51
|
Pauli S, Bajpai R, Borchers A. CHARGEd with neural crest defects. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2017; 175:478-486. [PMID: 29082625 DOI: 10.1002/ajmg.c.31584] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/23/2017] [Accepted: 08/31/2017] [Indexed: 12/15/2022]
Abstract
Neural crest cells are highly migratory pluripotent cells that give rise to diverse derivatives including cartilage, bone, smooth muscle, pigment, and endocrine cells as well as neurons and glia. Abnormalities in neural crest-derived tissues contribute to the etiology of CHARGE syndrome, a complex malformation disorder that encompasses clinical symptoms like coloboma, heart defects, atresia of the choanae, retarded growth and development, genital hypoplasia, ear anomalies, and deafness. Mutations in the chromodomain helicase DNA-binding protein 7 (CHD7) gene are causative of CHARGE syndrome and loss-of-function data in different model systems have firmly established a role of CHD7 in neural crest development. Here, we will summarize our current understanding of the function of CHD7 in neural crest development and discuss possible links of CHARGE syndrome to other developmental disorders.
Collapse
Affiliation(s)
- Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Ruchi Bajpai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry and Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
52
|
Functional analysis of the cfdp1 gene in zebrafish provides evidence for its crucial role in craniofacial development and osteogenesis. Exp Cell Res 2017; 361:236-245. [PMID: 29107067 DOI: 10.1016/j.yexcr.2017.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 11/20/2022]
Abstract
The CFDP1 proteins have been linked to craniofacial development and osteogenesis in vertebrates, though specific human syndromes have not yet been identified. Alterations of craniofacial development represent the main cause of infant disability and mortality in humans. For this reason, it is crucial to understand the cellular functions and mechanism of action of the CFDP1 protein in model vertebrate organisms. Using a combination of genomic, molecular and cell biology approaches, we have performed a functional analysis of the cfdp1 gene and its encoded protein, zCFDP1, in the zebrafish model system. We found that zCFDP1 is present in the zygote, is rapidly produced after MTZ transition and is highly abundant in the head structures. Depletion of zCFDP1, induced by an ATG-blocking morpholino, produces considerable defects in craniofacial structures and bone mineralization. Together, our results show that zCFDP1 is an essential protein required for proper development and provide the first experimental evidence showing that in vertebrates it actively participates to the morphogenesis of craniofacial territories.
Collapse
|
53
|
Chu X, Guo X, Jiang Y, Yu H, Liu L, Shan W, Yang Z. Genotranscriptomic meta-analysis of the CHD family chromatin remodelers in human cancers - initial evidence of an oncogenic role for CHD7. Mol Oncol 2017; 11:1348-1360. [PMID: 28649742 PMCID: PMC5623824 DOI: 10.1002/1878-0261.12104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/27/2017] [Accepted: 06/10/2017] [Indexed: 12/14/2022] Open
Abstract
Chromodomain helicase DNA binding proteins (CHDs) are characterized by N-terminal tandem chromodomains and a central adenosine triphosphate-dependent helicase domain. CHDs govern the cellular machinery's access to DNA, thereby playing critical roles in various cellular processes including transcription, proliferation, and DNA damage repair. Accumulating evidence demonstrates that mutation and dysregulation of CHDs are implicated in the pathogenesis of developmental disorders and cancer. However, we know little about genomic and transcriptomic alterations and the clinical significance of most CHDs in human cancer. We used TCGA and METABRIC datasets to perform integrated genomic and transcriptomic analyses of nine CHD genes in more than 10 000 primary cancer specimens from 32 tumor types, focusing on breast cancers. We identified associations among recurrent copy number alteration, gene expression, clinicopathological features, and patient survival. We found that CHD7 was the most commonly gained/amplified and mutated, whereas CHD3 was the most deleted across the majority of tumor types, including breast cancer. Overexpression of CHD7 was more prevalent in aggressive subtypes of breast cancer and was significantly correlated with high tumor grade and poor prognosis. CHD7 is required to maintain open, accessible chromatin, thus providing fine-tuning of transcriptional regulation of certain classes of genes. We found that CHD7 expression was positively correlated with a small subset of classical oncogenes, notably NRAS, in breast cancer. Knockdown of CHD7 inhibits cell proliferation and decreases gene expression of several CHD7 targets, including NRAS, in breast cancer cell lines. Thus, our results demonstrate the oncogenic potential of CHD7 and its association with poor prognostic parameters in human cancer.
Collapse
Affiliation(s)
- Xiaofang Chu
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Xuhui Guo
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
- Department of Breast SurgeryAffiliated Cancer Hospital of Zhengzhou UniversityHenanChina
| | - Yuanyuan Jiang
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Huimei Yu
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
- College of Basic MedicineJilin UniversityChangchunChina
| | - Lanxin Liu
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Wenqi Shan
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Zeng‐Quan Yang
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
- Molecular Therapeutics ProgramBarbara Ann Karmanos Cancer InstituteDetroitMIUSA
| |
Collapse
|
54
|
Feng W, Shao C, Liu HK. Versatile Roles of the Chromatin Remodeler CHD7 during Brain Development and Disease. Front Mol Neurosci 2017; 10:309. [PMID: 29033785 PMCID: PMC5625114 DOI: 10.3389/fnmol.2017.00309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/14/2017] [Indexed: 11/13/2022] Open
Abstract
CHD7 (Chromo-Helicase-DNA binding protein 7) protein is an ATP-dependent chromatin remodeler. Heterozygous mutation of the CHD7 gene causes a severe congenital disease known as CHARGE syndrome. Most CHARGE syndrome patients have brain structural anomalies, implicating an important role of CHD7 during brain development. In this review, we summarize studies dissecting developmental functions of CHD7 in the brain and discuss pathogenic mechanisms behind neurodevelopmental defects caused by mutation of CHD7. As we discussed, CHD7 protein exhibits a remarkably specific and dynamic expression pattern in the brain. Studies in human and animal models have revealed that CHD7 is involved in multiple developmental lineages and processes in the brain. Mechanistically, CHD7 is essential for neural differentiation due to its transcriptional regulation in progenitor cells.
Collapse
Affiliation(s)
- Weijun Feng
- Division of Molecular Neurogenetics, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Chunxuan Shao
- Division of Molecular Neurogenetics, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Hai-Kun Liu
- Division of Molecular Neurogenetics, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
55
|
Chd7 Collaborates with Sox2 to Regulate Activation of Oligodendrocyte Precursor Cells after Spinal Cord Injury. J Neurosci 2017; 37:10290-10309. [PMID: 28931573 DOI: 10.1523/jneurosci.1109-17.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/09/2017] [Accepted: 09/12/2017] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) act as a reservoir of new oligodendrocytes (OLs) in homeostatic and pathological conditions. OPCs are activated in response to injury to generate myelinating OLs, but the underlying mechanisms remain poorly understood. Here, we show that chromodomain helicase DNA binding protein 7 (Chd7) regulates OPC activation after spinal cord injury (SCI). Chd7 is expressed in OPCs in the adult spinal cord and its expression is upregulated with a concomitant increase in Sox2 expression after SCI. OPC-specific ablation of Chd7 in injured mice leads to reduced OPC proliferation, the loss of OPC identity, and impaired OPC differentiation. Ablation of Chd7 or Sox2 in cultured OPCs shows similar phenotypes to those observed in Chd7 knock-out mice. Chd7 and Sox2 form a complex in OPCs and bind to the promoters or enhancers of the regulator of cell cycle (Rgcc) and protein kinase Cθ (PKCθ) genes, thereby inducing their expression. The expression of Rgcc and PKCθ is reduced in the OPCs of the injured Chd7 knock-out mice. In cultured OPCs, overexpression and knock-down of Rgcc or PKCθ promote and suppress OPC proliferation, respectively. Furthermore, overexpression of both Rgcc and PKCθ rescues the Chd7 deletion phenotypes. Chd7 is thus a key regulator of OPC activation, in which it cooperates with Sox2 and acts via direct induction of Rgcc and PKCθ expression.SIGNIFICANCE STATEMENT Spinal cord injury (SCI) leads to oligodendrocyte (OL) loss and demyelination, along with neuronal death, resulting in impairment of motor or sensory functions. Oligodendrocyte precursor cells (OPCs) activated in response to injury are potential sources of OL replacement and are thought to contribute to remyelination and functional recovery after SCI. However, the molecular mechanisms underlying OPC activation, especially its epigenetic regulation, remain largely unclear. We demonstrate here that the chromatin remodeler chromodomain helicase DNA binding protein 7 (Chd7) regulates the proliferation and identity of OPCs after SCI. We have further identified regulator of cell cycle (Rgcc) and protein kinase Cθ (PKCθ) as novel targets of Chd7 for OPC activation.
Collapse
|
56
|
Hooper JE, Feng W, Li H, Leach SM, Phang T, Siska C, Jones KL, Spritz RA, Hunter LE, Williams T. Systems biology of facial development: contributions of ectoderm and mesenchyme. Dev Biol 2017; 426:97-114. [PMID: 28363736 PMCID: PMC5530582 DOI: 10.1016/j.ydbio.2017.03.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
Abstract
The rapid increase in gene-centric biological knowledge coupled with analytic approaches for genomewide data integration provides an opportunity to develop systems-level understanding of facial development. Experimental analyses have demonstrated the importance of signaling between the surface ectoderm and the underlying mesenchyme are coordinating facial patterning. However, current transcriptome data from the developing vertebrate face is dominated by the mesenchymal component, and the contributions of the ectoderm are not easily identified. We have generated transcriptome datasets from critical periods of mouse face formation that enable gene expression to be analyzed with respect to time, prominence, and tissue layer. Notably, by separating the ectoderm and mesenchyme we considerably improved the sensitivity compared to data obtained from whole prominences, with more genes detected over a wider dynamic range. From these data we generated a detailed description of ectoderm-specific developmental programs, including pan-ectodermal programs, prominence- specific programs and their temporal dynamics. The genes and pathways represented in these programs provide mechanistic insights into several aspects of ectodermal development. We also used these data to identify co-expression modules specific to facial development. We then used 14 co-expression modules enriched for genes involved in orofacial clefts to make specific mechanistic predictions about genes involved in tongue specification, in nasal process patterning and in jaw development. Our multidimensional gene expression dataset is a unique resource for systems analysis of the developing face; our co-expression modules are a resource for predicting functions of poorly annotated genes, or for predicting roles for genes that have yet to be studied in the context of facial development; and our analytic approaches provide a paradigm for analysis of other complex developmental programs.
Collapse
Affiliation(s)
- Joan E Hooper
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA; Computational Bioscience Program, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Weiguo Feng
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA; Department of Craniofacial Biology, University of Colorado School of Dental Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Hong Li
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Sonia M Leach
- Department of Biomedical Research, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA.
| | - Tzulip Phang
- Computational Bioscience Program, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA; Department of Medicine, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Charlotte Siska
- Computational Bioscience Program, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Richard A Spritz
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, 12800 E 17th Avenue, Aurora, CO 80045, USA.
| | - Lawrence E Hunter
- Computational Bioscience Program, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| | - Trevor Williams
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA; Department of Craniofacial Biology, University of Colorado School of Dental Medicine, 12801 E 17th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
57
|
Manning BJ, Yusufzai T. The ATP-dependent chromatin remodeling enzymes CHD6, CHD7, and CHD8 exhibit distinct nucleosome binding and remodeling activities. J Biol Chem 2017; 292:11927-11936. [PMID: 28533432 PMCID: PMC5512084 DOI: 10.1074/jbc.m117.779470] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/19/2017] [Indexed: 01/04/2023] Open
Abstract
Proper chromatin regulation is central to genome function and maintenance. The group III chromodomain–helicase–DNA-binding (CHD) family of ATP-dependent chromatin remodeling enzymes, comprising CHD6, CHD7, CHD8, and CHD9, has well-documented roles in transcription regulation, impacting both organism development and disease etiology. These four enzymes are similar in their constituent domains, but they fill surprisingly non-redundant roles in the cell, with deficiencies in individual enzymes leading to dissimilar disease states such as CHARGE syndrome or autism spectrum disorders. The mechanisms explaining their divergent, non-overlapping functions are unclear. In this study, we performed an in-depth biochemical analysis of purified CHD6, CHD7, and CHD8 and discovered distinct differences in chromatin remodeling specificities and activities among them. We report that CHD6 and CHD7 both bind with high affinity to short linker DNA, whereas CHD8 requires longer DNA for binding. As a result, CHD8 slides nucleosomes into positions with more flanking linker DNA than CHD7. Moreover, we found that, although CHD7 and CHD8 slide nucleosomes, CHD6 disrupts nucleosomes in a distinct non-sliding manner. The different activities of these enzymes likely lead to differences in chromatin structure and, thereby, transcriptional control, at the enhancer and promoter loci where these enzymes bind. Overall, our work provides a mechanistic basis for both the non-redundant roles and the diverse mutant disease states of these enzymes in vivo.
Collapse
Affiliation(s)
- Benjamin J Manning
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215
| | - Timur Yusufzai
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02215.
| |
Collapse
|
58
|
Doetzlhofer A, Avraham KB. Insights into inner ear-specific gene regulation: Epigenetics and non-coding RNAs in inner ear development and regeneration. Semin Cell Dev Biol 2017; 65:69-79. [PMID: 27836639 PMCID: PMC5512292 DOI: 10.1016/j.semcdb.2016.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/14/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022]
Abstract
The vertebrate inner ear houses highly specialized sensory organs, tuned to detect and encode sound, head motion and gravity. Gene expression programs under the control of transcription factors orchestrate the formation and specialization of the non-sensory inner ear labyrinth and its sensory constituents. More recently, epigenetic factors and non-coding RNAs emerged as an additional layer of gene regulation, both in inner ear development and disease. In this review, we provide an overview on how epigenetic modifications and non-coding RNAs, in particular microRNAs (miRNAs), influence gene expression and summarize recent discoveries that highlight their critical role in the proper formation of the inner ear labyrinth and its sensory organs. Finally, we discuss recent insights into how epigenetic factors and miRNAs may facilitate, or in the case of mammals, restrict inner ear sensory hair cell regeneration.
Collapse
Affiliation(s)
- Angelika Doetzlhofer
- The Solomon H. Snyder Department of Neuroscience, the Center for Sensory Biology, the Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
59
|
Messina G, Atterrato MT, Prozzillo Y, Piacentini L, Losada A, Dimitri P. The human Cranio Facial Development Protein 1 (Cfdp1) gene encodes a protein required for the maintenance of higher-order chromatin organization. Sci Rep 2017; 7:45022. [PMID: 28367969 PMCID: PMC5377257 DOI: 10.1038/srep45022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/20/2017] [Indexed: 12/26/2022] Open
Abstract
The human Cranio Facial Development Protein 1 (Cfdp1) gene maps to chromosome 16q22.2-q22.3 and encodes the CFDP1 protein, which belongs to the evolutionarily conserved Bucentaur (BCNT) family. Craniofacial malformations are developmental disorders of particular biomedical and clinical interest, because they represent the main cause of infant mortality and disability in humans, thus it is important to understand the cellular functions and mechanism of action of the CFDP1 protein. We have carried out a multi-disciplinary study, combining cell biology, reverse genetics and biochemistry, to provide the first in vivo characterization of CFDP1 protein functions in human cells. We show that CFDP1 binds to chromatin and interacts with subunits of the SRCAP chromatin remodeling complex. An RNAi-mediated depletion of CFDP1 in HeLa cells affects chromosome organization, SMC2 condensin recruitment and cell cycle progression. Our findings provide new insight into the chromatin functions and mechanisms of the CFDP1 protein and contribute to our understanding of the link between epigenetic regulation and the onset of human complex developmental disorders.
Collapse
Affiliation(s)
- Giovanni Messina
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Italy.,Dipartimento di Biologia e Biotecnologie "Charles Darwin" Sapienza Università di Roma, Roma, Italy
| | - Maria Teresa Atterrato
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Italy.,Dipartimento di Biologia e Biotecnologie "Charles Darwin" Sapienza Università di Roma, Roma, Italy
| | - Yuri Prozzillo
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Italy.,Dipartimento di Biologia e Biotecnologie "Charles Darwin" Sapienza Università di Roma, Roma, Italy
| | - Lucia Piacentini
- Dipartimento di Biologia e Biotecnologie "Charles Darwin" Sapienza Università di Roma, Roma, Italy
| | | | - Patrizio Dimitri
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Italy.,Dipartimento di Biologia e Biotecnologie "Charles Darwin" Sapienza Università di Roma, Roma, Italy
| |
Collapse
|
60
|
Whittaker DE, Riegman KL, Kasah S, Mohan C, Yu T, Sala BP, Hebaishi H, Caruso A, Marques AC, Michetti C, Smachetti MES, Shah A, Sabbioni M, Kulhanci O, Tee WW, Reinberg D, Scattoni ML, Volk H, McGonnell I, Wardle FC, Fernandes C, Basson MA. The chromatin remodeling factor CHD7 controls cerebellar development by regulating reelin expression. J Clin Invest 2017; 127:874-887. [PMID: 28165338 PMCID: PMC5330721 DOI: 10.1172/jci83408] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
The mechanisms underlying the neurodevelopmental deficits associated with CHARGE syndrome, which include cerebellar hypoplasia, developmental delay, coordination problems, and autistic features, have not been identified. CHARGE syndrome has been associated with mutations in the gene encoding the ATP-dependent chromatin remodeler CHD7. CHD7 is expressed in neural stem and progenitor cells, but its role in neurogenesis during brain development remains unknown. Here we have shown that deletion of Chd7 from cerebellar granule cell progenitors (GCps) results in reduced GCp proliferation, cerebellar hypoplasia, developmental delay, and motor deficits in mice. Genome-wide expression profiling revealed downregulated expression of the gene encoding the glycoprotein reelin (Reln) in Chd7-deficient GCps. Recessive RELN mutations have been associated with severe cerebellar hypoplasia in humans. We found molecular and genetic evidence that reductions in Reln expression contribute to GCp proliferative defects and cerebellar hypoplasia in GCp-specific Chd7 mouse mutants. Finally, we showed that CHD7 is necessary for maintaining an open, accessible chromatin state at the Reln locus. Taken together, this study shows that Reln gene expression is regulated by chromatin remodeling, identifies CHD7 as a previously unrecognized upstream regulator of Reln, and provides direct in vivo evidence that a mammalian CHD protein can control brain development by modulating chromatin accessibility in neuronal progenitors.
Collapse
Affiliation(s)
- Danielle E. Whittaker
- King’s College London, Department of Craniofacial Development and Stem Cell Biology, Guy’s Hospital Tower Wing
- Department of Comparative Biomedical Sciences, Royal Veterinary College, and
| | - Kimberley L.H. Riegman
- King’s College London, Department of Craniofacial Development and Stem Cell Biology, Guy’s Hospital Tower Wing
| | - Sahrunizam Kasah
- King’s College London, Department of Craniofacial Development and Stem Cell Biology, Guy’s Hospital Tower Wing
| | - Conor Mohan
- King’s College London, Department of Craniofacial Development and Stem Cell Biology, Guy’s Hospital Tower Wing
| | - Tian Yu
- King’s College London, Department of Craniofacial Development and Stem Cell Biology, Guy’s Hospital Tower Wing
| | - Blanca Pijuan Sala
- King’s College London, Department of Craniofacial Development and Stem Cell Biology, Guy’s Hospital Tower Wing
| | - Husam Hebaishi
- King’s College London, Randall Division, New Hunt’s House, London, United Kingdom
| | - Angela Caruso
- Neurotoxicology and Neuroendocrinology Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, and
- School of Behavioural Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Ana Claudia Marques
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Caterina Michetti
- Neurotoxicology and Neuroendocrinology Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, and
- Department of Physiology and Pharmacology “V. Erspamer,” Sapienza University of Rome, Rome, Italy
| | | | - Apar Shah
- King’s College London, Department of Craniofacial Development and Stem Cell Biology, Guy’s Hospital Tower Wing
| | - Mara Sabbioni
- Neurotoxicology and Neuroendocrinology Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, and
| | - Omer Kulhanci
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Wee-Wei Tee
- Howard Hughes Medical Institute, Department of Molecular Pharmacology and Biochemistry, New York University School of Medicine, New York, New York, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, Department of Molecular Pharmacology and Biochemistry, New York University School of Medicine, New York, New York, USA
| | - Maria Luisa Scattoni
- Neurotoxicology and Neuroendocrinology Section, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, and
| | - Holger Volk
- Department of Comparative Biomedical Sciences, Royal Veterinary College, and
| | - Imelda McGonnell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, and
| | - Fiona C. Wardle
- King’s College London, Randall Division, New Hunt’s House, London, United Kingdom
| | - Cathy Fernandes
- MRC Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- King’s College London, MRC Centre for Neurodevelopmental Disorders, New Hunt’s House, London, United Kingdom
| | - M. Albert Basson
- King’s College London, Department of Craniofacial Development and Stem Cell Biology, Guy’s Hospital Tower Wing
- King’s College London, MRC Centre for Neurodevelopmental Disorders, New Hunt’s House, London, United Kingdom
| |
Collapse
|
61
|
Abstract
Macrophage migration inhibitory factor (MIF) plays an important role in supporting the proliferation and/or survival of murine neural stem/progenitor cells (NSPCs); however, the downstream effectors of this factor remain unknown. Here, we show that MIF increases the expression of Pax6 and Chd7 in NSPCs in vitro. During neural development, the chromatin remodeling factor Chd7 (chromatin helicase-DNA-binding protein 7) is expressed in the ventricular zone of the telencephalon of mouse brain at embryonic day 14.5, as well as in cultured NSPCs. Retroviral overexpression of Pax6 in NSPCs increased Chd7 gene expression. Lentivirally-expressed Chd7 shRNA suppressed cell proliferation and neurosphere formation, and inhibited neurogenesis in vitro, while decreasing gene expression of Hes5 and N-myc. In addition, CHD7 overexpression increased cell proliferation in human embryonic stem cell-derived NSPCs (ES-NSPCs). In Chd7 mutant fetal mouse brains, there were fewer intermediate progenitor cells (IPCs) compared to wildtype littermates, indicating that Chd7 contributes to neurogenesis in the early developmental mouse brain. Furthermore, in silico database analysis showed that, among members of the CHD family, CHD7 is highly expressed in human gliomas. Interestingly, high levels of CHD7 gene expression in human glioma initiating cells (GICs) compared to normal astrocytes were revealed and gene silencing of CHD7 decreased GIC proliferation. Collectively, our data demonstrate that CHD7 is an important factor in the proliferation and stemness maintenance of NSPCs, and CHD7 is a promising therapeutic target for the treatment of gliomas.
Collapse
|
62
|
Abstract
Recent data have paved the way to mechanistic studies into the role of Tbx1 during development. Tbx1 is haploinsufficient and is involved in an important genetic disorder. The gene encodes a T-box transcription factor that is expressed from approximately E7.5 in mouse embryos and continues to be expressed in a highly dynamic manner. It is neither a strong transcriptional activator nor a strong repressor, but it regulates a large number of genes through epigenetic modifications. Here, we review recent literature concerning mechanisms of gene regulation by Tbx1 and its role in mammalian development, with a special focus on the cardiac, vascular, and central nervous systems.
Collapse
|
63
|
Sarnowska E, Gratkowska DM, Sacharowski SP, Cwiek P, Tohge T, Fernie AR, Siedlecki JA, Koncz C, Sarnowski TJ. The Role of SWI/SNF Chromatin Remodeling Complexes in Hormone Crosstalk. TRENDS IN PLANT SCIENCE 2016; 21:594-608. [PMID: 26920655 DOI: 10.1016/j.tplants.2016.01.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/14/2015] [Accepted: 01/21/2016] [Indexed: 05/20/2023]
Abstract
SWI/SNF-type ATP-dependent chromatin remodeling complexes (CRCs) are evolutionarily conserved multiprotein machineries controlling DNA accessibility by regulating chromatin structure. We summarize here recent advances highlighting the role of SWI/SNF in the regulation of hormone signaling pathways and their crosstalk in Arabidopsis thaliana. We discuss the functional interdependences of SWI/SNF complexes and key elements regulating developmental and hormone signaling pathways by indicating intriguing similarities and differences in plants and humans, and summarize proposed mechanisms of SWI/SNF action on target loci. We postulate that, given their viability, several plant SWI/SNF mutants may serve as an attractive model for searching for conserved functions of SWI/SNF CRCs in hormone signaling, cell cycle control, and other regulatory pathways.
Collapse
Affiliation(s)
| | | | | | - Pawel Cwiek
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | - Csaba Koncz
- Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany; Institute of Plant Biology, Biological Research Center of Hungarian Academy, Temesvári Körút 62, 6724 Szeged, Hungary
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
64
|
Expression of human Cfdp1 gene in Drosophila reveals new insights into the function of the evolutionarily conserved BCNT protein family. Sci Rep 2016; 6:25511. [PMID: 27151176 PMCID: PMC4858687 DOI: 10.1038/srep25511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/18/2016] [Indexed: 12/21/2022] Open
Abstract
The Bucentaur (BCNT) protein family is widely distributed in eukaryotes and is characterized by a highly conserved C-terminal domain. This family was identified two decades ago in ruminants, but its role(s) remained largely unknown. Investigating cellular functions and mechanism of action of BCNT proteins is challenging, because they have been implicated in human craniofacial development. Recently, we found that YETI, the D. melanogaster BCNT, is a chromatin factor that participates to H2A.V deposition. Here we report the effects of in vivo expression of CFDP1, the human BCNT protein, in Drosophila melanogaster. We show that CFDP1, similarly to YETI, binds to chromatin and its expression results in a wide range of abnormalities highly reminiscent of those observed in Yeti null mutants. This indicates that CFDP1 expressed in flies behaves in a dominant negative fashion disrupting the YETI function. Moreover, GST pull-down provides evidence indicating that 1) both YETI and CFDP1 undergo homodimerization and 2) YETI and CFDP1 physically interact each other by forming inactive heterodimers that would trigger the observed dominant-negative effect. Overall, our findings highlight unanticipated evidences suggesting that homodimerization mediated by the BCNT domain is integral to the chromatin functions of BCNT proteins.
Collapse
|
65
|
Messina G, Atterrato MT, Dimitri P. When chromatin organisation floats astray: theSrcapgene and Floating–Harbor syndrome. J Med Genet 2016; 53:793-797. [DOI: 10.1136/jmedgenet-2016-103842] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 02/29/2016] [Accepted: 03/29/2016] [Indexed: 01/19/2023]
|