51
|
Abstract
Elabela, also known as Toddler or Apela, is a recently discovered hormonal peptide containing 32 amino acids. Elabela is a ligand of the apelin receptor (APJ). APJ is a G protein-coupled receptor widely expressed throughout body, and together with its cognate ligand, apelin, it plays an important role in various physiological processes including cardiovascular functions, angiogenesis and fluid homeostasis. Elabela also participates in embryonic development and pathophysiological processes in adulthood. Elabela is highly expressed in undifferentiated embryonic stem cells and regulates endoderm differentiation and cardiovascular system development. During differentiation, Elabela is highly expressed in pluripotent stem cells and in adult renal collecting ducts and loops, where it functions to maintain water and sodium homeostasis. Other studies have also shown that Elabela plays a crucial role in the pathogenesis of kidney diseases. This review addresses the role of Elabela in kidney diseases including renal ischemia/reperfusion injury, hypertensive nephropathy, diabetic nephropathy, and cardiorenal syndrome.
Collapse
|
52
|
Ma J, Hu H, Lin M, Chen L, Liu M, Li H, Quan S. ELABELA alleviates syncytiotrophoblast hypoxia/reoxygenation injury and preeclampsia-like symptoms in mice by reducing apoptosis. Placenta 2021; 106:30-39. [PMID: 33610935 DOI: 10.1016/j.placenta.2021.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Preeclampsia (PE) is associated with increased syncytiotrophoblast apoptosis. ELABELA (ELA) is a circulating hormone secreted by the placenta. Here, we investigated the involvement of ELA in the pathogenesis of PE. METHODS We measured ELA expression in the placental villi of patients with severe PE and healthy controls. A cellular model of hypoxia and reoxygenation was used to simulate PE hypoxia, and changes in the proliferation and apoptosis of trophoblasts in response to different ELA concentrations were measured. In addition, we used NG-nitro-l-arginine methyl ester (l-NAME) to generate a mouse model of pregnancy-induced hypertension and explore whether ELA can improve the symptoms of PE. RESULTS ELA expression was decreased in severe PE. ELA promoted the proliferation of BeWo cells and improved the decreased cell proliferation rate after hypoxia/reoxygenation injury. ELA reversed the phenotypes of l-NAME-induced PE mice and regulated the expression of mouse placental apoptosis factors. DISCUSSION ELA reduced apoptosis in BeWo cells and improved PE-like symptoms in mice, suggesting its value as a potential novel treatment for PE.
Collapse
Affiliation(s)
- Jing Ma
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haoyue Hu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Miaoling Lin
- Department of Obstetrics and Gynaecology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Lu Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mian Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Song Quan
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
53
|
Hu G, Wang Z, Zhang R, Sun W, Chen X. The Role of Apelin/Apelin Receptor in Energy Metabolism and Water Homeostasis: A Comprehensive Narrative Review. Front Physiol 2021; 12:632886. [PMID: 33679444 PMCID: PMC7928310 DOI: 10.3389/fphys.2021.632886] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
The apelin receptor (APJ) is a member of the family A of G-protein-coupled receptors (GPCRs) and is involved in range of physiological and pathological functions, including fluid homeostasis, anxiety, and depression, as well as cardiovascular and metabolic disorders. APJ was classically described as a monomeric transmembrane receptor that forms a ternary complex together with its ligand and associated G proteins. More recently, increasing evidence indicates that APJ may interact with other GPCRs to form heterodimers, which may selectively modulate distinct intracellular signal transduction pathways. Besides, the apelin/APJ system plays important roles in the physiology and pathophysiology of several organs, including regulation of blood pressure, cardiac contractility, angiogenesis, metabolic balance, and cell proliferation, apoptosis, or inflammation. Additionally, the apelin/APJ system is widely expressed in the central nervous system, especially in neurons and oligodendrocytes. This article reviews the role of apelin/APJ in energy metabolism and water homeostasis. Compared with the traditional diuretics, apelin exerts a positive inotropic effect on the heart, while increases water excretion. Therefore, drugs targeting apelin/APJ system undoubtedly provide more therapeutic options for patients with congestive heart failure accompanied with hyponatremia. To provide more precise guidance for the development of clinical drugs, further in-depth studies are warranted on the metabolism and signaling pathways associated with apelin/APJ system.
Collapse
Affiliation(s)
- Gonghui Hu
- Department of Physiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Zhen Wang
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Rumin Zhang
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Wenping Sun
- Department of Pathology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Xiaoyu Chen
- Department of Physiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| |
Collapse
|
54
|
Fu J, Chen X, Liu X, Xu D, Yang H, Zeng C, Long H, Zhou C, Wu H, Zheng G, Wu H, Wang W, Wang T. ELABELA ameliorates hypoxic/ischemic-induced bone mesenchymal stem cell apoptosis via alleviation of mitochondrial dysfunction and activation of PI3K/AKT and ERK1/2 pathways. Stem Cell Res Ther 2020; 11:541. [PMID: 33317626 PMCID: PMC7734864 DOI: 10.1186/s13287-020-02063-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have exerted their brilliant potential to promote heart repair following myocardial infarction. However, low survival rate of MSCs after transplantation due to harsh conditions with hypoxic and ischemic stress limits their therapeutic efficiency in treating cardiac dysfunction. ELABELA (ELA) serves as a peptide hormone which has been proved to facilitate cell growth, survival, and pluripotency in human embryonic stem cells. Although ELA works as an endogenous ligand of a G protein-coupled receptor APJ (Apelin receptor, APLNR), whether APJ is an essential signal for the function of ELA remains elusive. The effect of ELA on apoptosis of MSCs is still vague. Objective We studied the role of ELABELA (ELA) treatment on the anti-apoptosis of MSCs in hypoxic/ischemic (H/I) conditions which mimic the impaired myocardial microenvironment and explored the possible mechanisms in vitro. Methods MSCs were obtained from donated rats weighing between 80~120 g. MSCs were exposed to serum-free and hypoxic (1% O2) environments for 24 h, which mimics hypoxic/ischemic damage in vivo, using serum-containing normoxic conditions (20% O2) as a negative control. MSCs that were exposed to H/I injury with ELA processing were treated by 5 μM of ELA. Cell viability and apoptosis of MSCs were evaluated by CCK8 and flow cytometry, respectively. Mitochondrial function of MSCs was also assessed according to mitochondrial membrane potential (MMP) and ATP content. The protein expression of key kinases of the PI3K/AKT and ERK1/2 signaling pathways involving t-AKT, p-AKT, t-ERK1/2, and p-ERK1/2, as well as apoptosis-related protein expression of Bcl-2, Bax, and cleaved Caspase 3, were monitored by Western blot. Results We found that ELA treatment of H/I-induced MSCs improved overall cell viability, enhanced Bcl/Bax expression, and decreased Caspase 3 activity. ELA inhibited H/I-induced mitochondrial dysfunction by increasing ATP concentration and suppressing the loss of mitochondrial transmembrane potential. However, this anti-apoptotic property of ELA was restrained in APJ-silenced MSCs. Additionally, ELA treatment induced the phosphorylation of AKT and ERK, while the blockade of PI3K/AKT and ERK1/2 pathways with respective inhibitors, LY294002 and U0126, suppressed the action of ELA. Conclusion ELA positively affected on the survival of MSCs and exhibited anti-apoptotic characteristics when exposed to hypoxic/ischemic condition in vitro. Also, the function of ELA was correlated with the APJ receptor, reduced mitochondrial damage, and activation of the PI3K/AKT and ERK1/2 signal axes.
Collapse
Affiliation(s)
- Jiaying Fu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Xuxiang Chen
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Xin Liu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Daishi Xu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Huan Yang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Chaotao Zeng
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Huibao Long
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Changqing Zhou
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Haidong Wu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Guanghui Zheng
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Hao Wu
- Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Wuming Wang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China
| | - Tong Wang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, People's Republic of China.
| |
Collapse
|
55
|
Wang C, Xiong M, Yang C, Yang D, Zheng J, Fan Y, Wang S, Gai Y, Lan X, Chen H, Zheng L, Huang K. PEGylated and Acylated Elabela Analogues Show Enhanced Receptor Binding, Prolonged Stability, and Remedy of Acute Kidney Injury. J Med Chem 2020; 63:16028-16042. [PMID: 33290073 DOI: 10.1021/acs.jmedchem.0c01913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute kidney injury (AKI), mostly caused by renal ischemia-reperfusion (I/R) injury and nephrotoxins, is characterized by rapid deterioration in renal-functions without effective drug treatment available. Through activation of a G protein-coupled receptor APJ, a furin-cleaved fragment of Elabela (ELA[22-32], E11), an endogenous APJ ligand, protects against renal I/R injury. However, the poor plasma stability and relatively weak APJ-binding ability of E11 limit its application. To address these issues, we rationally designed and synthesized a set of E11 analogues modified by palmitic acid (Pal) or polyethylene glycol; improved plasma stability and APJ-binding capacity of these analogues were achieved. In cultured renal tubular cells, these analogues protected against hypoxia-reperfusion or cisplatin-caused injury. For renal I/R-injured mice, these analogues showed improved reno-protective effects than E11; notably, Pal-E11 showed therapeutic effects at 24 h post I/R injury. These results present ELA analogues as potential therapeutic options in managing AKI.
Collapse
Affiliation(s)
- Chao Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Mingrui Xiong
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Chen Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Dong Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Jiaojiao Zheng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Yu Fan
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shun Wang
- Department of Blood Transfusion, Wuhan Hospital of Traditional and Western Medicine, Wuhan 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Hong Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Ling Zheng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kun Huang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| |
Collapse
|
56
|
Wang X, Liang G, Guo Q, Cai W, Zhang X, Ni J, Tao Y, Niu X, Chen S. ELABELA improves endothelial cell function via the ELA-APJ axis by activating the PI3K/Akt signalling pathway in HUVECs and EA.hy926 cells. Clin Exp Pharmacol Physiol 2020; 47:1953-1964. [PMID: 32687618 DOI: 10.1111/1440-1681.13382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 01/26/2023]
Abstract
Destruction of endothelial cells (ECs) function is involved in the structural and functional pathophysiological processes of preeclampsia (PE). Vascular endothelial injury may pre-exist for several years in women that develop PE and may pose increased risks for hypertension, coronary artery disease, and type-2 diabetes mellitus. Previous findings showed that Elabela (ELA), the endogenous ligand of the apelin (APJ) receptor expressed mainly on ECs, may play a protective role in early pregnancy and prevent PE. However, the exact functional role and molecular mechanisms of ELA are unclear. Here, we aimed to classify whether and how ELA improves EC function via the ELA-APJ axis. Two human umbilical vein endothelial cell (HUVEC) lines, namely HUVECs and EA.hy926, were treated with ELA, and then their cellular activities were studied by performing CCK-8 tests, scratch-wound analysis, and tube-formation assays. Doses of ELA exceeding 0.01 μmol/L markedly improved the cell viability, migration, and tube formation ability of HUVECs and EA.hy926 cells. Western blot analysis indicated that the above effects caused by ELA were related to upregulation of the APJ receptor and activation of PI3K/Akt signalling. Further verification tests were performed using the PI3K inhibitor wortmannin, and the results illustrated that inhibiting PI3K/Akt signalling blocked the positive effects of ELA on EC function and APJ receptor expression. Taken together, our findings indicate that ELA may alter EC function via the ELA-APJ axis and PI3K/Akt signalling and that ELA shows promise for use in endothelial dysfunction therapy for preventing and treating PE.
Collapse
Affiliation(s)
- Xiujuan Wang
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Guoqing Liang
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Qing Guo
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Wei Cai
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Xin Zhang
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Jianmei Ni
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Yanyan Tao
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Xiulong Niu
- Institute of Prevention and Treatment of Dermatosis in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| | - Shaobo Chen
- Institute of Prevention and Treatment of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, China
| |
Collapse
|
57
|
Wang X, Liu X, Song Z, Shen X, Lu S, Ling Y, Kuang H. Emerging roles of APLN and APELA in the physiology and pathology of the female reproductive system. PeerJ 2020; 8:e10245. [PMID: 33240613 PMCID: PMC7666558 DOI: 10.7717/peerj.10245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
APLN, APELA and their common receptor APLNR (composing the apelinergic axis) have been described in various species with extensive body distribution and multiple physiological functions. Recent studies have witnessed emerging intracellular cascades triggered by APLN and APELA which play crucial roles in female reproductive organs, including hypothalamus-pituitary-gonadal axis, ovary, oviduct, uterus and placenta. However, a comprehensive summary of APLN and APELA roles in physiology and pathology of female reproductive system has not been reported to date. In this review, we aim to concentrate on the general characteristics of APLN and APELA, as well as their specific physiological roles in female reproductive system. Meanwhile, the pathological contexts of apelinergic axis dysregulation in the obstetrics and gynecology are also summarized here, suggesting its potential prospect as a diagnostic biomarker and/or therapeutic intervention in the polycystic ovary syndrome, ovarian cancer, preeclampsia and gestational diabetes mellitus.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China.,Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Xiaofei Liu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China.,Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Zifan Song
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Xin Shen
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Siying Lu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Yan Ling
- Department of Obstetrics and Gynecology, Jiangxi provincial People's Hospital affiliated Nanchang University, Nanchang, China
| | - Haibin Kuang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Medical Experimental Teaching Center of Nanchang University, Nanchang, China
| |
Collapse
|
58
|
Chen Y, Ho L, Tergaonkar V. sORF-Encoded MicroPeptides: New players in inflammation, metabolism, and precision medicine. Cancer Lett 2020; 500:263-270. [PMID: 33157158 DOI: 10.1016/j.canlet.2020.10.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/30/2022]
Abstract
Significant technological advances have enabled the discovery and identification of a new class of molecules, micropeptides or small ORF encoded peptides (SEPs) within non-coding RNAs (ncRNAs). As ncRNAs are well known to be transcriptionally silent, the discovery of SEPs implies that many ncRNAs are misannotated or play both coding and non-coding functions. SEPs have reportedly diverse regulatory roles in embryogenesis, myogenesis, inflammation, diseases, and cancer. SEPs appearing in different subcellular compartments show distinct functions. In this review, we summarized the functions of SEPs that have been characterized thus far. As SEPs are amenable to therapeutic development as biologics, understanding their underlying functions will provide novel targets for the treatment of inflammatory or metabolic disorders.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore.
| | - Lena Ho
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore; Cardiovascular Metabolic Disorders Program, Duke-NUS Graduate School, Singapore; Institute of Medical Biology, A*STAR, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore.
| |
Collapse
|
59
|
Apelin Receptor Signaling During Mesoderm Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32648246 DOI: 10.1007/5584_2020_567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The Apelin receptor (Aplnr) is a G-protein coupled receptor which has a wide body distribution and various physiological roles including homeostasis, angiogenesis, cardiovascular and neuroendocrine function. Apelin and Elabela are two peptide components of the Aplnr signaling and are cleaved to give different isoforms which are active in different tissues and organisms.Aplnr signaling is related to several pathologies including obesity, heart disases and cancer in the adult body. However, the developmental role in mammalian embryogenesis is crucial for migration of early cardiac progenitors and cardiac function. Aplnr and peptide components have a role in proliferation, differentiation and movement of endodermal precursors. Although expression of Aplnr signaling is observed in endodermal lineages, the main function is the control of mesoderm cell movement and cardiac development. Mutant of the Aplnr signaling components results in the malformations, defects and lethality mainly due to the deformed heart function. This developmental role share similarity with the cardiovascular functions in the adult body.Determination of Aplnr signaling and underlying mechanisms during mammalian development might enable understanding of regulatory molecular mechanisms which not only control embryonic development process but also control tissue function and disease pathology in the adult body.
Collapse
|
60
|
Yan W, Cheng L, Zhang D. Ultrasound-Targeted Microbubble Destruction Mediated si-CyclinD1 Inhibits the Development of Hepatocellular Carcinoma via Suppression of PI3K/AKT Signaling Pathway. Cancer Manag Res 2020; 12:10829-10839. [PMID: 33149688 PMCID: PMC7605614 DOI: 10.2147/cmar.s263590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
Background and Aim In our study, we aimed to investigate the effect of ultrasound-targeted microbubble destruction (UTMD)mediated si-CyclinD1 (CCND1) on the growth of hepatocellular carcinoma (HCC) cells. Patients and Methods Bioinformatics analysis was performed to detect the difference of CCND1 expression of HCC and normal liver tissues. After treatment with UTMDmediated si-CCND1, the growth and apoptosis of HepG2 cells were detected by flow cytometry, MTT, EdU staining, colony formation assay, Hoechst 33,258 staining and Western blot analysis. The growth of HepG2 cells in vivo was also studied via xenograft tumor in nude mice. Results CCND1 was highly expressed in HCC tissues and HCC cell lines. UTMDmediated si-CCND1 could inhibit the growth of HepG2 cells and promote apoptosis via suppression of the PI3K/AKT signaling pathway. UTMDmediated si-CCND1 could also suppress the growth of HepG2 cells in vivo. Conclusion Our study provided evidence that UTMDmediated si-CCND1 could inhibit the growth of HepG2 cells and promote apoptosis via suppression of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Wei Yan
- Department of Electrical Diagnosis, Changchun University of Traditional Chinese Medicine Affiliated Hospital, Changchun 130021, People's Republic of China
| | - Li Cheng
- Department of Electrical Diagnosis, Changchun University of Traditional Chinese Medicine Affiliated Hospital, Changchun 130021, People's Republic of China
| | - Dongmei Zhang
- Department of Electrical Diagnosis, Changchun University of Traditional Chinese Medicine Affiliated Hospital, Changchun 130021, People's Republic of China
| |
Collapse
|
61
|
Fc-Elabela fusion protein attenuates lipopolysaccharide-induced kidney injury in mice. Biosci Rep 2020; 40:226131. [PMID: 32808659 PMCID: PMC7463303 DOI: 10.1042/bsr20192397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/26/2022] Open
Abstract
Endotoxemia-induced acute kidney injury (AKI) is a common clinical condition that lacks effective treatments. Elabela (ELA) is a recently discovered kidney peptide hormone, encoded by the gene apela, and has been reported to improve cardio-renal outcomes in sepsis. However, ELA is a small peptide and is largely unsuitable for clinical use because of its short in vivo half-life. In the present study, we evaluated the potential renoprotective effects of a long-acting constant fragment (Fc)-ELA fusion protein in liposaccharide (LPS)-induced AKI in mice. LPS administration in mice for 5 days greatly lowered the gene expression of apela and impaired kidney function, as evidenced by elevated serum creatinine and the ratio of urine protein to creatinine. In addition, renal inflammation and macrophage infiltration were apparent in LPS-challenged mice. Treatment with the Fc-ELA fusion protein partially restored apela expression and attenuated the kidney inflammation. Moreover, LPS treatment induced reactive oxygen species (ROS) production and apoptosis in kidney HK-2 cells as well as in the mouse kidney, which were mitigated by ELA or Fc-ELA treatment. Finally, we found that ELA promoted the survival of HK-2 cells treated with LPS, and this action was abolished by LY204002, a PI3K/Akt inhibitor. Collectively, we have demonstrated that the Fc-ELA fusion protein has significant renoprotective activities against LPS-induced AKI in mice.
Collapse
|
62
|
Association between ELABELA Serum Concentrations in First Trimester and Pregnancy-Induced Hypertension. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2051701. [PMID: 33062670 PMCID: PMC7539101 DOI: 10.1155/2020/2051701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/23/2020] [Accepted: 09/01/2020] [Indexed: 11/25/2022]
Abstract
ELABELA (ELA) is considered to be implicated in the pathophysiology of preeclampsia (PE), since ELA-deficient mice exhibited PE-like symptoms and infusion of exogenous ELA normalized the gestational hypertension (GH) and proteinuria. However, no evidence show that circulating ELA is deficient in early placental development among women who destined to develop GH/PE. This nested case-control study was conducted to investigate the association between serum ELA concentration in early pregnancy and the risk of later GH/PE. Participants were recruited and sampled in 10-14+6 weeks of gestation. Definite GH/PE cases were matched 1 : 3 to controls with respect to age and gestational age. Serum concentration of ELA was measured using enzyme immunoassay. Women with later GH (N = 28) had a slightly lower median concentration of ELA (46.72 ng/mL versus 53.54 ng/mL), while those with later PE (N = 16) had a slightly higher median concentration of ELA (74.8 ng/mL versus 66.30 ng/mL) compared to the controls. Yet, both the increments did not reach statistically significant difference (GH: P = 0.380, PE: P = 0.799). ELA serum concentrations were unchanged in first trimester in women with GH/PE. Further studies are still needed to identify the dynamic changes in serum ELA concentrations during the whole pregnancy, especially in those with pregnancy-induced hypertensive disorders.
Collapse
|
63
|
Chen Y, Xu C. The interaction partners of (pro)renin receptor in the distal nephron. FASEB J 2020; 34:14136-14149. [PMID: 32975331 DOI: 10.1096/fj.202001711r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/11/2022]
Abstract
The (pro)renin receptor (PRR), a key regulator of intrarenal renin-angiotensin system (RAS), is predominantly presented in podocytes, proximal tubules, distal convoluted tubules, and the apical membrane of collecting duct A-type intercalated cells, and plays a crucial role in hypertension, cardiovascular disease, kidney disease, and fluid homeostasis. In addition to its well-known renin-regulatory function, increasing evidence suggests PRR can also act in a variety of intracellular signaling cascades independently of RAS in the renal medulla, including Wnt/β-catenin signaling, cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2 ) signaling, and the apelinergic system, and work as a component of the vacuolar H+ -ATPase. PRR and these pathways regulate the expression/activity of each other that controlling blood pressure and renal functions. In this review, we highlight recent findings regarding the antagonistic interaction between PRR and ELABELA/apelin, the mutually stimulatory relationship between PRR and COX-2/PGE2 or Wnt/β-catenin signaling in the renal medulla, and their involvement in the regulation of intrarenal RAS thereby control blood pressure, renal injury, and urine concentrating ability in health and patho-physiological conditions. We also highlight the latest progress in the involvement of PRR for the vacuolar H+ -ATPase activity.
Collapse
Affiliation(s)
- Yanting Chen
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China.,Internal Medicine, Division of Nephrology and Hypertension, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Chuanming Xu
- Internal Medicine, Division of Nephrology and Hypertension, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT, USA.,Center for Translational Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
64
|
Expression characteristics and regulatory mechanism of Apela gene in liver of chicken (Gallus gallus). PLoS One 2020; 15:e0238784. [PMID: 32915867 PMCID: PMC7485868 DOI: 10.1371/journal.pone.0238784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Apela, a novel endogenous peptide ligand for the G-protein-coupled apelin receptor, was first discovered and identified in human embryonic stem cells in 2013. Apela has showed some biological functions in promoting angiogenesis and inducing vasodilatation of mammals by binding apelin receptor, but little is known about its expression characteristics and regulatory mechanism in chicken. In the present study, the coding sequences of Apela in chicken was cloned. The evolution history and potential function of Apela were analyzed. Subsequently, the spatiotemporal expression characteristics of chicken Apela were investigated. Furthermore, the regulatory mechanism of Apela mRNA responsing to estrogen was explored by in vitro and in vivo experiments. The results showed that the length of the CDs of Apela mRNA was 165 bp and encoded a protein consisting of 54 amino acids residues with a transmembrane domain in chicken. The Apela was derived from the same ancestor of Apelin, and abundantly expressed in liver, kidney and pancreas tissues. The expression levels of Apela in the liver of hens were significantly higher at the peak-laying stage than that at the pre-laying stage (p ≤ 0.05). The Apela mRNA levels were significantly up-regulated in primary hepatocytes treated with 17β-estradiol (p ≤ 0.05), and could be effectively inhibited by estrogen receptor antagonists MPP, ICI 182780 and tamoxifen. It indicated that chicken Apela expression was regulated by estrogen via estrogen receptor α (ERα). In individual levels, both the contents of TG, TC and VLDL-c in serum, and the expression of ApoVLDLII and Apela in liver markedly up-regulated by 17β-estradiol induction at 1mg/kg and 2mg/kg concentrations (p ≤ 0.05). This study lays a foundation for further research on Apela involving in hepatic lipid metabolism.
Collapse
|
65
|
The emerging roles of circular RNAs in regulating the fate of stem cells. Mol Cell Biochem 2020; 476:231-246. [PMID: 32918186 DOI: 10.1007/s11010-020-03900-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/02/2020] [Indexed: 01/23/2023]
Abstract
Circular RNAs(circRNAs) are a large family of RNAs shaping covalently closed ring-like molecules and have become a hotspot with thousands of newly published studies. Stem cells are undifferentiated cells and have great potential in medical treatment due to their self-renewal ability and differentiation capacity. Abundant researches have unveiled that circRNAs have unique expression profile during the differentiation of stem cells and could serve as promising biomarkers of these cells. There are key circRNAs relevant to the differentiation, proliferation, and apoptosis of stem cells with certain mechanisms such as sponging miRNAs, interacting with proteins, and interfering mRNA translation. Moreover, several circRNAs have joined in the interplay between stem cells and lymphocytes. Our review will shed lights on the emerging roles of circRNAs in regulating the fate of diverse stem cells.
Collapse
|
66
|
The Elabela in hypertension, cardiovascular disease, renal disease, and preeclampsia: an update. J Hypertens 2020; 39:12-22. [PMID: 32740407 DOI: 10.1097/hjh.0000000000002591] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
: Although considerable success has been shown for antihypertensive medications, the resistant hypertension and hypertension-related organ damages are still the important clinical issues and pose as high health and economic pressure. Therefore, novel therapeutic techniques and antihypertensive drugs are needed to advance more effective therapy of hypertension and hypertension-related disease to ameliorate mortality and healthcare costs worldwide. In this review, we highlight the latest progress in supporting the therapeutic potential of Elabela (ELA), a recently discovered early endogenous ligand for G-protein-coupled receptor apelin peptide jejunum, apelin receptor. Systemic administration of ELA exerts vasodilatory, antihypertensive, cardioprotective, and renoprotective effects, whereas central application of ELA increases blood pressure and causes cardiovascular remodeling primarily secondary to the hypertension. In addition, ELA drives extravillous trophoblast differentiation and prevents the pathogenesis of preeclampsia (a gestational hypertensive syndrome) by promoting placental angiogenesis. These findings strongly suggest peripheral ELA's therapeutic potential in preventing and treating hypertension and hypertension-related diseases including cardiovascular disease, kidney disease, and preeclampsia. Since therapeutic use of ELA is mainly limited by its short half-life and parenteral administration, it may be a clinical application candidate for the therapy of hypertension and its complications when fused with a large inert chemicals (e.g. polyethylene glycol, termed polyethylene glycol-ELA-21) or other proteins (e.g. the Fc fragment of IgG and albumin, termed Fc-ELA-21 or albumin-ELA-21), and new delivery methods are encouraged to develop to improve the efficacy of ELA fragments on apelin peptide jejunum or alternative unknown receptors.
Collapse
|
67
|
Wu Q, Mao Z, Liu J, Huang J, Wang N. Ligustilide Attenuates Ischemia Reperfusion-Induced Hippocampal Neuronal Apoptosis via Activating the PI3K/Akt Pathway. Front Pharmacol 2020; 11:979. [PMID: 32676033 PMCID: PMC7333531 DOI: 10.3389/fphar.2020.00979] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Ligustilide (LIG), a main lipophilic component isolated from Cnidii Rhizoma (Cnidium officinale, rhizome) and Angelicae Gigantis Radix (Angelica gigas Nakai, root), has been shown to alleviate cerebral ischemia injury and paly a neuroprotective role. We investigated mechanisms underlying the antiapoptotic effects of LIG in vitro and in vivo, respectively, using cultured primary hippocampal neurons under oxygen-glucose deprivation/reperfusion (OGD/R) and rats under cerebral ischemia reperfusion(I/R) conditions. In vitro studies revealed that the suppressed apoptosis in hippocampal neurons upon LIG treatment was associated with reduced calcium influx and generation of reactive oxygen species. The LIG-treated hippocampal neurons exhibited decreased the ratio of Bax/Bcl-2, and the release of CytC from mitochondria as well as the expression of cleaved caspase-3, which were accompanied with enhanced the phosphorylation of Akt protein, in a PI3K-dependent manner. In vivo studies demonstrated a neuroprotective role of LIG in attenuating cerebral infarction volume, neurological injury and hippocampal neuron injury, suggesting that LIG could reverse ischemia reperfusion(I/R)-induced apoptosis of hippocampal neurons. These results together suggest that LIG may be considered as a neuroprotectant in the treatment of ischemia stroke.
Collapse
Affiliation(s)
- Qian Wu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Zhiguo Mao
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Jiao Liu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| | - Jinling Huang
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.,Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
68
|
Jena MK, Sharma NR, Petitt M, Maulik D, Nayak NR. Pathogenesis of Preeclampsia and Therapeutic Approaches Targeting the Placenta. Biomolecules 2020; 10:biom10060953. [PMID: 32599856 PMCID: PMC7357118 DOI: 10.3390/biom10060953] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Preeclampsia (PE) is a serious pregnancy complication, affecting about 5–7% of pregnancies worldwide and is characterized by hypertension and damage to multiple maternal organs, primarily the liver and kidneys. PE usually begins after 20 weeks’ gestation and, if left untreated, can lead to serious complications and lifelong disabilities—even death—in both the mother and the infant. As delivery is the only cure for the disease, treatment is primarily focused on the management of blood pressure and other clinical symptoms. The pathogenesis of PE is still not clear. Abnormal spiral artery remodeling, placental ischemia and a resulting increase in the circulating levels of vascular endothelial growth factor receptor-1 (VEGFR-1), also called soluble fms-like tyrosine kinase-1 (sFlt-1), are believed to be among the primary pathologies associated with PE. sFlt-1 is produced mainly in the placenta during pregnancy and acts as a decoy receptor, binding to free VEGF (VEGF-A) and placental growth factor (PlGF), resulting in the decreased bioavailability of each to target cells. Despite the pathogenic effects of increased sFlt-1 on the maternal vasculature, recent studies from our laboratory and others have strongly indicated that the increase in sFlt-1 in PE may fulfill critical protective functions in preeclamptic pregnancies. Thus, further studies on the roles of sFlt-1 in normal and preeclamptic pregnancies are warranted for the development of therapeutic strategies targeting VEGF signaling for the treatment of PE. Another impediment to the treatment of PE is the lack of suitable methods for delivery of cargo to placental cells, as PE is believed to be of placental origin and most available therapies for PE adversely impact both the mother and the fetus. The present review discusses the pathogenesis of PE, the complex role of sFlt-1 in maternal disease and fetal protection, and the recently developed placenta-targeted drug delivery system for the potential treatment of PE with candidate therapeutic agents.
Collapse
Affiliation(s)
- Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab 144411, India;
- Correspondence:
| | - Neeta Raj Sharma
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab 144411, India;
| | - Matthew Petitt
- Redwood Biomedical Editing, Redwood City, CA 94061, USA;
| | - Devika Maulik
- Department of Obstetrics and Gynecology, UMKC School of Medicine, Kansas City, MO 64108, USA; (D.M.); (N.R.N.)
| | - Nihar Ranjan Nayak
- Department of Obstetrics and Gynecology, UMKC School of Medicine, Kansas City, MO 64108, USA; (D.M.); (N.R.N.)
| |
Collapse
|
69
|
Yu K, Zhang Q, Liu Z, Zhao Q, Zhang X, Wang Y, Wang ZX, Jin Y, Li X, Liu ZX, Xu RH. qPhos: a database of protein phosphorylation dynamics in humans. Nucleic Acids Res 2020; 47:D451-D458. [PMID: 30380102 PMCID: PMC6323974 DOI: 10.1093/nar/gky1052] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022] Open
Abstract
Temporal and spatial protein phosphorylation dynamically orchestrates a broad spectrum of biological processes and plays various physiological and pathological roles in diseases and cancers. Recent advancements in high-throughput proteomics techniques greatly promoted the profiling and quantification of phosphoproteome. However, although several comprehensive databases have reserved the phosphorylated proteins and sites, a resource for phosphorylation quantification still remains to be constructed. In this study, we developed the qPhos (http://qphos.cancerbio.info) database to integrate and host the data on phosphorylation dynamics. A total of 3 537 533 quantification events for 199 071 non-redundant phosphorylation sites on 18 402 proteins under 484 conditions were collected through exhaustive curation of published literature. The experimental details, including sample materials, conditions and methods, were recorded. Various annotations, such as protein sequence and structure properties, potential upstream kinases and their inhibitors, were systematically integrated and carefully organized to present details about the quantified phosphorylation sites. Various browse and search functions were implemented for the user-defined filtering of samples, conditions and proteins. Furthermore, the qKinAct service was developed to dissect the kinase activity profile from user-submitted quantitative phosphoproteome data through annotating the kinase activity-related phosphorylation sites. Taken together, the qPhos database provides a comprehensive resource for protein phosphorylation dynamics to facilitate related investigations.
Collapse
Affiliation(s)
- Kai Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qingfeng Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zekun Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.,Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiaolong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zi-Xian Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Jin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiaoxing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
70
|
Couvineau P, Llorens-Cortes C, Iturrioz X. Elabela/Toddler and apelin bind differently to the apelin receptor. FASEB J 2020; 34:7989-8000. [PMID: 32301550 DOI: 10.1096/fj.201903029r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 01/17/2023]
Abstract
Like apelin (pE13F, K17F), Elabela/Toddler is an endogenous ligand of the apelin receptor playing a key role in cardiovascular development. Elabela/Toddler exists as peptide fragments of 32 (Q32P), 22 (K22P) and 11 (C11P) amino acids. In this study, we investigated the possible structural and functional similarities between these endogenous ligands. We performed in vitro pharmacological characterization and biased signaling analyses for apelin and Elabela/Toddler fragments in CHO cells, by assessing binding affinities, the inhibition of cyclic adenosine monophosphate (cAMP) production and the triggering of ß-arrestin 2 recruitment. We also performed Alanine scanning for Elabela/Toddler and structure-function studies based on site-directed mutagenesis of the rat and human apelin receptor, to compare the modes of binding of the different endogenous ligands. Alanine scanning of K22P showed that neither of its cysteine residues were involved in binding or in peptide activity and that its C-terminus carried the key pharmacophore for receptor binding and activation. We showed that Asp282 and Asp284 of rat and human apelin receptor, respectively, were not involved in Elabela/Toddler activity, whereas they are key residues for apelin binding and activity. We found that the structural features of Elabela/Toddler and apelin were different, resulting in different modes of binding of these endogenous ligands to the apelin receptor. These differences should be taken into account in the future development metabolically stable analogs of Elabela/Toddler and apelin as potential therapeutic tools for the treatment of cardiovascular diseases and water retention/hyponatremic disorders.
Collapse
Affiliation(s)
- Pierre Couvineau
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Catherine Llorens-Cortes
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Xavier Iturrioz
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
| |
Collapse
|
71
|
Essential Role of the ELABELA-APJ Signaling Pathway in Cardiovascular System Development and Diseases. J Cardiovasc Pharmacol 2020; 75:284-291. [DOI: 10.1097/fjc.0000000000000803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
72
|
RNA-Seq analysis reveals pluripotency-associated genes and their interaction networks in human embryonic stem cells. Comput Biol Chem 2020; 85:107239. [DOI: 10.1016/j.compbiolchem.2020.107239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/25/2022]
|
73
|
Qin S, Li J, Zhou C, Privratsky B, Schettler J, Deng X, Xia Z, Zeng Y, Wu H, Wu M. SHIP-1 Regulates Phagocytosis and M2 Polarization Through the PI3K/Akt-STAT5-Trib1 Circuit in Pseudomonas aeruginosa Infection. Front Immunol 2020; 11:307. [PMID: 32256487 PMCID: PMC7093384 DOI: 10.3389/fimmu.2020.00307] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/06/2020] [Indexed: 02/05/2023] Open
Abstract
SHIP-1 is an inositol phosphatase that hydrolyzes phosphatidylinositol 3-kinase (PI3K) products and negatively regulates protein kinase B (Akt) activity, thereby modulating a variety of cellular processes in mammals. However, the role of SHIP-1 in bacterial-induced sepsis is largely unknown. Here, we show that SHIP-1 regulates inflammatory responses during Gram-negative bacterium Pseudomonas aeruginosa infection. We found that infected-SHIP-1-/- mice exhibited decreased survival rates, increased inflammatory responses, and susceptibility owing to elevated expression of PI3K than wild-type (WT) mice. Inhibiting SHIP-1 via siRNA silencing resulted in lipid raft aggregates, aggravated oxidative damage, and bacterial burden in macrophages after PAO1 infection. Mechanistically, SHIP-1 deficiency augmented phosphorylation of PI3K and nuclear transcription of signal transducer and activator of transcription 5 (STAT5) to induce the expression of Trib1, which is critical for differentiation of M2 but not M1 macrophages. These findings reveal a previously unrecognized role of SHIP-1 in inflammatory responses and macrophage homeostasis during P. aeruginosa infection through a PI3K/Akt-STAT5-Trib1 axis.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaxin Li
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanmin Zhou
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Breanna Privratsky
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Jacob Schettler
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Xin Deng
- Department of Pediatrics and Department of Pulmonary & Critical Care Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenwei Xia
- Department of Pediatrics and Department of Pulmonary & Critical Care Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Zeng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Wu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
74
|
Xu C, Wang F, Chen Y, Xie S, Sng D, Reversade B, Yang T. ELABELA antagonizes intrarenal renin-angiotensin system to lower blood pressure and protects against renal injury. Am J Physiol Renal Physiol 2020; 318:F1122-F1135. [PMID: 32174138 DOI: 10.1152/ajprenal.00606.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Emerging evidence has demonstrated that (pro)renin receptor (PRR)-mediated activation of intrarenal renin-angiotensin system (RAS) plays an essential role in renal handling of Na+ and water balance and blood pressure. The present study tested the possibility that the intrarenal RAS served as a molecular target for the protective action of ELABELA (ELA), a novel endogenous ligand of apelin receptor, in the distal nephron. By RNAscope and immunofluorescence, mRNA and protein expression of endogenous ELA was consistently localized to the collecting duct (CD). Apelin was also found in the medullary CDs as assessed by immunofluorescence. In cultured CD-derived M1 cells, exogenous ELA induced parallel decreases of full-length PRR (fPRR), soluble PRR (sPRR), and prorenin/renin protein expression as assessed by immunoblotting and medium sPRR and prorenin/renin levels by ELISA, all of which were reversed by 8-bromoadenosine 3',5'-cyclic monophosphate. Conversely, deletion of PRR in the CD or nephron in mice elevated Apela and Apln mRNA levels as well as urinary ELA and apelin excretion, supporting the antagonistic relationship between the two systems. Administration of exogenous ELA-32 infusion (1.5 mg·kg-1·day-1, minipump) to high salt (HS)-loaded Dahl salt-sensitive (SS) rats significantly lowered mean arterial pressure, systolic blood pressure, diastolic blood pressure, and albuminuria, accompanied with a reduction of urinary sPRR, angiotensin II, and prorenin/renin excretion. HS upregulated renal medullary protein expression of fPRR, sPRR, prorenin, and renin in Dahl SS rats, all of which were significantly blunted by exogenous ELA-32 infusion. Additionally, HS-induced upregulation of inflammatory cytokines (IL-1β, IL-2, IL-6, IL-17A, IFN-γ, VCAM-1, ICAM-1, and MCP-1), fibrosis markers (TGF-β1, FN, Col1A1, PAI-1, and TIMP-1), and kidney injury markers (NGAL, Kim-1, albuminuria, and urinary NGAL excretion) were markedly blocked by exogenous ELA infusion. Together, these results support the antagonistic interaction between ELA and intrarenal RAS in the distal nephron that appears to exert a major impact on blood pressure regulation.
Collapse
Affiliation(s)
- Chuanming Xu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Yanting Chen
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah.,Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Shiying Xie
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah.,Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Danielle Sng
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, Immunos, Singapore
| | - Bruno Reversade
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, Immunos, Singapore
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah.,Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| |
Collapse
|
75
|
Liu W, Yan J, Pan W, Tang M. Apelin/Elabela-APJ: a novel therapeutic target in the cardiovascular system. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:243. [PMID: 32309390 PMCID: PMC7154429 DOI: 10.21037/atm.2020.02.07] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apelin and Elabela (ELA) are endogenous ligands of angiotensin domain type 1 receptor-associated proteins (APJ). Apelin/ELA-APJ signal is widely distributed in the cardiovascular system of fetuse and adult. The signal is involved in the development of the fetal heart and blood vessels and regulating vascular tension in adults. This review described the effects of apelin/ELA-APJ on fetal (vasculogenesis and angiogenesis) and adult cardiovascular function [vascular smooth muscle cell (VSMC) proliferation, vasodilation, positive myodynamia], and relative diseases [eclampsia, hypertension, pulmonary hypertension, heart failure (HF), myocardial infarction (MI), atherosclerosis, etc.] in detail. The pathways of apelin/ELA-APJ regulating cardiovascular function and cardiovascular-related diseases are summarized. The drugs developed based on apelin and ELA suggests APJ is a prospective strategy for cardiovascular disease therapy.
Collapse
Affiliation(s)
- Wei Liu
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China.,Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jialong Yan
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Weinan Pan
- Hunan Food and Drug Vocational College, Changsha 410208, China
| | - Mengjie Tang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| |
Collapse
|
76
|
Madsen RR. PI3K in stemness regulation: from development to cancer. Biochem Soc Trans 2020; 48:301-315. [PMID: 32010943 PMCID: PMC7054754 DOI: 10.1042/bst20190778] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 02/08/2023]
Abstract
The PI3K/AKT pathway is a key target in oncology where most efforts are focussed on phenotypes such as cell proliferation and survival. Comparatively, little attention has been paid to PI3K in stemness regulation, despite the emerging link between acquisition of stem cell-like features and therapeutic failure in cancer. The aim of this review is to summarise current known and unknowns of PI3K-dependent stemness regulation, by integrating knowledge from the fields of developmental, signalling and cancer biology. Particular attention is given to the role of the PI3K pathway in pluripotent stem cells (PSCs) and the emerging parallels to dedifferentiated cancer cells with stem cell-like features. Compelling evidence suggests that PI3K/AKT signalling forms part of a 'core molecular stemness programme' in both mouse and human PSCs. In cancer, the oncogenic PIK3CAH1047R variant causes constitutive activation of the PI3K pathway and has recently been linked to increased stemness in a dose-dependent manner, similar to observations in mouse PSCs with heterozygous versus homozygous Pten loss. There is also evidence that the stemness phenotype may become 'locked' and thus independent of the original PI3K activation, posing limitations for the success of PI3K monotherapy in cancer. Ongoing therapeutic developments for PI3K-associated cancers may therefore benefit from a better understanding of the pathway's two-layered and highly context-dependent regulation of cell growth versus stemness.
Collapse
Affiliation(s)
- Ralitsa R. Madsen
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, U.K
| |
Collapse
|
77
|
CircRNA AFF4 promotes osteoblast cells proliferation and inhibits apoptosis via the Mir-7223-5p/PIK3R1 axis. Aging (Albany NY) 2019; 11:11988-12001. [PMID: 31848327 PMCID: PMC6949079 DOI: 10.18632/aging.102524] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022]
Abstract
Fracture healing is a complex process involving various cell types, cytokines, and mRNAs. Here, we report the roles of the circRNA AFF4/miR-7223-5p/PIK3R1 axis during fracture healing. We found that increased expression of PIK3R1 during fracture healing is directly associated with augmented proliferation and decreased apoptosis of MC3T3-E1 cells. Furthermore, miR-7223-5p targeted PI3KR1 and inhibited MC3T3-E1 proliferation while promoting apoptosis. CircRNA AFF4 acted as a sponge of miR-7223-5p, thereby promoting MC3T3-E1 cell proliferation and inhibiting apoptosis. Local injection of circRNA AFF4 into femoral fracture sites promoted fracture healing in vivo while the injection of miR-7223-5p delayed healing. These findings suggest that CircRNA AFF4 promotes fracture healing by targeting the miR-7223-5p/PIK3R1 axis, and suggests miR-7223-5p, CircRNA AFF4, and the miR-7223-5p/PIK3R1 axis are potential therapeutic targets for improving fracture healing.
Collapse
|
78
|
Georgiadou D, Boussata S, Ranzijn WHM, Root LEA, Hillenius S, Bij de Weg JM, Abheiden CNH, de Boer MA, de Vries JIP, Vrijkotte TGM, Lambalk CB, Kuijper EAM, Afink GB, van Dijk M. Peptide hormone ELABELA enhances extravillous trophoblast differentiation, but placenta is not the major source of circulating ELABELA in pregnancy. Sci Rep 2019; 9:19077. [PMID: 31836787 PMCID: PMC6911039 DOI: 10.1038/s41598-019-55650-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
Preeclampsia is a frequent gestational hypertensive disorder with equivocal pathophysiology. Knockout of peptide hormone ELABELA (ELA) has been shown to cause preeclampsia-like symptoms in mice. However, the role of ELA in human placentation and whether ELA is involved in the development of preeclampsia in humans is not yet known. In this study, we show that exogenous administration of ELA peptide is able to increase invasiveness of extravillous trophoblasts in vitro, is able to change outgrowth morphology and reduce trophoblast proliferation ex vivo, and that these effects are, at least in part, independent of signaling through the Apelin Receptor (APLNR). Moreover, we show that circulating levels of ELA are highly variable between women, correlate with BMI, but are significantly reduced in first trimester plasma of women with a healthy BMI later developing preeclampsia. We conclude that the large variability and BMI dependence of ELA levels in circulation make this peptide an unlikely candidate to function as a first trimester preeclampsia screening biomarker, while in the future administering ELA or a derivative might be considered as a potential preeclampsia treatment option as ELA is able to drive extravillous trophoblast differentiation.
Collapse
Affiliation(s)
- Danai Georgiadou
- Reproductive Biology Laboratory, Amsterdam University Medical Centers, location AMC, Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Souad Boussata
- Reproductive Biology Laboratory, Amsterdam University Medical Centers, location AMC, Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Willemijn H M Ranzijn
- Reproductive Biology Laboratory, Amsterdam University Medical Centers, location AMC, Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Leah E A Root
- Reproductive Biology Laboratory, Amsterdam University Medical Centers, location AMC, Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Sanne Hillenius
- Reproductive Biology Laboratory, Amsterdam University Medical Centers, location AMC, Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Jeske M Bij de Weg
- Department of Obstetrics & Gynaecology, Amsterdam University Medical Centers, location VUmc, Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Carolien N H Abheiden
- Department of Obstetrics & Gynaecology, Amsterdam University Medical Centers, location VUmc, Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Marjon A de Boer
- Department of Obstetrics & Gynaecology, Amsterdam University Medical Centers, location VUmc, Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Johanna I P de Vries
- Department of Obstetrics & Gynaecology, Amsterdam University Medical Centers, location VUmc, Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Tanja G M Vrijkotte
- Department of Public Health, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands
| | - Cornelis B Lambalk
- Reproductive Medicine, Department of Obstetrics & Gynaecology, Amsterdam University Medical Centers, location VUmc, Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Esther A M Kuijper
- Reproductive Medicine, Department of Obstetrics & Gynaecology, Amsterdam University Medical Centers, location VUmc, Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Gijs B Afink
- Reproductive Biology Laboratory, Amsterdam University Medical Centers, location AMC, Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Marie van Dijk
- Reproductive Biology Laboratory, Amsterdam University Medical Centers, location AMC, Reproduction & Development Research Institute, Amsterdam, The Netherlands.
| |
Collapse
|
79
|
Geng Z, Ye C, Tong Y, Zhang F, Zhou YB, Xiong XQ. Exacerbated pressor and sympathoexcitatory effects of central Elabela in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2019; 318:H124-H134. [PMID: 31834836 DOI: 10.1152/ajpheart.00449.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Elabela (ELA) is a newly discovered peptide that acts as a novel endogenous ligand of angiotensin receptor-like 1 (APJ) receptor. This study was designed to evaluate the effects of ELA-21 in paraventricular nucleus (PVN) on blood pressure and sympathetic nerve activity in spontaneously hypertensive rats (SHR). Experiments were performed in male Wistar-Kyoto rats (WKY) and SHR. ELA expression was upregulated in PVN of SHR. PVN microinjection of ELA-21 increased renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP), heart rate (HR), plasma norepinephrine, and arginine vasopressin (AVP) levels in SHR. Intravenous injection of ELA-21 significantly decreased MAP and HR in both WKY and SHR, but only induced a slight decrease in RSNA. APJ antagonist F13A in PVN abolished the effects of ELA-21 on RSNA, MAP and HR. Intravenous infusion of both ganglionic blocker hexamethonium and AVP V1a receptor antagonist SR49059 caused significant reduction in the effects of ELA-21 on RSNA, MAP and HR in SHR, while combined administration of hexamethonium and SR49059 abolished the effects of ELA-21. ELA-21 microinjection stimulated Akt and p85α subunit of phosphatidylinositol 3-kinase (PI3K) phosphorylation in PVN, whereas PI3K inhibitor LY294002 or Akt inhibitor MK-2206 almost abolished the effects of ELA-21 on RSNA, MAP, and HR. Chronic PVN infusion of ELA-21 induced sympathetic activation, hypertension, and AVP release accompanied with cardiovascular remodeling in normotensive WKY. In conclusion, ELA-21 in PVN induces exacerbated pressor and sympathoexcitatory effects in hypertensive rats via PI3K-Akt pathway.NEW & NOTEWORTHY We demonstrated that PVN microinjection of ELA-21 increases sympathetic nerve activity and blood pressure, which can be abolished by pretreatment of APJ antagonist. This is the first demonstration that central ELA can induce hypertension. The pressor effects in PVN are mediated by both sympathetic activation and vasopressin release via PI3K-Akt pathway. Our data confirm that ELA is upregulated in the PVN of SHR and so may be involved in the pressor and sympathoexcitatory effects in hypertension.
Collapse
Affiliation(s)
- Zhi Geng
- Department of Cardiac Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Ye
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Tong
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Zhang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ye-Bo Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao-Qing Xiong
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
80
|
Kong Q, Yang X, Zhang H, Liu S, Zhao J, Zhang J, Weng X, Jin J, Liu Z. Lineage specification and pluripotency revealed by transcriptome analysis from oocyte to blastocyst in pig. FASEB J 2019; 34:691-705. [DOI: 10.1096/fj.201901818rr] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/02/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Qingran Kong
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
| | - Xu Yang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
| | - Heng Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
- Institute of Biology Westlake University Hangzhou China
| | - Shichao Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
| | - Jianchao Zhao
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
| | - Jiaming Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
| | - Xiaogang Weng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
| | - Junxue Jin
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province College of Life Science Northeast Agricultural University Harbin China
| |
Collapse
|
81
|
Acik DY, Bankir M, Baylan FA, Aygun B. Can ELABELA be a novel target in the treatment of chronic lymphocytic leukaemia? BMC Cancer 2019; 19:1086. [PMID: 31718601 PMCID: PMC6849261 DOI: 10.1186/s12885-019-6325-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/01/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND It has been shown that bcl2, bcl-XL and mcl-1 protein levels are high in chronic lymphocytic leukemia cells, and resultantly, apoptosis does not occur chronic lymphocytic leukemia cells. Apelin and apela (ELABELA/ELA/Toddler) are two peptide ligands for a class A G-protein coupled receptor called apelin receptor. Studies have shown that ELA inhibits apoptosis by inhibiting apoptotic proteins and activating anti-apoptotic proteins. Proteins and genes involved in apoptosis are valuable for targeted cancer therapy. We hypothesized that serum levels may be increased in patients with chronic lymphocytic leukemia based on the antiapoptotic effect of ELA. We compared serum ELABELA levels of healthy volunteers and patients with chronic lymphocytic leukemia. We aimed to draw attention to a new molecule worthy of research in targeted cancer treatment. METHODS Forty two untreated CLL patients and 41 healthy volunteers were included in the study. Serum ELA levels were measured by using enzyme-linked immunosorbent assay kits (Dhanghai Sunred Biological Technology co. Ltd), automated ELISA reader (Thermo Scientific, FİNLAND) and computer program (Scanlt for Multiscan F.C.2.5.1) in accordance with the manufacturer's instructions. Statistical analysis was done by Statistical Package for Social Sciences for Windows 20 (IBM SPSS Inc., Chicago, IL) ve MedCalc programs. ELA and variables related to CLL were correlated with Spearman correlation anlysis test. ROC analysis and Youden index method were used to determine a cut off point for ELA. All p-values were 2-sided with statistical significance at 0.05 alpha levels. RESULTS In our study, we found that serum ELA levels were significantly higher in patients with CLL. CONCLUSIONS This study highlights that ELA targeting may be a potential therapeutic option for treating CLL.
Collapse
MESH Headings
- Aged
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/metabolism
- Case-Control Studies
- Enzyme-Linked Immunosorbent Assay
- Female
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Male
- Middle Aged
- Neoplasm Staging
- Odds Ratio
- Peptide Hormones/antagonists & inhibitors
- Peptide Hormones/metabolism
- Prospective Studies
- ROC Curve
- Risk Factors
Collapse
Affiliation(s)
- Didar Yanardag Acik
- Department of Internal Medicine and Haematology, Adana City Education and Research Hospital, Mithat Özsan Bulvarı Kışla Mah. 4522 Sok. No:1, 01260 Yüreğir, Adana, Turkey
| | - Mehmet Bankir
- Department of Internal Medicine, Adana City Training and Research Hospital, Mithat Özsan Bulvarı Kışla Mah. 4522 Sok. No:1, 01260 Yüreğir, Adana, Turkey
| | - Filiz Alkan Baylan
- Department of Biochemistry, Kahramanmaraş Sütçü İmam University Faculty of Medicine, Mithat Özsan Bulvarı Kışla Mah. 4522 Sok. No:1, 01260 Yüreğir, Adana, Turkey
| | - Bilal Aygun
- Department of Internal Medicine and Haematology, Adana City Education and Research Hospital, Mithat Özsan Bulvarı Kışla Mah. 4522 Sok. No:1, 01260 Yüreğir, Adana, Turkey
| |
Collapse
|
82
|
Roles of the Hepatic Endocannabinoid and Apelin Systems in the Pathogenesis of Liver Fibrosis. Cells 2019; 8:cells8111311. [PMID: 31653030 PMCID: PMC6912778 DOI: 10.3390/cells8111311] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatic fibrosis is the consequence of an unresolved wound healing process in response to chronic liver injury and involves multiple cell types and molecular mechanisms. The hepatic endocannabinoid and apelin systems are two signalling pathways with a substantial role in the liver fibrosis pathophysiology-both are upregulated in patients with advanced liver disease. Endogenous cannabinoids are lipid-signalling molecules derived from arachidonic acid involved in the pathogenesis of cardiovascular dysfunction, portal hypertension, liver fibrosis, and other processes associated with hepatic disease through their interactions with the CB1 and CB2 receptors. Apelin is a peptide that participates in cardiovascular and renal functions, inflammation, angiogenesis, and hepatic fibrosis through its interaction with the APJ receptor. The endocannabinoid and apelin systems are two of the multiple cell-signalling pathways involved in the transformation of quiescent hepatic stellate cells into myofibroblast like cells, the main matrix-producing cells in liver fibrosis. The mechanisms underlying the control of hepatic stellate cell activity are coincident despite the marked dissimilarities between the endocannabinoid and apelin signalling pathways. This review discusses the current understanding of the molecular and cellular mechanisms by which the hepatic endocannabinoid and apelin systems play a significant role in the pathophysiology of liver fibrosis.
Collapse
|
83
|
Read C, Nyimanu D, Williams TL, Huggins DJ, Sulentic P, Macrae RGC, Yang P, Glen RC, Maguire JJ, Davenport AP. International Union of Basic and Clinical Pharmacology. CVII. Structure and Pharmacology of the Apelin Receptor with a Recommendation that Elabela/Toddler Is a Second Endogenous Peptide Ligand. Pharmacol Rev 2019; 71:467-502. [PMID: 31492821 PMCID: PMC6731456 DOI: 10.1124/pr.119.017533] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The predicted protein encoded by the APJ gene discovered in 1993 was originally classified as a class A G protein-coupled orphan receptor but was subsequently paired with a novel peptide ligand, apelin-36 in 1998. Substantial research identified a family of shorter peptides activating the apelin receptor, including apelin-17, apelin-13, and [Pyr1]apelin-13, with the latter peptide predominating in human plasma and cardiovascular system. A range of pharmacological tools have been developed, including radiolabeled ligands, analogs with improved plasma stability, peptides, and small molecules including biased agonists and antagonists, leading to the recommendation that the APJ gene be renamed APLNR and encode the apelin receptor protein. Recently, a second endogenous ligand has been identified and called Elabela/Toddler, a 54-amino acid peptide originally identified in the genomes of fish and humans but misclassified as noncoding. This precursor is also able to be cleaved to shorter sequences (32, 21, and 11 amino acids), and all are able to activate the apelin receptor and are blocked by apelin receptor antagonists. This review summarizes the pharmacology of these ligands and the apelin receptor, highlights the emerging physiologic and pathophysiological roles in a number of diseases, and recommends that Elabela/Toddler is a second endogenous peptide ligand of the apelin receptor protein.
Collapse
Affiliation(s)
- Cai Read
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Duuamene Nyimanu
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Thomas L Williams
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - David J Huggins
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Petra Sulentic
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Robyn G C Macrae
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Peiran Yang
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Robert C Glen
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| |
Collapse
|
84
|
Xi Y, Yu D, Yang R, Zhao Q, Wang J, Zhang H, Qian K, Shi Z, Wang W, Brown R, Li Y, Tian Z, Gong DW. Recombinant Fc-Elabela fusion protein has extended plasma half-life andmitigates post-infarct heart dysfunction in rats. Int J Cardiol 2019; 292:180-187. [DOI: 10.1016/j.ijcard.2019.04.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 04/05/2019] [Accepted: 04/28/2019] [Indexed: 12/22/2022]
|
85
|
Sunjaya AP, Sunjaya AF, Ferdinal F. Apela/Elabela/Toddler: New perspectives in molecular mechanism of heart failure. Glob Cardiol Sci Pract 2019; 2019:e201915. [PMID: 31799290 PMCID: PMC6865182 DOI: 10.21542/gcsp.2019.15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background. Despite significant therapeutic advances, heart failure (HF) remains unacceptably high in morbidity and mortality. Additionally, its high-care and costs make HF a deadly and costly disease. First reported independently by two group of researchers, Apela/Elabela/Toddler (ELA) is the second endogenous apelin-receptor ligand discovered which is encoded from a previously classified non-coding gene, and has emerged as a key signalling-pathway in the cardiovascular system. Aims. To explore and summarise the biological effects and diagnostic potential of ELA as a new biomarker for heart failure. Results. ELA (prepro-ELA 54 AA) is a molecule with three isoforms (ELA 11,16 and 32), recently identified as the second endogenous ligand to APJ-receptor and functions to mediate early cardiac development during zebrafish embryogenesis by inducing cardiogenesis, vasculogenesis and bone formation. In adults, it enhances cardiac contractility, promotes vasodilatory effects, mediates fluid homeostasis, reduces food intake, limits kidney dysfunction and exerts anti-atherosclerotic as well as anti-oxidative properties. Conclusion. These results show that ELA, an endogenous agonist of the APJ-receptor exerts cardiovascular effects comparable and potentially more potent than apelin and is found to be downregulated in experimental models and humans with heart failure.
Collapse
Affiliation(s)
- Anthony P Sunjaya
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Tarumanagara University, Jl. Letjen S. Parman No. 1, Jakarta, Indonesia
| | - Angela F Sunjaya
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Tarumanagara University, Jl. Letjen S. Parman No. 1, Jakarta, Indonesia
| | - Frans Ferdinal
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Tarumanagara University, Jl. Letjen S. Parman No. 1, Jakarta, Indonesia
| |
Collapse
|
86
|
Wang L, Zhang Y, Qu H, Xu F, Hu H, Zhang Q, Ye Y. Reduced ELABELA expression attenuates trophoblast invasion through the PI3K/AKT/mTOR pathway in early onset preeclampsia. Placenta 2019; 87:38-45. [PMID: 31546152 DOI: 10.1016/j.placenta.2019.08.077] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/22/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Early onset preeclampsia is linked to abnormal trophoblast invasion, leading to insufficient recasting of uterine spiral arteries and shallow placental implantation. This study investigated ELABELA (ELA) expression and its involvement in the pathogenesis of early onset preeclampsia. METHODS We used immunohistochemistry, quantitative PCR and Western blot to calculate ELA levels in the placentas. Transwell assays were utilize to assess the invasion and migration of trophoblastic Cells. Western blot was used to identify the concentrations of vital kinases in PI3K/AKT/mTOR pathways and invasion-related proteins in trophoblast cells. RESULTS ELA was expressed in villous cytotrophoblasts and syncytiotrophoblasts in placental tissue. Compared with the normal pregnancies, ELA mRNA and protein expression was significantly reduced in early onset preeclampsia placentas. In the HTR-8/SVneo cells, when ELA was knocked down, the invasion and migration capability of cells decreased significantly, with MMP2 and MMP9 expression downregulated and the expression of important kinases in the PI3K/AKT/mTOR pathways being significantly decreased compared to the control group. Overexpression of ELA was on the contrary. Besides, while PI3K was blocked, the invasion and migration capability of HTR-8/SVneo cells and the expression of key kinases in PI3K/AKT/mTOR pathways were decreased significantly. DISCUSSION ELA stimulates the invasion and migration of trophoblastic cells through activation of downstream PI3K/AKT/mTOR pathway and is complicit in early onset preeclampsia pathogenesis. Our research offers a potential novel treatment for PE.
Collapse
Affiliation(s)
- Lijing Wang
- Department of Obstetrics and Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266000, China; Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, 266000, China
| | - Yan Zhang
- Department of Obstetrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Hongmei Qu
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Fengsen Xu
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, 266000, China
| | - Haiyan Hu
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, 266000, China
| | - Qian Zhang
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, 266000, China
| | - Yuanhua Ye
- Department of Obstetrics and Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266000, China; Department of Obstetrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
87
|
Pinson MR, Miranda RC. Noncoding RNAs in development and teratology, with focus on effects of cannabis, cocaine, nicotine, and ethanol. Birth Defects Res 2019; 111:1308-1319. [PMID: 31356004 DOI: 10.1002/bdr2.1559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
Completion of the Human Genome Project has led to the identification of a large number of transcription start sites that are not paired with protein-coding genes, supporting the growing recognition of the abundance of encoded nonprotein-coding RNAs (ncRNAs) and their importance for speciation and species-specific development. Present in both plants and animals, ncRNAs vary in size, function, primary sequence, and secondary structure. While microRNAs (miRNAs) are the best known, there are a number of other ncRNAs (long[er] nonprotein-coding RNA, pseudogenes, circular RNAs, and so on) that have been shown to play an important role in the development either directly or via networks of proteins and other ncRNAs, including modulating the impact of miRNAs. Furthermore, these ncRNAs and their developmental regulatory networks are sensitive to teratogens such as ethanol, cannabis, cocaine, and nicotine. A better understanding of the developmental role of ncRNAs and their capacity to mediate teratogenesis is a necessary step in efforts to minimize the long-term consequences of developmental exposures to drugs-of-abuse. Moreover, with increasing awareness of the prevalence of polydrug use, experimental models will need to incorporate more complex drug exposure paradigms into meaningful assessments of developmental ncRNA function.
Collapse
Affiliation(s)
- Marisa R Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Pkwy Suite 1005 MREB, Bryan, Texas
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Pkwy Suite 1005 MREB, Bryan, Texas
| |
Collapse
|
88
|
Shahbazi M, Cundiff P, Zhou W, Lee P, Patel A, D'Souza SL, Abbasi F, Quertermous T, Knowles JW. The role of insulin as a key regulator of seeding, proliferation, and mRNA transcription of human pluripotent stem cells. Stem Cell Res Ther 2019; 10:228. [PMID: 31358052 PMCID: PMC6664730 DOI: 10.1186/s13287-019-1319-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 05/06/2019] [Accepted: 06/30/2019] [Indexed: 12/15/2022] Open
Abstract
Background Human-induced pluripotent stem cells (hiPSCs) show a great promise as a renewable source of cells with broad biomedical applications. Since insulin has been used in the maintenance of hiPSCs, in this study we explored the role of insulin in culture of these cells. Methods We report conditions for insulin starvation and stimulation of hiPSCs. Crystal violet staining was used to study the adhesion and proliferation of hiPSCs. Apoptosis and cell cycle assays were performed through flow cytometry. Protein arrays were used to confirm phosphorylation targets, and mRNA sequencing was used to evaluate the effect of transcriptome. Results Insulin improved the seeding and proliferation of hiPSCs. We also observed an altered cell cycle profile and increase in apoptosis in hiPSCs in the absence of insulin. Furthermore, we confirmed phosphorylation of key components of insulin signaling pathway in the presence of insulin and demonstrated the significant effect of insulin on regulation of the mRNA transcriptome of hiPSCs. Conclusion Insulin is a major regulator of seeding, proliferation, phosphorylation and mRNA transcriptome in hiPSCs. Collectively, our work furthers our understanding of human pluripotency and paves the way for future studies that use hiPSCs for modeling genetic ailments affecting insulin signaling pathways. Electronic supplementary material The online version of this article (10.1186/s13287-019-1319-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohammad Shahbazi
- Stanford Cardiovascular Medicine and Cardiovascular Institute, Stanford School of Medicine, Stanford University, Falk CVRC, Room CV273, MC 5406 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Paige Cundiff
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Mount Sinai, New York, NY, 10029, USA
| | - Wenyu Zhou
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA, 94305, USA.,Stanford Diabetes Research Center, Stanford University, Stanford, CA, 94305, USA.,Genetics Bioinformatics Service Center, Stanford University, Stanford, CA, 94305, USA
| | - Philip Lee
- Stanford Cardiovascular Medicine and Cardiovascular Institute, Stanford School of Medicine, Stanford University, Falk CVRC, Room CV273, MC 5406 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Achchhe Patel
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Mount Sinai, New York, NY, 10029, USA
| | - Sunita L D'Souza
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Mount Sinai, New York, NY, 10029, USA
| | - Fahim Abbasi
- Stanford Cardiovascular Medicine and Cardiovascular Institute, Stanford School of Medicine, Stanford University, Falk CVRC, Room CV273, MC 5406 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Thomas Quertermous
- Stanford Cardiovascular Medicine and Cardiovascular Institute, Stanford School of Medicine, Stanford University, Falk CVRC, Room CV273, MC 5406 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Joshua W Knowles
- Stanford Cardiovascular Medicine and Cardiovascular Institute, Stanford School of Medicine, Stanford University, Falk CVRC, Room CV273, MC 5406 300 Pasteur Drive, Stanford, CA, 94305, USA. .,Stanford Diabetes Research Center, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
89
|
Georgiadou D, Afink GB, van Dijk M. The apelinergic-axis in human preeclamptic pregnancies: A systematic review. Pregnancy Hypertens 2019; 17:148-157. [DOI: 10.1016/j.preghy.2019.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 11/16/2022]
|
90
|
Huang R, Zhu J, Zhang L, Hua X, Ye W, Chen C, Sun K, Wang W, Feng L, Zhang J. Is ELABELA a reliable biomarker for hypertensive disorders of pregnancy? Pregnancy Hypertens 2019; 17:226-232. [PMID: 31487645 PMCID: PMC7001771 DOI: 10.1016/j.preghy.2019.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/26/2019] [Accepted: 06/25/2019] [Indexed: 11/15/2022]
Abstract
OBJECTIVE We aimed to examine the ELABELA levels at different stages of pregnancy among normotensive controls and women with hypertensive disorders of pregnancy (HDP). STUDY DESIGN A total of 336 blood samples of 169 women were collected from pre-pregnancy, the first, second, and third trimesters. Women were divided into the following six groups: 1) non-pregnant healthy women; 2) healthy pregnant controls; 3) chronic hypertension; 4) gestational hypertension; 5) preeclampsia; and 6) preeclampsia superimposed on chronic hypertension. ELABELA plasma concentrations were measured by human ELA Elisa Kit (Peninsula Laboratories International, Inc. USA). Kruskal-Wallis test was used to test whether ELABELA level in each type of HDP differed from that in gestational week-matched normotensive controls. MAIN OUTCOME MEASURES Hypertensive disorders of pregnancy. RESULTS In the first trimester, patients with gestational hypertension had higher ELABELA level than gestational week-matched normotensive controls [median (ng/ml): 31.9, (IQR (ng/ml): 16.3, 47.6) vs. 19.7 (13.7, 23.2), p = 0.03]. In the second trimester, the levels were 49.2 (32.2, 69.1) vs 24.0 (13.0, 32.6) (p = 0.002), respectively. The level for gestational hypertensive women in the third trimester did not differ significantly from that of normotensive women [43.8 (30.8, 62.7) vs 25.0 (12.3, 74.0), p = 0.82]. The ELABELA levels were similar between preeclamptic women and normotensive controls throughout pregnancy. CONCLUSIONS Maternal blood ELABELA levels in the first and second trimesters were elevated in women who developed gestational hypertension late in pregnancy, but the ELABELA level bears no significant relationship with preeclampsia during any stage of pregnancy.
Collapse
Affiliation(s)
- Rong Huang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Jing Zhu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhang
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolin Hua
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiping Ye
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Weiye Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Liping Feng
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
91
|
Chen J, Chen Z, Huang Z, Yu H, Li Y, Huang W. Formiminotransferase Cyclodeaminase Suppresses Hepatocellular Carcinoma by Modulating Cell Apoptosis, DNA Damage, and Phosphatidylinositol 3-Kinases (PI3K)/Akt Signaling Pathway. Med Sci Monit 2019; 25:4474-4484. [PMID: 31203308 PMCID: PMC6592141 DOI: 10.12659/msm.916202] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Formiminotransferase cyclodeaminase (FTCD) is a candidate tumor suppressor gene in hepatocellular carcinoma (HCC). However, the mechanism for reduced expression of FTCD and its functional role in HCC remains unclear. In this study, we explored the biological functions of FTCD in HCC. Material/Methods The expression and clinical correlation of FTCD in HCC tissue were analyzed using TCGA (The Cancer Genome Atlas) and a cohort of 60 HCC patients. The MEXPRESS platform was accessed to identify the methylation level in promoter region FTCD. CCK-8 assay and flow cytometry analysis were used to explore the proliferation, cell apoptosis proportion, and DNA damage in HCC cells with FTCD overexpression. Western blot analysis was performed to identify the downstream target of FTCD. Results FTCD is significantly downregulated in HCC tissues and cell lines. Low FTCD expression is correlated with a poor prognosis (P<0.001) and an aggressive tumor phenotype, including AFP levels (P=0.009), tumor size (P=0.013), vascular invasion (P=0.001), BCLC stage (P=0.024), and pTNM stage (P<0.001). Bioinformatics analysis indicated promoter hypermethylation can result in decreased expression of FTCD. FTCD overexpression suppressed cell proliferation by promoting DNA damage and inducing cell apoptosis in HCC cells. FTCD overexpression resulted in increased level of PTEN protein, but a decrease in PI3K, total Akt, and phosphorylated Akt protein in HCC cells, suggesting involvement of the PI3K/Akt pathway. Conclusions FTCD acts as a tumor suppressor gene in HCC pathogenesis and progression and is a candidate prognostic marker and a possible therapeutic target for this disease.
Collapse
Affiliation(s)
- Jiajia Chen
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Department of General Surgery, Affiliated Chaozhou Central Hospital, Southern Medical University, Chaozhou, Guangdong, China (mainland).,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Zemian Chen
- Department of Medical Oncology, Affiliated Chaozhou Central Hospital, Southern Medical University, Chaozhou, Guangdong, China (mainland)
| | - Zhentian Huang
- Department of General Surgery, Affiliated Chaozhou Central Hospital, Southern Medical University, Chaozhou, Guangdong, China (mainland)
| | - Hongrong Yu
- Department of Human Anatomy, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yanbing Li
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Wenhua Huang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
92
|
Zhang Y, Wang Y, Luo M, Xu F, Lu Y, Zhou X, Cui W, Miao L. Elabela protects against podocyte injury in mice with streptozocin-induced diabetes by associating with the PI3K/Akt/mTOR pathway. Peptides 2019; 114:29-37. [PMID: 30959144 DOI: 10.1016/j.peptides.2019.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 01/25/2023]
Abstract
Diabetic nephropathy is a common complication of diabetes characterized by an increased rate of protein excretion in urine and kidney function loss. Elabela is a newly discovered peptide whose role in the regulation of diabetes is the major focus of this research. We established an in vivo model of Type 1 diabetes mellitus by injecting mice intraperitoneally with streptozotocin. The treatment group was administered Elabela for 6 months. In the present study, Elabela administration under diabetic conditions was found to reduce renal inflammation and fibrosis markers, leading to improvement in renal pathology and kidney dysfunction. Furthermore, Elabela acts through the phosphoinositide 3-kinase /Akt/mammalian target of rapamycin signaling pathway and decreases podocyte apoptosis, thereby exhibiting a nephroprotective effect against diabetic nephropathy. Our findings provide the first evidence that Elabela has a potential renoprotective effect in patients of diabetes.
Collapse
Affiliation(s)
- Yixian Zhang
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Yangwei Wang
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Manyu Luo
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Feng Xu
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Yue Lu
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Xiaoxi Zhou
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Wenpeng Cui
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China.
| | - Lining Miao
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
93
|
APELA Expression in Glioma, and Its Association with Patient Survival and Tumor Grade. Pharmaceuticals (Basel) 2019; 12:ph12010045. [PMID: 30917521 PMCID: PMC6469159 DOI: 10.3390/ph12010045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 01/25/2023] Open
Abstract
Glioblastoma (GBM) is the most common and deadliest primary adult brain tumor. Invasion, resistance to therapy, and tumor recurrence in GBM can be attributed in part to brain tumor-initiating cells (BTICs). BTICs isolated from various patient-derived xenografts showed high expression of the poorly characterized Apelin early ligand A (APELA) gene. Although originally considered to be a non-coding gene, the APELA gene encodes a protein that binds to the Apelin receptor and promotes the growth of human embryonic stem cells and the formation of the embryonic vasculature. We found that both APELA mRNA and protein are expressed at high levels in a subset of brain tumor patients, and that APELA is also expressed in putative stem cell niche in GBM tumor tissue. Analysis of APELA and the Apelin receptor gene expression in brain tumor datasets showed that high APELA expression was associated with poor patient survival in both glioma and glioblastoma, and APELA expression correlated with glioma grade. In contrast, gene expression of the Apelin receptor or Apelin was not found to be associated with patient survival, or glioma grade. Consequently, APELA may play an important role in glioblastoma tumorigenesis and may be a future therapeutic target.
Collapse
|
94
|
Elabela and Apelin actions in healthy and pathological pregnancies. Cytokine Growth Factor Rev 2019; 46:45-53. [PMID: 30910349 DOI: 10.1016/j.cytogfr.2019.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/12/2019] [Indexed: 12/18/2022]
Abstract
Pregnancy is a dynamic and precisely organized process during which one or more baby develops. Embryonic development relies on the formation of the placenta, allowing nutrient and oxygen exchange between the mother and the fetus. Dysfunction of placental formation lead to pregnancy disorders such as preeclampsia (PE) with serious deleterious consequences for fetal and maternal health. Identifying factors involved in fetoplacental homeostasis could inform better diagnostic and therapeutic strategies for these pathological pregnancies. Here, we summarize actions of elabela, apelin and their common receptor APJ in the fetoplacental unit. Studies indicate that elabela is crucial for embryo cardiovascular system formation and early placental development, while apelin acts in mid/late gestation to modulate fetal angiogenesis and energy homeostasis. Most of these findings, drawn from animal models, indicate a key role of elabela/apelin-APJ system in the fetoplacental unit. This review also provides an overview of clinical studies investigating elabela/apelin-APJ system in pathological complicated pregnancies such as PE and gestational diabetes mellitus (GDM). While elabela-deficient mice display all the features of PE, current clinical studies show no difference in circulating elabela levels between PE and control patients which does not support a role in PE development. Conversely, apelin levels are increased during PE, but the use of apelin as an early PE marker remains to be fully investigated.
Collapse
|
95
|
Liu Y, Wang L, Shi H. The biological function of ELABELA and APJ signaling in the cardiovascular system and pre-eclampsia. Hypertens Res 2019; 42:928-934. [PMID: 30626933 DOI: 10.1038/s41440-018-0193-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/21/2018] [Accepted: 12/02/2018] [Indexed: 01/12/2023]
Abstract
Pre-eclampsia (PE) is a pregnancy-specific syndrome that is characterized by hypertension and proteinuria. The etiology of PE is not completely understood but is believed to involve placental insufficiency and maternal vascular damage. Growing evidence supports an important role for the apelin receptor (APJ) system in regulating cardiovascular physiology. There are two vertebrate APJ ligands, APELIN and ELABELA, both of which mediate vasodilatory functions. A recent study linked deficient ELABELA signaling and the development of PE, though the molecular mechanism remains largely unknown. In this review, we summarize the biological function of the ELABELA and APJ system in cardiovascular homeostasis and discuss the potential mechanisms by which ELABELA and APJ regulate placenta trophoblast invasion and vascular functions and participate in the development of PE.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Obstetrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liquan Wang
- Department of Obstetrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Hongjun Shi
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
96
|
Kuba K, Sato T, Imai Y, Yamaguchi T. Apelin and Elabela/Toddler; double ligands for APJ/Apelin receptor in heart development, physiology, and pathology. Peptides 2019; 111:62-70. [PMID: 29684595 DOI: 10.1016/j.peptides.2018.04.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/13/2022]
Abstract
Apelin is an endogenous peptide ligand for the G protein-coupled receptor APJ/AGTRL1/APLNR and is widely expressed throughout human body. In adult hearts Apelin-APJ/Apelin receptor axis is potently inotropic, vasodilatory, and pro-angiogenic and thereby contributes to maintaining homeostasis in normal and pathological hearts. Apelin-APJ/Apelin receptor is also involved in heart development including endoderm differentiation, heart morphogenesis, and coronary vascular formation. APJ/Apelin receptor had been originally identified as an orphan receptor for its sequence similarity to Angiotensin II type 1 receptor, and it was later deorphanized by identification of Apelin in 1998. Both Apelin and Angiotensin II are substrates for Angiotensin converting enzyme 2 (ACE2), which degrades the peptides and thus negatively regulates their agonistic activities. Elabela/Toddler, which shares little sequence homology with Apelin, has been recently identified as a second endogenous APJ ligand. Elabela plays crucial roles in heart development and disease conditions presumably at time points or at areas of the heart different from Apelin. Apelin and Elabela seem to constitute a spatiotemporal double ligand system to control APJ/Apelin receptor signaling in the heart. These expanding knowledges of Apelin systems would further encourage therapeutic applications of Apelin, Elabela, or their synthetic derivatives for cardiovascular diseases.
Collapse
Affiliation(s)
- Keiji Kuba
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| | - Teruki Sato
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan; Department of Cardiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Yumiko Imai
- Laboratory of Regulation of Intractable Infectious Diseases, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Tomokazu Yamaguchi
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| |
Collapse
|
97
|
Li H, Cheng Z, Tang Y, Feng M, Yin A, Zhang H, Xu J, Zhang Q, Zhang J, Qian L. Expression profile of long non‑coding RNAs in cardiomyocytes exposed to acute ischemic hypoxia. Mol Med Rep 2018; 19:302-308. [PMID: 30431112 PMCID: PMC6297740 DOI: 10.3892/mmr.2018.9658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/28/2018] [Indexed: 12/02/2022] Open
Abstract
Acute myocardial infarction (AMI) is a life-threatening disease and seriously influences patient quality of life. Long non-coding RNAs (lncRNAs), an emerging class of non-coding genes, have attracted attention in research, however, whether lncRNAs serve a function in acute ischemic hypoxia remains to be elucidated. In the present study, an lncRNA microarray was used to analyze differential lncRNA expression in acute ischemic hypoxia. A total of 323 lncRNAs were identified, 168 of which were upregulated and 155 of which were downregulated. Gene Ontology and Pathway analyses were also used to identify the potential functions of dysregulated lncRNAs; it was predicted that these dysregulated lncRNAs may contribute to the initiation of AMI. It was demonstrated that an lncRNA termed sloyfley may influence acute ischemic hypoxia through its neighboring gene Peg3, which has been linked to brain ischemia hypoxia. In summary, the present study identified numerous lncRNAs, which may provide further opportunities for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hua Li
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zijie Cheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yuanyuan Tang
- Departmant of General Medicine, Traditional Chinese Medicine Hospital of Jiangsu Province, Nanjing, Jiangsu 210004, P.R. China
| | - Mengwen Feng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Anwen Yin
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hao Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jia Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qijun Zhang
- Department of Cardiology, YinZhou Hospital Affiliated to Medical School of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Jinsong Zhang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lingmei Qian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
98
|
Zhang Y, Wang Y, Lou Y, Luo M, Lu Y, Li Z, Wang Y, Miao L. Elabela, a newly discovered APJ ligand: Similarities and differences with Apelin. Peptides 2018; 109:23-32. [PMID: 30267732 DOI: 10.1016/j.peptides.2018.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 08/24/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023]
Abstract
The Apelin/APJ system is involved in a wide range of biological functions. For a long time, Apelin was thought to be the only ligand for APJ. Recently, a new peptide that acts via APJ and has similar functions, called Elabela, was identified. Elabela has beneficial effects on body fluid homeostasis, cardiovascular health, and renal insufficiency, as well as potential benefits for metabolism and diabetes. In this review, the properties and biological functions of this new peptide are discussed in comparison with those of Apelin. Important areas for future study are also discussed, with the consideration that research on Apelin could guide future research on Elabela.
Collapse
Affiliation(s)
- Yixian Zhang
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China; Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, 40202, USA
| | - Yonggang Wang
- Cardiovascular Center, First Hospital of Jilin University, Changchun 130021, China
| | - Yan Lou
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Manyu Luo
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Yue Lu
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Zhuo Li
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China
| | - Yangwei Wang
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China.
| | - Lining Miao
- Department of Nephrology, Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
99
|
Huang Z, He L, Chen Z, Chen L. Targeting drugs to APJ receptor: From signaling to pathophysiological effects. J Cell Physiol 2018; 234:61-74. [DOI: 10.1002/jcp.27047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Zhen Huang
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China Hengyang China
- Department of Pharmacy The First Affiliated Hospital, University Of South China Hengyang China
| | - Lu He
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China Hengyang China
| | - Zhe Chen
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China Hengyang China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China Hengyang China
| |
Collapse
|
100
|
Abstract
Apelin is a vasoactive peptide and is an endogenous ligand for APJ receptors, which are widely expressed in blood vessels, heart, and cardiovascular regulatory regions of the brain. A growing body of evidence now demonstrates a regulatory role for the apelin/APJ receptor system in cardiovascular physiology and pathophysiology, thus making it a potential target for cardiovascular drug discovery and development. Indeed, ongoing studies are investigating the potential benefits of apelin and apelin-mimetics for disorders such as heart failure and pulmonary arterial hypertension. Apelin causes relaxation of isolated arteries, and systemic administration of apelin typically results in a reduction in systolic and diastolic blood pressure and an increase in blood flow. Nonetheless, vasopressor responses and contraction of vascular smooth muscle in response to apelin have also been observed under certain conditions. The goal of the current review is to summarize major findings regarding the apelin/APJ receptor system in blood vessels, with an emphasis on regulation of vascular tone, and to identify areas of investigation that may provide guidance for the development of novel therapeutic agents that target this system.
Collapse
Affiliation(s)
- Amreen Mughal
- Department of Pharmaceutical Sciences, North Dakota State University Fargo, ND, USA
| | - Stephen T O'Rourke
- Department of Pharmaceutical Sciences, North Dakota State University Fargo, ND, USA.
| |
Collapse
|