51
|
Picard M, Shirihai OS, Gentil BJ, Burelle Y. Mitochondrial morphology transitions and functions: implications for retrograde signaling? Am J Physiol Regul Integr Comp Physiol 2013; 304:R393-406. [PMID: 23364527 DOI: 10.1152/ajpregu.00584.2012] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In response to cellular and environmental stresses, mitochondria undergo morphology transitions regulated by dynamic processes of membrane fusion and fission. These events of mitochondrial dynamics are central regulators of cellular activity, but the mechanisms linking mitochondrial shape to cell function remain unclear. One possibility evaluated in this review is that mitochondrial morphological transitions (from elongated to fragmented, and vice-versa) directly modify canonical aspects of the organelle's function, including susceptibility to mitochondrial permeability transition, respiratory properties of the electron transport chain, and reactive oxygen species production. Because outputs derived from mitochondrial metabolism are linked to defined cellular signaling pathways, fusion/fission morphology transitions could regulate mitochondrial function and retrograde signaling. This is hypothesized to provide a dynamic interface between the cell, its genome, and the fluctuating metabolic environment.
Collapse
Affiliation(s)
- Martin Picard
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
52
|
Abstract
Dynamic variations in mitochondrial shape have been related to function. However, tools to automatically classify and enumerate mitochondrial shapes are lacking, as are systematic studies exploring the relationship of such shapes to mitochondrial stress. Here we show that during increased generation of mitochondrial reactive oxygen species (mtROS), mitochondria change their shape from tubular to donut or blob forms, which can be computationally quantified. Imaging of cells treated with rotenone or antimycin, showed time and dose-dependent conversion of tubular forms to donut-shaped mitochondria followed by appearance of blob forms. Time-lapse images showed reversible transitions from tubular to donut shapes and unidirectional transitions between donut and blob shapes. Blobs were the predominant sources of mtROS and appeared to be related to mitochondrial-calcium influx. Mitochondrial shape change could be prevented by either pretreatment with antioxidants like N-acetyl cysteine or inhibition of the mitochondrial calcium uniporter. This work represents a novel approach towards relating mitochondrial shape to function, through integration of cellular markers and a novel shape classification algorithm.
Collapse
|
53
|
Abstract
Multiple phosphorylation sites of Drp1 have been characterized for their functional importance. However, the functional consequence of GSK3beta-mediated phosphorylation of Drp1 remains unclear. In this report, we pinpointed 11 Serine/Threonine sites spanning from residue 634∼736 of the GED domain and robustly confirmed Drp1 Ser693 as a novel GSK3beta phosphorylation site. Our results suggest that GSK3beta-mediated phosphorylation at Ser693 does cause a dramatic decrease of GTPase activity; in contrast, GSK3beta-mediated phosphorylation at Ser693 appears not to affect Drp1 inter-/intra-molecular interactions. After identifying Ser693 as a GSK3beta phosphorylation site, we also determined that K679 is crucial for GSK3beta-binding, which strongly suggests that Drp1 is a novel substrate for GSK3beta. Thereafter, we found that overexpressed S693D, but not S693A mutant, caused an elongated mitochondrial morphology which is similar to that of K38A, S637D and K679A mutants. Interestedly, using H89 and LiCl to inhibit PKA and GSK3beta signaling, respectively, it appears that a portion of the elongated mitochondria switched to a fragmented phenotype. In investigating the biofunctionality of phosphorylation sites within the GED domain, cells overexpressing Drp1 S693D and S637D, but not S693A, showed an acquired resistance to H2O2-induced mitochondrial fragmentation and ensuing apoptosis, which affected cytochrome c, capase-3, -7, and PARP, but not LC3B, Atg-5, Beclin-1 and Bcl2 expressions. These results also showed that the S693D group is more effective in protecting both non-neuronal and neuronal cells from apoptotic death than the S637D group. Altogether, our data suggest that GSK3beta-mediated phosphorylation at Ser693 of Drp1 may be associated with mitochondrial elongation via down-regulating apoptosis, but not autophagy upon H2O2 insult.
Collapse
|
54
|
Coble DJ, Sandford EE, Ji T, Abernathy J, Fleming D, Zhou H, Lamont SJ. Impacts ofSalmonella enteritidisinfection on liver transcriptome in broilers. Genesis 2012; 51:357-64. [DOI: 10.1002/dvg.22351] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Tieming Ji
- Department of Statistics; Iowa State University; Ames; Iowa
| | - Jason Abernathy
- Department of Animal Science; University of California Davis; Davis; California
| | | | - Huaijun Zhou
- Department of Animal Science; University of California Davis; Davis; California
| | - Susan J. Lamont
- Department of Animal Science; Iowa State University; Ames; Iowa
| |
Collapse
|
55
|
Picard M, White K, Turnbull DM. Mitochondrial morphology, topology, and membrane interactions in skeletal muscle: a quantitative three-dimensional electron microscopy study. J Appl Physiol (1985) 2012; 114:161-71. [PMID: 23104694 DOI: 10.1152/japplphysiol.01096.2012] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Dynamic remodeling of mitochondrial morphology through membrane dynamics are linked to changes in mitochondrial and cellular function. Although mitochondrial membrane fusion/fission events are frequent in cell culture models, whether mitochondrial membranes dynamically interact in postmitotic muscle fibers in vivo remains unclear. Furthermore, a quantitative assessment of mitochondrial morphology in intact muscle is lacking. Here, using electron microscopy (EM), we provide evidence of interacting membranes from adjacent mitochondria in intact mouse skeletal muscle. Electron-dense mitochondrial contact sites consistent with events of outer mitochondrial membrane tethering are also described. These data suggest that mitochondrial membranes interact in vivo among mitochondria, possibly to induce morphology transitions, for kiss-and-run behavior, or other processes involving contact between mitochondrial membranes. Furthermore, a combination of freeze-fracture scanning EM and transmission EM in orthogonal planes was used to characterize and quantify mitochondrial morphology. Two subpopulations of mitochondria were studied: subsarcolemmal (SS) and intermyofibrillar (IMF), which exhibited significant differences in morphological descriptors, including form factor (means ± SD for SS: 1.41 ± 0.45 vs. IMF: 2.89 ± 1.76, P < 0.01) and aspect ratio (1.97 ± 0.83 vs. 3.63 ± 2.13, P < 0.01) and circularity (0.75 ± 0.16 vs. 0.45 ± 0.22, P < 0.01) but not size (0.28 ± 0.31 vs. 0.27 ± 0.20 μm(2)). Frequency distributions for mitochondrial size and morphological parameters were highly skewed, suggesting the presence of mechanisms to influence mitochondrial size and shape. In addition, physical continuities between SS and IMF mitochondria indicated mixing of both subpopulations. These data provide evidence that mitochondrial membranes interact in vivo in mouse skeletal muscle and that factors may be involved in regulating skeletal muscle mitochondrial morphology.
Collapse
Affiliation(s)
- Martin Picard
- Mitochondrial Research Group, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | | | | |
Collapse
|
56
|
Trudeau K, Muto T, Roy S. Downregulation of mitochondrial connexin 43 by high glucose triggers mitochondrial shape change and cytochrome C release in retinal endothelial cells. Invest Ophthalmol Vis Sci 2012; 53:6675-81. [PMID: 22915032 DOI: 10.1167/iovs.12-9895] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To determine connexin 43 (Cx43) localization in mitochondria and investigate the effects of high glucose (HG) on mitochondrial Cx43 (mtCx43) expression and whether altered mtCx43 channel activity is involved in promoting apoptosis in retinal endothelial cells. METHODS MtCx43 localization was determined using immunostaining, green fluorescent protein (GFP)-tagged Cx43 followed by confocal imaging, and Western blot analysis using protein isolated from mitochondria of rat retinal endothelial cells (RRECs). To assess HG effects on mtCx43 expression, RRECs were grown in normal (5 mM) or HG (30 mM) medium for 7 days, and mtCx43 protein level assessed by Western blot analysis. To determine if mtCx43 channel inhibition affected mitochondrial morphology, RRECs grown sparsely were left untreated or treated with β-glycerrhetinic acid (β-GA), an inhibitor of connexin channels, and imaged using confocal microscopy. Additionally, mitochondria isolated from RRECs were treated with β-GA, and cytochrome c release assessed by Western blot. RESULTS Cx43 localization on the mitochondria of RRECs was confirmed with immunofluorescence staining using Cx43 antibody and GFP-tagged Cx43 imaged in live cells. Western blot analysis indicated that Cx43 was located primarily on the inner mitochondrial membrane, and mtCx43 protein level was significantly reduced in RRECs grown in HG condition. Treatment of RRECs with β-GA significantly decreased mtCx43 phosphorylation, induced mitochondrial fragmentation, and isolated mitochondria treated with β-GA showed increased cytochrome c release. CONCLUSIONS HG-induced downregulation of mtCx43 protein resulting in decreased channel activity may promote mitochondrial morphology changes and cytochrome c release, suggesting a novel mechanism for hyperglycemia-induced apoptosis in diabetic retinopathy.
Collapse
Affiliation(s)
- Kyle Trudeau
- Department of Medicine and Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
57
|
Suppressor of cytokine signaling 6 (SOCS6) promotes mitochondrial fission via regulating DRP1 translocation. Cell Death Differ 2012; 20:139-53. [PMID: 22955947 PMCID: PMC3524647 DOI: 10.1038/cdd.2012.106] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mitochondria are highly motile organelles that constantly undergo fission and fusion. Impairment of mitochondrial dynamics is associated with mitochondrial dysfunction and is frequently linked to the pathogenesis of neurodegenerative diseases and cancer. We have previously shown that biallelic inactivation of the suppressor of cytokine signaling 6 (SOCS6) gene is a frequent event in human gastric cancer. In this study, we recapitulated the event of SOCS6 loss using a Lentivirus-based knockdown approach, and demonstrated the linkage between SOCS6 depletion and the suppression of programmed cell death. SOCS6 promotes intrinsic apoptosis, with increased Bax conformational change, mitochondrial targeting, and oligomerization. Most importantly, SOCS6 is targeted to mitochondria and induces mitochondrial fragmentation mediated through an increase in DRP1 fission activity. Here, we show that SOCS6 forms complex with DRP1 and the mitochondrial phosphatase PGAM5, attenuates DRP1 phosphorylation, and promotes DRP1 mitochondrial translocation. Based on mutation analyses, SOCS6-mediated apoptosis is tightly coupled to its ability to induce mitochondrial fission. This study demonstrates an important role for SOCS6 in modulating mitochondrial dynamics and apoptosis.
Collapse
|
58
|
Guaragnella N, Zdralević M, Antonacci L, Passarella S, Marra E, Giannattasio S. The role of mitochondria in yeast programmed cell death. Front Oncol 2012; 2:70. [PMID: 22783546 PMCID: PMC3388595 DOI: 10.3389/fonc.2012.00070] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/14/2012] [Indexed: 01/02/2023] Open
Abstract
Mammalian apoptosis and yeast programmed cell death (PCD) share a variety of features including reactive oxygen species production, protease activity and a major role played by mitochondria. In view of this, and of the distinctive characteristics differentiating yeast and multicellular organism PCD, the mitochondrial contribution to cell death in the genetically tractable yeast Saccharomyces cerevisiae has been intensively investigated. In this mini-review we report whether and how yeast mitochondrial function and proteins belonging to oxidative phosphorylation, protein trafficking into and out of mitochondria, and mitochondrial dynamics, play a role in PCD. Since in PCD many processes take place over time, emphasis will be placed on an experimental model based on acetic acid-induced PCD (AA-PCD) which has the unique feature of having been investigated as a function of time. As will be described there are at least two AA-PCD pathways each with a multifaceted role played by mitochondrial components, in particular by cytochrome c.
Collapse
Affiliation(s)
- Nicoletta Guaragnella
- Institute of Biomembranes and Bioenergetics, National Research Council of Italy, Bari, Italy
| | | | | | | | | | | |
Collapse
|
59
|
Tripathi A, Fang W, Leong DT, Tan LT. Biochemical studies of the lagunamides, potent cytotoxic cyclic depsipeptides from the marine cyanobacterium Lyngbya majuscula. Mar Drugs 2012; 10:1126-1137. [PMID: 22822361 PMCID: PMC3397452 DOI: 10.3390/md10051126] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/09/2012] [Accepted: 05/10/2012] [Indexed: 01/08/2023] Open
Abstract
Lagunamides A (1) and B (2) are potent cytotoxic cyclic depsipeptides isolated from the filamentous marine cyanobacterium, Lyngbya majuscula, from Pulau Hantu, Singapore. These compounds are structurally related to the aurilide-class of molecules, which have been reported to possess exquisite antiproliferative activities against cancer cells. The present study presents preliminary findings on the selectivity of lagunamides against various cancer cell lines as well as their mechanism of action by studying their effects on programmed cell death or apoptosis. Lagunamide A exhibited a selective growth inhibitory activity against a panel of cancer cell lines, including P388, A549, PC3, HCT8, and SK-OV3 cells, with IC50 values ranging from 1.6 nM to 6.4 nM. Morphological studies showed blebbing at the surface of cancer cells as well as cell shrinkage accompanied by loss of contact with the substratum and neighboring cells. Biochemical studies using HCT8 and MCF7 cancer cells suggested that the cytotoxic effect of 1 and 2 might act via induction of mitochondrial mediated apoptosis. Data presented in this study warrants further investigation on the mode of action and underscores the importance of the lagunamides as potential anticancer agents.
Collapse
Affiliation(s)
- Ashootosh Tripathi
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, 637616, Singapore;
| | - Wanru Fang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117576, Singapore;
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117576, Singapore;
- Authors to whom correspondence should be addressed; (D.T.L.); (L.T.T.); Tel.: +65-6516-7262 (D.T.L.); +65-6790-3842 (L.T.T.); Fax: +65-6779-1936 (D.T.L.); +65-6896-9414 (L.T.T.)
| | - Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, 637616, Singapore;
- Authors to whom correspondence should be addressed; (D.T.L.); (L.T.T.); Tel.: +65-6516-7262 (D.T.L.); +65-6790-3842 (L.T.T.); Fax: +65-6779-1936 (D.T.L.); +65-6896-9414 (L.T.T.)
| |
Collapse
|
60
|
Sanjuán Szklarz LK, Scorrano L. The antiapoptotic OPA1/Parl couple participates in mitochondrial adaptation to heat shock. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1886-93. [PMID: 22579715 PMCID: PMC3686154 DOI: 10.1016/j.bbabio.2012.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 11/29/2022]
Abstract
The mitochondria-shaping protein optic atrophy 1 (OPA1) has genetically distinguishable roles in mitochondrial morphology and apoptosis. The latter depends on the presenilin associated rhomboid like (PARL) protease, essential for the accumulation of a soluble intermembrane space form of OPA1 (IMS-OPA1). Here we show that OPA1 and PARL participate in the heat shock response, a stereotypical cellular process of adaptation to thermal stress. Upon heat shock, long forms of OPA1 are lost and mitochondria fragment. However, mitochondrial fusion is dispensable to maintain viability, whereas IMS-OPA1 is required. Upon conditioning—a process of mild heat shock and recovery—IMS-OPA1 accumulates, OPA1 oligomers increase and mitochondria release less cytochrome c, ultimately resulting in cellular resistance to subsequent apoptotic inducers. In Parl−/− cells accumulation of IMS-OPA1 is blunted and conditioning fails to protect from cytochrome c release and apoptosis. Thus, the OPA1/PARL dependent pathway of cristae remodeling is implicated in heat shock. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
|
61
|
Costa V, Scorrano L. Shaping the role of mitochondria in the pathogenesis of Huntington's disease. EMBO J 2012; 31:1853-64. [PMID: 22446390 DOI: 10.1038/emboj.2012.65] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/20/2012] [Indexed: 12/28/2022] Open
Abstract
Intense research on the pathogenesis of Huntington's disease (HD), a genetic neurodegenerative disease caused by a polyglutamine expansion in the Huntingtin (Htt) protein, revealed multiple potential mechanisms, among which mitochondrial alterations had emerged as key determinants of the natural history of the disease. Pharmacological and genetic animal models of mitochondrial dysfunction in the striatum, which is mostly affected in HD corroborated a key role for these organelles in the pathogenesis of the disease. Here, we will give an account of the recent evidence indicating that the mitochondria-shaping machinery is altered in HD models and patients. Since its correction can counteract HD mitochondrial dysfunction and cellular damage, drugs impacting on mitochondrial shape are emerging as a new possibility of treatment for this devastating condition.
Collapse
Affiliation(s)
- Veronica Costa
- Department of Cell Physiology and Medicine, University of Geneva, Genève, Switzerland
| | | |
Collapse
|
62
|
Piquereau J, Caffin F, Novotova M, Prola A, Garnier A, Mateo P, Fortin D, Huynh LH, Nicolas V, Alavi MV, Brenner C, Ventura-Clapier R, Veksler V, Joubert F. Down-regulation of OPA1 alters mouse mitochondrial morphology, PTP function, and cardiac adaptation to pressure overload. Cardiovasc Res 2012; 94:408-17. [PMID: 22406748 DOI: 10.1093/cvr/cvs117] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
AIMS The optic atrophy 1 (OPA1) protein is an essential protein involved in the fusion of the mitochondrial inner membrane. Despite its high level of expression, the role of OPA1 in the heart is largely unknown. We investigated the role of this protein in Opa1(+/-) mice, having a 50% reduction in OPA1 protein expression in cardiac tissue. METHODS AND RESULTS In mutant mice, cardiac function assessed by echocardiography was not significantly different from that of the Opa1(+/+). Electron and fluorescence microscopy revealed altered morphology of the Opa1(+/-) mice mitochondrial network; unexpectedly, mitochondria were larger with the presence of clusters of fused mitochondria and altered cristae. In permeabilized mutant ventricular fibres, mitochondrial functional properties were maintained, but direct energy channelling between mitochondria and myofilaments was weakened. Importantly, the mitochondrial permeability transition pore (PTP) opening in isolated permeabilized cardiomyocytes and in isolated mitochondria was significantly less sensitive to mitochondrial calcium accumulation. Finally, 6 weeks after transversal aortic constriction, Opa1(+/-) hearts demonstrated hypertrophy almost two-fold higher (P< 0.01) than in wild-type mice with altered ejection fraction (decrease in 43 vs. 22% in Opa1(+/+) mice, P< 0.05). CONCLUSIONS These results suggest that, in adult cardiomyocytes, OPA1 plays an important role in mitochondrial morphology and PTP functioning. These properties may be critical for cardiac function under conditions of chronic pressure overload.
Collapse
Affiliation(s)
- Jerome Piquereau
- INSERM, U-769, Faculté de Pharmacie, Université Paris-Sud, 5 rue J-B Clément, F-92296 Châtenay-Malabry, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Antiangiogenic Effects and Therapeutic Targets of Azadirachta indica Leaf Extract in Endothelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:303019. [PMID: 22461839 PMCID: PMC3296311 DOI: 10.1155/2012/303019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/27/2011] [Indexed: 11/18/2022]
Abstract
Azadirachta indica (common name: neem) leaves have been found to possess immunomodulatory, anti-inflammatory and anti-carcinogenic properties. The present study evaluates anti-angiogenic potential of ethanol extract of neem leaves (EENL) in human umbilical vein endothelial cells (HUVECs). Treatment of HUVECs with EENL inhibited VEGF induced angiogenic response in vitro and in vivo. The in vitro proliferation, invasion and migration of HUVECs were suppressed with EENL. Nuclear fragmentation and abnormally small mitochondria with dilated cristae were observed in EENL treated HUVECs by transmission electron microscopy. Genome-wide mRNA expression profiling after treatment with EENL revealed differentially regulated genes. Expression changes of the genes were validated by quantitative real-time polymerase chain reaction. Additionally, increase in the expression of HMOX1, ATF3 and EGR1 proteins were determined by immunoblotting. Analysis of the compounds in the EENL by mass spectrometry suggests the presence of nimbolide, 2',3'-dehydrosalannol, 6-desacetyl nimbinene and nimolinone. We further confirmed antiproliferative activity of nimbolide and 2',3'-dehydrosalannol in HUVECs. Our results suggest that EENL by regulating the genes involved in cellular development and cell death functions could control cell proliferation, attenuate the stimulatory effects of VEGF and exert antiangiogenic effects. EENL treatment could have a potential therapeutic role during cancer progression.
Collapse
|
64
|
Abstract
Phospholipase D (PLD), a superfamily of signalling enzymes that most commonly generate the lipid second messenger phosphatidic acid, is found in diverse organisms from bacteria to humans and functions in multiple cellular pathways. Since the early 1980s when mammalian PLD activities were first described, most of the important insights concerning PLD function have been gained from studies on cellular models. Reports on physiological and pathophysiological roles for members of the mammalian PLD superfamily are now starting to emerge from genetic models. In this review, we summarize recent findings on PLD functions in these model systems, highlighting newly appreciated connections of the superfamily to cancer, neuronal pathophysiology, cardiovascular topics, spermatogenesis and infectious diseases.
Collapse
Affiliation(s)
- X Peng
- Department of Pharmacology & Center for Developmental Genetics, Stony Brook University, NY, USA
| | | |
Collapse
|
65
|
Oettinghaus B, Licci M, Scorrano L, Frank S. Less than perfect divorces: dysregulated mitochondrial fission and neurodegeneration. Acta Neuropathol 2012; 123:189-203. [PMID: 22179580 DOI: 10.1007/s00401-011-0930-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 12/29/2022]
Abstract
Research efforts during the last decade have deciphered the basic molecular mechanisms governing mitochondrial fusion and fission. We now know that in mammalian cells mitochondrial fission is mediated by the large GTPase dynamin-related protein 1 (Drp1) acting in concert with outer mitochondrial membrane (OMM) proteins such as Fis1, Mff, and Mief1. It is also generally accepted that organelle fusion depends on the action of three large GTPases: mitofusins (Mfn1, Mfn2) mediating membrane fusion on the OMM level, and Opa1 which is essential for inner mitochondrial membrane fusion. Significantly, mutations in Drp1, Mfn2, and Opa1 have causally been linked to neurodegenerative conditions. Despite this knowledge, crucial questions such as to how fission of the inner and outer mitochondrial membranes are coordinated and how these processes are integrated into basic physiological processes such as apoptosis and autophagy remain to be answered in detail. In this review, we will focus on what is currently known about the mechanism of mitochondrial fission and explore the pathophysiological consequences of dysregulated organelle fission with a special focus on neurodegenerative conditions, including Alzheimer's, Huntington's and Parkinson's disease, as well as ischemic brain damage.
Collapse
Affiliation(s)
- Björn Oettinghaus
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Switzerland
| | | | | | | |
Collapse
|
66
|
Abstract
Apoptosis is a process of programmed cell death that serves as a major mechanism for the precise regulation of cell numbers, and as a defense mechanism to remove unwanted and potentially dangerous cells. Studies in nematode, Drosophila and mammals have shown that, although regulation of the cell death machinery is somehow different from one species to another, it is controlled by homologous proteins and involves mitochondria. In mammals, activation of caspases (cysteine proteases that are the main executioners of apoptosis) is under the tight control of the Bcl-2 family proteins, named in reference to the first discovered mammalian cell death regulator. These proteins mainly act by regulating the release of caspases activators from mitochondria. Although for a long time the absence of mitochondrial changes was considered as a hallmark of apoptosis, mitochondria appear today as the central executioner of apoptosis. In this chapter, we present the current view on the mitochondrial pathway of apoptosis with a particular attention to new aspects of the regulation of the Bcl-2 proteins family control of mitochondrial membrane permeabilization: the mechanisms implicated in their mitochondrial targeting and activation during apoptosis, the function(s) of the oncosuppressive protein p53 at the mitochondria and the role of the processes of mitochondrial fusion and fission.
Collapse
|
67
|
Stavru F, Cossart P. Listeria infection modulates mitochondrial dynamics. Commun Integr Biol 2011; 4:364-6. [PMID: 21980582 DOI: 10.4161/cib.4.2.15506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 12/27/2022] Open
Abstract
Mitochondria are highly dynamic organelles that are central to several cellular processes, the most prominent being energy production. Several reports have shown that pathogens target mitochondria in various ways to interfere with apoptosis, but to our knowledge only one study has specifically addressed the effects of infection on mitochondrial dynamics. We focused on this aspect during infection with the intracellular pathogen L. monocytogenes and could recently show that this bacterium profoundly alters mitochondrial dynamics, causing transient fragmentation of the mitochondrial network. This mitochondrial fragmentation occurs early during infection and is specific to pathogenic L. monocytogenes, as it is not observed with other intracellular pathogens. The relevance of mitochondrial dynamics for L. monocytogenes infection is highlighted by the finding that siRNA-mediated inhibition of mitochondrial fusion or fission decreases or increases the efficiency of L. monocytogenes infection, respectively. The main bacterial factor responsible for mitochondrial network disruption was identified as the secreted pore-forming toxin listeriolysin O, which also appeared to impair mitochondrial function. Our work suggests that in order to establish an efficient infection, L. monocytogenes interferes with cellular physiology at early timepoints by transient disruption of mitochondrial dynamics and function.
Collapse
Affiliation(s)
- Fabrizia Stavru
- Institut Pasteur; Unité des Interactions Bactéries-Cellules; Département de Biologie Cellulaire et Infection; Paris, France
| | | |
Collapse
|
68
|
Guards and culprits in the endoplasmic reticulum: glucolipotoxicity and β-cell failure in type II diabetes. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:639762. [PMID: 21977023 PMCID: PMC3184438 DOI: 10.1155/2012/639762] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 08/02/2011] [Accepted: 08/03/2011] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is a cellular organelle responsible for multiple important cellular functions including the biosynthesis and folding of newly synthesized proteins destined for secretion, such as insulin. The ER participates in all branches of metabolism, linking nutrient sensing to cellular signaling. Many pathological and physiological factors perturb ER function and induce ER stress. ER stress triggers an adaptive signaling cascade, called the unfolded protein response (UPR), to relieve the stress. The failure of the UPR to resolve ER stress leads to pathological conditions such as β-cell dysfunction and death, and type II diabetes. However, much less is known about the fine details of the control and regulation of the ER response to hyperglycemia (glucotoxicity), hyperlipidemia (lipotoxicity), and the combination of both (glucolipotoxicity). This paper considers recent insights into how the response is regulated, which may provide clues into the mechanism of ER stress-mediated β-cell dysfunction and death during the progression of glucolipotoxicity-induced type II diabetes.
Collapse
|
69
|
Cohen MM, Amiott EA, Day AR, Leboucher GP, Pryce EN, Glickman MH, McCaffery JM, Shaw JM, Weissman AM. Sequential requirements for the GTPase domain of the mitofusin Fzo1 and the ubiquitin ligase SCFMdm30 in mitochondrial outer membrane fusion. J Cell Sci 2011; 124:1403-10. [PMID: 21502136 DOI: 10.1242/jcs.079293] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of cells to respire requires that mitochondria undergo fusion and fission of their outer and inner membranes. The means by which levels of fusion 'machinery' components are regulated and the molecular details of how fusion occurs are largely unknown. In Saccharomyces cerevisiae, a central component of the mitochondrial outer membrane (MOM) fusion machinery is the mitofusin Fzo1, a dynamin-like GTPase. We demonstrate that an early step in fusion, mitochondrial tethering, is dependent on the Fzo1 GTPase domain. Furthermore, the ubiquitin ligase SCF(Mdm30) (a SKP1-cullin-1-F-box complex that contains Mdm30 as the F-box protein), which targets Fzo1 for ubiquitylation and proteasomal degradation, is recruited to Fzo1 as a consequence of a GTPase-domain-dependent alteration in the mitofusin. Moreover, evidence is provided that neither Mdm30 nor proteasome activity are necessary for tethering of mitochondria. However, both Mdm30 and proteasomes are critical for MOM fusion. To better understand the requirement for the ubiquitin-proteasome system in mitochondrial fusion, we used the N-end rule system of degrons and determined that ongoing degradation of Fzo1 is important for mitochondrial morphology and respiration. These findings suggest a sequence of events in early mitochondrial fusion where Fzo1 GTPase-domain-dependent tethering leads to recruitment of SCF(Mdm30) and ubiquitin-mediated degradation of Fzo1, which facilitates mitochondrial fusion.
Collapse
|
70
|
Pritzwald-Stegmann P, Hoyer A, Kempfert J, Dhein S, Mohr FW. Cardioprotective effects of low-dose cyclosporin A added to histidine-tryptophan-ketoglutarate cardioplegia solution prior to total myocardial ischemia: an in vitro rabbit heart study. Pharmacology 2011; 88:167-73. [PMID: 21952163 DOI: 10.1159/000330099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 06/08/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS Mitochondrial permeability transition pore (MPTP) opening appears to play a key role in myocardial cell survival after ischemia-reperfusion injury and can be inhibited by cyclosporin A (CsA). We investigated whether low-dose CsA added to histidine-tryptophan-ketoglutarate (HTK) cardioplegia solution could improve myocardial protection during longer periods of global myocardial ischemia as encountered during cardiac surgery. METHODS Rabbit hearts perfused on a Langendorff apparatus were arrested with cold HTK solution containing 1 μmol/l CsA. After 90 min of ischemia, the hearts were reperfused and pmax, max dp/dt, min dp/dt, myocardial stiffness, pO(2), coronary flow and heart rate recorded. Tissue ATP and malondialdehyde (MDA) were measured to assess cell energy content and oxidative stress, respectively. RESULTS CsA-treated hearts recovered pmax (p = 0.026), max dp/dt (p = 0.028) and min dp/dt (p = 0.025) more quickly and to a greater extent than non-treated hearts. They required markedly less oxygen (p = 0.041) in the first 10 min of reperfusion. Hearts treated with CsA produced 44% less MDA (1.09 vs. 1.93, p = 0.008), while ATP levels were unchanged. CONCLUSIONS HTK cardioplegia solution containing CsA at a dose well below that expected to cause systemic immunosuppressive effects leads to a significant and timelier recovery of myocardial contractility, while consuming less oxygen.
Collapse
|
71
|
Oettinghaus B, Frank S, Scorrano L. Tonight, the same old, deadly programme: BH3-only proteins, mitochondria and yeast. EMBO J 2011; 30:2754-6. [PMID: 21772325 DOI: 10.1038/emboj.2011.220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Bjorn Oettinghaus
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Genève, Switzerland
| | | | | |
Collapse
|
72
|
Baker MJ, Tatsuta T, Langer T. Quality control of mitochondrial proteostasis. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a007559. [PMID: 21628427 DOI: 10.1101/cshperspect.a007559] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A decline in mitochondrial activity has been associated with aging and is a hallmark of many neurological diseases. Surveillance mechanisms acting at the molecular, organellar, and cellular level monitor mitochondrial integrity and ensure the maintenance of mitochondrial proteostasis. Here we will review the central role of mitochondrial chaperones and proteases, the cytosolic ubiquitin-proteasome system, and the mitochondrial unfolded response in this interconnected quality control network, highlighting the dual function of some proteases in protein quality control within the organelle and for the regulation of mitochondrial fusion and mitophagy.
Collapse
Affiliation(s)
- Michael J Baker
- Institute for Genetics, Center for Molecular Medicine (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
| | | | | |
Collapse
|
73
|
Di Lisa F, Carpi A, Giorgio V, Bernardi P. The mitochondrial permeability transition pore and cyclophilin D in cardioprotection. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:1316-22. [PMID: 21295622 DOI: 10.1016/j.bbamcr.2011.01.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/18/2011] [Accepted: 01/26/2011] [Indexed: 01/12/2023]
Abstract
Mitochondria play a central role in heart energy metabolism and Ca(2+) homeostasis and are involved in the pathogenesis of many forms of heart disease. The body of knowledge on mitochondrial pathophysiology in living cells and organs is increasing, and so is the interest in mitochondria as potential targets for cardioprotection. This critical review will focus on the permeability transition pore (PTP) and its regulation by cyclophilin (CyP) D as effectors of endogenous protective mechanisms and as potential drug targets. The complexity of the regulatory interactions underlying control of mitochondrial function in vivo is beginning to emerge, and although apparently contradictory findings still exist we believe that the network of regulatory protein interactions involving the PTP and CyPs in physiology and pathology will increase our repertoire for therapeutic interventions in heart disease. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.
Collapse
Affiliation(s)
- Fabio Di Lisa
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, 35121 Padova, Italy.
| | | | | | | |
Collapse
|
74
|
Fiebiger W, Olszewski U, Ulsperger E, Geissler K, Hamilton G. In vitro cytotoxicity of novel platinum-based drugs and dichloroacetate against lung carcinoid cell lines. Clin Transl Oncol 2011; 13:43-9. [PMID: 21239354 DOI: 10.1007/s12094-011-0615-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Chemotherapy for advanced well-differentiated carcinoids is characterised by low response rates and short duration of responses. The present study aimed to assess the in vitro activity of novel platinum-based chemotherapeutic drugs in combination with dichloroacetate (DCA), a sensitiser to apoptosis, against lung carcinoid cell lines. METHODS Three permanent cell lines (UMC-11, H727 and H835) were exposed to 14 different established cytotoxic drugs and the novel platinum-based compounds as satraplatin, JM118 and picoplatin in combination with DCA, and viability of the cells was measured using a tetrazoliumbased dye assay. RESULTS With exception of the highly chemoresistant UMC- 11 line, the carcinoid cell lines (H727, H835) were sensitive to the majority of chemotherapeutics in vitro. Among the platinum-based drugs, carboplatin and oxaliplatin showed highest efficacy. H835 cells growing as multicellular spheroids were 2.7-8.7-fold more resistant to picoplatin, satraplatin and its metabolite compared to single cell suspensions. DCA (10 mM) inhibited the growth of UMC- 11 cells by 22% and sensitised these highly resistant cells to carboplatin, satraplatin and JM118 1.4-2.4-fold. CONCLUSION The highly resistant UMC-11 lung carcinoid cells are sensitive to carboplatin, oxaliplatin and the satraplatin metabolite JM118, but multicellular spheroidal growth, as observed in the H835 cell line and pulmonary tumourlets, seems to increase chemoresistance markedly. The activity of carboplatin and JM118 is significantly and specifically increased in combination with the apoptosis sensitiser DCA that promotes mitochondrial respiration over aerobic glycolysis. In summary, among the novel platinum drugs satraplatin has the potential for treatment of lung carcinoids and DCA potentiates the cytotoxicity of selected platinum drugs.
Collapse
Affiliation(s)
- Wolfgang Fiebiger
- Department of Internal Medicine I, Division of Oncology, St. Poelten Hospital, St. Poelten, Austria
| | | | | | | | | |
Collapse
|
75
|
Calì T, Ottolini D, Brini M. Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson's disease. Biofactors 2011; 37:228-40. [PMID: 21674642 DOI: 10.1002/biof.159] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 03/23/2011] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta (SNPC) and the presence of intracytoplasmatic inclusions known as Lewy bodies, largely composed of alpha-synuclein (α-syn). PD is a multifactorial disease and its etiology remains largely elusive. Although more than 90% of the cases are sporadic, mutations in several nuclear encoded genes have been linked to the development of autosomal recessive and dominant familial parkinsonian syndromes (Bogaerts et al. (2008) Genes Brain Behav 7, 129-151), enhancing our understanding of biochemical and cellular mechanisms contributing to the disease. Many cellular mechanisms are thought to be involved in the dopaminergic neuronal death in PD, including oxidative stress, intracellular Ca(2+) homeostasis impairment, and mitochondrial dysfunctions. Furthermore, endoplasmic reticulum (ER) stress together with abnormal protein degradation by the ubiquitin proteasome system is considered to contribute to the PD pathogenesis. This review covers all the aspects related to the molecular mechanisms underlying the interplay between mitochondria, ER, and proteasome system in PD-associated neurodegeneration.
Collapse
Affiliation(s)
- Tito Calì
- Department of Biological Chemistry, University of Padova, Italy
| | | | | |
Collapse
|
76
|
Semenzato M, Cogliati S, Scorrano L. Prohibitin(g) cancer: aurilide and killing by Opa1-dependent cristae remodeling. ACTA ACUST UNITED AC 2011; 18:8-9. [PMID: 21276934 DOI: 10.1016/j.chembiol.2011.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Proapoptotic drugs targeting the mitochondrial Bcl-2 rheostat of apoptosis are tools to selectively kill cancer cells. Sato et al. (2011) expand the available toolkit by identifying the target of the cytotoxic natural product aurilide in the prohibitin Opa1-dependent apoptotic cristae remodeling.
Collapse
Affiliation(s)
- Martina Semenzato
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
| | | | | |
Collapse
|
77
|
Ye XQ, Li Q, Wang GH, Sun FF, Huang GJ, Bian XW, Yu SC, Qian GS. Mitochondrial and energy metabolism-related properties as novel indicators of lung cancer stem cells. Int J Cancer 2011; 129:820-31. [PMID: 21520032 DOI: 10.1002/ijc.25944] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 12/20/2010] [Indexed: 12/26/2022]
Abstract
Energy metabolism is the foundation of survival for all organisms, and mitochondria are the most important energy-supplying organelles in eukaryotic cells. However, the mitochondrial and energy/metabolism-related properties of cancer stem cells (CSCs), the stem cell-like subpopulation in tumor masses, remain unknown. In our study, we compared the masses of mitochondria and mitochondrial DNA (mtDNA), the mitochondrial membrane potential (Δψm), oxygen/glucose consumption, and the concentration of reactive oxygen species (ROS) and ATP between lung CSCs (LCSCs) and non-LCSCs. In addition, the change in features during differentiation was examined. Some mitochondrial and energy metabolism-related properties, such as perinuclear mitochondrial distribution, a lower quantity of mtDNA, higher Δψm, lower oxygen/glucose consumption, and lower intracellular concentrations of ROS and ATP, can be used as indicators of LCSCs.
Collapse
Affiliation(s)
- Xiao-Qun Ye
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Romanello V, Sandri M. Mitochondrial biogenesis and fragmentation as regulators of muscle protein degradation. Curr Hypertens Rep 2011; 12:433-9. [PMID: 20967516 DOI: 10.1007/s11906-010-0157-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondria form a dynamic network that rapidly adapts to cellular energy demand. This adaptation is particularly important in skeletal muscle because of its high metabolic rate. Indeed, muscle energy level is one of the cellular checkpoints that lead either to sustained protein synthesis and growth or protein breakdown and atrophy. Mitochondrial function is affected by changes in shape, number, and localization. The dynamics that control the mitochondrial network, such as biogenesis and fusion, or fragmentation and fission, ultimately affect the signaling pathways that regulate muscle mass. Regular exercise and healthy muscles are important players in the metabolic control of human body. Indeed, a sedentary lifestyle is detrimental for muscle function and is one of the major causes of metabolic disorders such as obesity and diabetes. This article reviews the rapid progress made in the past few years regarding the role of mitochondria in the control of proteolytic systems and in the loss of muscle mass and function.
Collapse
Affiliation(s)
- Vanina Romanello
- Dulbecco Telethon Institute at Venetian Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy
| | | |
Collapse
|
79
|
Wang YC, Lee CM, Lee LC, Tung LC, Hsieh-Li HM, Lee-Chen GJ, Su MT. Mitochondrial dysfunction and oxidative stress contribute to the pathogenesis of spinocerebellar ataxia type 12 (SCA12). J Biol Chem 2011; 286:21742-54. [PMID: 21471219 DOI: 10.1074/jbc.m110.160697] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spinal cerebellar ataxia type 12 (SCA12) has been attributed to the elevated expression of ppp2r2b. To better elucidate the pathomechanism of the neuronal disorder and to search for a pharmacological treatment, Drosophila models of SCA12 were generated by overexpression of a human ppp2r2b and its Drosophila homolog tws. Ectopic expression of ppp2r2b or tws caused various pathological features, including neurodegeneration, apoptosis, and shortened life span. More detailed analysis revealed that elevated ppp2r2b and tws induced fission of mitochondria accompanied by increases in cytosolic reactive oxygen species (ROS), cytochrome c, and caspase 3 activity. Transmission electron microscopy revealed that fragmented mitochondria with disrupted cristae were engulfed by autophagosomes in photoreceptor neurons of flies overexpressing tws. Additionally, transgenic flies were more susceptible to oxidative injury induced by paraquat. By contrast, ectopic Drosophila Sod2 expression and antioxidant treatment reduced ROS and caspase 3 activity and extended the life span of the SCA12 fly model. In summary, our study demonstrates that oxidative stress induced by mitochondrial dysfunction plays a causal role in SCA12, and reduction of ROS is a potential therapeutic intervention for this neuropathy.
Collapse
Affiliation(s)
- Yu-Chun Wang
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | | | | | | | | | | | | |
Collapse
|
80
|
Heeman B, Van den Haute C, Aelvoet SA, Valsecchi F, Rodenburg RJ, Reumers V, Debyser Z, Callewaert G, Koopman WJH, Willems PHGM, Baekelandt V. Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance. J Cell Sci 2011; 124:1115-25. [DOI: 10.1242/jcs.078303] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Loss-of-function mutations in the gene encoding the mitochondrial PTEN-induced putative kinase 1 (PINK1) are a major cause of early-onset familial Parkinson's disease (PD). Recent studies have highlighted an important function for PINK1 in clearing depolarized mitochondria by mitophagy. However, the role of PINK1 in mitochondrial and cellular functioning in physiological conditions is still incompletely understood. Here, we investigate mitochondrial and cellular calcium (Ca2+) homeostasis in PINK1-knockdown and PINK1-knockout mouse cells, both in basal metabolic conditions and after physiological stimulation, using unbiased automated live single-cell imaging in combination with organelle-specific fluorescent probes. Our data reveal that depletion of PINK1 induces moderate fragmentation of the mitochondrial network, mitochondrial membrane depolarization and increased production of reactive oxygen species. This results in reduced uptake of Ca2+ by mitochondria after physiological stimulation. As a consequence, cells with knockdown or knockout of PINK1 display impaired mitochondrial ATP synthesis, which is exacerbated under conditions of increased ATP demand, thereby affecting cytosolic Ca2+ extrusion. The impairment in energy maintenance was confirmed in the brain of PINK1-knockout mice by in vivo bioluminescence imaging. Our findings demonstrate a key role for PINK1 in the regulation of mitochondrial homeostasis and energy metabolism under physiological conditions.
Collapse
Affiliation(s)
- Bavo Heeman
- Laboratory for Neurobiology and Gene Therapy, Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Flanders, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Flanders, Belgium
| | - Sarah-Ann Aelvoet
- Laboratory for Neurobiology and Gene Therapy, Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Flanders, Belgium
| | - Federica Valsecchi
- Department of Biochemistry (286), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 Nijmegen, the Netherlands
- Department of Pediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 Nijmegen, the Netherlands
| | - Richard J. Rodenburg
- Department of Pediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 Nijmegen, the Netherlands
| | - Veerle Reumers
- Laboratory for Neurobiology and Gene Therapy, Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Molecular Medicine, Katholieke Universiteit Leuven and Interdisciplinary Research Centre, Katholieke Universiteit Leuven Campus Kortrijk, 8500 Kortrijk, Flanders, Belgium
| | - Geert Callewaert
- Research Group Neurodegeneration, Interdisciplinary Research Centre, Katholieke Universiteit Leuven Campus Kortrijk, 8500 Kortrijk, Flanders, Belgium
| | - Werner J. H. Koopman
- Department of Biochemistry (286), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 Nijmegen, the Netherlands
| | - Peter H. G. M. Willems
- Department of Biochemistry (286), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 Nijmegen, the Netherlands
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Flanders, Belgium
| |
Collapse
|
81
|
Merrill RA, Dagda RK, Dickey AS, Cribbs JT, Green SH, Usachev YM, Strack S. Mechanism of neuroprotective mitochondrial remodeling by PKA/AKAP1. PLoS Biol 2011; 9:e1000612. [PMID: 21526220 PMCID: PMC3079583 DOI: 10.1371/journal.pbio.1000612] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 03/10/2011] [Indexed: 11/29/2022] Open
Abstract
Mitochondrial shape is determined by fission and fusion reactions catalyzed by large GTPases of the dynamin family, mutation of which can cause neurological dysfunction. While fission-inducing protein phosphatases have been identified, the identity of opposing kinase signaling complexes has remained elusive. We report here that in both neurons and non-neuronal cells, cAMP elevation and expression of an outer-mitochondrial membrane (OMM) targeted form of the protein kinase A (PKA) catalytic subunit reshapes mitochondria into an interconnected network. Conversely, OMM-targeting of the PKA inhibitor PKI promotes mitochondrial fragmentation upstream of neuronal death. RNAi and overexpression approaches identify mitochondria-localized A kinase anchoring protein 1 (AKAP1) as a neuroprotective and mitochondria-stabilizing factor in vitro and in vivo. According to epistasis studies with phosphorylation site-mutant dynamin-related protein 1 (Drp1), inhibition of the mitochondrial fission enzyme through a conserved PKA site is the principal mechanism by which cAMP and PKA/AKAP1 promote both mitochondrial elongation and neuronal survival. Phenocopied by a mutation that slows GTP hydrolysis, Drp1 phosphorylation inhibits the disassembly step of its catalytic cycle, accumulating large, slowly recycling Drp1 oligomers at the OMM. Unopposed fusion then promotes formation of a mitochondrial reticulum, which protects neurons from diverse insults.
Collapse
Affiliation(s)
- Ronald A. Merrill
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United
States of America
| | - Ruben K. Dagda
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United
States of America
| | - Audrey S. Dickey
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United
States of America
| | - J. Thomas Cribbs
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United
States of America
| | - Steven H. Green
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa,
United States of America
| | - Yuriy M. Usachev
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United
States of America
| | - Stefan Strack
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United
States of America
| |
Collapse
|
82
|
Liu X, Hajnóczky G. Altered fusion dynamics underlie unique morphological changes in mitochondria during hypoxia-reoxygenation stress. Cell Death Differ 2011; 18:1561-72. [PMID: 21372848 DOI: 10.1038/cdd.2011.13] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Functional states of mitochondria are often reflected in characteristic mitochondrial morphology. One of the most fundamental stress conditions, hypoxia-reoxygenation has been known to cause impaired mitochondrial function accompanied by structural abnormalities, but the underlying mechanisms need further investigation. Here, we monitored bioenergetics and mitochondrial fusion-fission in real time to determine how changes in mitochondrial dynamics contribute to structural abnormalities during hypoxia-reoxygenation. Hypoxia-reoxygenation resulted in the appearance of shorter mitochondria and a decrease in fusion activity. This fusion inhibition was a result of impaired ATP synthesis rather than Opa1 cleavage. A striking feature that appeared during hypoxia in glucose-free and during reoxygenation in glucose-containing medium was the formation of donut-shaped (toroidal) mitochondria. Donut formation was triggered by opening of the permeability transition pore or K(+) channels, which in turn caused mitochondrial swelling and partial detachment from the cytoskeleton. This then favored anomalous fusion events (autofusion and fusion at several sites among 2-3 mitochondria) to produce the characteristic donuts. Donuts effectively tolerate matrix volume increases and give rise to offspring that can regain ΔΨ(m). Thus, the metabolic stress during hypoxia-reoxygenation alters mitochondrial morphology by inducing distinct patterns of mitochondrial dynamics, which includes processes that could aid mitochondrial adaptation and functional recovery.
Collapse
Affiliation(s)
- X Liu
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|
83
|
Papanicolaou KN, Khairallah RJ, Ngoh GA, Chikando A, Luptak I, O'Shea KM, Riley DD, Lugus JJ, Colucci WS, Lederer WJ, Stanley WC, Walsh K. Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol Cell Biol 2011; 31:1309-28. [PMID: 21245373 PMCID: PMC3067905 DOI: 10.1128/mcb.00911-10] [Citation(s) in RCA: 297] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/10/2010] [Accepted: 12/17/2010] [Indexed: 11/20/2022] Open
Abstract
Mitofusin-2 (Mfn-2) is a dynamin-like protein that is involved in the rearrangement of the outer mitochondrial membrane. Research using various experimental systems has shown that Mfn-2 is a mediator of mitochondrial fusion, an evolutionarily conserved process responsible for the surveillance of mitochondrial homeostasis. Here, we find that cardiac myocyte mitochondria lacking Mfn-2 are pleiomorphic and have the propensity to become enlarged. Consistent with an underlying mild mitochondrial dysfunction, Mfn-2-deficient mice display modest cardiac hypertrophy accompanied by slight functional deterioration. The absence of Mfn-2 is associated with a marked delay in mitochondrial permeability transition downstream of Ca(2+) stimulation or due to local generation of reactive oxygen species (ROS). Consequently, Mfn-2-deficient adult cardiomyocytes are protected from a number of cell death-inducing stimuli and Mfn-2 knockout hearts display better recovery following reperfusion injury. We conclude that in cardiac myocytes, Mfn-2 controls mitochondrial morphogenesis and serves to predispose cells to mitochondrial permeability transition and to trigger cell death.
Collapse
Affiliation(s)
- Kyriakos N. Papanicolaou
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Ramzi J. Khairallah
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Gladys A. Ngoh
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Aristide Chikando
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Ivan Luptak
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Karen M. O'Shea
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Dushon D. Riley
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Jesse J. Lugus
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Wilson S. Colucci
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - W. Jonathan Lederer
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - William C. Stanley
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| | - Kenneth Walsh
- Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, W611, Boston, Massachusetts 02118, Division of Cardiology and Department of Medicine, University of Maryland, 20 Penn Street, HSF2, Room S022, Baltimore, Maryland 21201, Cardiovascular Medicine Section and Myocardial Biology Unit, Boston University Medical Center, 715 Albany Street, X704, Boston, Massachusetts 02118, Center for Biomedical Engineering and Technology, University of Maryland Baltimore, 725 W. Lombard Street, Baltimore, Maryland 21201
| |
Collapse
|
84
|
Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice. Proc Natl Acad Sci U S A 2011; 108:4135-40. [PMID: 21368114 DOI: 10.1073/pnas.1019581108] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A causal role for mitochondrial DNA (mtDNA) mutagenesis in mammalian aging is supported by recent studies demonstrating that the mtDNA mutator mouse, harboring a defect in the proofreading-exonuclease activity of mitochondrial polymerase gamma, exhibits accelerated aging phenotypes characteristic of human aging, systemic mitochondrial dysfunction, multisystem pathology, and reduced lifespan. Epidemiologic studies in humans have demonstrated that endurance training reduces the risk of chronic diseases and extends life expectancy. Whether endurance exercise can attenuate the cumulative systemic decline observed in aging remains elusive. Here we show that 5 mo of endurance exercise induced systemic mitochondrial biogenesis, prevented mtDNA depletion and mutations, increased mitochondrial oxidative capacity and respiratory chain assembly, restored mitochondrial morphology, and blunted pathological levels of apoptosis in multiple tissues of mtDNA mutator mice. These adaptations conferred complete phenotypic protection, reduced multisystem pathology, and prevented premature mortality in these mice. The systemic mitochondrial rejuvenation through endurance exercise promises to be an effective therapeutic approach to mitigating mitochondrial dysfunction in aging and related comorbidities.
Collapse
|
85
|
Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S, Youle RJ, Mihara K. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. ACTA ACUST UNITED AC 2011; 191:1141-58. [PMID: 21149567 PMCID: PMC3002033 DOI: 10.1083/jcb.201007152] [Citation(s) in RCA: 847] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cytoplasmic dynamin-related guanosine triphosphatase Drp1 is recruited to mitochondria and mediates mitochondrial fission. Although the mitochondrial outer membrane (MOM) protein Fis1 is thought to be a Drp1 receptor, this has not been confirmed. To analyze the mechanism of Drp1 recruitment, we manipulated the expression of mitochondrial fission and fusion proteins and demonstrated that (a) mitochondrial fission factor (Mff) knockdown released the Drp1 foci from the MOM accompanied by network extension, whereas Mff overexpression stimulated mitochondrial recruitment of Drp1 accompanied by mitochondrial fission; (b) Mff-dependent mitochondrial fission proceeded independent of Fis1; (c) a Mff mutant with the plasma membrane-targeted CAAX motif directed Drp1 to the target membrane; (d) Mff and Drp1 physically interacted in vitro and in vivo; (e) exogenous stimuli-induced mitochondrial fission and apoptosis were compromised by knockdown of Drp1 and Mff but not Fis1; and (f) conditional knockout of Fis1 in colon carcinoma cells revealed that it is dispensable for mitochondrial fission. Thus, Mff functions as an essential factor in mitochondrial recruitment of Drp1.
Collapse
Affiliation(s)
- Hidenori Otera
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
86
|
Seo AY, Joseph AM, Dutta D, Hwang JCY, Aris JP, Leeuwenburgh C. New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci 2011; 123:2533-42. [PMID: 20940129 DOI: 10.1242/jcs.070490] [Citation(s) in RCA: 377] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A decline in mitochondrial function plays a key role in the aging process and increases the incidence of age-related disorders. A deeper understanding of the intricate nature of mitochondrial dynamics, which is described as the balance between mitochondrial fusion and fission, has revealed that functional and structural alterations in mitochondrial morphology are important factors in several key pathologies associated with aging. Indeed, a recent wave of studies has demonstrated the pleiotropic role of fusion and fission proteins in numerous cellular processes, including mitochondrial metabolism, redox signaling, the maintenance of mitochondrial DNA and cell death. Additionally, mitochondrial fusion and fission, together with autophagy, have been proposed to form a quality-maintenance mechanism that facilitates the removal of damaged mitochondria from the cell, a process that is particularly important to forestall aging. Thus, dysfunctional regulation of mitochondrial dynamics might be one of the intrinsic causes of mitochondrial dysfunction, which contributes to oxidative stress and cell death during the aging process. In this Commentary, we discuss recent studies that have converged at a consensus regarding the involvement of mitochondrial dynamics in key cellular processes, and introduce a possible link between abnormal mitochondrial dynamics and aging.
Collapse
Affiliation(s)
- Arnold Y Seo
- Department of Aging and Geriatric Research, College of Medicine, Institute on Aging, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | |
Collapse
|
87
|
Ulivieri C. Cell death: Insights into the ultrastructure of mitochondria. Tissue Cell 2010; 42:339-47. [DOI: 10.1016/j.tice.2010.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 10/18/2010] [Indexed: 02/08/2023]
|
88
|
Chang C, Zhu YQ, Mei JJ, Liu SQ, Luo J. Involvement of mitochondrial pathway in NCTD-induced cytotoxicity in human hepG2 cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:145. [PMID: 21059274 PMCID: PMC2987898 DOI: 10.1186/1756-9966-29-145] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 11/09/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND Norcantharidin, the demethylated analog of cantharidin derived from a traditional Chinese medicine, Mylabris, has been used in the treatment of anti-cancer effects. However, the detailed mechanisms underlying this process are generally unclear. The aim of this study was to investigate the mechanism of NCTD-induced apoptosis in HepG2 cells. METHODS The cytotoxicity was measured by MTT assay for cellular viability and by flow cytometry. The mitochondrial membrane potential and reactive oxygen species production was evaluated by flow cytometry analysis. The role of caspase activities were assayed using caspase apoptosis detection kit . Western blot analysis was used to evaluate the level of Cyto-C, Bcl-2, Bax, Bid, caspase 3, -9, -8 and PARP expression RESULTS After treatment with NCTD, a decrease in the viability of HepG2 cells and increase in apoptosis were observed. NCTD-induced apoptosis was accompanied by an increase in ROS production, loss of mitochondrial membrane potential and release of cytochrome c(cyto-c) from the mitochondria to the cytosol and down-regulation of anti-apoptotic protein Bcl-2 levels with concurrent up-regulation in pro-apoptotic protein Bax levels. However, another pro-apoptotic molecule, Bid, showed no change in such same treatment. NCTD-increased activity of caspase 9,caspase 3 and the subsequent cleavage caspase substrate PARP were also observed. The expression levels of pro-caspase-8 were not changed after NCTD treatment. CONCLUSION These results indicate that NCTD induced cytotoxicity in HepG2 cells by apoptosis, which is mediated through ROS generation and mitochondrial pathway.
Collapse
Affiliation(s)
- Cheng Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | | | | | | | | |
Collapse
|
89
|
Cereghetti GM, Costa V, Scorrano L. Inhibition of Drp1-dependent mitochondrial fragmentation and apoptosis by a polypeptide antagonist of calcineurin. Cell Death Differ 2010; 17:1785-94. [PMID: 20489733 PMCID: PMC3000862 DOI: 10.1038/cdd.2010.61] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
During apoptosis, mitochondria lose their membrane potential and undergo fragmentation around the time of release of cytochrome c. Apoptotic fission is at least in part sustained by the translocation of dynamin-related protein 1 (Drp1), normally located in the cytosol, to mitochondria. This process depends on dephosphorylation of Drp1 by the phosphatase calcineurin. Here, we report the identification of a novel inhibitor of this process. A polypeptide (PPD1) from the immunophilin FKBP52 inhibits calcineurin activation triggered by mitochondrial dysfunction. PPD1 blocks Drp1 translocation to mitochondria and fragmentation of the organelle. PPD1 delays apoptosis by intrinsic stimuli by preventing fragmentation and release of cytochrome c. Cells expressing PPD1 display enhanced clonogenic ability after exposure to staurosporine. A genetic analysis revealed that the activity of PPD1 is independent of the BH3-only protein BAD, another target of calcineurin during apoptosis, and is not additive to inhibition of Drp1. Thus, PPD1 is a novel inhibitor of apoptosis that elucidates the function of calcineurin-dependent mitochondrial fragmentation in the amplification of cell death.
Collapse
Affiliation(s)
- GM Cereghetti
- Department of Cellular Physiology and Metabolism, University of Geneva, 1 Rue M. Servet, Geneva, Switzerland
| | - V Costa
- Department of Cellular Physiology and Metabolism, University of Geneva, 1 Rue M. Servet, Geneva, Switzerland
| | - L Scorrano
- Department of Cellular Physiology and Metabolism, University of Geneva, 1 Rue M. Servet, Geneva, Switzerland
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Via Orus 2, Padova 35129, Italy
| |
Collapse
|
90
|
Salhab M, Patani N, Jiang W, Mokbel K. High TIMM17A expression is associated with adverse pathological and clinical outcomes in human breast cancer. Breast Cancer 2010; 19:153-60. [DOI: 10.1007/s12282-010-0228-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 09/01/2010] [Indexed: 02/04/2023]
|
91
|
Ona T, Shibata J. Advanced dynamic monitoring of cellular status using label-free and non-invasive cell-based sensing technology for the prediction of anticancer drug efficacy. Anal Bioanal Chem 2010; 398:2505-33. [DOI: 10.1007/s00216-010-4223-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 08/24/2010] [Accepted: 09/13/2010] [Indexed: 12/26/2022]
|
92
|
Mitochondrial shape changes: orchestrating cell pathophysiology. EMBO Rep 2010; 11:678-84. [PMID: 20725092 DOI: 10.1038/embor.2010.115] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 07/15/2010] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are highly dynamic organelles, the location, size and distribution of which are controlled by a family of proteins that modulate mitochondrial fusion and fission. Recent evidence indicates that mitochondrial morphology is crucial for cell physiology, as changes in mitochondrial shape have been linked to neurodegeneration, calcium signalling, lifespan and cell death. Because immune cells contain few mitochondria, these organelles have been considered to have only a marginal role in this physiological context-which is conversely well characterized from the point of view of signalling. Nevertheless, accumulating evidence shows that mitochondrial dynamics have an impact on the migration and activation of immune cells and on the innate immune response. Here, we discuss the roles of mitochondrial dynamics in cell pathophysiology and consider how studying dynamics in the context of the immune system could increase our knowledge about the role of dynamics in key signalling cascades.
Collapse
|
93
|
Dimethylaminopyridine derivatives of lupane triterpenoids are potent disruptors of mitochondrial structure and function. Bioorg Med Chem 2010; 18:6080-8. [DOI: 10.1016/j.bmc.2010.06.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 06/16/2010] [Accepted: 06/18/2010] [Indexed: 01/11/2023]
|
94
|
Bcl-2 family interaction with the mitochondrial morphogenesis machinery. Cell Death Differ 2010; 18:235-47. [PMID: 20671748 DOI: 10.1038/cdd.2010.89] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The regulation of both mitochondrial dynamics and apoptosis is key for maintaining the health of a cell. Bcl-2 family proteins, central in apoptosis regulation, also have roles in the maintenance of the mitochondrial network. Here we report that Bax and Bak participate in the regulation of mitochondrial fusion in mouse embryonic fibroblasts, primary mouse neurons and human colon carcinoma cells. To assess how Bcl-2 family members may regulate mitochondrial morphogenesis, we determined the binding of a series of chimeras between Bcl-xL and Bax to the mitofusins, mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2). One chimera (containing helix 5 (H5) of Bax replacing H5 of Bcl-xL (Bcl-xL/Bax H5)) co-immunoprecipitated with Mfn1 and Mfn2 significantly better than either wild-type Bax or Bcl-xL. Expression of Bcl-xL/Bax H5 in cells reduced the mobility of Mfn1 and Mfn2 and colocalized with ectopic Mfn1 and Mfn2, as well as endogenous Mfn2 to a greater extent than wild-type Bax. Ultimately, Bcl-xL/Bax H5 induced substantial mitochondrial fragmentation in healthy cells. Therefore, we propose that Bcl-xL/Bax H5 disturbs mitochondrial morphology by binding and inhibiting Mfn1 and Mfn2 activity, supporting the hypothesis that Bcl-2 family members have the capacity to regulate mitochondrial morphology through binding to the mitofusins in healthy cells.
Collapse
|
95
|
Burchell VS, Gandhi S, Deas E, Wood NW, Abramov AY, Plun-Favreau H. Targeting mitochondrial dysfunction in neurodegenerative disease: Part II. Expert Opin Ther Targets 2010; 14:497-511. [PMID: 20334487 DOI: 10.1517/14728221003730434] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
IMPORTANCE OF THE FIELD With improvements in life expectancy over the past decades, the incidence of neurodegenerative disease has dramatically increased and new therapeutic strategies are urgently needed. One possible approach is to target mitochondrial dysfunction, which has been implicated in the pathogenesis of numerous neurodegenerative disorders. AREAS COVERED IN THIS REVIEW This review examines the role of mitochondrial dysfunction in neurodegeneration, drawing examples from common diseases such as Alzheimer's disease and rarer familial disorders such as Charcot-Marie-Tooth. The review is provided in two parts. In part I we discussed the mitochondrial defects which have been most extensively researched (oxidative stress, bioenergetic dysfunction, calcium mishandling). We focus now on those defects which have more recently been implicated in neurodegeneration; in mitochondrial fusion/fission, protein import, protein quality control, kinase signalling and opening of the permeability transition pore. WHAT THE READER WILL GAIN An examination of mitochondrial defects observed in neurodegeneration, and existing and possible future therapies to target these defects. TAKE HOME MESSAGE The mitochondrially-targeted therapeutics that have reached clinical trials so far have produced encouraging but largely inconclusive results. Increasing understanding of mitochondrial dysfunction has, however, led to preclinical work focusing on novel approaches, which has generated exciting preliminary data.
Collapse
Affiliation(s)
- Victoria S Burchell
- UCL Institute of Neurology, Department of Molecular Neuroscience, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | |
Collapse
|
96
|
Rossi S, Bernardi G, Centonze D. The endocannabinoid system in the inflammatory and neurodegenerative processes of multiple sclerosis and of amyotrophic lateral sclerosis. Exp Neurol 2010; 224:92-102. [DOI: 10.1016/j.expneurol.2010.03.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 03/25/2010] [Indexed: 11/25/2022]
|
97
|
Grohm J, Plesnila N, Culmsee C. Bid mediates fission, membrane permeabilization and peri-nuclear accumulation of mitochondria as a prerequisite for oxidative neuronal cell death. Brain Behav Immun 2010; 24:831-8. [PMID: 19961923 DOI: 10.1016/j.bbi.2009.11.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 11/27/2009] [Accepted: 11/27/2009] [Indexed: 11/25/2022] Open
Abstract
Mitochondria are highly dynamic organelles that undergo permanent fusion and fission, a process that is important for mitochondrial function and cellular survival. Emerging evidence suggests that oxidative stress disturbs mitochondrial morphology dynamics, resulting in detrimental mitochondrial fragmentation. In particular, such fatal mitochondrial fission has been detected in neurons exposed to oxidative stress, suggesting mitochondrial dynamics as a key feature in intrinsic death pathways. However, the regulation of mitochondrial fission in neurons exposed to lethal stress is largely unknown. Here, we used a model of glutamate toxicity in HT-22 cells for investigating mitochondrial fission and fusion in neurons exposed to oxidative stress. In these immortalized hippocampal neurons, glutamate induces glutathione depletion and increased formation of reactive oxygen species (ROS). Glutamate toxicity resulted in mitochondrial fragmentation and peri-nuclear accumulation of the organelles. Further, mitochondrial fission was associated with loss of mitochondrial outer membrane potential (MOMP). The Bid-inhibitor BI-6c9 prevented MOMP and mitochondrial fission, and protected the cells from cell death. In conclusion, oxidative stress induced by glutamate causes mitochondrial translocation of Bid thereby inducing mitochondrial fission and associated mitochondrial cell death pathways. Inhibiting regulators of pathological mitochondrial fragmentation is proposed as an efficient strategy of neuroprotection.
Collapse
Affiliation(s)
- Julia Grohm
- Institut für Pharmakologie und Klinische Pharmazie, Fachbereich Pharmazie, Philipps-Universität Marburg, Marburg, Germany
| | | | | |
Collapse
|
98
|
Trudeau K, Molina AJA, Guo W, Roy S. High glucose disrupts mitochondrial morphology in retinal endothelial cells: implications for diabetic retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:447-55. [PMID: 20522647 DOI: 10.2353/ajpath.2010.091029] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mitochondrial dysfunction has been implicated in diabetic complications; however, it is unknown whether hyperglycemia affects mitochondrial morphology and metabolic capacity during development of diabetic retinopathy. We investigated high glucose (HG) effects on mitochondrial morphology, membrane potential heterogeneity, cellular oxygen consumption, extracellular acidification, cytochrome c release, and apoptosis in retinal endothelial cells. Rat retinal endothelial cells grown in normal (5 mmol/L) or HG (30 mmol/L) medium and double-stained with MitoTracker Green and tetramethylrhodamine-ethyl-ester-perchlorate were examined live with confocal microscopy. Images were analyzed for mitochondrial shape change using Form Factor and Aspect Ratio values, and membrane potential heterogeneity, using deviation of fluorescence intensity values. Rat retinal endothelial cells grown in normal or HG medium were analyzed for transient changes in oxygen consumption and extracellular acidification using an XF-24 flux analyzer, cytochrome c release by Western blot, and apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. Rat retinal endothelial cells grown in HG medium exhibited increased mitochondrial fragmentation concurrent with membrane potential heterogeneity. Metabolic analysis showed increased extracellular acidification in HG with reduced steady state/maximal oxygen consumption. Cytochrome c and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells were also increased in HG. Thus, HG-induced mitochondrial fragmentation with concomitant increase in membrane potential heterogeneity, reduced oxygen consumption, and cytochrome c release may underlie apoptosis of retinal endothelial cells as seen in diabetic retinopathy.
Collapse
Affiliation(s)
- Kyle Trudeau
- Department of Medicine, Boston University School of Medicine, 650 Albany Street, Boston 02118, USA
| | | | | | | |
Collapse
|
99
|
Giorgio V, Soriano ME, Basso E, Bisetto E, Lippe G, Forte MA, Bernardi P. Cyclophilin D in mitochondrial pathophysiology. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1797:1113-8. [PMID: 20026006 PMCID: PMC2888675 DOI: 10.1016/j.bbabio.2009.12.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 11/27/2009] [Accepted: 12/04/2009] [Indexed: 11/24/2022]
Abstract
Cyclophilins are a family of peptidyl-prolyl cis-trans isomerases whose enzymatic activity can be inhibited by cyclosporin A. Sixteen cyclophilins have been identified in humans, and cyclophilin D is a unique isoform that is imported into the mitochondrial matrix. Here we shall (i) review the best characterized functions of cyclophilin D in mitochondria, i.e. regulation of the permeability transition pore, an inner membrane channel that plays an important role in the execution of cell death; (ii) highlight new regulatory interactions that are emerging in the literature, including the modulation of the mitochondrial F1FO ATP synthase through an interaction with the lateral stalk of the enzyme complex; and (iii) discuss diseases where cyclophilin D plays a pathogenetic role that makes it a suitable target for pharmacologic intervention.
Collapse
Affiliation(s)
- Valentina Giorgio
- Dept of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Italy
| | | | - Emy Basso
- Dept of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Italy
| | - Elena Bisetto
- Dept of Biomedical Sciences and Technologies, University of Udine, Italy
| | | | - Michael A. Forte
- Vollum Institute, Oregon Health and Sciences University, Portland, Oregon
| | - Paolo Bernardi
- Dept of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
100
|
Frantz MC, Wipf P. Mitochondria as a target in treatment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:462-75. [PMID: 20175113 PMCID: PMC2920596 DOI: 10.1002/em.20554] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Mitochondria are key organelles that perform essential cellular functions and play pivotal roles in cell death and survival signaling. Hence, they represent an attractive target for drugs to treat metabolic, degenerative, and hyperproliferative diseases. Targeting mitochondria with organelle-specific agents or prodrugs has proven to be an effective therapeutic strategy. More specifically, controlling the cellular ROS balance via selective delivery of an antioxidant "payload" into mitochondria is an elegant emerging therapeutic concept. Herein, we review the recent medicinal chemistry and clinical data of these exploratory strategies, which should point the way for future generations of therapeutics.
Collapse
Affiliation(s)
- Marie-Céline Frantz
- Correspondence to: Dr. Peter Wipf, Department of Chemistry, Parkman Ave. CSC 1301, University of Pittsburgh, Pittsburgh, PA 15260, USA, ; or Dr. Marie-Céline Frantz, Department of Chemistry, Parkman Ave. CSC 1310, University of Pittsburgh, Pittsburgh, PA 15260, USA,
| | - Peter Wipf
- Correspondence to: Dr. Peter Wipf, Department of Chemistry, Parkman Ave. CSC 1301, University of Pittsburgh, Pittsburgh, PA 15260, USA, ; or Dr. Marie-Céline Frantz, Department of Chemistry, Parkman Ave. CSC 1310, University of Pittsburgh, Pittsburgh, PA 15260, USA,
| |
Collapse
|