51
|
Li RF, Liu S, Gao Q, Fu M, Sun XY, Xiao M, Ge XY, Peng X. Inhibition of CDH11 Activates cGAS-STING by Stimulating Branched Chain Amino Acid Catabolism and Mitigates Lung Metastasis of Adenoid Cystic Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2408751. [PMID: 39739317 DOI: 10.1002/advs.202408751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/10/2024] [Indexed: 01/02/2025]
Abstract
Salivary adenoid cystic carcinoma (SACC) is an intractable malignant tumor originates in the secretory glands and frequently metastasizes to the lungs. Hybrid epithelial-mesenchymal transition (EMT) cells within the tumors are correlated with augmented proliferative capacity and facilitation of lung metastasis. Single-cell RNA sequencing and spatial transcriptomic sequencing are employed to reveal the hybrid EMT subsets within the vascular fibroblast microenvironment. These hybrid EMT cells exhibit a pro-tumorigenic impact in vitro. Notably, cadherin 11 (CDH11), a specific marker for hybrid EMT cells, may exert its regulatory role in cellular function by interfering with branched-chain amino acids (BCAA) metabolism by inhibiting branched-chain ketoacid dehydrogenase to activate the mammalian target of the rapamycin pathway, thus making it a potential therapeutic target for SACC. Furthermore, celecoxib and its derivatives are specific CDH11 inhibitors that regulate BCAA metabolism, increase reactive oxygen species production, and subsequently activate the cyclic GMP-AMP synthase-stimulator of the interferongene pathway (cGAS-STING). They also inhibit lung metastasis in NOD-SCID mice in vivo. Overall, these findings suggest a promising treatment strategy that targets hybrid EMT cells to mitigate lung metastasis in SACC. Celecoxib may serve as a promising clinical intervention for the treatment of lung metastases in patients with SACC.
Collapse
Affiliation(s)
- Rui-Feng Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- National Center for Stomatology, Beijing, 100081, P. R. China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, BeiJing, 100081, P. R. China
| | - Shuo Liu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- National Center for Stomatology, Beijing, 100081, P. R. China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, BeiJing, 100081, P. R. China
| | - Qian Gao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- National Center for Stomatology, Beijing, 100081, P. R. China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, BeiJing, 100081, P. R. China
| | - Min Fu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- National Center for Stomatology, Beijing, 100081, P. R. China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, BeiJing, 100081, P. R. China
| | - Xin-Yi Sun
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- National Center for Stomatology, Beijing, 100081, P. R. China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, BeiJing, 100081, P. R. China
| | - Mian Xiao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- National Center for Stomatology, Beijing, 100081, P. R. China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, BeiJing, 100081, P. R. China
| | - Xi-Yuan Ge
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- National Center for Stomatology, Beijing, 100081, P. R. China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, BeiJing, 100081, P. R. China
| | - Xin Peng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- National Center for Stomatology, Beijing, 100081, P. R. China
- National Clinical Research Center for Oral Diseases, Beijing, 100081, P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, BeiJing, 100081, P. R. China
| |
Collapse
|
52
|
Huo C, Wu D, Li X, Zhang Y, Hu B, Zhang T, Ren J, Wang T, Liu Y. eIf3a mediates malignant biological behaviors in colorectal cancer through the PI3K/AKT signaling pathway. Cancer Biol Ther 2024; 25:2355703. [PMID: 38782896 PMCID: PMC11123456 DOI: 10.1080/15384047.2024.2355703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Colorectal cancer (CRC) is among the most common gastrointestinal malignancies worldwide. eIF3a is highly expressed in a variety of cancer types, yet its role in CRC remains unclear. We introduced ectopic eIF3a expression in CRC cells to investigate its relevance to various malignant behaviors. Further, we silenced eIF3a to explore its effect on tumor growth in a nude mouse tumor xenograft model. Finally, the molecular mechanisms through which eIF3a regulates malignancy in CRC cells were explored through bioinformatics analysis combined with the use of a specific PI3K inhibitor (LY294002). eIF3a was highly expressed in the peripheral blood and cancer tissue of CRC patients. Malignancy and tumor growth were significantly inhibited by silencing eIF3a, while overexpression promoted malignant behaviors, with a positive correlation between PI3K/AKT activation and eIF3a expression. Taken together, eIF3a plays an oncogenic role in CRC by regulating PI3K/AKT signaling and is a potential biomarker for CRC diagnosis and prognostic monitoring.
Collapse
Affiliation(s)
- Chao Huo
- Department of Anus and Intestines, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| | - Disheng Wu
- Department of Anus and Intestines, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| | - Xiaodan Li
- Hongshan Community Hospital, People’s Hospital of Longhua District, Shenzhen, Guangdong, China
| | - Yan Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
| | - Baoguang Hu
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Taoming Zhang
- Hongshan Community Hospital, People’s Hospital of Longhua District, Shenzhen, Guangdong, China
| | - Jianwei Ren
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, China
- R&D Department, Shenzhen Ritzcon Biological Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Tianbao Wang
- Department of Gastrointestinal Surgery, South China Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Yi Liu
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
53
|
Chen S, Luo X, Wang W, Chen XH, Ma N, Zhu XY, Zhou T, Gao QJ, Zhao DW. ACTN1 promotes cell invasion, migration, and EMT in thyroid cancer and is associated with immune infiltration. Sci Rep 2024; 14:32060. [PMID: 39738470 DOI: 10.1038/s41598-024-83719-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Alpha-actin-1 (ACTN1) is a cytoskeletal protein, and new evidence suggests that it is associated with tumor progression and prognosis. However, the expression of ACTN1 in thyroid carcinoma (THCA) and its biological functions are not fully understood. This study aimed to explore the expression and biological function of ACTN1 in THCA. Bioinformatics analysis revealed that ACTN1 was significantly upregulated in THCA and was associated with tumor size, extraglandular invasion, lymph node and distant metastasis, patient prognosis, and immune cell infiltration. qRT-PCR, immunohistochemistry, and western blotting verified the high expression of ACTN1 in the PTC samples. In vitro and in vivo experiments showed that overexpression of ACTN1 promoted THCA cell proliferation, cell cycle, migration, and invasion, and induced epithelial-mesenchymal transition (EMT); knockdown of ACTN1 inhibited these malignant behaviors. Mechanistically, ACTN1 knockdown reduced the phosphorylation levels of PI3K, AKT, and mTOR, whereas its overexpression increased these levels. After treating ACTN1 knockdown cells with the PI3K activator 740Y-P, the invasion and migration ability of the tumor was restored, suggesting that ACTN1 may promote the invasion and migration of THCA by activating the PI3K/AKT/mTOR pathway. In conclusion, ACTN1 is an important regulator of THCA progression and may serve as a potential molecular marker for predicting THCA invasion and metastasis.
Collapse
Affiliation(s)
- Song Chen
- School of Clinical Medicine, GuiZhou Medical University, Guiyang, Guizhou, China
| | - Xue Luo
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wentai Wang
- The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xing-Hong Chen
- Department of Thyroid and Breast Surgery, Second People's Hospital of Guizhou Province, Guiyang, Guizhou, China
| | - Ning Ma
- School of Clinical Medicine, GuiZhou Medical University, Guiyang, Guizhou, China
| | - Xue-Yin Zhu
- School of Clinical Medicine, GuiZhou Medical University, Guiyang, Guizhou, China
| | - Tian Zhou
- School of Clinical Medicine, GuiZhou Medical University, Guiyang, Guizhou, China
| | - Qing-Jun Gao
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| | - Dai-Wei Zhao
- School of Clinical Medicine, GuiZhou Medical University, Guiyang, Guizhou, China.
- Department of Thyroid and Breast Surgery, Second People's Hospital of Guizhou Province, Guiyang, Guizhou, China.
- Department of Breast and Thyroid Surgery, Guiqian International General Hospital, Guiyang, Guizhou, China.
| |
Collapse
|
54
|
Zhou X, Han J, Zuo A, Ba Y, Liu S, Xu H, Zhang Y, Weng S, Zhou Z, Liu L, Luo P, Cheng Q, Zhang C, Chen Y, Shan D, Liu B, Yang S, Han X, Deng J, Liu Z. THBS2 + cancer-associated fibroblasts promote EMT leading to oxaliplatin resistance via COL8A1-mediated PI3K/AKT activation in colorectal cancer. Mol Cancer 2024; 23:282. [PMID: 39732719 DOI: 10.1186/s12943-024-02180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/20/2024] [Indexed: 12/30/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) exert multiple tumor-promoting functions and are key contributors to drug resistance. The mechanisms by which specific subsets of CAFs facilitate oxaliplatin resistance in colorectal cancer (CRC) have not been fully explored. This study found that THBS2 is positively associated with CAF activation, epithelial-mesenchymal transition (EMT), and chemoresistance at the pan-cancer level. Together with single-cell RNA sequencing and spatial transcriptomics analyses, we identified THBS2 specifically derived from subsets of CAFs, termed THBS2 + CAFs, which could promote oxaliplatin resistance by interacting with malignant cells via the collagen pathway in CRC. Mechanistically, COL8A1 specifically secreted from THBS2 + CAFs directly interacts with the ITGB1 receptor on resistant malignant cells, activating the PI3K-AKT signaling pathway and promoting EMT, ultimately leading to oxaliplatin resistance in CRC. Moreover, elevated COL8A1 promotes EMT and contributes to CRC oxaliplatin resistance, which can be mitigated by ITGB1 knockdown or AKT inhibitor. Collectively, these results highlight the crucial role of THBS2 + CAFs in promoting oxaliplatin resistance of CRC by activating EMT and provide a rationale for a novel strategy to overcome oxaliplatin resistance in CRC.
Collapse
Affiliation(s)
- Xing Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jiashu Han
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, 100020, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Long Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Chuhan Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yukang Chen
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Dan Shan
- Clinical Science Institute, University Hospital Galway, Galway, Ireland
| | - Benyu Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Jinhai Deng
- Richard Dimbleby Department of Cancer Research, Comprehensive Cancer Centre, Kings College London, London, UK.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
55
|
Yang Q, Chen K, Chen S, Wang Y, Xia Y, Chen J, Shen Y. Blue light promotes conjunctival epithelial-mesenchymal transition and collagen deposition through ITGB4. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117584. [PMID: 39732060 DOI: 10.1016/j.ecoenv.2024.117584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024]
Abstract
The increasing prevalence of LED technology heightened blue light (BL) exposure, raising concerns about its long-term effects on ocular health. This study investigated the transcriptomic response of conjunctiva to BL exposure, highlighting potential biomarkers for conjunctival injury. We exposed human conjunctival epithelial cells and C57BL/6 mice to BL to establish in vitro and in vivo models and identified the responsive genes in mice's conjunctiva to BL exposure by RNA sequencing transcriptome analysis. Western blotting, wound healing assays, transwell assay, and phalloidin staining assessed phenotypes of epithelial-mesenchymal transition (EMT). BL disrupted cell conjunction and regulated EMT-related proteins. RNA sequencing analysis revealed upregulation of ITGB4 and enrichment of cell migration and adhesion pathways. Reactive oxygen species-mediated damage caused by BL upregulated ITGB4 expression, promoting cell migration and EMT through the extracellular signal-regulated kinase /Snail pathway.
Collapse
Affiliation(s)
- Qianjie Yang
- Ningbo Eye Institute, Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, Zhejiang Province, China
| | - Kuangqi Chen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | | | - Yinhao Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yutong Xia
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jinbo Chen
- Ningbo Eye Institute, Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, Zhejiang Province, China
| | - Ye Shen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
56
|
Bhowmick R, Campit S, Katkam SK, Keshamouni VG, Chandrasekaran S. Genome-scale modeling identifies dynamic metabolic vulnerabilities during the epithelial to mesenchymal transition. Commun Biol 2024; 7:1704. [PMID: 39730911 DOI: 10.1038/s42003-024-07408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/17/2024] [Indexed: 12/29/2024] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a conserved cellular process critical for embryogenesis, wound healing, and cancer metastasis. During EMT, cells undergo large-scale metabolic reprogramming that supports multiple functional phenotypes including migration, invasion, survival, chemo-resistance and stemness. However, the extent of metabolic network rewiring during EMT is unclear. In this work, using genome-scale metabolic modeling, we perform a meta-analysis of time-course transcriptomics, time-course proteomics, and single-cell transcriptomics EMT datasets from cell culture models stimulated with TGF-β. We uncovered temporal metabolic dependencies in glycolysis and glutamine metabolism, and experimentally validated isoform-specific dependency on Enolase3 for cell survival during EMT. We derived a prioritized list of metabolic dependencies based on model predictions, literature mining, and CRISPR-Cas9 essentiality screens. Notably, enolase and triose phosphate isomerase reaction fluxes significantly correlate with survival of lung adenocarcinoma patients. Our study illustrates how integration of heterogeneous datasets using a mechanistic computational model can uncover temporal and cell-state-specific metabolic dependencies.
Collapse
Affiliation(s)
- Rupa Bhowmick
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Scott Campit
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Shiva Krishna Katkam
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Venkateshwar G Keshamouni
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
- LTC Charles S. Kettles VA Medical Center, Research Service (151), Ann Arbor, MI, USA.
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
- Center for Bioinformatics and Computational Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
57
|
Zhou L, Yang Y, Qiao Q, Mi Y, Gan Y, Zheng Y, Wang Y, Liu M, Zhou Y. AKT1-Mediated NOTCH1 phosphorylation promotes gastric cancer progression via targeted regulation of IRS-1 transcription. J Cancer Res Clin Oncol 2024; 151:15. [PMID: 39724412 DOI: 10.1007/s00432-024-06039-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/15/2024] [Indexed: 12/28/2024]
Abstract
PURPOSE This study aimed to investigate that AKT1-Mediated NOTCH1 phosphorylation promotes gastric cancer (GC) progression via targeted regulation of IRS-1 transcription. METHODS The study utilized databases such as PhosphositePlus, TRANSFAC, CHEA, GPS 5.0, and TCGA, along with experimental techniques including Western Blot, co-IP, in vitro kinase assay, construction of lentiviral overexpression and silencing vectors, immunoprecipitation, modified proteomics, immunofluorescence, ChIP-PCR, EdU assay, Transwell assay, and scratch assay to investigate the effects of AKT1-induced Notch1 phosphorylation on cell proliferation, invasion and migration in vitro, as well as growth and epithelial-mesenchymal transition (EMT) in vivo. RESULTS AKT1 was found to induce phosphorylation of Notch1 at the S2183 site in GC, subsequently altering the subcellular localization of Notch1-IC and promoting its nuclear translocation. The transcription factor RBPJ that binds to Notch1 transcriptionally regulated IRS-1, CDH5, TNL1, ASCL2, and LRP6. Experimental validation revealed that Notch1-IC can regulate the expression of IRS-1. Overexpression of Notch1-IC was shown to promote the proliferation, invasion, and metastasis of GC cells, while knockdown of IRS-1 partially inhibited the aforementioned effects induced by Notch1-IC overexpression. Further experiments in vitro and vivo confirmed that AKT1-induced Notch1 phosphorylation can regulate the expression of IRS-1 and promote the malignant behavior of GC, including proliferation, invasion, metastasis, and EMT, with knockdown of IRS-1 partially reversing these effects. CONCLUSION AKT1 induces the Notch1 phosphorylation and promotes the activation and nuclear translocation of Notch1-IC by targeting the regulation of IRS-1, thereby advancing the progression of GC.
Collapse
Affiliation(s)
- Lingshan Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- Department of Geriatrics Ward 2, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yuan Yang
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Qian Qiao
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yingying Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yuling Gan
- The 1nd Department of Bone and Soft Tissue Oncology, Gansu Provincial Cancer Hospital, Lanzhou, 730000, China
| | - Ya Zheng
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yuping Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Min Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China.
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Yongning Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China.
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
58
|
Chen Z, Gong Y, Chen F, Lee HJ, Qian J, Zhao J, Zhang W, Li Y, Zhou Y, Xu Q, Xia Y, Zhou L, Cheng JX. Orchestrated desaturation reprogramming from stearoyl-CoA desaturase to fatty acid desaturase 2 in cancer epithelial-mesenchymal transition and metastasis. Cancer Commun (Lond) 2024. [PMID: 39722173 DOI: 10.1002/cac2.12644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Adaptative desaturation in fatty acid (FA) is an emerging hallmark of cancer metabolic plasticity. Desaturases such as stearoyl-CoA desaturase (SCD) and fatty acid desaturase 2 (FADS2) have been implicated in multiple cancers, and their dominant and compensatory effects have recently been highlighted. However, how tumors initiate and sustain their self-sufficient FA desaturation to maintain phenotypic transition remains elusive. This study aimed to explore the molecular orchestration of SCD and FADS2 and their specific reprogramming mechanisms in response to cancer progression. METHODS The potential interactions between SCD and FADS2 were explored by bioinformatics analyses across multiple cancer cohorts, which guided subsequent functional and mechanistic investigations. The expression levels of desaturases were investigated with online datasets and validated in both cancer tissues and cell lines. Specific desaturation activities were characterized through various isomer-resolved lipidomics methods and sensitivity assays using desaturase inhibitors. In-situ lipid profiling was conducted using multiplex stimulated Raman scattering imaging. Functional assays were performed both in vitro and in vivo, with RNA-sequencing employed for the mechanism verification. RESULTS After integration of the RNA-protein-metabolite levels, the data revealed that a reprogramming from SCD-dependent to FADS2-dependent desaturation was linked to cancer epithelial-mesenchymal transition (EMT) and progression in both patients and cell lines. FADS2 overexpression and SCD suppression concurrently maintained EMT plasticity. A FADS2/β-catenin self-reinforcing feedback loop facilitated the degree of lipid unsaturation, membrane fluidity, metastatic potential and EMT signaling. Moreover, SCD inhibition triggered a lethal apoptosis but boosted survival plasticity by inducing EMT and enhancing FA uptake via adenosine monophosphate-activated protein kinase activation. Notably, this desaturation reprogramming increased transforming growth factor-β2, effectively sustaining aggressive phenotypes and metabolic plasticity during EMT. CONCLUSIONS These findings revealed a metabolic reprogramming from SCD-dependent to FADS2-dependent desaturation during cancer EMT and progression, which concurrently supports EMT plasticity. Targeting desaturation reprogramming represents a potential vulnerability for cancer metabolic therapy.
Collapse
Affiliation(s)
- Zhicong Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Photonics Center, Boston University, Boston, Massachusetts, USA
- Department of Urology, Peking University First Hospital, Beijing, P. R. China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing, P. R. China
| | - Fukai Chen
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Photonics Center, Boston University, Boston, Massachusetts, USA
| | - Hyeon Jeong Lee
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Photonics Center, Boston University, Boston, Massachusetts, USA
- College of Biomedical Engineering & Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Jinqin Qian
- Department of Urology, Peking University First Hospital, Beijing, P. R. China
| | - Jing Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, P. R. China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, P. R. China
| | - Yamin Li
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Yihui Zhou
- College of Biomedical Engineering & Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, P. R. China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, P. R. China
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Photonics Center, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
59
|
Peng Y, Li Y, Wang L, Lin S, Xu H. Impact of pan-cancer analysis of the exportins family on prognosis, the tumor microenvironment and its potential therapeutic efficacy. Clin Exp Med 2024; 25:18. [PMID: 39708137 DOI: 10.1007/s10238-024-01534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
This study aims to comprehensively analyze the role of the exportin (XPO) family in the development and progression of cancer. These nuclear transport proteins have been increasingly recognized for their involvement in oncogenic processes and tumor growth. We utilized updated public databases and bioinformatics tools to assess the expression levels of the XPO family and their associations with key oncological markers including patient survival, immune subtypes, tumor microenvironment, stemness scores, drug sensitivity, and DNA methylation across various cancers. Expression levels of XPO family proteins varied significantly across different cancer types, indicating cancer-specific roles. Specific XPO proteins were linked to adverse prognosis in particular cancers. Additionally, expression levels were correlated with classifications of immune subtypes and tumor purity; notably, lower expression levels were often found in tumors with elevated stromal and immune scores. A marked correlation was observed between XPO proteins and RNA stemness scores, whereas the correlation with DNA stemness scores varied. Furthermore, XPO expression levels significantly influenced cancer cell drug sensitivity and generally showed correlations with gene methylation patterns, although these correlations differed among cancer types. Our findings underscore the distinct roles of XPO family members in cancer, linking them to immune infiltration, the tumor microenvironment, and drug sensitivity. These insights not only enhance our understanding of the prognostic and therapeutic potentials of XPO proteins in cancer but also lay the groundwork for further studies into their mechanisms and applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ying Peng
- Department of Pathology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, People's Republic of China
- First Clinical College of Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
- Nanshan District Clinical Pathological Diagnosis Center, Shenzhen, 518000, Guangdong, People's Republic of China
| | - Youheng Li
- Department of Pathology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, People's Republic of China
| | - Lingmei Wang
- Department of Pathology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, People's Republic of China
| | - Shenglai Lin
- Department of Pathology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, People's Republic of China
| | - Hong Xu
- Department of Pathology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, People's Republic of China.
| |
Collapse
|
60
|
Zhou L, Zhang S, Wang L, Liu X, Yang X, Qiu L, Zhou Y, Huang Q, Meng Y, Lei X, Wen L, Han J. PCYT2 inhibits epithelial-mesenchymal transition in colorectal cancer by elevating YAP1 phosphorylation. JCI Insight 2024; 9:e178823. [PMID: 39531326 DOI: 10.1172/jci.insight.178823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Metabolic reprogramming is a common feature in tumor progression and metastasis. Like proteins, lipids can transduce signals through lipid-protein interactions. During tumor initiation and metastasis, dysregulation of the Hippo pathway plays a critical role. Specifically, the inhibition of YAP1 phosphorylation leads to the relocation of YAP1 to the nucleus to activate transcription of genes involved in metastasis. Although recent studies reveal the involvement of phosphatidylethanolamine (PE) synthesis enzyme phosphoethanolamine cytidylyltransferase 2 (PCYT2) in tumor chemoresistance, the effect of PCYT2 on tumor metastasis remains elusive. Here, we show that PCYT2 was significantly downregulated in metastatic colorectal cancer (CRC) and acted as a tumor metastasis suppressor. Mechanistically, PCYT2 increased the interaction between PEBP1 and YAP1-phosphatase PPP2R1A, thus disrupting PPP2R1A-YAP1 association. As a result, phosphorylated YAP1 levels were increased, leading to YAP1 degradation through the ubiquitin protease pathway. YAP1 reduction in the nucleus repressed the transcription of ZEB1 and SNAIL2, eventually resulting in metastasis suppression. Our work provides insight into the role of PE synthesis in regulating metastasis and presents PCYT2 as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Lian Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Su Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Lingli Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Xueqin Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Xuyang Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Ying Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Qing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Yang Meng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Xue Lei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Linda Wen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, and
| |
Collapse
|
61
|
Chai C, Miao X, Su Y, Yu C, Tang H, Li L, Wang Z, Yi J, Ye Z, Miao L, Zhang H, Hu Z, Chen L, Wu K, Li N, Wang L, Zhou W, Xu H. Establishment and characterization of a new intestinal-type ampullary carcinoma cell line, DPC-X3. BMC Cancer 2024; 24:1558. [PMID: 39707230 DOI: 10.1186/s12885-024-13340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
Ampullary carcinoma (AC) of the intestinal type represents a distinct variant within the broader category of ampullary neoplasms. The scarcity of pertinent cellular models has constrained investigations centered on this particular malignancy. This research effectively generated a cell line (CL) of intestinal-type AC (DPC-X3). This newly developed CL has been continuously cultured for 1 year and has demonstrated stable passaging exceeding 60 generations. Morphologically, DPC-X3 exhibited characteristic attributes of an epithelial tumor. The cell proliferation rate of DPC-X3 exhibited a doubling interval of 79 h. Short tandem repeat (STR) analysis validated the high consistency between DPC-X3 and the patient's primary tumor. Characteristically, DPC-X3 displayed sub diploid karyotypes, primarily featuring 44, XY inv (9), -18, -20, -22, and + mar. Under suspension culture conditions, DPC-X3 could efficiently form organoids, and DPC-X3 cells inoculated subcutaneously into NXG mice could form transplanted tumors. Drug susceptibility assays demonstrated that DPC-X3 resisted paclitaxel, oxaliplatin, 5-fluorouracil(5-FU), and gemcitabine. Immunohistochemical (IHC) evaluation revealed affirmative reactivity for CK7 and CK20 within DPC-X3 cells, while CDX2 exhibited no detectable expression. E-cadherin and Vimentin demonstrated positive immunoreactivity, whereas CEA and CA19-9 displayed faint positivity. The Ki-67 proliferation index was determined to be approximately 40%. DPC-X3 presents a valuable experimental platform for elucidating the pathogenesis of intestinal-type AC and can serve as a driver for drug development efforts.
Collapse
Affiliation(s)
- Changpeng Chai
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Xin Miao
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, 310006, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Yuanhui Su
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Cheng Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Huan Tang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Lu Li
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Zhengfeng Wang
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Jianfeng Yi
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Surgery, The First School of Clinical Medicine of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Zhenzhen Ye
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Long Miao
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Hui Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Zhao Hu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, 310006, China
| | - Luyang Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, 310006, China
| | - Keren Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, 310006, China
| | - Ning Li
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, 310006, China
| | - Linpei Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, No. 54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang, 310006, China.
| | - Wence Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, China.
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| | - Hao Xu
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China.
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, 310006, China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
62
|
Yang J, Tan F, Chen Y, Li X, Yuan C. The emerging role of long non-coding RNA SOX2-OT in cancers and non-malignant diseases. J Physiol Biochem 2024:10.1007/s13105-024-01059-2. [PMID: 39702742 DOI: 10.1007/s13105-024-01059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 11/02/2024] [Indexed: 12/21/2024]
Abstract
SOX2 overlapping transcript (SOX2-OT) is a long non-coding RNA located at chromosome 3q26.33 in humans. Convincing data confirm that SOX2-OT is evolutionarily conserved and plays a significant role in various malignant and non-malignant diseases. In most cancers, the upregulation of SOX2-OT acts as an oncogenic factor, strongly correlating with tumor risk, adverse clinicopathological features, and poor prognosis. Mechanistically, SOX2-OT is regulated by seven transcription factors and influences cellular behavior by modulating SOX2 expression, competitively binding 20 types of miRNAs, stabilizing protein expression, or promoting protein ubiquitination. It also participates in epigenetic modifications and activates multiple signaling pathways to regulate cancer cell proliferation, apoptosis, migration, invasion, autophagy, immune evasion, and resistance to chemotherapy/targeted therapies. Additionally, SOX2-OT triggers apoptosis, oxidative stress, and inflammatory responses, contributing to neurodevelopmental disorders, cardiovascular diseases, and diabetes-related conditions. Genetic polymorphisms of SOX2-OT have also been linked to breast cancer, gastric cancer, recurrent miscarriage, sepsis, and eating disorders in patients with bipolar disorder. This review provides an overview of recent research progress on SOX2-OT in human diseases, highlights its substantial potential as a prognostic and diagnostic biomarker, and explores its future clinical applications.
Collapse
Affiliation(s)
- Jingjie Yang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Fangshun Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaohui Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Xiaolan Li
- The Second People's Hospital of China Three Gorges University, Yichang, 443002, China.
- The Second People's Hospital of Yichang, Hubei, China.
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
63
|
Xia J, Chen K, Wang J, Wang J, Fan Y, Li Q, Kong L, You Z. LHX3 promotes EMT in hepatoma cell through β-catenin/TCF4 pathway. Med Oncol 2024; 42:33. [PMID: 39702693 DOI: 10.1007/s12032-024-02585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant cancer and lacks effective therapeutic targets. The role of LIM/homeobox protein Lhx3 (LHX3) has been extensively studied in various tumor tissues, where it has been identified as a promoter of tumorigenesis and malignancy. However, the specific functional role and potential mechanism of LHX3 in human HCCs are not clearly clarified. We found that LHX3 was overexpressed in HCC tissues compared to adjacent tissues. Moreover, it was observed that LHX3 promoted the epithelial-mesenchymal transition (EMT) of HCC cells, leading to increased proliferation, migration, and viability, and adhesion ability in vitro. Mechanistically, LHX3 facilitated TCF4 binding to β-catenin, forming a stable LHX3/TCF4/β-catenin complex that activated downstream target genes. Disruption of the β-catenin/TCF4 interaction by Toxoflavin prevented the EMT of HCC cells. Overall, these findings highlight the critical role of LHX3 in the EMT of HCC cells through the β-catenin/TCF4 axis, suggesting the LHX3/β-catenin/TCF4 axis as a potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Jie Xia
- Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ke Chen
- Department of Health Statistics, College of Preventive Medicine, Army Medical University, NO. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Jiaqi Wang
- Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jing Wang
- Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yi Fan
- Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qian Li
- Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China
| | - Lingjun Kong
- Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhonglan You
- Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
64
|
Wang Z, Xia B, Qi S, Zhang X, Zhang X, Li Y, Wang H, Zhang M, Zhao Z, Kerr D, Yang L, Cai S, Yang J. Bestrophin-4 relays HES4 and interacts with TWIST1 to suppress epithelial-to-mesenchymal transition in colorectal cancer cells. eLife 2024; 12:RP88879. [PMID: 39699952 DOI: 10.7554/elife.88879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Bestrophin isoform 4 (BEST4) is a newly identified subtype of the calcium-activated chloride channel family. Analysis of colonic epithelial cell diversity by single-cell RNA-sequencing has revealed the existence of a cluster of BEST4+ mature colonocytes in humans. However, if the role of BEST4 is involved in regulating tumour progression remains largely unknown. In this study, we demonstrate that BEST4 overexpression attenuates cell proliferation, colony formation, and mobility in colorectal cancer (CRC) in vitro, and impedes the tumour growth and the liver metastasis in vivo. BEST4 is co-expressed with hairy/enhancer of split 4 (HES4) in the nucleus of cells, and HES4 signals BEST4 by interacting with the upstream region of the BEST4 promoter. BEST4 is epistatic to HES4 and downregulates TWIST1, thereby inhibiting epithelial-to-mesenchymal transition (EMT) in CRC. Conversely, knockout of BEST4 using CRISPR/Cas9 in CRC cells revitalises tumour growth and induces EMT. Furthermore, the low level of the BEST4 mRNA is correlated with advanced and the worse prognosis, suggesting its potential role involving CRC progression.
Collapse
Affiliation(s)
- Zijing Wang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Bihan Xia
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Shaochong Qi
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Zhang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshuang Zhang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Li
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Huimin Wang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Zhang
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ziyi Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - David Kerr
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Li Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Shijie Cai
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jilin Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
65
|
Gao M, Wang M, Zhou S, Hou J, He W, Shu Y, Wang X. Machine learning-based prognostic model of lactylation-related genes for predicting prognosis and immune infiltration in patients with lung adenocarcinoma. Cancer Cell Int 2024; 24:400. [PMID: 39696439 DOI: 10.1186/s12935-024-03592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Histone lactylation is a novel epigenetic modification that is involved in a variety of critical biological regulations. However, the role of lactylation-related genes in lung adenocarcinoma has yet to be investigated. METHODS RNA-seq data and clinical information of LUAD were downloaded from TCGA and GEO datasets. Unsupervised consistent cluster analysis was performed to identify differentially expressed genes (DEGs) between the two clusters, and risk prediction models were constructed by Cox regression analysis and LASSO analysis. Kaplan-Meier (KM) survival analysis, ROC curves and nomograms were used to validate the accuracy of the models. We also explored the differences in risk scores in terms of immune cell infiltration, immune cell function, TMB, TIDE, and anticancer drug sensitivity. In addition, single-cell clustering and trajectory analysis were performed to further understand the significance of lactylation-related genes. We further analyzed lactate content and glucose uptake in lung adenocarcinoma cells and tissues. Changes in LUAD cell function after knockdown of lactate dehydrogenase (LDHA) by CCK-8, colony formation and transwell assays. Finally, we analyzed the expression of KRT81 in LUAD tissues and cell lines using qRT-PCR, WB, and IHC. Changes in KRT81 function in LUAD cells were detected by CCK-8, colony formation, wound healing, transwell, and flow cytometry. A nude mouse xenograft model and a KrasLSL-G12D in situ lung adenocarcinoma mouse model were used to elucidate the role of KRT81 in LUAD. RESULTS After identifying 26 lactylation-associated DEGs, we constructed 10 lactylation-associated lung adenocarcinoma prognostic models with prognostic value for LUAD patients. A high score indicates a poor prognosis. There were significant differences between the high-risk and low-risk groups in the phenotypes of immune cell infiltration rate, immune cell function, gene mutation frequency, and anticancer drug sensitivity. TMB and TIDE scores were higher in high-risk score patients than in low-risk score patients. MS4A1 was predominantly expressed in B-cell clusters and was identified to play a key role in B-cell differentiation. We further found that lactate content was abnormally elevated in lung adenocarcinoma cells and cancer tissues, and glucose uptake by lung adenocarcinoma cells was significantly increased. Down-regulation of LDHA inhibits tumor cell proliferation, migration and invasion. Finally, we verified that the model gene KRT81 is highly expressed in LUAD tissues and cell lines. Knockdown of KRT81 inhibited cell proliferation, migration, and invasion, leading to cell cycle arrest in the G0/G1 phase and increased apoptosis. KRT81 may play a tumorigenic role in LUAD through the EMT and PI3K/AKT pathways. In vivo, KRT81 knockdown inhibited tumor growth. CONCLUSION We successfully constructed a new prognostic model for lactylation-related genes. Lactate content and glucose uptake are significantly higher in lung adenocarcinoma cells and cancer tissues. In addition, KRT81 was validated at cellular and animal levels as a possible new target for the treatment of LUAD, and this study provides a new perspective for the individualized treatment of LUAD.
Collapse
Affiliation(s)
- Mingjun Gao
- Dalian Medical University, Dalian, 116000, China
- Yangzhou Clinical Medical College, Dalian Medical University, Yangzhou, 225001, China
| | - Mengmeng Wang
- Dalian Medical University, Dalian, 116000, China
- Yangzhou Clinical Medical College, Dalian Medical University, Yangzhou, 225001, China
| | - Siding Zhou
- Department of Emergency, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Jiaqi Hou
- Dalian Medical University, Dalian, 116000, China
- Yangzhou Clinical Medical College, Dalian Medical University, Yangzhou, 225001, China
| | - Wenbo He
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yusheng Shu
- Yangzhou Clinical Medical College, Dalian Medical University, Yangzhou, 225001, China.
- Clinical Medical College, Yangzhou University, Yangzhou, China.
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital, Northern Jiangsu People's Hospital Affliated to Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, Jiangsu, China.
| | - Xiaolin Wang
- Yangzhou Clinical Medical College, Dalian Medical University, Yangzhou, 225001, China.
- Clinical Medical College, Yangzhou University, Yangzhou, China.
- Department of Thoracic Surgery, Northern Jiangsu People's Hospital, Northern Jiangsu People's Hospital Affliated to Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
66
|
Cheng XX, Lin GW, Zhou YQ, Li YQ, He S, Liu Y, Zeng YN, Guo YM, Liu SQ, Peng W, Wei PP, Luo CL, Bei JX. A rare KLHDC4 variant Glu510Lys is associated with genetic susceptibility and promotes tumor metastasis in nasopharyngeal carcinoma. J Genet Genomics 2024:S1673-8527(24)00360-6. [PMID: 39706520 DOI: 10.1016/j.jgg.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
Various genetic association studies have identified numerous single nucleotide polymorphisms (SNPs) associated with nasopharyngeal carcinoma (NPC) risk. However, these studies have predominantly focused on common variants, leaving the contribution of rare variants to the "missing heritability" largely unexplored. Here, we integrate genotyping data from 3925 NPC cases and 15,048 healthy controls to identify a rare SNP, rs141121474, resulting in a Glu510Lys mutation in KLHDC4 gene linked to increased NPC risk. Subsequent analyses reveal that KLHDC4 is highly expressed in NPC and correlates with poorer prognosis. Functional characterizations demonstrate that KLHDC4 acts as an oncogene in NPC cells, enhancing their migratory and metastatic capabilities, with these effects being further augmented by the Glu510Lys mutation. Mechanistically, the Glu510Lys mutant exhibits increased interaction with Vimentin compared to the wild-type KLHDC4 (KLHDC4-WT), leading to elevated Vimentin protein stability and modulation of the epithelial-mesenchymal transition process, thereby promoting tumor metastasis. Moreover, Vimentin knockdown significantly mitigates the oncogenic effects induced by overexpression of both KLHDC4-WT and the Glu510Lys variant. Collectively, our findings highlight the critical role of the rare KLHDC4 variant rs141121474 in NPC progression and propose its potential as a diagnostic and therapeutic target for NPC patients.
Collapse
Affiliation(s)
- Xi-Xi Cheng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Guo-Wang Lin
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Ya-Qing Zhou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Yi-Qi Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Shuai He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Yang Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Yan-Ni Zeng
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Yun-Miao Guo
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, Guangdong 524045, China
| | - Shu-Qiang Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Wan Peng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Pan-Pan Wei
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Chun-Ling Luo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China.
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China; Sun Yat-sen University Institute of Advanced Studies Hong Kong, Science Park, Hong Kong SAR, China; Department of Medical Oncology, National Cancer Centre Singapore, Singapore.
| |
Collapse
|
67
|
Baniulyte G, McCann AA, Woodstock DL, Sammons MA. Crosstalk between paralogs and isoforms influences p63-dependent regulatory element activity. Nucleic Acids Res 2024; 52:13812-13831. [PMID: 39565223 DOI: 10.1093/nar/gkae1143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/04/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
The p53 family of transcription factors (p53, p63 and p73) regulate diverse organismal processes including tumor suppression, maintenance of genome integrity and the development of skin and limbs. Crosstalk between transcription factors with highly similar DNA binding profiles, like those in the p53 family, can dramatically alter gene regulation. While p53 is primarily associated with transcriptional activation, p63 mediates both activation and repression. The specific mechanisms controlling p63-dependent gene regulatory activity are not well understood. Here, we use massively parallel reporter assays (MPRA) to investigate how local DNA sequence context influences p63-dependent transcriptional activity. Most regulatory elements with a p63 response element motif (p63RE) activate transcription, although binding of the p63 paralog, p53, drives a substantial proportion of that activity. p63RE sequence content and co-enrichment with other known activating and repressing transcription factors, including lineage-specific factors, correlates with differential p63RE-mediated activities. p63 isoforms dramatically alter transcriptional behavior, primarily shifting inactive regulatory elements towards high p63-dependent activity. Our analysis provides novel insight into how local sequence and cellular context influences p63-dependent behaviors and highlights the key, yet still understudied, role of transcription factor paralogs and isoforms in controlling gene regulatory element activity.
Collapse
Affiliation(s)
- Gabriele Baniulyte
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Abby A McCann
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Dana L Woodstock
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Morgan A Sammons
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| |
Collapse
|
68
|
Kim S, Park S, Kim YJ, Hyun J, Choi J. miRNA-199b-5p suppresses of oral squamous cell carcinoma by targeting apical-basolateral polarity via Scribble/Lgl. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102363. [PMID: 39558906 PMCID: PMC11570515 DOI: 10.1016/j.omtn.2024.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024]
Abstract
In epithelial cells, Scribble forms cell-cell junctions and contributes to cell morphology and homeostasis by regulating apical-basolateral polarity in mammals and functions as a tumor suppressor in many carcinomas. The initial diagnosis of oral squamous cell carcinoma is important, and its prognosis is poor when accompanied by metastasis. However, research on the mechanisms of oral squamous cell carcinoma metastasis is insufficient. Herein, we showed that Scribble regulates the apical-basolateral polarity of oral squamous cell carcinoma by regulating lethal giant larvae 1, Scribble module and E-cadherin, the adhesion junction. The expression of lethal giant larvae 1 and E-cadherin decreased when the expression of Scribble was knocked down and their localization was completely disrupted in both the oral squamous cell carcinoma cell line and in vivo model. In particular, the Scribble was involved in oral squamous cell carcinoma metastasis via hsa-miR-199b-5p, which is a microenvironmental factor of hypoxia. The disruption of Scribble localization under hypoxic conditions, but its localization was maintained in miR-199b-5p oral squamous cell carcinoma cell lines and in vivo. These results suggest that Scribble functions as a tumor suppressor marker mediated by miR-199b-5p in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Shihyun Kim
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| | - Suyeon Park
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| | - Yong-Jae Kim
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
| | - Jeongeun Hyun
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
- Department of Biomedical Sciences & Biosystem, College of Bio-convergence, Dankook University, Cheonan 311166, Republic of Korea
| | - Jongho Choi
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| |
Collapse
|
69
|
Feng X, Chen J, Lian J, Dong T, Gao Y, Zhang X, Zhai Y, Zou B, Guo Y, Xu E, Cui Y, Zhang L. The glycogene alterations and potential effects in esophageal squamous cell carcinoma. Cell Mol Life Sci 2024; 81:481. [PMID: 39636330 PMCID: PMC11621258 DOI: 10.1007/s00018-024-05534-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/13/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Aberrant glycosylation is one of the hallmarks of cancer. The profile of glycoprotein expression caused by abnormal glycosylation has been revealed, while abnormal glycogenes that may disturb the structure of glycans have not yet been identified in esophageal squamous cell carcinoma (ESCC). METHODS Genomic alterations driven by differentially expressed glycogenes in ESCC were compared with matched normal tissues by multi-omics analysis. Immunohistochemistry, MTT, colony formation, transwell assays, subcutaneous tumor formation experiments and tail vein injection were used to study the expression and the effect on the proliferation and metastasis of the differentially expressed glycogenes POFUT1 and RPN1 in ESCC. In the alkyne fucose labeling experiment, AAL lectin affinity chromatography and immunoprecipitation were used to explore the mechanism of POFUT1 in ESCC. RESULTS The expression of the POFUT1 and RPN1 glycogenes were upregulated, as determined by genomic copy number gain and proteomics analysis. The overexpression of POFUT1 or RPN1 was associated with poor prognosis in ESCC patients and affected the proliferation and metastasis of ESCC in vivo and in vitro. The overexpression of POFUT1 increased the overall fucosylation level and activated the Notch signaling pathway, which partially mediated POFUT1 induced pro-migration in ESCC. The regulation of malignant progression of ESCC by RPN1 may be related to the TNF signaling pathway, p53 signaling pathway, etc. CONCLUSIONS: Our study fills a gap in the study of abnormal glycogenes and highlights the potential role of the POFUT1/Notch axis in ESCC. Moreover, our study identifies POFUT1 and RPN1 as promising anticancer targets in ESCC.
Collapse
Affiliation(s)
- Xuefei Feng
- Department of Pathology, Basic Medical Sciences Center, Key Laboratory of Cellular Physiology of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jinyan Chen
- Department of Pathology, Basic Medical Sciences Center, Key Laboratory of Cellular Physiology of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jianhong Lian
- Department of Thoracic Surgery, Shanxi Cancer Hospital, Taiyuan, 030001, Shanxi, China
| | - Tianyue Dong
- Department of Pathology, Basic Medical Sciences Center, Key Laboratory of Cellular Physiology of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yingzhen Gao
- Department of Pathology, Basic Medical Sciences Center, Key Laboratory of Cellular Physiology of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaojuan Zhang
- Department of Pathology, People's Hospital of Puyang, Henan, 457005, China
| | - Yuanfang Zhai
- Department of Pathology, Basic Medical Sciences Center, Key Laboratory of Cellular Physiology of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Binbin Zou
- Department of Pathology, Basic Medical Sciences Center, Key Laboratory of Cellular Physiology of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanlin Guo
- Department of Pathology, Basic Medical Sciences Center, Key Laboratory of Cellular Physiology of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Enwei Xu
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, 030001, Shanxi, China
| | - Yongping Cui
- Department of Pathology, Basic Medical Sciences Center, Key Laboratory of Cellular Physiology of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Ling Zhang
- Department of Pathology, Basic Medical Sciences Center, Key Laboratory of Cellular Physiology of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
70
|
Cai G, Rodgers NC, Liu AP. Unjamming Transition as a Paradigm for Biomechanical Control of Cancer Metastasis. Cytoskeleton (Hoboken) 2024. [PMID: 39633605 DOI: 10.1002/cm.21963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/27/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Tumor metastasis is a complex phenomenon that poses significant challenges to current cancer therapeutics. While the biochemical signaling involved in promoting motile phenotypes is well understood, the role of biomechanical interactions has recently begun to be incorporated into models of tumor cell migration. Specifically, we propose the unjamming transition, adapted from physical paradigms describing the behavior of granular materials, to better discern the transition toward an invasive phenotype. In this review, we introduce the jamming transition broadly and narrow our discussion to the different modes of 3D tumor cell migration that arise. Then we discuss the mechanical interactions between tumor cells and their neighbors, along with the interactions between tumor cells and the surrounding extracellular matrix. We center our discussion on the interactions that induce a motile state or unjamming transition in these contexts. By considering the interplay between biochemical and biomechanical signaling in tumor cell migration, we can advance our understanding of biomechanical control in cancer metastasis.
Collapse
Affiliation(s)
- Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole C Rodgers
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Allen P Liu
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
71
|
Izutsu R, Osaki M, Seong H, Ogata S, Sato R, Hamada JI, Okada F. AMIGO2 enhances the invasive potential of colorectal cancer by inducing EMT. Cancer Gene Ther 2024; 31:1786-1795. [PMID: 39379686 DOI: 10.1038/s41417-024-00842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
In our previous studies, we identified amphoterin-inducible gene and open reading frame 2 (AMIGO2) as a driver gene for liver metastasis and found that AMIGO2 expression in cancer cells worsens the prognosis of patients with colorectal cancer (CRC). Epithelial-mesenchymal transition (EMT) is a trigger for CRC to acquire a malignant phenotype, such as invasive potential, leading to metastasis. However, the role of AMIGO2 expression in the invasive potential of CRC cells remains unclear. Thus, this study aimed to examine AMIGO2 expression and elucidate the mechanisms by which it induces EMT and promotes CRC invasion. Activation of the TGFβ/Smad signaling pathway was found involved in AMIGO2-induced EMT, and treatment with the TGFβ receptor inhibitor LY2109761 suppressed AMIGO2-induced EMT. Studies using CRC samples showed that AMIGO2 expression was highly upregulated in the invasive front, where AMIGO2 expression was localized to the nucleus and associated with EMT marker expression. These results suggest that the nuclear translocation of AMIGO2 induces EMT to promote CRC invasion by activating the TGFβ/Smad signaling pathway. Thus, AMIGO2 is an attractive therapeutic target for inhibiting EMT and metastatic CRC progression.
Collapse
Affiliation(s)
- Runa Izutsu
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Mitsuhiko Osaki
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan.
- Chromosomal Engineering Research Center, Tottori University, Yonago, Tottori, Japan.
| | - HeeKyung Seong
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Sanami Ogata
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Reo Sato
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Jun-Ichi Hamada
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, 061-0293, Japan
- School of Nursing and Social Services, Health Sciences University of Hokkaido, Ishikari-Tobetsu, 061-0293, Japan
| | - Futoshi Okada
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
- Chromosomal Engineering Research Center, Tottori University, Yonago, Tottori, Japan
| |
Collapse
|
72
|
Hao Y, Long Z, Gu X. Farrerol suppresses epithelial-mesenchymal transition in hepatocellular carcinoma via suppression of TGF-β1/Smad2/3 signaling. Pathol Res Pract 2024; 264:155719. [PMID: 39541767 DOI: 10.1016/j.prp.2024.155719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is an essential process for the metastasis of multiple malignancies, including hepatocellular carcinoma (HCC). Farrerol is a plant-derived flavonoid and has significant pharmacological effects. However, the anticancer activities of farrerol have not been fully elucidated. Here, we investigated the effects of farrerol on HCC progression. METHODS The potential of farrerol to prevent HCC cell migration and invasiveness was evaluated by wound healing and transwll matrix assays. Immunoblotting, immunofluorescence, and qPCR were used to detect the levels of EMT-related proteins. Transforming growth factor beta (TGF-β) (10 ng/ml) was used to stimulate HCC cells, followed by measurement of cell migration, invasiveness, and the EMT. TGF-β1/Smads signaling was examined by immunoblotting. A xenograft mouse model was used to assess the anticancer efficacy of farrerol in vivo. The expression levels of EMT- and angiogenesis-related proteins in xenograft tumors were evaluated by immunoblotting or immunohistochemistry. RESULTS We found that farrerol blocked HCC cell migration and invasiveness. Farrerol upregulated E-cadherin levels and reduced N-cadherin and vimentin levels. Farrerol also downreuglated the expression levels of EMT-related transcription factors including slug, snail, twist, and zeb1. Furthermore, farrerol suppressed TGF-β-stimulated migration, invasiveness, and the EMT in HCC cells. The phosphorylation of Smad 2/3 induced by TGF-β was inhibited by farrerol. Importantly, farrerol suppressed HCC growth and the EMT in vivo. Farrerol also inhibited tumor angiogenesis by inhibiting hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) in vivo. CONCLUSION Overall, farrerol suppresss HCC by inhibiting migration, invasiveness, the EMT, and angiogenesis, implying that farrerol could be a promising antimetastasis agent for HCC.
Collapse
Affiliation(s)
- Yaming Hao
- Department of Traditional Chinese Medicine, Wuhan Fifth Hospital, Wuhan 430050, China.
| | - Zhixiong Long
- Department of Oncology, Wuhan Fifth Hospital, Wuhan 430050, China
| | - Xiufeng Gu
- Clinical College of TCM, Hubei University of Traditional Chinese Medicine, Wuhan 430050, China
| |
Collapse
|
73
|
Lanzetti L. Oncometabolites at the crossroads of genetic, epigenetic and ecological alterations in cancer. Cell Death Differ 2024; 31:1582-1594. [PMID: 39438765 PMCID: PMC11618380 DOI: 10.1038/s41418-024-01402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024] Open
Abstract
By the time a tumor reaches clinical detectability, it contains around 108-109 cells. However, during tumor formation, significant cell loss occurs due to cell death. In some estimates, it could take up to a thousand cell generations, over a ~ 20-year life-span of a tumor, to reach clinical detectability, which would correspond to a "theoretical" generation of ~1030 cells. These rough calculations indicate that cancers are under negative selection. The fact that they thrive implies that they "evolve", and that their evolutionary trajectories are shaped by the pressure of the environment. Evolvability of a cancer is a function of its heterogeneity, which could be at the genetic, epigenetic, and ecological/microenvironmental levels [1]. These principles were summarized in a proposed classification in which Evo (evolutionary) and Eco (ecological) indexes are used to label cancers [1]. The Evo index addresses cancer cell-autonomous heterogeneity (genetic/epigenetic). The Eco index describes the ecological landscape (non-cell-autonomous) in terms of hazards to cancer survival and resources available. The reciprocal influence of Evo and Eco components is critical, as it can trigger self-sustaining loops that shape cancer evolvability [2]. Among the various hallmarks of cancer [3], metabolic alterations appear unique in that they intersect with both Evo and Eco components. This is partly because altered metabolism leads to the accumulation of oncometabolites. These oncometabolites have traditionally been viewed as mediators of non-cell-autonomous alterations in the cancer microenvironment. However, they are now increasingly recognized as inducers of genetic and epigenetic modifications. Thus, oncometabolites are uniquely positioned at the crossroads of genetic, epigenetic and ecological alterations in cancer. In this review, the mechanisms of action of oncometabolites will be summarized, together with their roles in the Evo and Eco phenotypic components of cancer evolvability. An evolutionary perspective of the impact of oncometabolites on the natural history of cancer will be presented.
Collapse
Affiliation(s)
- Letizia Lanzetti
- Department of Oncology, University of Turin Medical School, Turin, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Str. Provinciale 142 km 3.95, 10060, Candiolo, Turin, Italy.
| |
Collapse
|
74
|
Fan B, Zhang Y, Zhou L, Xie Z, Liu J, Zhang C, Dou C. LYRM2 Promotes the Growth and Metastasis of Hepatocellular Carcinoma via Enhancing HIF-1α-Dependent Glucose Metabolic Reprogramming. J Cell Mol Med 2024; 28:e70241. [PMID: 39661026 PMCID: PMC11633053 DOI: 10.1111/jcmm.70241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a foetal malignancy with dismal overall survival. The molecular mechanism underlying the progression of HCC remain largely unknown. LYR motif containing 2 (LYRM2) has been identified as an oncogene in colorectal cancer; however, its expression, functions and molecular mechanism in the context of HCC has not been investigated. Data derived from The Cancer Gemome Atlas, along with findings from our patients' cohort, indicate that LYRM2 expression is elevated in HCC tissues and correlates with adverse clinicopathological features and prognosis in HCC patients. Subsequent research into the biological functions of LYRM2 has revealed that it promotes the proliferation, migration, invasion and epithelial-mesenchymal transition of HCC cells, both in vitro and in vivo. Mechanistic insights have shown that LYRM2 interacts with HIF-1α, enhancing the protein stability of HIF-1α, which in turn increases cellular glycolysis and inhibits mitochondrial respiration. Moreover, the glucose metabolic reprogramming mediated by LYRM2 is implicated in its role in promoting HCC growth and metastasis. Collectively, this study identifies that LYRM2 as a novel oncogenic protein in HCC and elucidates its contribution to HCC progression through enhancing HIF-1α-dependent glucose metabolic reprogramming.
Collapse
Affiliation(s)
- Bingfu Fan
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
- Graduate School of Bengbu Medical CollegeBengbuChina
| | - Yueqin Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Lu Zhou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Zhongchun Xie
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
- Graduate School of Bengbu Medical CollegeBengbuChina
| | - Jie Liu
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Chengwu Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Changwei Dou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| |
Collapse
|
75
|
Xiao M, Xue J, Jin E. SPOCK: Master regulator of malignant tumors (Review). Mol Med Rep 2024; 30:231. [PMID: 39392048 PMCID: PMC11487499 DOI: 10.3892/mmr.2024.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
SPARC/osteonectin, CWCV and Kazal‑like domain proteoglycan (SPOCK) is a family of highly conserved multidomain proteins. In total, three such family members, SPOCK1, SPOCK2 and SPOCK3, constitute the majority of extracellular matrix glycoproteins. The SPOCK gene family has been demonstrated to serve key roles in tumor regulation by affecting MMPs, which accelerates the progression of cancer epithelial‑mesenchymal transition. In addition, they can regulate the cell cycle via overexpression, inhibit tumor cell proliferation by inactivating PI3K/AKT signaling and have been associated with numerous microRNAs that influence the expression of downstream genes. Therefore, the SPOCK gene family are potential cancer‑regulating genes. The present review summarizes the molecular structure, tissue distribution and biological function of the SPOCK family of proteins, in addition to its association with cancer. Furthermore, the present review documents the progress made in investigations into the role of SPOCK, whilst also discussing prospects for the future of SPOCK‑targeted therapy, to provide novel ideas for clinical application and treatment.
Collapse
Affiliation(s)
- Mingyuan Xiao
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110134, P.R. China
| | - Jiancheng Xue
- Department of Otolaryngology, Head and Neck Surgery, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
- Shenzhen Clinical Research Center for Otolaryngology Diseases, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Enli Jin
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110134, P.R. China
| |
Collapse
|
76
|
Ren J, Chen X, Li J, Zan Y, Wang S, Tan Y, Ding Y. TET1 inhibits the migration and invasion of cervical cancer cells by regulating autophagy. Epigenetics 2024; 19:2323751. [PMID: 38431880 PMCID: PMC10913696 DOI: 10.1080/15592294.2024.2323751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Methylation modifications play pertinent roles in regulating gene expression and various biological processes. The silencing of the demethylase enzyme TET1 can affect the expressions of key oncogenes or tumour suppressor genes, thus contributing to tumour formation. Nonetheless, how TET1 affects the progression of cervical cancer is yet to be elucidated. In this study, we found that the expression of TET1 was significantly downregulated in cervical cancer tissues. Functionally, TET1 knockdown in cervical cancer cells can promote cell proliferation, migration, invasion, cervical xenograft tumour formation and EMT. On the contrary, its overexpression can reverse the aforementioned processes. Moreover, the autophagy level of cervical cancer cells can be enhanced after TET1 knockdown. Mechanistically, methylated DNA immunoprecipitation (MeDIP)-sequencing and MeDIP quantitative real-time PCR revealed that TET1 mediates the methylation of autophagy promoter regions. These findings suggest that TET1 affects the autophagy of cervical cancer cells by altering the methylation levels of NKRF or HIST1H2AK, but the specific mechanism needs to be investigated further.
Collapse
Affiliation(s)
- Ji Ren
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Hubei University of Medicine, Shiyan, Hubei, China
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiuying Chen
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Hubei University of Medicine, Shiyan, Hubei, China
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Tongren city people’s hospital, Tongren, Guizhou, China
| | - Jing Li
- Gynecology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxin Zan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shan Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yujie Tan
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Yan Ding
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
77
|
Ji Z, Li X, Gao W, Xia Q, Li J. ALOX5 induces EMT and promotes cell metastasis via the LTB4/BLT2/PI3K/AKT pathway in ovarian cancer. Cell Signal 2024; 124:111404. [PMID: 39255924 DOI: 10.1016/j.cellsig.2024.111404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/24/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Ovarian cancer represents the most lethal gynecological malignancy with high invasiveness. Epithelial-to-mesenchymal transition (EMT) plays a critical role in cancer metastasis. However, the role of ALOX5 in EMT and cancer metastasis in ovarian cancer (OC) remain unclear. In this study, ALOX5 was significantly upregulated in tumorous and metastatic tissue compared with normal tissue. Furthermore, we found that overexpression of ALOX5 promoted cell migration and invasion, while silencing of ALOX5 suppressed migration and invasion in OC cell lines. Mechanistically, we found that enhanced expression of ALOX5 promoted EMT and cancer metastasis through activation of the PI3K/AKT pathway, whereas SNAIl inhibited the transcription of CDH1 in OC cells. Taken together, our results highlight a role for the ALOX5/PI3K/AKT/ SNAI1 axis in OC, which provides novel strategies for the prevention of metastasis in OC.
Collapse
Affiliation(s)
- Zhaodong Ji
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Xiaoqi Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Centre, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wen Gao
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Qiuyi Xia
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiwei Li
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha 41000, China.
| |
Collapse
|
78
|
Zou W, Yin Q, Guo W, Dong Z, Guo Y. BBOX1-AS1 promotes gastric cardia adenocarcinoma progression via interaction with CtBP2 to facilitate the epithelial-mesenchymal transition process. Cancer Sci 2024; 115:3875-3889. [PMID: 39318101 PMCID: PMC11611761 DOI: 10.1111/cas.16350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024] Open
Abstract
It is recognized that lncRNA BBOX1-AS1 exerts a crucial oncogenic property in several cancer types. However, the functions and underlying mechanisms of BBOX1-AS1 in the epithelial-mesenchymal transition (EMT) process of gastric cardia adenocarcinoma (GCA) have remained unclarified. The findings of this study demonstrated that GCA tissues had elevated BBOX1-AS1 expression levels, which was associated with a worse prognosis in GCA patients. BBOX1-AS1 dramatically enhanced cell proliferation, invasion, and TGF-β1-induced the EMT process in vitro. Further mechanism analysis revealed that BBOX1-AS1 could combine with CtBP2 and strengthen the interaction of CtBP2 and ZEB1. BBOX1-AS1 might regulate the E-cadherin expression through CtBP2/ZEB1 transcriptional complex-mediated transcriptional repression, further affecting the activation of the Wnt/β-catenin pathway and the EMT process. Overall, our findings demonstrate that BBOX1-AS1 might act as an lncRNA associated with EMT for facilitating GCA advancement via interaction with CtBP2 to facilitate the activation of Wnt/β-catenin pathway and the EMT process, which indicated that it might function as an exploitable treatment target for GCA patients.
Collapse
Affiliation(s)
- Wenxu Zou
- Hebei Cancer InstituteThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Qing Yin
- Hebei Cancer InstituteThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Wei Guo
- Hebei Cancer InstituteThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Zhiming Dong
- Hebei Cancer InstituteThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Yanli Guo
- Hebei Cancer InstituteThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| |
Collapse
|
79
|
Liu D, Zhang Y, Guo L, Fang R, Guo J, Li P, Qian T, Li W, Zhao L, Luo X, Zhang S, Shao J, Sun S. Single-cell atlas of healthy vocal folds and cellular function in the endothelial-to-mesenchymal transition. Cell Prolif 2024; 57:e13723. [PMID: 39245637 PMCID: PMC11628749 DOI: 10.1111/cpr.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 09/10/2024] Open
Abstract
The vocal fold is an architecturally complex organ comprising a heterogeneous mixture of various layers of individual epithelial and mesenchymal cell lineages. Here we performed single-cell RNA sequencing profiling of 5836 cells from the vocal folds of adult Sprague-Dawley rats. Combined with immunostaining, we generated a spatial and transcriptional map of the vocal fold cells and characterized the subpopulations of epithelial cells, mesenchymal cells, endothelial cells, and immune cells. We also identified a novel epithelial-to-mesenchymal transition-associated epithelial cell subset that was mainly found in the basal epithelial layers. We further confirmed that this subset acts as intermediate cells with similar genetic features to epithelial-to-mesenchymal transition in head and neck squamous cell carcinoma. Finally, we present the complex intracellular communication network involved homeostasis using CellChat analysis. These studies define the cellular and molecular framework of the biology and pathology of the VF mucosa and reveal the functional importance of developmental pathways in pathological states in cancer.
Collapse
Affiliation(s)
- Danling Liu
- Department of Otorhinolaryngology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular InstituteSouthern Medical UniversityGuangzhouChina
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science CenterShenzhen UniversityShenzhenChina
| | - Yunzhong Zhang
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Luo Guo
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Rui Fang
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Jin Guo
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Peifang Li
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Tingting Qian
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Wen Li
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Liping Zhao
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Xiaoning Luo
- Department of Otorhinolaryngology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular InstituteSouthern Medical UniversityGuangzhouChina
| | - Siyi Zhang
- Department of Otorhinolaryngology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular InstituteSouthern Medical UniversityGuangzhouChina
| | - Jun Shao
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Shan Sun
- ENT Institute and Otorhinolaryngology, Innovation Center, Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| |
Collapse
|
80
|
Fan CW, Luo L, Li MS, Gu YQ, Fang YL, Qin F, Wang HS. Sesquilignans PD from Zanthoxylum nitidum var. tomentosum exerts antitumor effects via the ROS/MAPK pathway in liver cancer cells. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1530-1542. [PMID: 38958633 DOI: 10.1080/10286020.2024.2371032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Sesquilignans PD is a natural phenylpropanoid compound that was isolated from Zanthoxylum nitidum var. tomentosum. In this study, we assessed the antitumor effect of PD on SK-Hep-1 and HepG2 cells and the underlying molecular mechanisms. The results revealed that PD markedly inhibited the proliferation and migration of both liver cancer cells. Moreover, PD induced apoptosis, autophagy, and reactive oxygen species (ROS) production in liver cancer cells. Notably, PD increased the protein levels of p-p38 MAPK and p-ERK1/2 in liver cancer cells. This is the first report on the anticancer effect of PD, which is mediated via increased ROS production and MAPK signaling activation.
Collapse
Affiliation(s)
- Cai-Wen Fan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
- Scientific Experiment Center, Guilin Medical University, Guilin 541199, China
| | - Li Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Mei-Shan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yun-Qiong Gu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Yi-Lin Fang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Feng Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
81
|
Thapa R, Gupta S, Gupta G, Bhat AA, Smriti, Singla M, Ali H, Singh SK, Dua K, Kashyap MK. Epithelial-mesenchymal transition to mitigate age-related progression in lung cancer. Ageing Res Rev 2024; 102:102576. [PMID: 39515620 DOI: 10.1016/j.arr.2024.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Epithelial-Mesenchymal Transition (EMT) is a fundamental biological process involved in embryonic development, wound healing, and cancer progression. In lung cancer, EMT is a key regulator of invasion and metastasis, significantly contributing to the fatal progression of the disease. Age-related factors such as cellular senescence, chronic inflammation, and epigenetic alterations exacerbate EMT, accelerating lung cancer development in the elderly. This review describes the complex mechanism among EMT and age-related pathways, highlighting key regulators such as TGF-β, WNT/β-catenin, NOTCH, and Hedgehog signalling. We also discuss the mechanisms by which oxidative stress, mediated through pathways involving NRF2 and ROS, telomere attrition, regulated by telomerase activity and shelterin complex, and immune system dysregulation, driven by alterations in cytokine profiles and immune cell senescence, upregulate or downregulate EMT induction. Additionally, we highlighted pathways of transcription such as SNAIL, TWIST, ZEB, SIRT1, TP53, NF-κB, and miRNAs regulating these processes. Understanding these mechanisms, we highlight potential therapeutic interventions targeting these critical molecules and pathways.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Indore, Madhya Pradesh, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Smriti
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Manoj Kumar Kashyap
- Molecular Oncology Laboratory, Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India.
| |
Collapse
|
82
|
Qin Y, Zhang D, Shangguan C, Xu C, Li S, Li Y, Liu Y, Jiang S. Altingia chinensis petroleum ether extract suppresses NSCLC via induction of apoptosis, attenuation of EMT, and downregulation of PI3K/Akt pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156218. [PMID: 39566405 DOI: 10.1016/j.phymed.2024.156218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/12/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) is the primary type of lung cancer with the leading cause of fatalities from cancer, and the effective treatment is minimal. Altingia chinensis is a medicinal plant utilized as a traditional folk remedy to alleviate rheumatism, punch injury and paralysis. APE is the petroleum ether extract from A. Chinensis, whose antitumor effects are rarely studied. PURPOSE To explore the antitumor effects of APE on NSCLC and its molecular mechanism. METHODS LLC and H1299 cells were used to explore the anticancer effect of APE on NSCLC in vitro. MTT assay and colony formation were employed to evaluate cell viability. Flow cytometry was used to evaluate apoptosis. Wound healing and transwell were employed to evaluate cell migration and invasive capacity. Meanwhile, an LLC tumor-bearing C57BL/6J mice model was established for assessing the anticancer effect of APE on NSCLC in vivo. H&E staining was used to assess histopathology. TUNEL assay was performed to assess apoptosis in tumor tissue. Network pharmacology, CESTA, and kinase assay were employed to analyze potential molecular mechanisms. Western blots were performed to detect proteins involved in apoptosis, EMT, and the PI3K/Akt pathway. RESULTS This is the first investigation to identify APE's antitumor potential in both NSCLC cells and tumor-bearing mice models. Significantly, APE dose-dependently decreased cell viability and caused morphological changes both in LLC and H1299 cells. Furthermore, APE (31.25, 62.5, and 125 μg/ml) induced apoptosis in NSCLC cells, as demonstrated by increased Annexin V-FITC/PI-stained cells, the cleaved-caspase 3 levels, and the Bax/Bcl-2 ratio. Additionally, APE suppressed cell migration and invasion by the increase of E-cadherin expression and the downregulation of vimentin, implying that APE inhibited cell metastasis via attenuation of EMT. Importantly, intragastric administration of 100 mg/kg APE significantly inhibited tumor growth without apparent side effects. TUNEL assay confirmed the apoptosis in tumor tissue. Western blots validated the alteration of EMT and apoptotic markers in tumor tissue, which matched the in vitro findings. Moreover, APE directly bound to PI3Kα and inhibited its activity, leading to inhibition of the PI3K-Akt pathway. CONCLUSION Overall, APE exhibits anti-tumor effects on NSCLC via induction of apoptosis, attenuation of EMT, and its mechanism involves the suppression of the PI3K/Akt pathway. Our study offers new insights for the identification of novel drug development for NSCLC.
Collapse
Affiliation(s)
- Yiran Qin
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; Jiangxi Provincial Key Laboratory of Tissue Engineering, Ganzhou, 341000, China; School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, China
| | - De Zhang
- Department of Pathology, Ganzhou Cancer Hospital, Gannan Medical University, Ganzhou 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China.
| | - Chenxin Shangguan
- First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China.
| | - Chunming Xu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; Jiangxi Provincial Key Laboratory of Tissue Engineering, Ganzhou, 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Shuqing Li
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yumei Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; Jiangxi Provincial Key Laboratory of Tissue Engineering, Ganzhou, 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yang Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; School of Pharmacy, Nanchang Medical College, Nanchang 330052, China.
| | - Shuping Jiang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; Jiangxi Provincial Key Laboratory of Tissue Engineering, Ganzhou, 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
83
|
Cui A, Liu H, Liu X, Zhang M, Xiao B, Wang B, Yang J. Steroidal saponins: Natural compounds with the potential to reverse tumor drug resistance (Review). Oncol Lett 2024; 28:585. [PMID: 39421314 PMCID: PMC11484340 DOI: 10.3892/ol.2024.14719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
Steroidal saponins are a type of natural product that have been widely used in Chinese herbal medicine, with a variety of pharmacological activities, such as antitumor, anti-inflammatory and anti-bacterial effects. Cancer has become a growing global health problem, and drug therapy is currently the most important clinical antitumor treatment. However, drug resistance is a major obstacle to the effectiveness of chemotherapy, resulting in >90% of deaths of patients with cancer receiving conventional chemotherapy. It has been found that steroidal saponins may exert an effect on the reversal of drug resistance in tumor cells by regulating apoptosis, autophagy, epithelial-mesenchymal transition and drug efflux through multiple related signaling pathways. The present study reviews the role and mechanism of steroidal saponins in the treatment of tumor drug resistance, aiming to provide a scientific basis and research ideas for the future development and clinical application of natural steroidal saponins.
Collapse
Affiliation(s)
- Aiping Cui
- The Clinical Medicine Research Center of The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Hai Liu
- The Clinical Medicine Research Center of The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Xiaoxuan Liu
- The Clinical Medicine Research Center of The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Minhong Zhang
- The Clinical Medicine Research Center of The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Bang Xiao
- The Clinical Medicine Research Center of The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Biao Wang
- The Clinical Medicine Research Center of The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Jianqiong Yang
- The Clinical Medicine Research Center of The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- Ganzhou Key Laboratory of Osteoporosis Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
84
|
Wang J, Xu B, Liang L, Chen Q. Long Non-coding RNA 02298 Promotes the Malignancy of HCC by Targeting the miR-28-5p/CCDC6 Pathway. Biochem Genet 2024; 62:4967-4986. [PMID: 38381357 DOI: 10.1007/s10528-023-10662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/30/2023] [Indexed: 02/22/2024]
Abstract
Hepatocellular carcinoma (HCC) is a malignancy characterized by a high fatality rate. Increasing evidence indicating that long non-coding RNAs (lncRNAs) play a regulatory role in hepatocellular carcinoma (HCC). Among them, the correlation between LINC02298 and HCC remains unknown. The expression and subcellular localization of LINC02298 in HCC tissues and cell lines were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Furthermore, the correlation between the expression of LINC02298 and clinicopathological features of HCC patients was analyzed. The regulatory effects of LINC02298 in HCC were investigated using colony formation, cell count Kit-8(CCK8), Transwell, EDU, cell cycle and apoptosis analysis. In addition, the expression of EMT-related proteins were detected by western blotting. Dual-luciferase reporter, RT-qPCR and rescue assays were employed to validate the involvement of the LINC02298/miR-28-5p/CCDC6 axis in the progression of HCC. The up-regulation of LINC02298 was observed in hepatocellular carcinoma (HCC) tissues and cells, and it was found to be correlated with a negative prognosis in patients with HCC. Overexpression of LINC02298 enhanced the proliferation, migration, invasion, and induction of Epithelial-Mesenchymal Transition (EMT) while suppressing apoptosis in HCC cells. LINC02298 bind to miR-28-5p to regulate the expression of CCDC6. Inhibition of miR-28-5p saved the inhibitory effect of shLINC02298, and knockdown of CCDC6 also saved the inhibitory effect of miR-28-5p on HCC in vitro and in vivo. LINC02298 regulates the expression of CCDC6 by sponging of miR-28-5p, thereby facilitating the the malignancy and EMT of HCC.
Collapse
Affiliation(s)
- Jinyi Wang
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210019, Jiangsu, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bin Xu
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210019, Jiangsu, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Litao Liang
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210019, Jiangsu, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qi Chen
- Department of General Surgery, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, China.
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
85
|
Zheng L, Rajamanickam V, Wang M, Zhang H, Fang S, Linnebacher M, Abd El-Aty AM, Zhang X, Zhang Y, Wang J, Chen M, Zhao Z, Ji J. Fangchinoline inhibits metastasis and reduces inflammation-induced epithelial-mesenchymal transition by targeting the FOXM1-ADAM17 axis in hepatocellular carcinoma. Cell Signal 2024; 124:111467. [PMID: 39393566 DOI: 10.1016/j.cellsig.2024.111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Efforts have been focused on developing new anti-HCC agents and understanding their pharmacology. However, few agents have been able to effectively combat tumor growth and invasiveness due to the rapid progression of HCC. In this study, we discovered that fangchinoline (FAN), a bisbenzylisoquinoline alkaloid derived from Stephania tetrandra S. Moore, effectively inhibited the migration, invasion, and epithelial-mesenchymal transition (EMT) of HCC cells. FAN treatment also led to the suppression of IL6 and IL1β release, as well as the expression of inflammation-related proteins such as COX-2 and iNOS, and the activation of the NF-κB pathway, thereby reducing inflammation-related EMT. Additionally, FAN directly bound to forkhead box protein M1 (FOXM1), resulting in decreased levels of FOXM1 proteins and disruption of the FOXM1-ADAM17 axis. Our in vivo findings confirmed that FAN effectively hindered the growth and lung metastasis of HCCLM3-xenograft tumors. Importantly, the upregulation of FOXM1 in HCC tissue suggested that targeting FOXM1 inhibition with FAN or its inhibitors could be a promising therapeutic approach for HCC. Overall, this study elucidated the anti-tumor effects and potential pharmacological mechanisms of FAN, and proposed that targeting FOXM1 inhibition may be an effective therapeutic strategy for HCC with potential clinical applications.
Collapse
Affiliation(s)
- Liyun Zheng
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Shenzhen University General Hospital-Lishui Hospital Joint Research Center, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Vinothkumar Rajamanickam
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Mengyuan Wang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Huajun Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Shiji Fang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Shenzhen University General Hospital-Lishui Hospital Joint Research Center, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock 18059, Germany
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Xinbin Zhang
- Shenzhen University General Hospital-Lishui Hospital Joint Research Center, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Yeyu Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Jianbo Wang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Shenzhen University General Hospital-Lishui Hospital Joint Research Center, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China.
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Shenzhen University General Hospital-Lishui Hospital Joint Research Center, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China.
| | - Jiansong Ji
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Shenzhen University General Hospital-Lishui Hospital Joint Research Center, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China.
| |
Collapse
|
86
|
Rajabi F, Smith R, Liu-Bordes WY, Schertzer M, Huet S, Londoño-Vallejo A. DNA damage-induced EMT controlled by the PARP-dependent chromatin remodeler ALC1 promotes DNA repair efficiency through RAD51 in tumor cells. Mol Biol Cell 2024; 35:ar151. [PMID: 39504452 PMCID: PMC11656468 DOI: 10.1091/mbc.e24-08-0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) allows cancer cells to metastasize while acquiring resistance to apoptosis and chemotherapeutic agents with significant implications for patients' prognosis and survival. Despite its clinical relevance, the mechanisms initiating EMT during cancer progression remain poorly understood. We demonstrate that DNA damage triggers EMT and that activation of poly (ADP-ribose) polymerase (PARP) and the PARP-dependent chromatin remodeler ALC1 (CHD1L) was required for this response. Our results suggest that this activation directly facilitates access to the chromatin of EMT transcriptional factors (TFs) which then initiate cell reprogramming. We also show that EMT-TFs bind to the RAD51 promoter to stimulate its expression and to promote DNA repair by homologous recombination. Importantly, a clinically relevant PARP inhibitor reversed or prevented EMT in response to DNA damage while resensitizing tumor cells to other genotoxic agents. Overall, our observations shed light on the intricate relationship between EMT, DNA damage response, and PARP inhibitors, providing potential insights for in cancer therapeutics.
Collapse
Affiliation(s)
- Fatemeh Rajabi
- Institut Curie, CNRS-UMR3244, Sorbonne University, 75005 Paris, France
- Present addresses: Cancer Genomics lab, Inserm-U981, Gustave Roussy Cancer Center Grand Paris, Villejuif, 94805, France
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT – UMS3480, F- 35000 Rennes, France
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | | | - Michael Schertzer
- Institut Curie, CNRS-UMR3244, Sorbonne University, 75005 Paris, France
| | - Sebastien Huet
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT – UMS3480, F- 35000 Rennes, France
| | - Arturo Londoño-Vallejo
- Institut Curie, CNRS-UMR3244, Sorbonne University, 75005 Paris, France
- Institut Curie, Inserm U1021-CNRS UMR 3347, Paris Saclay University, Centre Universitaire, 91405 Orsay Cedex, France
| |
Collapse
|
87
|
Tian Y, Qiu S, Yang S, Jiang Y, Hu H, Yang C, Cao J, Chen S, Hao M, Li H, Zhu J. The oncogenic role and prognostic value of PXDN in human stomach adenocarcinoma. BMC Cancer 2024; 24:1463. [PMID: 39609679 PMCID: PMC11603849 DOI: 10.1186/s12885-024-13097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/23/2024] [Indexed: 11/30/2024] Open
Abstract
Stomach adenocarcinoma (STAD) is known for its high prevalence and poor prognosis, which underscores the need for novel therapeutic targets. Peroxidasin (PXDN), an enzyme with peroxidase activity, has been linked to cancer development in previous studies. However, its specific role in STAD is not well understood. In our study, we used public databases and clinical specimens to determine that PXDN expression is significantly elevated in STAD tissues and serves as an independent prognostic marker for patient outcomes. Our in vitro assays demonstrated that silencing PXDN significantly reduced STAD cell proliferation, invasion, and migration. Mechanistically, we found that PXDN promotes epithelial‒mesenchymal transition and angiogenesis in STAD cells and may be regulated by the PI3K/AKT pathway. Further analysis revealed that PXDN levels affect the sensitivity of STAD cells to various chemotherapeutic and small molecule drugs. Additionally, we observed a significant association between PXDN levels and the abundances of various immune cell types in patients with STAD. Our study highlighted a strong link between PXDN levels and the tumor immune microenvironment (TIM), suggesting that PXDN is a useful metric for evaluating the response to immune checkpoint inhibitors. Moreover, we found that PXDN is significantly associated with multiple immune checkpoints. In summary, our findings indicate that PXDN plays a critical role in STAD and that its level could serve as a potential prognostic biomarker. Thus, targeting PXDN may represent an effective treatment strategy for STAD.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Endoscopy, Guizhou Provincial People's Hospital, 83 Zhongshan Road, Nanming District, Guiyang, Guizhou, 550000, China
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 55000, China
| | - Shenghui Qiu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China
| | - Song Yang
- Department of Endoscopy, Guizhou Provincial People's Hospital, 83 Zhongshan Road, Nanming District, Guiyang, Guizhou, 550000, China
| | - Yuanjian Jiang
- Department of Endoscopy, Guizhou Provincial People's Hospital, 83 Zhongshan Road, Nanming District, Guiyang, Guizhou, 550000, China
| | - Hao Hu
- Department of Endoscopy, Guizhou Provincial People's Hospital, 83 Zhongshan Road, Nanming District, Guiyang, Guizhou, 550000, China
| | - Chengcheng Yang
- Department of Endoscopy, Guizhou Provincial People's Hospital, 83 Zhongshan Road, Nanming District, Guiyang, Guizhou, 550000, China
| | - Jinyong Cao
- Department of Endoscopy, Guizhou Provincial People's Hospital, 83 Zhongshan Road, Nanming District, Guiyang, Guizhou, 550000, China
| | - Shaomin Chen
- Department of Endoscopy, Guizhou Provincial People's Hospital, 83 Zhongshan Road, Nanming District, Guiyang, Guizhou, 550000, China
| | - Mingqing Hao
- Department of Endoscopy, Guizhou Provincial People's Hospital, 83 Zhongshan Road, Nanming District, Guiyang, Guizhou, 550000, China
| | - Hongling Li
- Department of Endoscopy, Guizhou Provincial People's Hospital, 83 Zhongshan Road, Nanming District, Guiyang, Guizhou, 550000, China
| | - Jianlin Zhu
- Department of Endoscopy, Guizhou Provincial People's Hospital, 83 Zhongshan Road, Nanming District, Guiyang, Guizhou, 550000, China.
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 55000, China.
| |
Collapse
|
88
|
Lin Q, Liu HM, Wu LZ, Yu DD, Hua CY, Zou Y, Jiao WE, Li XP, Chen SM. Effect and underlying mechanism of a photochemotherapy dual-function nanodrug delivery system for head and neck squamous cell carcinoma. J Transl Med 2024; 22:1043. [PMID: 39563418 DOI: 10.1186/s12967-024-05855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND The novel nanomaterials PNA-TN (PN) and PNA-TN-Dox (PND) have been shown to have strong inhibitory effects on breast cancer; however, it is unclear whether PN and PND have anti-head and neck squamous cell carcinoma (HNSCC) activity, and their potential mechanisms of activity are unknown. So, our study aims to explore the therapeutic effects of PN and PND on HNSCC and their possible mechanisms. METHODS We used a series of phenotypic research to evaluate the effects of PN + Laser (L) and PND + L on the biological function of HNSCC cells in vitro and in vivo. We subsequently used mechanism research to examine changes in mRNA and protein expression related to apoptosis, epithelial‒mesenchymal transition (EMT), and the JNK signalling pathway. RESULTS Our study revealed that PN and PND have strong inhibitory effects on HNSCC cells both in vitro and in vivo. In vitro, PN and PND significantly inhibited the proliferation, migration, invasion and EMT ability of HNSCC cells and promoted apoptosis; the inhibitory effect in the PND + L group was significantly greater than that in the PN + L group. In vivo, both treatments led to significant reductions in tumour volume and weight. Notably, the tumour volume and weight in the PND + L group were significantly lower than those in the PN + L group. Mechanism research confirmed that PN + L activated the expression of apoptosis-related proteins and inhibited the expression of EMT-related proteins via the JNK pathway. Furthermore, the anti-HNSCC effect of PN + L was blocked after the use of a JNK pathway inhibitor. CONCLUSION Treatment with PN + L or PND + L significantly inhibited the malignant progress of HNSCC cells, and the therapeutic effect of PND + L was significantly stronger than that of PN + L. The JNK signalling pathway is a key mechanism by which PN exerts its anti-HNSCC activity.
Collapse
Affiliation(s)
- Qian Lin
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, P. R. China
| | - Hui-Min Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238, Jie-Fang Road, Wuhan, Hubei, 430060, P. R. China
| | - Li-Zhi Wu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, P. R. China
| | - Dong-Dong Yu
- Department of Oncology, Renmin Hospital of Wuhan University, No. 238, Jie-Fang Road, Wuhan, Hubei, 430060, P. R. China
| | - Cheng-Yu Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, P. R. China
| | - You Zou
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, P. R. China
| | - Wo-Er Jiao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, P. R. China
| | - Xiang-Pan Li
- Department of Oncology, Renmin Hospital of Wuhan University, No. 238, Jie-Fang Road, Wuhan, Hubei, 430060, P. R. China.
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, P. R. China.
| |
Collapse
|
89
|
Zhang Y, Zhang Y, Gong R, Liu X, Zhang Y, Sun L, Ma Q, Wang J, Lei K, Ren L, Zhao C, Zheng X, Xu J, Ren H. Label-Free Prediction of Tumor Metastatic Potential via Ramanome. SMALL METHODS 2024:e2400861. [PMID: 39558758 DOI: 10.1002/smtd.202400861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/02/2024] [Indexed: 11/20/2024]
Abstract
Assessing metastatic potential is crucial for cancer treatment strategies. However, current methods are time-consuming, labor-intensive, and have limited sample accessibility. Therefore, this study aims to investigate the urgent need for rapid and accurate approaches by proposing a Ramanome-based metastasis index (RMI) using machine learning of single-cell Raman spectra to rapidly and accurately assess tumor cell metastatic potential. Validation with various cultured tumor cells and a mouse orthotopic model of pancreatic ductal adenocarcinoma show a Kendall rank correlation coefficient of 1 compared to Transwell experiments and histopathological assessments. Significantly, lipid-related Raman peaks are most influential in determining RMI. The lipidomic analysis confirmed strong correlations between metastatic potential and phosphatidylcholine, phosphatidylethanolamine, cholesteryl ester, ceramide, and bis(monoacylglycero)phosphate, crucial in cell membrane composition or signal transduction. Therefore, RMI is a valuable tool for predicting tumor metastatic potential and providing insights into metastasis mechanisms.
Collapse
Affiliation(s)
- Yuxing Zhang
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yanmei Zhang
- CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- Shandong Energy Institute, Qingdao, Shandong, 266101, China
| | - Ruining Gong
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Xiaolan Liu
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yu Zhang
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, 266071, China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Luyang Sun
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, 266071, China
- Shandong Energy Institute, Qingdao, Shandong, 266101, China
| | - Qingyue Ma
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Jia Wang
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, 266071, China
| | - Ke Lei
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Linlin Ren
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Chenyang Zhao
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Xiaoshan Zheng
- CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- Shandong Energy Institute, Qingdao, Shandong, 266101, China
| | - Jian Xu
- CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- Shandong Energy Institute, Qingdao, Shandong, 266101, China
| | - He Ren
- Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| |
Collapse
|
90
|
Xiao L, Li Q, Chen S, Huang Y, Ma L, Wang Y, Chen J, Zhang J, Liu A, Yuan X, Liu Y, Liu B. ADAMTS16 drives epithelial-mesenchymal transition and metastasis through a feedback loop upon TGF-β1 activation in lung adenocarcinoma. Cell Death Dis 2024; 15:837. [PMID: 39551781 PMCID: PMC11570625 DOI: 10.1038/s41419-024-07226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Lung adenocarcinoma (LUAD) is the major subtype of lung cancer. The poor prognosis of LUAD patients is attributed primarily to metastasis. ADAMTS16 is a crucial member of the ADAMTS family and is involved in tumor progression. However, its role and regulatory mechanism in LUAD remain unexplored. In this study, ADAMTS16 was identified as a crucial oncogene and survival predictor in LUAD via analyses of public datasets. Clinical specimens and tissue microarrays confirmed the differential expression and prognostic value of ADAMTS16 in LUAD patients. Transcriptome data and in vitro experiments demonstrated that ADAMTS16 was positively associated with epithelial-mesenchymal transition (EMT) and the migration abilities of LUAD cells. Knockdown of ADAMTS16 attenuated lung and pleural metastasis in an animal model. Mechanistically, the results of the enzyme-linked immunosorbent assay (ELISA) and western blot (WB) suggested that ADAMTS16 activated the TGF-β signaling pathway by facilitating the conversion of LAP-TGF-β1 to active TGF-β1. Co-Immunoprecipitation (co-IP) indicated an interaction between ADAMTS16 and LAP-TGF-β1. Inhibition of ADAMTS16 impaired EMT and aggressiveness of LUAD cells, while treatment with recombinant TGF-β1 reversed this inhibition. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays indicated that SOX4 acted as a transcriptional activator of ADAMTS16 and that TGF-β1 regulated the expression of ADAMTS16 by increasing the binding of SOX4 to the promoter of ADAMTS16. Suppressing the TGF-β signaling pathway inhibited ADAMTS16 expression, EMT, and lung metastasis, whereas overexpressing SOX4 reversed this inhibition. Therefore, ADAMTS16 forms a positive feedback loop with the TGF-β1/SOX4 axis to regulate EMT and metastasis, and disruption of this feedback loop inhibits tumor progression. These findings underscore the potential of ADAMTS16 as a prognostic biomarker and therapeutic target in LUAD and offer novel insight into the mechanism of EMT and metastasis.
Collapse
Affiliation(s)
- Lingyan Xiao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuaijun Chen
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Ma
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Andong Liu
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanhui Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
91
|
Wang C, Xiao L, Gao L, Wu J, Wang S, Zheng MM, Qin CT, Huang XG, Zhou L, Xu WJ, Li HG, Chen WL, Zhu LH, Jin X. Comparative proteomic analysis between tumor tissues and intratumoral exosomes from lung adenocarcinoma patients identifies PAFAH1B3 as an exosomal protein key for initiating metastasis in lung adenocarcinoma. Heliyon 2024; 10:e39859. [PMID: 39553628 PMCID: PMC11567031 DOI: 10.1016/j.heliyon.2024.e39859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024] Open
Abstract
Mounting evidence strongly indicates that exosomes are pivotal in the advancement of cancer, yet the overarching profile of exosomal proteins and their contribution to lung adenocarcinoma (LUAD) progression remain underexplored. In our investigation, we isolated exosomes from treatment-naive LUAD (n = 20) and paired normal adjacent tissues (NATs), and conducted integrated proteomic on the acquired exosomes and source tissues to ascertain origin characteristics and potential therapeutic targets of the exosomal proteins in LUAD. The omics data revealed the overall landscape of exosomal proteins from tissues in LUAD, underscoring the profound linkage between exosomal proteins and tumor metastasis. Integrated analysis indicated a significant overlap in protein species, demonstrating high concordance between exosomal proteins and those in their originating tissues. However, only a small subset showed significant positive correlation in protein abundance between exosomes and their source tissues. Notably, we pinpointed five proteins (DDX18, DNAJA3, PAFAH1B3, BAG6, and CAD). Significantly, platelet activating factor acetylhydrolase 1b catalytic subunit 3 (PAFAH1B3), an essential serine hydrolase within cellular metabolic processes, stood out as the singular protein closely associated with disease-free survival (DFS) of patients. Cell invasion and migration assays further substantiated that PAFAH1B3 promoted metastasis of LUAD via the exosomal release pathway. Furthermore, analysis of public databases validated elevated PAFAH1B3 expression in LUAD and linked it to poor patient survival outcomes. Overall, our research positioned PAFAH1B3 as a promising candidate for prognostic marker and potential therapeutic target in lung cancer treatment.
Collapse
Affiliation(s)
- Congcong Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| | - Ling Xiao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ling Gao
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| | - Jia Wu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| | - Siliang Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| | - Miao-Miao Zheng
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| | - Chen-Tai Qin
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| | - Xian-ge Huang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lei Zhou
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wei-jie Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - He-gen Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wen-Lian Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| | - Li-hua Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xing Jin
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| |
Collapse
|
92
|
Shi K, Wang XY, Huang LD, Guo Q, Yuan W, Lv Y, Li D. Biological functions and molecular mechanisms of LINC01116 in cancer. Heliyon 2024; 10:e38490. [PMID: 39512466 PMCID: PMC11539247 DOI: 10.1016/j.heliyon.2024.e38490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024] Open
Abstract
LINC01116, a long non-coding RNA (lncRNA), serves as an important regulator in the progression of cancer cells and has attracted increased attention in biological fields. It is overexpressed in various cancer cells and is significantly correlated with cancer development and poor prognosis in cancer patients. Moreover, LINC01116 regulates the gene expression of various cancers through intricate pathways, such as sponging the microRNAs or other non-genic manners. These signaling pathways greatly affect the cancer's biological functions, including cell growth, migration, invasion, and chemoresistance. Hence, LINC01116 may serve as a prognostic biomarker and therapeutic target for human cancer. This paper summarizes the current evidence regarding the biological functions and molecular mechanisms of LINC01116 in the progression of cancer, providing theoretical references for LINC01116-related cancer treatment in the future.
Collapse
Affiliation(s)
- Ke Shi
- Department of Thoracic Surgery, Beilun District People's Hospital of Ningbo, Ningbo City, China
| | - Xue-Ying Wang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei Medical University, Shiyan City, China
- Department of Basic Medicine, Hubei University of Medicine, Shiyan City, China
| | - Li-De Huang
- Department of Pain management, People's Hospital of Shiyan City, Hubei Medical University, Shiyan City, China
| | - Qiang Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei Medical University, Shiyan City, China
| | - Wei Yuan
- Department of Basic Medicine, Hubei University of Medicine, Shiyan City, China
| | - Yan Lv
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dan Li
- Department of Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| |
Collapse
|
93
|
Song Q, Gao Y, Liu K, Tang Y, Man Y, Wu H. Gut microbial and metabolomics profiles reveal the potential mechanism of fecal microbiota transplantation in modulating the progression of colitis-associated colorectal cancer in mice. J Transl Med 2024; 22:1028. [PMID: 39548468 PMCID: PMC11566892 DOI: 10.1186/s12967-024-05786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/20/2024] [Indexed: 11/18/2024] Open
Abstract
PURPOSE Intestinal flora promotes the pathogenesis of colorectal cancer (CRC) through microorganisms and their metabolites. This study aimed to investigate the composition of intestinal flora in different stages of CRC progression and the effect of fecal microbiota transplantation (FMT) on CRC mice. METHODS The fecal microbiome from healthy volunteers (HC), colorectal adenoma (CRA), inflammatory bowel disease (IBD), and CRC patients were analyzed by 16s rRNA gene sequencing. In an azoxymethane (AOM)/dextran-sulfate-sodium (DSS)-induced CRC mouse, the effect of FMT from HC, CRA, CRC, and IBD patients on CRC mice was assessed by histological analysis. Expression of inflammation- EMT-associated proteins and Wnt/β-catenin pathway were assessed using qRT-PCR and western blot. The ratio of the fecal microorganisms and metabolomics alteration after FMT were also assessed. RESULT Prevotella, Faecalibacterium, Phascolarctobacterium, Veillonella, Alistipes, Fusobacterium, Oscillibacter, Blautia, and Ruminococcus abundance was different among HC, IBD, CRC, and CRA patients. HC-FMT alleviated disease progression and inflammatory response in CRC mice, inhibited splenic T help (Th)1 and Th17 cell numbers, and suppressed the EMT and Wnt/β-catenin pathways in tumor tissues of CRC mice. IBD-FMT, CRA-FMT, and CRC-FMT played deleterious roles; the CRC-FMT mice exhibited the most malignant phenotype. Compared with the non-FMT CRC mice, Muribaculaceae abundance was lower after FMT, especially lowest in the IBD-FMT group; while Lactobacillus abundance was higher after FMT and especially high in HC-FMT. Akkermansia and Ileibacterium abundance increased after FMT-HC compared to other groups. Metabolite correlation analysis revealed that Muribaculaceae abundance was significantly correlated with metabolites such as Betaine, LysoPC, and Soyasaponin III. Lactobacillus abundance was positively correlated with Taurocholic acid 3-sulfate, and Ileibacterium abundance was positively correlated with Linoleoyl ethanolamide. CONCLUSION The different intestinal microbiota communities of HC, IBD, CRA, and CRC patients may be attributed to the different modulation effects of FMT on CRC mice. CRC-FMT promoted, while HC-FMT inhibited the progress of CRC. Increased linoleoyl ethanolamide levels and abundance of Muribaculaceae, Akkermansia, and Ileibacterium and reduced Fusobacterium might participate in inhibiting CRC initiation and development. This study demonstrated that FMT intervention could restore the intestinal microbiota and metabolomics of CRC mice, suggesting FMT as a potential strategy for CRC therapy.
Collapse
Affiliation(s)
- Qishi Song
- Department of Oncology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Yongchao Gao
- Engineering Research Center of Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Kun Liu
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, China
| | - Yukai Tang
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, China
| | - Yichun Man
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, China
| | - Haijun Wu
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
94
|
Withnell E, Secrier M. SpottedPy quantifies relationships between spatial transcriptomic hotspots and uncovers environmental cues of epithelial-mesenchymal plasticity in breast cancer. Genome Biol 2024; 25:289. [PMID: 39529126 PMCID: PMC11552145 DOI: 10.1186/s13059-024-03428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Spatial transcriptomics is revolutionizing the exploration of intratissue heterogeneity in cancer, yet capturing cellular niches and their spatial relationships remains challenging. We introduce SpottedPy, a Python package designed to identify tumor hotspots and map spatial interactions within the cancer ecosystem. Using SpottedPy, we examine epithelial-mesenchymal plasticity in breast cancer and highlight stable niches associated with angiogenic and hypoxic regions, shielded by CAFs and macrophages. Hybrid and mesenchymal hotspot distribution follows transformation gradients reflecting progressive immunosuppression. Our method offers flexibility to explore spatial relationships at different scales, from immediate neighbors to broader tissue modules, providing new insights into tumor microenvironment dynamics.
Collapse
Affiliation(s)
- Eloise Withnell
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, WC1E 6BT, UK
| | - Maria Secrier
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
95
|
Luty M, Szydlak R, Pabijan J, Zemła J, Oevreeide IH, Prot VE, Stokke BT, Lekka M, Zapotoczny B. Tubulin-Targeted Therapy in Melanoma Increases the Cell Migration Potential by Activation of the Actomyosin Cytoskeleton─An In Vitro Study. ACS Biomater Sci Eng 2024; 10:7155-7166. [PMID: 39436192 PMCID: PMC11558564 DOI: 10.1021/acsbiomaterials.4c01226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
One of the most dangerous aspects of cancers is their ability to metastasize, which is the leading cause of death. Hence, it holds significance to develop therapies targeting the eradication of cancer cells in parallel, inhibiting metastases in cells surviving the applied therapy. Here, we focused on two melanoma cell lines─WM35 and WM266-4─representing the less and more invasive melanomas. We investigated the mechanisms of cellular processes regulating the activation of actomyosin as an effect of colchicine treatment. Additionally, we investigated the biophysical aspects of supplement therapy using Rho-associated protein kinase (ROCK) inhibitor (Y-27632) and myosin II inhibitor ((-)-blebbistatin), focusing on the microtubules and actin filaments. We analyzed their effect on the proliferation, migration, and invasiveness of melanoma cells, supported by studies on cytoskeletal architecture using confocal fluorescence microscopy and nanomechanics using atomic force microscopy (AFM) and microconstriction channels. Our results showed that colchicine inhibits the migration of most melanoma cells, while for a small cell population, it paradoxically increases their migration and invasiveness. These changes are also accompanied by the formation of stress fibers, compensating for the loss of microtubules. Simultaneous administration of selected agents led to the inhibition of this compensatory effect. Collectively, our results highlighted that colchicine led to actomyosin activation and increased the level of cancer cell invasiveness. We emphasized that a cellular pathway of Rho-ROCK-dependent actomyosin contraction is responsible for the increased invasive potential of melanoma cells in tubulin-targeted therapy.
Collapse
Affiliation(s)
- Marcin Luty
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Renata Szydlak
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Joanna Pabijan
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Joanna Zemła
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | - Ingrid H. Oevreeide
- Biophysics
and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Victorien E. Prot
- Biomechanics,
Department of Structural Engineering, NTNU
The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Bjørn T. Stokke
- Biophysics
and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Malgorzata Lekka
- Institute
of Nuclear Physics, Polish Academy of Sciences, Krakow PL-31342, Poland
| | | |
Collapse
|
96
|
Li S, Hao L, Hu X. Biological Roles and Clinical Therapeutic Applications of Tumor-Associated Macrophages in Colorectal Liver Metastasis. J Inflamm Res 2024; 17:8429-8443. [PMID: 39529996 PMCID: PMC11552512 DOI: 10.2147/jir.s493656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Colorectal cancer (CRC) commonly metastasizes to the liver, and this poses a significant clinical challenge. Tumor-associated macrophages (TAMs), key players within the TME, play a significant role in promoting CRC metastasis by secreting various chemokines, growth factors, and cytokines. This review not only aims to enhance our knowledge of TAMs' functions in CRC progression and metastasis but also examines innovative therapeutic strategies to address the clinical problem of colorectal liver metastasis (CLM). By targeting TAMs, we may be able to develop more effective treatments and offer hope to patients suffering from this devastating disease.
Collapse
Affiliation(s)
- Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
97
|
Tan W, Chen G, Ci Q, Deng Z, Gu R, Yang D, Dai F, Liu H, Cheng Y. Elevated ITGA3 expression serves as a novel prognostic biomarker and regulates tumor progression in cervical cancer. Sci Rep 2024; 14:27063. [PMID: 39511266 PMCID: PMC11543847 DOI: 10.1038/s41598-024-75770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Patients with advanced and recurrent cervical cancer often lack satisfactory treatment outcomes. Thus, it is necessary to seek reliable biomarkers that provide the ability to identify the disease at an early stage and predict the patient prognosis, providing new strategies for the treatment of cervical cancer. The sequencing data of ITGA3 were retrieved from public datasets. Immune infiltration and sensitivity of potential immunotherapy and chemotherapy have been analyzed between two subgroups. Functional analysis was applied to excavate the related pathways of ITGA3 in cervical cancer. Furthermore, the impact of ITGA3 in tumor progression has been verified in vitro. The results revealed that the level of ITGA3 was upregulated in cervical cancer, and was positively correlated with worse prognosis. The tumor microenvironment of patients in the high-risk group was immunosuppressed. Patients in high-risk group may not benefit from immunotherapy, but be may be sensitive to several chemotherapy drugs. Notably, the angiogenesis, epithelial mesenchymal transition, and PI3K pathway were increased in high-risk group. Collectively, ITGA3 is a marker of poor prognosis and promotes tumor progression by regulating PI3K/AKT pathway in cervical cancer. Our results provide new insights for potential molecular targeted therapy and prognostic prediction of cervical cancer.
Collapse
Affiliation(s)
- Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Gantao Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qinyu Ci
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Ran Gu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
| |
Collapse
|
98
|
Tang B, Kang W, Dong Q, Qin Z, Duan L, Zhao X, Yuan G, Pan Y. Research progress on S-palmitoylation modification mediated by the ZDHHC family in glioblastoma. Front Cell Dev Biol 2024; 12:1413708. [PMID: 39563863 PMCID: PMC11573772 DOI: 10.3389/fcell.2024.1413708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024] Open
Abstract
S-Palmitoylation has been widely noticed and studied in a variety of diseases. Increasing evidence suggests that S-palmitoylation modification also plays a key role in Glioblastoma (GBM). The zDHHC family, as an important member of S-palmitoyltransferases, has received extensive attention for its function and mechanism in GBM which is one of the most common primary malignant tumors of the brain and has an adverse prognosis. This review focuses on the zDHHC family, essential S-palmitoyltransferases, and their involvement in GBM. By summarizing recent studies on zDHHC molecules in GBM, we highlight their significance in regulating critical processes such as cell proliferation, invasion, and apoptosis. Specifically, members of zDHHC3, zDHHC4, zDHHC5 and others affect key processes such as signal transduction and phenotypic transformation in GBM cells through different pathways, which in turn influence tumorigenesis and progression. This review systematically outlines the mechanism of zDHHC family-mediated S-palmitoylation modification in GBM, emphasizes its importance in the development of this disease, and provides potential targets and strategies for the treatment of GBM. It also offers theoretical foundations and insights for future research and clinical applications.
Collapse
Affiliation(s)
- Beiyan Tang
- The Second Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Wei Kang
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Qiang Dong
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zhenwei Qin
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Lei Duan
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xianjun Zhao
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Guoqiang Yuan
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou, Gansu, China
- Academician Workstation, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yawen Pan
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou, Gansu, China
- Academician Workstation, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
99
|
Wu S, Liu Y, Zeng Y, Ruan X, Tao M, Lin W, Liu C, Chen H, Liu H, Wu Y. Prognostic value of EMT-related genes and immune cell infiltration in thyroid carcinoma. Front Immunol 2024; 15:1463258. [PMID: 39559351 PMCID: PMC11570584 DOI: 10.3389/fimmu.2024.1463258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Background The Epithelial-Mesenchymal Transition (EMT) is a very important process involved in cancer invasion and metastasis. Additionally, the Cathepsin K (CTSK) gene is closely related to the degradation of the extracellular matrix, which is a critical component of the EMT. The purpose of this study was to determine the relationships between EMT-related genes and immune cell infiltration and their prognostic value in Thyroid carcinoma (THCA). The effect of the CTSK gene on the aggressive biological features of THCA was assessed. Methods Within the framework of the present study, the THCA cohort was analyzed in detail based on data obtained from The TCGA database in the context of the EMT. The TCGA-THCA cohort was then divided into two groups, namely, high- and low-risk groups, based on the calculated EMT scores. Finally, based on the findings from the Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm, LASSO regression analysis, and Kaplan-Meier plotter, we selected five genes (CTSK, C3ORF80, FBLN2, PRELP and SRPX2) associated with patient prognosis. Furthermore, this study examined the presence of various immune cells within the THCA samples using three distinct algorithms, namely ssGSEA, xCell, and MCPcounter. Additional studies have been conducted to establish the roles of CTSK in THCA cell proliferation and migration using various assays, such as CCK8, colony formation, EdU proliferation, Transwell migration and wound healing assays. Additionally, the involvement of CTSK in the regulation of various EMT-related markers was confirmed using Western blot analysis. Results Based on EMT scores, TCGA-THCA patients were further divided into two groups, and the study revealed that patients in the high-risk group had a worse prognosis than those in the low-risk group. Among the five genes linked to the prognostic value of EMT (CTSK, C3ORF80, FBLN2, PRELP, and SRPX2), CTSK exhibited notably elevated expression in the high-risk cohort. This group also exhibited pronounced immune cell infiltration, with a marked correlation observed between CTSK expression and the levels of macrophages, MDSCs, and various T-cell subtypes. Furthermore, in vitro studies demonstrated that reducing CTSK expression led to significant reductions in THCA cell viability; clonogenic, proliferative, motility and migratory capacities; and the expression of key EMT-related proteins, including N-cadherin, vimentin, slug, and snail. Conclusion Our results suggest that the expression of CTSK, a gene associated with the EMT, may be associated with THCA onset and progression and thus may serve as a promising prognostic biomarker.
Collapse
Affiliation(s)
- Shuping Wu
- Department of Head and Neck Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yu Liu
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yu Zeng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xianhui Ruan
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Mei Tao
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wenrong Lin
- Department of Ultrasound, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Chang Liu
- Department of Head and Neck Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Hongbin Chen
- Department of Head and Neck Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Hui Liu
- Department of Head and Neck Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yu Wu
- Department of Head and Neck Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| |
Collapse
|
100
|
Qian C, Chen Y, Zhao Z, Hu Y, Yi J, Chen S, He J, Chen J, Xue W. Long non-coding RNA AC010457.1 promotes the growth and EMT of gastric cancer via the PI3K/AKT axis. Pathol Res Pract 2024; 263:155646. [PMID: 39437638 DOI: 10.1016/j.prp.2024.155646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/10/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
Gastric cancer (GC) is a malignancy with a relatively high mortality rate. This study aimed to ascertain the prognostic significance of long non-coding RNA (lncRNA) AC010457.1 in GC and elucidate its role in disease progression. The Cancer Genome Atlas (TCGA) database was used to screen the prognosis-associated differentially expressed lncRNAs in GC patients. Kaplan-Meier curves, univariate and multivariate Cox regression analyses were applied to assess the prognostic significance of AC010457.1. In vitro and in vivo functional assays were performed to evaluate the effects of AC010457.1 on cellular proliferation and metastasis. Mechanistic investigations, including Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, Western blotting (WB), Immunofluorescence (IF), and Immunohistochemistry (IHC), were used to explore the signaling pathways activated by AC010457.1. We demonstrated that AC010457.1 was abnormally upregulated in GC tissues, and that this aberrant upregulation was associated with a poor prognosis for GC patients. The functional experiments proved that the downregulated of AC010457.1 hindered GC cell proliferation, migration, and invasive potential. Furthermore, KEGG analysis revealed a significant association between AC010457.1 and the PI3K/AKT signaling pathway, which was further corroborated by WB analysis. Rescue experiments provided additional confirmation that AC010457.1 regulated PI3K/AKT promote GC proliferation, migration, and epithelial-mesenchymal transition (EMT). Collectively, our findings suggest that AC010457.1 overexpression serves as a distinct prognostic risk factor in GC and may represent a promising therapeutic target for the treatment of this malignancy.
Collapse
Affiliation(s)
- Chenyu Qian
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China; Department of General Surgery, Lanxi People's Hospital, Lanxi 321100, China
| | - Yu Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zihao Zhao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yilin Hu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China; The Nantong Key Laboratory of Tumor Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jianfeng Yi
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Shun Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jiancheng He
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Junjie Chen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China; The Nantong Key Laboratory of Tumor Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Wanjiang Xue
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong 226001, China; The Nantong Key Laboratory of Tumor Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|