51
|
Schultz KJ, Colby SM, Lin VS, Wright AT, Renslow RS. Ligand- and Structure-Based Analysis of Deep Learning-Generated Potential α2a Adrenoceptor Agonists. J Chem Inf Model 2021; 61:481-492. [PMID: 33404240 DOI: 10.1021/acs.jcim.0c01019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The α2a adrenoceptor is a medically relevant subtype of the G protein-coupled receptor family. Unfortunately, high-throughput techniques aimed at producing novel drug leads for this receptor have been largely unsuccessful because of the complex pharmacology of adrenergic receptors. As such, cutting-edge in silico ligand- and structure-based assessment and de novo deep learning methods are well positioned to provide new insights into protein-ligand interactions and potential active compounds. In this work, we (i) collect a dataset of α2a adrenoceptor agonists and provide it as a resource for the drug design community; (ii) use the dataset as a basis to generate candidate-active structures via deep learning; and (iii) apply computational ligand- and structure-based analysis techniques to gain new insights into α2a adrenoceptor agonists and assess the quality of the computer-generated compounds. We further describe how such assessment techniques can be applied to putative chemical probes with a case study involving proposed medetomidine-based probes.
Collapse
Affiliation(s)
- Katherine J Schultz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sean M Colby
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Vivian S Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aaron T Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| | - Ryan S Renslow
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| |
Collapse
|
52
|
Duke SO, Pan Z, Bajsa-Hirschel J. Proving the Mode of Action of Phytotoxic Phytochemicals. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1756. [PMID: 33322386 PMCID: PMC7763512 DOI: 10.3390/plants9121756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Abstract
Knowledge of the mode of action of an allelochemical can be valuable for several reasons, such as proving and elucidating the role of the compound in nature and evaluating its potential utility as a pesticide. However, discovery of the molecular target site of a natural phytotoxin can be challenging. Because of this, we know little about the molecular targets of relatively few allelochemicals. It is much simpler to describe the secondary effects of these compounds, and, as a result, there is much information about these effects, which usually tell us little about the mode of action. This review describes the many approaches to molecular target site discovery, with an attempt to point out the pitfalls of each approach. Clues from molecular structure, phenotypic effects, physiological effects, omics studies, genetic approaches, and use of artificial intelligence are discussed. All these approaches can be confounded if the phytotoxin has more than one molecular target at similar concentrations or is a prophytotoxin, requiring structural alteration to create an active compound. Unequivocal determination of the molecular target site requires proof of activity on the function of the target protein and proof that a resistant form of the target protein confers resistance to the target organism.
Collapse
Affiliation(s)
- Stephen O. Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38655, USA
| | - Zhiqiang Pan
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, Oxford, MS 38655, USA; (Z.P.); (J.B.-H.)
| | - Joanna Bajsa-Hirschel
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, Oxford, MS 38655, USA; (Z.P.); (J.B.-H.)
| |
Collapse
|
53
|
Zhang X. Chemical Proteomics for Expanding the Druggability of Human Disease. Chembiochem 2020; 21:3319-3320. [PMID: 32964553 DOI: 10.1002/cbic.202000495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/10/2020] [Indexed: 01/01/2023]
Abstract
Over the past decade, chemical proteomics has emerged as a powerful technique to understand small molecule and protein function in the physiological system and plays a key role in unravelling the cellular targets of pharmacological modulators. Chemical proteomics that integrates activity-based protein profiling (ABPP) with mass spectrometry has been introduced to evaluate small-molecule and protein interaction and expand the druggable proteome. A much larger fraction of the human proteome can now be targeted by small molecules than estimated by past predictions of protein druggability.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- The Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92307, USA
| |
Collapse
|
54
|
Reicher A, Koren A, Kubicek S. Pooled protein tagging, cellular imaging, and in situ sequencing for monitoring drug action in real time. Genome Res 2020; 30:1846-1855. [PMID: 33203764 PMCID: PMC7706735 DOI: 10.1101/gr.261503.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
The levels and subcellular localizations of proteins regulate critical aspects of many cellular processes and can become targets of therapeutic intervention. However, high-throughput methods for the discovery of proteins that change localization either by shuttling between compartments, by binding larger complexes, or by localizing to distinct membraneless organelles are not available. Here we describe a scalable strategy to characterize effects on protein localizations and levels in response to different perturbations. We use CRISPR-Cas9-based intron tagging to generate cell pools expressing hundreds of GFP-fusion proteins from their endogenous promoters and monitor localization changes by time-lapse microscopy followed by clone identification using in situ sequencing. We show that this strategy can characterize cellular responses to drug treatment and thus identify nonclassical effects such as modulation of protein–protein interactions, condensate formation, and chemical degradation.
Collapse
Affiliation(s)
- Andreas Reicher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Anna Koren
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria.,Christian Doppler Laboratory for Chemical Epigenetics and Antiinfectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| |
Collapse
|
55
|
Schröder M, Filippakopoulos P, Schwalm MP, Ferrer CA, Drewry DH, Knapp S, Chaikuad A. Crystal Structure and Inhibitor Identifications Reveal Targeting Opportunity for the Atypical MAPK Kinase ERK3. Int J Mol Sci 2020; 21:E7953. [PMID: 33114754 PMCID: PMC7663056 DOI: 10.3390/ijms21217953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/30/2022] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3), known also as mitogen-activated protein kinase 6 (MAPK6), is an atypical member of MAPK kinase family, which has been poorly studied. Little is known regarding its function in biological processes, yet this atypical kinase has been suggested to play important roles in the migration and invasiveness of certain cancers. The lack of tools, such as a selective inhibitor, hampers the study of ERK3 biology. Here, we report the crystal structure of the kinase domain of this atypical MAPK kinase, providing molecular insights into its distinct ATP binding pocket compared to the classical MAPK ERK2, explaining differences in their inhibitor binding properties. Medium-scale small molecule screening identified a number of inhibitors, several of which unexpectedly exhibited remarkably high inhibitory potencies. The crystal structure of CLK1 in complex with CAF052, one of the most potent inhibitors identified for ERK3, revealed typical type-I binding mode of the inhibitor, which by structural comparison could likely be maintained in ERK3. Together with the presented structural insights, these diverse chemical scaffolds displaying both reversible and irreversible modes of action, will serve as a starting point for the development of selective inhibitors for ERK3, which will be beneficial for elucidating the important functions of this understudied kinase.
Collapse
Affiliation(s)
- Martin Schröder
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany;
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany;
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK;
| | - Martin P. Schwalm
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany;
| | - Carla A. Ferrer
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; (C.A.F.); (D.H.D.)
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; (C.A.F.); (D.H.D.)
| | - Stefan Knapp
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany;
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany;
- German Cancer network DKTK and Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Apirat Chaikuad
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany;
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany;
| |
Collapse
|
56
|
Sukumaran A, Woroszchuk E, Ross T, Geddes-McAlister J. Proteomics of host-bacterial interactions: new insights from dual perspectives. Can J Microbiol 2020; 67:213-225. [PMID: 33027598 DOI: 10.1139/cjm-2020-0324] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass-spectrometry (MS)-based proteomics is a powerful and robust platform for studying the interactions between biological systems during health and disease. Bacterial infections represent a significant threat to global health and drive the pursuit of novel therapeutic strategies to combat emerging and resistant pathogens. During infection, the interplay between a host and pathogen determines the ability of the microbe to survive in a hostile environment and promotes an immune response by the host as a protective measure. It is the protein-level changes from either biological system that define the outcome of infection, and MS-based proteomics provides a rapid and effective platform to identify such changes. In particular, proteomics detects alterations in protein abundance, quantifies protein secretion and (or) release, measures an array of post-translational modifications that influence signaling cascades, and profiles protein-protein interactions through protein complex and (or) network formation. Such information provides new insight into the role of known and novel bacterial effectors, as well as the outcome of host cell activation. In this Review, we highlight the diverse applications of MS-based proteomics in profiling the relationship between bacterial pathogens and the host. Our work identifies a plethora of strategies for exploring mechanisms of infection from dual perspectives (i.e., host and pathogen), and we suggest opportunities to extrapolate the current knowledgebase to other biological systems for applications in therapeutic discovery.
Collapse
Affiliation(s)
- Arjun Sukumaran
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada.,Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Elizabeth Woroszchuk
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada.,Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Taylor Ross
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada.,Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jennifer Geddes-McAlister
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada.,Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
57
|
Rinschen MM, Saez-Rodriguez J. The tissue proteome in the multi-omic landscape of kidney disease. Nat Rev Nephrol 2020; 17:205-219. [PMID: 33028957 DOI: 10.1038/s41581-020-00348-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Kidney research is entering an era of 'big data' and molecular omics data can provide comprehensive insights into the molecular footprints of cells. In contrast to transcriptomics, proteomics and metabolomics generate data that relate more directly to the pathological symptoms and clinical parameters observed in patients. Owing to its complexity, the proteome still holds many secrets, but has great potential for the identification of drug targets. Proteomics can provide information about protein synthesis, modification and degradation, as well as insight into the physical interactions between proteins, and between proteins and other biomolecules. Thus far, proteomics in nephrology has largely focused on the discovery and validation of biomarkers, but the systematic analysis of the nephroproteome can offer substantial additional insights, including the discovery of mechanisms that trigger and propagate kidney disease. Moreover, proteome acquisition might provide a diagnostic tool that complements the assessment of a kidney biopsy sample by a pathologist. Such applications are becoming increasingly feasible with the development of high-throughput and high-coverage technologies, such as versatile mass spectrometry-based techniques and protein arrays, and encourage further proteomics research in nephrology.
Collapse
Affiliation(s)
- Markus M Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark. .,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany. .,Department of Chemistry, Scripps Center for Metabolomics and Mass Spectrometry, Scripps Research, La Jolla, CA, USA.
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, and Heidelberg University Hospital, Bioquant, Heidelberg, Germany.,Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Heidelberg University, Heidelberg, Germany
| |
Collapse
|
58
|
Pan L, Nie L, Yao S, Bi A, Ye Y, Wu Y, Tan Z, Wu Z. Bufalin exerts antitumor effects in neuroblastoma via the induction of reactive oxygen species‑mediated apoptosis by targeting the electron transport chain. Int J Mol Med 2020; 46:2137-2149. [PMID: 33125107 PMCID: PMC7595673 DOI: 10.3892/ijmm.2020.4745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
The prognosis of high-risk neuroblastoma remains poor. Clinical first-line drugs for treating neuroblastoma have been developed over the previous half-century; however, progress in the identification of new drugs with high efficiency is required. Bufalin, one of the major components of extracts obtained from the venom of the Chinese toad Bufo gargarizans, which is used to treat heart failure in Asian Pacific countries, has been reported to be a potential drug against multiple types of tumor; however, the detailed mechanisms underlying its antitumor activities remain unclear, largely due to lack of knowledge regarding its targets. In the present study, bufalin was revealed to exhibit potent antitumor effects against neuroblastoma, both in vitro and in vivo, using cell proliferation, colony formation, Transwell migration and flow cytometry assays, as well as a nude mouse subcutaneous xenograft model. Moreover, a chemically modified bufalin probe was designed to identify the potential targets of bufalin in neuroblastoma via chemical proteomics. With this strategy, it was revealed that the electron transport chain (ETC) on the inner membrane of mitochondria may contain potential targets for bufalin, and that bufalin-induced mitochondrial-dependent apoptosis may be caused by disruption of the ETC. Collectively, the present study suggests that bufalin may a promising drug for chemotherapy against neuroblastoma, and provides a foundation for further studies into the antitumor mechanisms of bufalin.
Collapse
Affiliation(s)
- Lijia Pan
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Litong Nie
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sheng Yao
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Aiwei Bi
- State Key Laboratory of Drug Research and Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Yang Ye
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Yeming Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Zhen Tan
- State Key Laboratory of Drug Research and Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Zhixiang Wu
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P.R. China
| |
Collapse
|
59
|
Parthasarathy A, Mantravadi PK, Kalesh K. Detectives and helpers: Natural products as resources for chemical probes and compound libraries. Pharmacol Ther 2020; 216:107688. [PMID: 32980442 DOI: 10.1016/j.pharmthera.2020.107688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
About 70% of the drugs in use are derived from natural products, either used directly or in chemically modified form. Among all possible small molecules (not greater than 5 kDa), only a few of them are biologically active. Natural product libraries may have a higher rate of finding "hits" than synthetic libraries, even with the use of fewer compounds. This is due to the complementarity between the "chemical space" of small molecules and biological macromolecules such as proteins, DNA and RNA, in addition to the three-dimensional complexity of NPs. Chemical probes are molecules which aid in the elucidation of the biological mechanisms behind the action of drugs or drug-like molecules by binding with macromolecular/cellular interaction partners. Probe development and application have been spurred by advancements in photoaffinity label synthesis, affinity chromatography, activity based protein profiling (ABPP) and instrumental methods such as cellular thermal shift assay (CETSA) and advanced/hyphenated mass spectrometry (MS) techniques, as well as genome sequencing and bioengineering technologies. In this review, we restrict ourselves to a survey of natural products (including peptides/mini-proteins and excluding antibodies), which have been applied largely in the last 5 years for the target identification of drugs/drug-like molecules used in research on infectious diseases, and the description of their mechanisms of action.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, 85 Lomb Memorial Dr, Rochester, NY 14623, USA
| | | | - Karunakaran Kalesh
- Department of Chemistry, Durham University, Lower Mount Joy, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
60
|
Grant EK, Fallon DJ, Hann MM, Fantom KGM, Quinn C, Zappacosta F, Annan RS, Chung C, Bamborough P, Dixon DP, Stacey P, House D, Patel VK, Tomkinson NCO, Bush JT. A Photoaffinity‐Based Fragment‐Screening Platform for Efficient Identification of Protein Ligands. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Emma K. Grant
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Pure and Applied Chemistry University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - David J. Fallon
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Pure and Applied Chemistry University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Michael M. Hann
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Ken G. M. Fantom
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Chad Quinn
- GlaxoSmithKline South Collegeville Road Collegeville PA 19426 USA
| | | | - Roland S. Annan
- GlaxoSmithKline South Collegeville Road Collegeville PA 19426 USA
| | - Chun‐wa Chung
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Paul Bamborough
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - David P. Dixon
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Peter Stacey
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - David House
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | | | | | - Jacob T. Bush
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| |
Collapse
|
61
|
Grant EK, Fallon DJ, Hann MM, Fantom KGM, Quinn C, Zappacosta F, Annan RS, Chung C, Bamborough P, Dixon DP, Stacey P, House D, Patel VK, Tomkinson NCO, Bush JT. A Photoaffinity‐Based Fragment‐Screening Platform for Efficient Identification of Protein Ligands. Angew Chem Int Ed Engl 2020; 59:21096-21105. [DOI: 10.1002/anie.202008361] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Emma K. Grant
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Pure and Applied Chemistry University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - David J. Fallon
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Pure and Applied Chemistry University of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Michael M. Hann
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Ken G. M. Fantom
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Chad Quinn
- GlaxoSmithKline South Collegeville Road Collegeville PA 19426 USA
| | | | - Roland S. Annan
- GlaxoSmithKline South Collegeville Road Collegeville PA 19426 USA
| | - Chun‐wa Chung
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Paul Bamborough
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - David P. Dixon
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - Peter Stacey
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - David House
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | | | | | - Jacob T. Bush
- GlaxoSmithKline Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| |
Collapse
|
62
|
A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes. Nat Commun 2020; 11:4200. [PMID: 32826910 PMCID: PMC7442650 DOI: 10.1038/s41467-020-18071-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/27/2020] [Indexed: 01/20/2023] Open
Abstract
Chemoproteomics is a key technology to characterize the mode of action of drugs, as it directly identifies the protein targets of bioactive compounds and aids in the development of optimized small-molecule compounds. Current approaches cannot identify the protein targets of a compound and also detect the interaction surfaces between ligands and protein targets without prior labeling or modification. To address this limitation, we here develop LiP-Quant, a drug target deconvolution pipeline based on limited proteolysis coupled with mass spectrometry that works across species, including in human cells. We use machine learning to discern features indicative of drug binding and integrate them into a single score to identify protein targets of small molecules and approximate their binding sites. We demonstrate drug target identification across compound classes, including drugs targeting kinases, phosphatases and membrane proteins. LiP-Quant estimates the half maximal effective concentration of compound binding sites in whole cell lysates, correctly discriminating drug binding to homologous proteins and identifying the so far unknown targets of a fungicide research compound. Proteomics is often used to map protein-drug interactions but identifying a drug’s protein targets along with the binding interfaces has not been achieved yet. Here, the authors integrate limited proteolysis and machine learning for the proteome-wide mapping of drug protein targets and binding sites.
Collapse
|
63
|
|
64
|
Carolino K, Winzeler EA. The antimalarial resistome - finding new drug targets and their modes of action. Curr Opin Microbiol 2020; 57:49-55. [PMID: 32682267 PMCID: PMC7763834 DOI: 10.1016/j.mib.2020.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022]
Abstract
To this day, malaria remains a global burden, affecting millions of people, especially those in sub-Saharan Africa and Asia. The rise of drug resistance to current antimalarial treatments, including artemisinin-based combination therapies, has made discovering new small molecule compounds with novel modes of action an urgent matter. The concerted effort to construct enormous compound libraries and develop high-throughput phenotypic screening assays to find compounds effective at specifically clearing malaria-causing Plasmodium parasites at any stage of the life cycle has provided many antimalarial prospects, but does not indicate their target or mode of action. Here, we review recent advances in antimalarial drug discovery efforts, focusing on the following 'omics' approaches in mode of action studies: IVIEWGA, CETSA, metabolomic profiling.
Collapse
Affiliation(s)
- Krypton Carolino
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States.
| |
Collapse
|
65
|
Van den Kerkhof M, Sterckx YGJ, Leprohon P, Maes L, Caljon G. Experimental Strategies to Explore Drug Action and Resistance in Kinetoplastid Parasites. Microorganisms 2020; 8:E950. [PMID: 32599761 PMCID: PMC7356981 DOI: 10.3390/microorganisms8060950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Kinetoplastids are the causative agents of leishmaniasis, human African trypanosomiasis, and American trypanosomiasis. They are responsible for high mortality and morbidity in (sub)tropical regions. Adequate treatment options are limited and have several drawbacks, such as toxicity, need for parenteral administration, and occurrence of treatment failure and drug resistance. Therefore, there is an urgency for the development of new drugs. Phenotypic screening already allowed the identification of promising new chemical entities with anti-kinetoplastid activity potential, but knowledge on their mode-of-action (MoA) is lacking due to the generally applied whole-cell based approach. However, identification of the drug target is essential to steer further drug discovery and development. Multiple complementary techniques have indeed been used for MoA elucidation. In this review, the different 'omics' approaches employed to define the MoA or mode-of-resistance of current reference drugs and some new anti-kinetoplastid compounds are discussed.
Collapse
Affiliation(s)
- Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry (LMB), University of Antwerp, 2610 Wilrijk, Belgium;
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| |
Collapse
|
66
|
Exploring the structure and dynamics of macromolecular complexes by native mass spectrometry. J Proteomics 2020; 222:103799. [DOI: 10.1016/j.jprot.2020.103799] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/23/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
|
67
|
Hoeijmakers WAM, Miao J, Schmidt S, Toenhake CG, Shrestha S, Venhuizen J, Henderson R, Birnbaum J, Ghidelli-Disse S, Drewes G, Cui L, Stunnenberg HG, Spielmann T, Bártfai R. Epigenetic reader complexes of the human malaria parasite, Plasmodium falciparum. Nucleic Acids Res 2020; 47:11574-11588. [PMID: 31728527 PMCID: PMC7145593 DOI: 10.1093/nar/gkz1044] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/09/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022] Open
Abstract
Epigenetic regulatory mechanisms are central to the development and survival of all eukaryotic organisms. These mechanisms critically depend on the marking of chromatin domains with distinctive histone tail modifications (PTMs) and their recognition by effector protein complexes. Here we used quantitative proteomic approaches to unveil interactions between PTMs and associated reader protein complexes of Plasmodium falciparum, a unicellular parasite causing malaria. Histone peptide pull-downs with the most prominent and/or parasite-specific PTMs revealed the binding preference for 14 putative and novel reader proteins. Amongst others, they highlighted the acetylation-level-dependent recruitment of the BDP1/BDP2 complex and identified an PhD-finger protein (PHD 1, PF3D7_1008100) that could mediate a cross-talk between H3K4me2/3 and H3K9ac marks. Tagging and interaction proteomics of 12 identified proteins unveiled the composition of 5 major epigenetic complexes, including the elusive TBP-associated-factor complex as well as two distinct GCN5/ADA2 complexes. Furthermore, it has highlighted a remarkable degree of interaction between these five (sub)complexes. Collectively, this study provides an extensive inventory of PTM-reader interactions and composition of epigenetic complexes. It will not only fuel further explorations of gene regulation amongst ancient eukaryotes, but also provides a stepping stone for exploration of PTM-reader interactions for antimalarial drug development.
Collapse
Affiliation(s)
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.,Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sabine Schmidt
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg D-20359, Germany
| | | | - Sony Shrestha
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jeron Venhuizen
- Department of Molecular Biology, Radboud University, Nijmegen 6525 GA, the Netherlands
| | - Rob Henderson
- Department of Molecular Biology, Radboud University, Nijmegen 6525 GA, the Netherlands.,TropIQ Health Sciences, Nijmegen 6534 AT, the Netherlands
| | - Jakob Birnbaum
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg D-20359, Germany
| | | | - Gerard Drewes
- Cellzome GmbH, a GlaxoSmithKline Company, Heidelberg 69117, Germany
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.,Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hendrik Gerard Stunnenberg
- Department of Molecular Biology, Radboud University, Nijmegen 6525 GA, the Netherlands.,Princess Maxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
| | - Tobias Spielmann
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg D-20359, Germany
| | - Richárd Bártfai
- Department of Molecular Biology, Radboud University, Nijmegen 6525 GA, the Netherlands
| |
Collapse
|
68
|
Castaldi MP, Hendricks JA, Zhang AX. 'Design, synthesis, and strategic use of small chemical probes toward identification of novel targets for drug development'. Curr Opin Chem Biol 2020; 56:91-97. [PMID: 32375076 DOI: 10.1016/j.cbpa.2020.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
Chemical probes are essential tools used to study and modulate biological systems. Here, we describe some of the recent scientific advancement in the field of chemical biology, as well as how the advent of new technologies is redefining the criteria of 'good' chemical probes and influencing the discovery of valuable drug leads. In this review, we report selected examples of the usage of linkered and linker-free chemical probes for target identification, biological discovery, and general mechanistic understanding. We also discuss the promises of chemogenomics libraries in phenotypic screens, as well as the limitation of their usage to identify the modulation of new targets and biology.
Collapse
Affiliation(s)
| | | | - Andrew X Zhang
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Boston, USA
| |
Collapse
|
69
|
Dziekan JM, Wirjanata G, Dai L, Go KD, Yu H, Lim YT, Chen L, Wang LC, Puspita B, Prabhu N, Sobota RM, Nordlund P, Bozdech Z. Cellular thermal shift assay for the identification of drug-target interactions in the Plasmodium falciparum proteome. Nat Protoc 2020; 15:1881-1921. [PMID: 32341577 DOI: 10.1038/s41596-020-0310-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
Despite decades of research, little is known about the cellular targets and the mode of action of the vast majority of antimalarial drugs. We recently demonstrated that the cellular thermal shift assay (CETSA) protocol in its two variants: the melt curve and the isothermal dose-response, represents a comprehensive strategy for the identification of antimalarial drug targets. CETSA enables proteome-wide target screening for unmodified antimalarial compounds with undetermined mechanisms of action, providing quantitative evidence about direct drug-protein interactions. The experimental workflow involves treatment of P. falciparum-infected erythrocytes with a compound of interest, heat exposure to denature proteins, soluble protein isolation, enzymatic digestion, peptide labeling with tandem mass tags, offline fractionation, and liquid chromatography-tandem mass spectrometry analysis. Methodological optimizations necessary for the analysis of this intracellular parasite are discussed, including enrichment of parasitized cells and hemoglobin depletion strategies to overcome high hemoglobin abundance in the host red blood cells. We outline an effective data processing workflow using the mineCETSA R package, which enables prioritization of drug-target candidates for follow-up studies. The entire protocol can be completed within 2 weeks.
Collapse
Affiliation(s)
- Jerzy Michal Dziekan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Grennady Wirjanata
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lingyun Dai
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Ka Diam Go
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Han Yu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yan Ting Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Liyan Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Loo Chien Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Brenda Puspita
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Nayana Prabhu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Radoslaw M Sobota
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. .,Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Pär Nordlund
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore. .,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. .,Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
70
|
Robers MB, Friedman-Ohana R, Huber KVM, Kilpatrick L, Vasta JD, Berger BT, Chaudhry C, Hill S, Müller S, Knapp S, Wood KV. Quantifying Target Occupancy of Small Molecules Within Living Cells. Annu Rev Biochem 2020; 89:557-581. [PMID: 32208767 DOI: 10.1146/annurev-biochem-011420-092302] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The binding affinity and kinetics of target engagement are fundamental to establishing structure-activity relationships (SARs) for prospective therapeutic agents. Enhancing these binding parameters for operative targets, while minimizing binding to off-target sites, can translate to improved drug efficacy and a widened therapeutic window. Compound activity is typically assessed through modulation of an observed phenotype in cultured cells. Quantifying the corresponding binding properties under common cellular conditions can provide more meaningful interpretation of the cellular SAR analysis. Consequently, methods for assessing drug binding in living cells have advanced and are now integral to medicinal chemistry workflows. In this review, we survey key technological advancements that support quantitative assessments of target occupancy in cultured cells, emphasizing generalizable methodologies able to deliver analytical precision that heretofore required reductionist biochemical approaches.
Collapse
Affiliation(s)
- M B Robers
- Promega Corporation, Madison, Wisconsin 53711, USA; , ,
| | | | - K V M Huber
- Target Discovery Institute and Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom; .,Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - L Kilpatrick
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom; , .,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, United Kingdom
| | - J D Vasta
- Promega Corporation, Madison, Wisconsin 53711, USA; , ,
| | - B-T Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany; ,
| | - C Chaudhry
- Lead Discovery and Optimization, Bristol-Myers Squibb, Princeton, New Jersey 08648, USA;
| | - S Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom; , .,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, United Kingdom
| | - S Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany; , .,Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, 60438 Frankfurt, Germany;
| | - S Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany; , .,Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, 60438 Frankfurt, Germany; .,German Cancer Network (DKTK), Frankfurt/Mainz, 60438 Frankfurt, Germany.,Frankfurt Cancer Institute (FCI), Goethe University, 60596 Frankfurt am Main, Germany
| | - K V Wood
- Promega Corporation, Madison, Wisconsin 53711, USA; , , .,Current affiliation: Light Bio, Inc., Mount Horeb, Wisconsin 53572, USA;
| |
Collapse
|
71
|
Parker CG, Pratt MR. Click Chemistry in Proteomic Investigations. Cell 2020; 180:605-632. [PMID: 32059777 PMCID: PMC7087397 DOI: 10.1016/j.cell.2020.01.025] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 01/20/2023]
Abstract
Despite advances in genetic and proteomic techniques, a complete portrait of the proteome and its complement of dynamic interactions and modifications remains a lofty, and as of yet, unrealized, objective. Specifically, traditional biological and analytical approaches have not been able to address key questions relating to the interactions of proteins with small molecules, including drugs, drug candidates, metabolites, or protein post-translational modifications (PTMs). Fortunately, chemists have bridged this experimental gap through the creation of bioorthogonal reactions. These reactions allow for the incorporation of chemical groups with highly selective reactivity into small molecules or protein modifications without perturbing their biological function, enabling the selective installation of an analysis tag for downstream investigations. The introduction of chemical strategies to parse and enrich subsets of the "functional" proteome has empowered mass spectrometry (MS)-based methods to delve more deeply and precisely into the biochemical state of cells and its perturbations by small molecules. In this Primer, we discuss how one of the most versatile bioorthogonal reactions, "click chemistry", has been exploited to overcome limitations of biological approaches to enable the selective marking and functional investigation of critical protein-small-molecule interactions and PTMs in native biological environments.
Collapse
Affiliation(s)
- Christopher G Parker
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA.
| | - Matthew R Pratt
- Departments of Chemistry and Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
72
|
Abstract
The dynamic nature of histone post-translational modifications such as methylation or acetylation makes possible the alteration of disease associated epigenetic states through the manipulation of the associated epigenetic machinery. One approach is through small molecule perturbation. Chemical probes of epigenetic reader domains have been critical in improving our understanding of the biological consequences of modulating their targets, while also enabling the development of novel probe-based reagents. By appending a functional handle to a reader domain probe, a chemical toolbox of reagents can be created to facilitate chemiprecipitation of epigenetic complexes, evaluate probe selectivity, develop in vitro screening assays, visualize cellular target localization, enable target degradation and recruit epigenetic machinery to a site within the genome in a highly controlled fashion.
Collapse
|
73
|
Machine learning for target discovery in drug development. Curr Opin Chem Biol 2019; 56:16-22. [PMID: 31734566 DOI: 10.1016/j.cbpa.2019.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022]
Abstract
The discovery of macromolecular targets for bioactive agents is currently a bottleneck for the informed design of chemical probes and drug leads. Typically, activity profiling against genetically manipulated cell lines or chemical proteomics is pursued to shed light on their biology and deconvolute drug-target networks. By taking advantage of the ever-growing wealth of publicly available bioactivity data, learning algorithms now provide an attractive means to generate statistically motivated research hypotheses and thereby prioritize biochemical screens. Here, we highlight recent successes in machine intelligence for target identification and discuss challenges and opportunities for drug discovery.
Collapse
|
74
|
Fagan V, Johansson C, Gileadi C, Monteiro O, Dunford JE, Nibhani R, Philpott M, Malzahn J, Wells G, Faram R, Cribbs AP, Halidi N, Li F, Chau I, Greschik H, Velupillai S, Allali-Hassani A, Bennett J, Christott T, Giroud C, Lewis AM, Huber KVM, Athanasou N, Bountra C, Jung M, Schüle R, Vedadi M, Arrowsmith C, Xiong Y, Jin J, Fedorov O, Farnie G, Brennan PE, Oppermann U. A Chemical Probe for Tudor Domain Protein Spindlin1 to Investigate Chromatin Function. J Med Chem 2019; 62:9008-9025. [PMID: 31550156 DOI: 10.1021/acs.jmedchem.9b00562] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Modifications of histone tails, including lysine/arginine methylation, provide the basis of a "chromatin or histone code". Proteins that contain "reader" domains can bind to these modifications and form specific effector complexes, which ultimately mediate chromatin function. The spindlin1 (SPIN1) protein contains three Tudor methyllysine/arginine reader domains and was identified as a putative oncogene and transcriptional coactivator. Here we report a SPIN1 chemical probe inhibitor with low nanomolar in vitro activity, exquisite selectivity on a panel of methyl reader and writer proteins, and with submicromolar cellular activity. X-ray crystallography showed that this Tudor domain chemical probe simultaneously engages Tudor domains 1 and 2 via a bidentate binding mode. Small molecule inhibition and siRNA knockdown of SPIN1, as well as chemoproteomic studies, identified genes which are transcriptionally regulated by SPIN1 in squamous cell carcinoma and suggest that SPIN1 may have a role in cancer related inflammation and/or cancer metastasis.
Collapse
Affiliation(s)
- Vincent Fagan
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - Catrine Johansson
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Carina Gileadi
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Octovia Monteiro
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - James E Dunford
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Reshma Nibhani
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Martin Philpott
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Jessica Malzahn
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Graham Wells
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Ruth Faram
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Adam P Cribbs
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Nadia Halidi
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Fengling Li
- Structural Genomics Consortium , University of Toronto , 101 College Street , Toronto , Ontario M5G 1L7 , Canada
| | - Irene Chau
- Structural Genomics Consortium , University of Toronto , 101 College Street , Toronto , Ontario M5G 1L7 , Canada
| | - Holger Greschik
- Department of Urology, Center for Clinical Research, Medical Center, Signalling Research Centres BIOSS and CIBSS , University of Freiburg , D-79106 Freiburg , Germany
| | - Srikannathasan Velupillai
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
| | - Abdellah Allali-Hassani
- Structural Genomics Consortium , University of Toronto , 101 College Street , Toronto , Ontario M5G 1L7 , Canada
| | - James Bennett
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - Thomas Christott
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - Charline Giroud
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - Andrew M Lewis
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - Kilian V M Huber
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - Nick Athanasou
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Chas Bountra
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
| | - Manfred Jung
- FRIAS-Freiburg Institute of Advanced Studies , University of Freiburg , 79104 Freiburg , Germany
- Institute of Pharmaceutical Sciences , University of Freiburg , Albertstraße 25 , 79104 Freiburg , Germany
| | - Roland Schüle
- Department of Urology, Center for Clinical Research, Medical Center, Signalling Research Centres BIOSS and CIBSS , University of Freiburg , D-79106 Freiburg , Germany
| | - Masoud Vedadi
- Structural Genomics Consortium , University of Toronto , 101 College Street , Toronto , Ontario M5G 1L7 , Canada
| | - Cheryl Arrowsmith
- Structural Genomics Consortium , University of Toronto , 101 College Street , Toronto , Ontario M5G 1L7 , Canada
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences , Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences , Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Oleg Fedorov
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - Gillian Farnie
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Paul E Brennan
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
- Alzheimer's Research UK Oxford Drug Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - Udo Oppermann
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
- FRIAS-Freiburg Institute of Advanced Studies , University of Freiburg , 79104 Freiburg , Germany
| |
Collapse
|
75
|
Cowell AN, Winzeler EA. Advances in omics-based methods to identify novel targets for malaria and other parasitic protozoan infections. Genome Med 2019; 11:63. [PMID: 31640748 PMCID: PMC6805675 DOI: 10.1186/s13073-019-0673-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/13/2019] [Indexed: 01/23/2023] Open
Abstract
A major advance in antimalarial drug discovery has been the shift towards cell-based phenotypic screening, with notable progress in the screening of compounds against the asexual blood stage, liver stage, and gametocytes. A primary method for drug target deconvolution in Plasmodium falciparum is in vitro evolution of compound-resistant parasites followed by whole-genome scans. Several of the most promising antimalarial drug targets, such as translation elongation factor 2 (eEF2) and phenylalanine tRNA synthetase (PheRS), have been identified or confirmed using this method. One drawback of this method is that if a mutated gene is uncharacterized, a substantial effort may be required to determine whether it is a drug target, a drug resistance gene, or if the mutation is merely a background mutation. Thus, the availability of high-throughput, functional genomic datasets can greatly assist with target deconvolution. Studies mapping genome-wide essentiality in P. falciparum or performing transcriptional profiling of the host and parasite during liver-stage infection with P. berghei have identified potentially druggable pathways. Advances in mapping the epigenomic regulation of the malaria parasite genome have also enabled the identification of key processes involved in parasite development. In addition, the examination of the host genome during infection has identified novel gene candidates associated with susceptibility to severe malaria. Here, we review recent studies that have used omics-based methods to identify novel targets for interventions against protozoan parasites, focusing on malaria, and we highlight the advantages and limitations of the approaches used. These approaches have also been extended to other protozoan pathogens, including Toxoplasma, Trypanosoma, and Leishmania spp., and these studies highlight how drug discovery efforts against these pathogens benefit from the utilization of diverse omics-based methods to identify promising drug targets.
Collapse
Affiliation(s)
- Annie N Cowell
- Division of Infectious Diseases and Global Health, Department of Medicine, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA.
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
76
|
Recent Advances in Selective and Irreversible Covalent Ligand Development and Validation. Cell Chem Biol 2019; 26:1486-1500. [PMID: 31631011 DOI: 10.1016/j.chembiol.2019.09.012] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/06/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022]
Abstract
Some of the most widely used drugs, such as aspirin and penicillin, are covalent drugs. Covalent binding can improve potency, selectivity, and duration of the effects, but the intrinsic reactivity represents a potential liability and may result in idiosyncratic toxicity. For decades, the cons were believed to outweigh the pros, and covalent targeting was deprioritized in drug discovery. Recently, several covalent inhibitors have been approved for cancer treatment, thus rebooting the field. In this review, we briefly reflect on the history of selective covalent targeting, and provide a comprehensive overview of emerging developments from a chemical biology stand-point. Our discussion will reflect on efforts to validate irreversible covalent ligands, expand the scope of targets, and discover new ligands and warheads. We conclude with a brief commentary of remaining limitations and emerging opportunities in selective covalent targeting.
Collapse
|
77
|
Rabalski AJ, Bogdan AR, Baranczak A. Evaluation of Chemically-Cleavable Linkers for Quantitative Mapping of Small Molecule-Cysteinome Reactivity. ACS Chem Biol 2019; 14:1940-1950. [PMID: 31430117 DOI: 10.1021/acschembio.9b00424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Numerous reagents have been developed to enable chemical proteomic analysis of small molecule-protein interactomes. However, the performance of these reagents has not been systematically evaluated and compared. Herein, we report our efforts to conduct a parallel assessment of two widely used chemically cleavable linkers equipped with dialkoxydiphenylsilane (DADPS linker) and azobenzene (AZO linker) moieties. Profiling a cellular cysteinome using the iodoacetamide alkyne probe demonstrated a significant discrepancy between the experimental results obtained through the application of each of the reagents. To better understand the source of observed discrepancy, we evaluated the key sample preparation steps. We also performed a mass tolerant database search strategy using MSFragger software. This resulted in identifying a previously unreported artifactual modification on the residual mass of the azobenzene linker. Furthermore, we conducted a comparative analysis of enrichment modes using both cleavable linkers. This effort determined that enrichment of proteolytic digests yielded a far greater number of identified cysteine residues than the enrichment conducted prior to protein digest. Inspired by recent studies where multiplexed quantitative labeling strategies were applied to cleavable biotin linkers, we combined this further optimized protocol using the DADPS cleavable linker with tandem mass tag (TMT) labeling to profile the FDA-approved covalent EGFR kinase inhibitor dacomitinib against the cysteinome of an epidermoid cancer cell line. Our analysis resulted in the detection and quantification of over 10,000 unique cysteine residues, a nearly 3-fold increase over previous studies that used cleavable biotin linkers for enrichment. Critically, cysteine residues corresponding to proteins directly as well as indirectly modulated by dacomitinib treatment were identified. Overall, our study suggests that the dialkoxydiphenylsilane linker could be broadly applied wherever chemically cleavable linkers are required for chemical proteomic characterization of cellular proteomes.
Collapse
Affiliation(s)
- Adam J. Rabalski
- Drug Discovery Science & Technology, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064-6101, United States
| | - Andrew R. Bogdan
- Drug Discovery Science & Technology, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064-6101, United States
| | - Aleksandra Baranczak
- Drug Discovery Science & Technology, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064-6101, United States
| |
Collapse
|
78
|
Heo M, Lee B, Sishtla K, Fei X, Lee S, Park S, Yuan Y, Lee S, Kwon S, Lee J, Kim S, Corson TW, Seo SY. Enantioselective Synthesis of Homoisoflavanones by Asymmetric Transfer Hydrogenation and Their Biological Evaluation for Antiangiogenic Activity. J Org Chem 2019; 84:9995-10011. [PMID: 31381339 DOI: 10.1021/acs.joc.9b01134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Neovascular eye diseases are a major cause of blindness. Excessive angiogenesis is a feature of several conditions, including wet age-related macular degeneration, proliferative diabetic retinopathy, and retinopathy of prematurity. Development of novel antiangiogenic small molecules for the treatment of neovascular eye disease is essential to provide new therapeutic leads for these diseases. We have previously reported the therapeutic potential of anti-angiogenic homoisoflavanone derivatives with efficacy in retinal and choroidal neovascularization models, although these are racemic compounds due to the C3-stereogenic center in the molecules. This work presents asymmetric synthesis and structural determination of anti-angiogenic homoisoflavanones and pharmacological characterization of the stereoisomers. We describe an enantioselective synthesis of homoisoflavanones by virtue of ruthenium-catalyzed asymmetric transfer hydrogenation accompanying dynamic kinetic resolution, providing a basis for the further development of these compounds into novel experimental therapeutics for neovascular eye diseases.
Collapse
Affiliation(s)
- Myunghoe Heo
- College of Pharmacy , Gachon University , Incheon 21936 , Republic of Korea
| | - Bit Lee
- College of Pharmacy , Gachon University , Incheon 21936 , Republic of Korea
| | | | - Xiang Fei
- College of Pharmacy , Gachon University , Incheon 21936 , Republic of Korea
| | - Sanha Lee
- College of Pharmacy , Gachon University , Incheon 21936 , Republic of Korea
| | - Soojun Park
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Yue Yuan
- College of Pharmacy , Gachon University , Incheon 21936 , Republic of Korea
| | - Seul Lee
- College of Pharmacy , Gachon University , Incheon 21936 , Republic of Korea
| | - Sangil Kwon
- College of Pharmacy , Gachon University , Incheon 21936 , Republic of Korea
| | - Jungeun Lee
- College of Pharmacy , Gachon University , Incheon 21936 , Republic of Korea
| | - Sanghee Kim
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | | | - Seung-Yong Seo
- College of Pharmacy , Gachon University , Incheon 21936 , Republic of Korea
| |
Collapse
|
79
|
Dilworth D, Barsyte-Lovejoy D. Targeting protein methylation: from chemical tools to precision medicines. Cell Mol Life Sci 2019; 76:2967-2985. [PMID: 31104094 PMCID: PMC11105543 DOI: 10.1007/s00018-019-03147-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022]
Abstract
The methylation of proteins is integral to the execution of many important biological functions, including cell signalling and transcriptional regulation. Protein methyltransferases (PMTs) are a large class of enzymes that carry out the addition of methyl marks to a broad range of substrates. PMTs are critical for normal cellular physiology and their dysregulation is frequently observed in human disease. As such, PMTs have emerged as promising therapeutic targets with several inhibitors now in clinical trials for oncology indications. The discovery of chemical inhibitors and antagonists of protein methylation signalling has also profoundly impacted our general understanding of PMT biology and pharmacology. In this review, we present general principles for drugging protein methyltransferases or their downstream effectors containing methyl-binding modules, as well as best-in-class examples of the compounds discovered and their impact both at the bench and in the clinic.
Collapse
Affiliation(s)
- David Dilworth
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.
| |
Collapse
|
80
|
Haymond A, Davis JB, Espina V. Proteomics for cancer drug design. Expert Rev Proteomics 2019; 16:647-664. [PMID: 31353977 PMCID: PMC6736641 DOI: 10.1080/14789450.2019.1650025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/26/2019] [Indexed: 12/29/2022]
Abstract
Introduction: Signal transduction cascades drive cellular proliferation, apoptosis, immune, and survival pathways. Proteins have emerged as actionable drug targets because they are often dysregulated in cancer, due to underlying genetic mutations, or dysregulated signaling pathways. Cancer drug development relies on proteomic technologies to identify potential biomarkers, mechanisms-of-action, and to identify protein binding hot spots. Areas covered: Brief summaries of proteomic technologies for drug discovery include mass spectrometry, reverse phase protein arrays, chemoproteomics, and fragment based screening. Protein-protein interface mapping is presented as a promising method for peptide therapeutic development. The topic of biosimilar therapeutics is presented as an opportunity to apply proteomic technologies to this new class of cancer drug. Expert opinion: Proteomic technologies are indispensable for drug discovery. A suite of technologies including mass spectrometry, reverse phase protein arrays, and protein-protein interaction mapping provide complimentary information for drug development. These assays have matured into well controlled, robust technologies. Recent regulatory approval of biosimilar therapeutics provides another opportunity to decipher the molecular nuances of their unique mechanisms of action. The ability to identify previously hidden protein hot spots is expanding the gamut of potential drug targets. Proteomic profiling permits lead compound evaluation beyond the one drug, one target paradigm.
Collapse
Affiliation(s)
- Amanda Haymond
- Center for Applied Proteomics and Molecular Medicine, George Mason University , Manassas , VA , USA
| | - Justin B Davis
- Center for Applied Proteomics and Molecular Medicine, George Mason University , Manassas , VA , USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University , Manassas , VA , USA
| |
Collapse
|
81
|
Naclerio GA, Karanja CW, Opoku-Temeng C, Sintim HO. Antibacterial Small Molecules That Potently Inhibit Staphylococcus aureus Lipoteichoic Acid Biosynthesis. ChemMedChem 2019; 14:1000-1004. [PMID: 30939229 DOI: 10.1002/cmdc.201900053] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/20/2019] [Indexed: 01/02/2023]
Abstract
The rise of antibiotic resistance, especially in Staphylococcus aureus, and the increasing death rate due to multiresistant bacteria have been well documented. The need for new chemical entities and/or the identification of novel targets for antibacterial drug development is high. Lipoteichoic acid (LTA), a membrane-attached anionic polymer, is important for the growth and virulence of many Gram-positive bacteria, and interest has been high in the discovery of LTA biosynthesis inhibitors. Thus far, only a handful of LTA biosynthesis inhibitors have been described with moderate (MIC=5.34 μg mL-1 ) to low (MIC=1024 μg mL-1 ) activities against S. aureus. Herein we describe the identification of novel compounds that potently inhibit LTA biosynthesis in S. aureus, displaying impressive antibacterial activities (MIC as low as 0.25 μg mL-1 ) against methicillin-resistant S. aureus (MRSA). Under similar in vitro assay conditions, these compounds are 4-fold more potent than vancomycin and 8-fold more potent than linezolid against MRSA.
Collapse
Affiliation(s)
- George A Naclerio
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Caroline W Karanja
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Clement Opoku-Temeng
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA.,Graduate Program in Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Herman O Sintim
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
82
|
Abstract
Identification of the protein targets of bioactive small molecules is a routine challenge in chemical biology and phenotype-based drug discovery. Recent years have seen an explosion of approaches to meeting this challenge, but the traditional method of affinity pulldowns remains a practical choice in many contexts. This technique can be used as long as an affinity probe can be synthesized, usually with a crosslinking moiety to enable photo-affinity pulldowns. It can be applied to varied tissue types and can be performed with minimal specialized equipment. Here, we provide our protocol for photo-affinity pulldown experiments, with notes on making this method generally applicable to varied target identification challenges.
Collapse
Affiliation(s)
- Seung-Yong Seo
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Timothy W Corson
- Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
83
|
Jones LH, Xu H, Fadeyi OO. Quantifying drug-target engagement in live cells using sulfonyl fluoride chemical probes. Methods Enzymol 2019; 622:201-220. [PMID: 31155053 DOI: 10.1016/bs.mie.2019.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phenotypic screening in disease-relevant models identifies small molecule hits with desirable efficacy but often with unknown modes of action. Target identification and validation are integral to successful biomedical research. Technologies are required to validate the biological target (or targets) through which a pharmacological agent is proposed to exert its effects. This work details the rational structure-based design, synthetic preparation and cell-based application of a clickable sulfonyl fluoride chemical probe to directly report on the mechanism of a series of compounds previously discovered in a reporter gene assay. Quantification of drug-target occupancy in living human primary cells enabled a deeper understanding of the molecular pharmacology of the chemotype. The technology described herein should be of broad interest to those involved in chemical biology research and the drug discovery endeavor.
Collapse
Affiliation(s)
- Lyn H Jones
- Jnana Therapeutics, Boston, MA, United States.
| | - Hua Xu
- Pfizer Inc, Medicine Design, Cambridge, MA, United States
| | | |
Collapse
|
84
|
Rabalski AJ, Williams JD, McClure RA, Vasudevan A, Baranczak A. A Dual-Purpose Bromocoumarin Tag Enables Deep Profiling of the Cellular Cysteinome. Proteomics 2019; 19:e1800433. [PMID: 30784174 DOI: 10.1002/pmic.201800433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/05/2019] [Indexed: 11/09/2022]
Abstract
Chemical proteomics enables comprehensive profiling of small molecules in complex proteomes. A critical component to understand the interactome of a small molecule is the precise location on a protein where the interaction takes place. Several approaches have been developed that take advantage of bio-orthogonal chemistry and subsequent enrichment steps to isolate peptides modified by small molecules. These methods rely on target identification at the level of mass spectrometry making it difficult to interpret an experiment when modified peptides are not identified. Herein, an approach in which fluorescence-triggered two-dimensional chromatography enables the isolation of small molecule-conjugated peptides prior to mass spectrometry analysis is described. In this study, a bromocoumarin moiety has been utilized that fluoresces and generates a distinct isotopic signature to locate and identify modified peptides. Profiling of a cellular cysteinome with the use of a bromocoumarin tag demonstrates that two-dimensional fluorescence-based chromatography separation can enable the identification of proteins containing reactive cysteine residues. Moreover, the method facilitates the interrogation of low abundance proteins with greater depth and sensitivity than a previously reported isotope-targeted approach. Lastly, this workflow enables the identification of small-molecule modified peptides from a protein-of-interest.
Collapse
Affiliation(s)
- Adam J Rabalski
- Discovery Chemistry and Technology, AbbVie Inc., North Chicago, IL, 60064, USA
| | - Jon D Williams
- Discovery Chemistry and Technology, AbbVie Inc., North Chicago, IL, 60064, USA
| | - Ryan A McClure
- Discovery Chemistry and Technology, AbbVie Inc., North Chicago, IL, 60064, USA
| | - Anil Vasudevan
- Discovery Chemistry and Technology, AbbVie Inc., North Chicago, IL, 60064, USA
| | | |
Collapse
|