immunotherapeutic interventions for high-risk precursor lesions, namely, targeting PD-1/PD-L1 in IPMN and CTLA-4-positive Tregs in PanIN to restore immunosurveillance and prevent progression to cancer. Tregs accumulate with malignant transformation, as observed in PDAC, and to a lesser extent in IPMN-associated PDAC (IAPA). High numbers of Tregs in the microenvironment of PDAC went along with a markedly decreased interaction between CD8+ T cells and cancerous epithelial cells (ECs), highlighting the importance of Tregs as key players in immunosuppression in PDAC. We found evidence that a defect in antigen presentation, further aggravated by PD-L1 expression on APC, may contribute to immunosuppression in IAPA, suggesting a role for PD-L1/PD-1 immune checkpoint inhibitors in the treatment of IAPA.
Collapse
Affiliation(s)
- Thomas Enzler
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Jake McGue
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.); (B.D.G.); (L.S.); (H.N.)
| | - Brian D. Griffith
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.); (B.D.G.); (L.S.); (H.N.)
| | - Lei Sun
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.); (B.D.G.); (L.S.); (H.N.)
| | - Vaibhav Sahai
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hari Nathan
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.); (B.D.G.); (L.S.); (H.N.)
| | - Timothy L. Frankel
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.); (B.D.G.); (L.S.); (H.N.)
| |
Collapse
|
99
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
100
|
Poddar A, Ahmady F, Rao SR, Sharma R, Kannourakis G, Prithviraj P, Jayachandran A. The role of pregnancy associated plasma protein-A in triple negative breast cancer: a promising target for achieving clinical benefits. J Biomed Sci 2024; 31:23. [PMID: 38395880 PMCID: PMC10885503 DOI: 10.1186/s12929-024-01012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Pregnancy associated plasma protein-A (PAPP-A) plays an integral role in breast cancer (BC), especially triple negative breast cancer (TNBC). This subtype accounts for the most aggressive BC, possesses high tumor heterogeneity, is least responsive to standard treatments and has the poorest clinical outcomes. There is a critical need to address the lack of effective targeted therapeutic options available. PAPP-A is a protein that is highly elevated during pregnancy. Frequently, higher PAPP-A expression is detected in tumors than in healthy tissues. The increase in expression coincides with increased rates of aggressive cancers. In BC, PAPP-A has been demonstrated to play a role in tumor initiation, progression, metastasis including epithelial-mesenchymal transition (EMT), as well as acting as a biomarker for predicting patient outcomes. In this review, we present the role of PAPP-A, with specific focus on TNBC. The structure and function of PAPP-A, belonging to the pappalysin subfamily, and its proteolytic activity are assessed. We highlight the link of BC and PAPP-A with respect to the IGFBP/IGF axis, EMT, the window of susceptibility and the impact of pregnancy. Importantly, the relevance of PAPP-A as a TNBC clinical marker is reviewed and its influence on immune-related pathways are explored. The relationship and mechanisms involving PAPP-A reveal the potential for more treatment options that can lead to successful immunotherapeutic targets and the ability to assist with better predicting clinical outcomes in TNBC.
Collapse
Affiliation(s)
- Arpita Poddar
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Federation University, Victoria, Australia
- RMIT University, Victoria, Australia
| | - Farah Ahmady
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Federation University, Victoria, Australia
| | - Sushma R Rao
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Revati Sharma
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Federation University, Victoria, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Federation University, Victoria, Australia
| | - Prashanth Prithviraj
- Fiona Elsey Cancer Research Institute, Victoria, Australia
- Federation University, Victoria, Australia
| | - Aparna Jayachandran
- Fiona Elsey Cancer Research Institute, Victoria, Australia.
- Federation University, Victoria, Australia.
| |
Collapse
|