51
|
Xing J, An Z, Tang X, Sheng X, Chi H, Zhan W. Expression and Immune Characterization of Major Histocompatibility Complex in Paralichthys olivaceus after Antigen Stimulation. BIOLOGY 2023; 12:1464. [PMID: 38132290 PMCID: PMC10741117 DOI: 10.3390/biology12121464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
The Major histocompatibility complex (Mhc) is an important molecule for antigen presenting and binds to T cell receptors, activating T lymphocytes and triggering specific immune responses. To investigate the role of MhcII in adaptive immunity, in this study, mhcIIα and mhcIIβ of flounder (Paralichthys olivaceus) were cloned, polyclonal antibodies (Abs) against their extracellular regions were produced, respectively, and their distribution on cells and tissues and expression patterns, which varied by antigen stimulation or pathogen infection, were investigated. The results showed that the open reading frame (ORF) of mhcIIα is 708 bp, including 235 amino acids (aa); and the ORF of mhcIIβ is 741 bp, encoding 246aa. The mhcIIα and mhcIIβ were significantly expressed in gills, spleen, and peripheral blood leukocytes (PBLs). Their antibodies could specifically recognize eukaryotic expressed MhcIIα and MhcIIβ. MhcIIα+ and MhcIIβ+ cells were 30.2 ± 2.9% of the percentage in peripheral blood leukocytes. MhcII molecules were co-localized with CD83 and IgM on leukocytes, respectively, but not on CD4+ or CD8+ T lymphocyte subpopulations. The expression of both mhcIIα and mhcIIβ were significantly upregulated in flounder after bacteria and virus challenges. The percentages of MhcII+ cells, MhcII+/CD83+, and MhcII+/IgM+ double-positive cells increased significantly after PHA and ConA stimulation, respectively; they varied significantly in PBLs after polyI:C stimulation, and no variations were found after LPS treatment. In the meantime, variations in MhcII+ cells were consistent with that of CD4+ T lymphocytes. These results suggest that MhcII, mainly expressed in B cells and dendritic cells, play an essential role in antigen presentation, and respond significantly to exogenous antigens and T cell-dependent antigens. These results may provide an important reference for the study of cellular immunity in teleosts.
Collapse
Affiliation(s)
- Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.X.); (Z.A.); (X.T.); (X.S.); (H.C.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Zhaoxia An
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.X.); (Z.A.); (X.T.); (X.S.); (H.C.)
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.X.); (Z.A.); (X.T.); (X.S.); (H.C.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.X.); (Z.A.); (X.T.); (X.S.); (H.C.)
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.X.); (Z.A.); (X.T.); (X.S.); (H.C.)
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (J.X.); (Z.A.); (X.T.); (X.S.); (H.C.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
52
|
Levi R, Levi L, Louzoun Y. Bw4 ligand and direct T-cell receptor binding induced selection on HLA A and B alleles. Front Immunol 2023; 14:1236080. [PMID: 38077375 PMCID: PMC10703150 DOI: 10.3389/fimmu.2023.1236080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction The HLA region is the hallmark of balancing selection, argued to be driven by the pressure to present a wide variety of viral epitopes. As such selection on the peptide-binding positions has been proposed to drive HLA population genetics. MHC molecules also directly binds to the T-Cell Receptor and killer cell immunoglobulin-like receptors (KIR). Methods We here combine the HLA allele frequencies in over six-million Hematopoietic Stem Cells (HSC) donors with a novel machine-learning-based method to predict allele frequency. Results We show for the first time that allele frequency can be predicted from their sequences. This prediction yields a natural measure for selection. The strongest selection is affecting KIR binding regions, followed by the peptide-binding cleft. The selection from the direct interaction with the KIR and TCR is centered on positively charged residues (mainly Arginine), and some positions in the peptide-binding cleft are not associated with the allele frequency, especially Tyrosine residues. Discussion These results suggest that the balancing selection for peptide presentation is combined with a positive selection for KIR and TCR binding.
Collapse
Affiliation(s)
| | | | - Yoram Louzoun
- Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
53
|
Ni C, Han Y, Wang Y, Ma T, Sha D, Xu Y, Cao W, Gao S. Human HLA prolongs the host inflammatory response in Streptococcus suis serotype 2 infection compared to mouse H2 molecules. Front Cell Infect Microbiol 2023; 13:1285055. [PMID: 38035330 PMCID: PMC10682707 DOI: 10.3389/fcimb.2023.1285055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Streptococcus suis (S. suis) is widely acknowledged as a significant zoonotic pathogen in Southeast Asia and China, which has led to a substantial number of fatalities in both swine and humans. Despite the prevalent use of mice as the primary animal model to study S. suis pathogenesis, the substantial differences in the major histocompatibility complex (MHC) between humans and mice underscore the ongoing exploration for a more suitable and effective animal model. In this study, humanized transgenic HLA-A11/DR1 genotypes mice were used to evaluate the differences between humanized HLA and murine H2 in S. suis infection. Following intravenous administration of S. suis suspensions, we investigated bacterial load, cytokine profiles, pathological alterations, and immune cell recruitment in both Wild-type (WT) and humanized mice across different post-infection time points. Relative to WT mice, humanized mice exhibited heightened pro-inflammatory cytokines, exacerbated tissue damage, increased granulocyte recruitment with impaired resolution, notably more pronounced during the late infection stage. Additionally, our examination of bacterial clearance rates suggests that HLA-A11/DR1 primarily influences cell recruitment and mitochondrial reactive oxygen species (ROS) production, which affects the bacterial killing capacity of macrophages in the late stage of infection. The reduced IL-10 production and lower levels of regulatory T cells in humanized mice could underlie their compromised resolution ability. Intervention with IL-10 promotes bacterial clearance and inflammatory regression in the late stages of infection in transgenic mice. Our findings underscore the heightened sensitivity of HLA-A11/DR1 mice with impaired resolution to S. suis infection, effectively mirroring the immune response seen in humans during infection. The humanized HLA-A11/DR1 mice could serve as an optimal animal model for investigating the pathogenic and therapeutic mechanisms associated with sepsis and other infectious diseases.
Collapse
Affiliation(s)
- Chengpei Ni
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Yi Han
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Yajing Wang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Ting Ma
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dan Sha
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Yanan Xu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Wenting Cao
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Song Gao
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China
- Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
54
|
Napolitano C, Sacristán I, Acuña F, Aguilar E, García S, López-Jara MJ, Cabello J, Hidalgo-Hermoso E, Poulin E, Grueber CE. Assessing micro-macroparasite selective pressures and anthropogenic disturbance as drivers of immune gene diversity in a Neotropical wild cat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:166289. [PMID: 37591403 DOI: 10.1016/j.scitotenv.2023.166289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Anthropogenic environmental change is reducing available habitat for wild species, providing novel selection pressures such as infectious diseases and causing species to interact in new ways. The potential for emerging infectious diseases and zoonoses at the interface between humans, domestic animals, and wild species is a key global concern. In vertebrates, diversity at the major histocompatibility complex MHC is critical to disease resilience, and its study in wild populations provides insights into eco-evolutionary dynamics that human activities alter. In natural populations, variation at MHC loci is partly maintained by balancing selection, driven by pathogenic selective pressures. We hypothesize that MHC genetic diversity differs between guigna populations inhabiting human-dominated landscapes (higher pathogen pressures) versus more natural habitats (lower pathogen pressures). We predict that MHC diversity in guignas would be highest in human-dominated landscapes compared with continuous forest habitats. We also expected to find higher MHC diversity in guignas infected with micro and macro parasites (higher parasite load) versus non infected guignas. We characterized for the first time the genetic diversity at three MHC class I and II exons in 128 wild guignas (Leopardus guigna) across their distribution range in Chile (32-46° S) and Argentina, representing landscapes with varying levels of human disturbance. We integrated MHC sequence diversity with multiple measures of anthropogenic disturbance and both micro and macro parasite infection data. We also assessed signatures of positive selection acting on MHC genes. We found significantly higher MHC class I diversity in guignas inhabiting landscapes where houses were present, and with lower percentage of vegetation cover, and also in animals with more severe cardiorespiratory helminth infection (richness and intensity) and micro-macroparasite co-infection. This comprehensive, landscape-level assessment further enhances our knowledge on the evolutionary dynamics and adaptive potential of vertebrates in the face of emerging infectious disease threats and increasing anthropogenic impacts.
Collapse
Affiliation(s)
- Constanza Napolitano
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, Chile; Institute of Ecology and Biodiversity (IEB), Concepción, Chile; Cape Horn International Center (CHIC), Puerto Williams, Chile.
| | - Irene Sacristán
- Universidad Andres Bello, Santiago, Chile; Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA), Centro Superior de Investigaciones Científicas (CSIC), Valdeolmos, Madrid, Spain
| | - Francisca Acuña
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Emilio Aguilar
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Sebastián García
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - María José López-Jara
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Javier Cabello
- Chiloé Silvestre Center for the Conservation of Biodiversity, Ancud, Chile
| | | | - Elie Poulin
- Institute of Ecology and Biodiversity (IEB), Concepción, Chile; Millennium Institute of Biodiversity of Antarctic and Subantarctic Ecosystems and Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Catherine E Grueber
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, Australia
| |
Collapse
|
55
|
Minias P, Edwards SV, Babik W. Ancient duplication, coevolution, and selection at the MHC class IIA and IIB genes of birds. Front Immunol 2023; 14:1250824. [PMID: 37965325 PMCID: PMC10641522 DOI: 10.3389/fimmu.2023.1250824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction The Major Histocompatibility Complex (MHC) of vertebrates is a dynamically evolving multigene family primarily responsible for recognizing non-self peptide antigens and triggering a pathogen-specific adaptive immune response. In birds, the MHC was previously thought to evolve via concerted evolution with high degree of gene homogenization and the rapid loss of orthology. However, the discovery of two ancient avian MHC-IIB gene lineages (DAB1 and DAB2) originating before the radiation of extant birds indicated that despite the action of concerted evolution, orthology may be detectable for long evolutionary periods. Methods Here, we take advantage of rapidly accumulating digital genomic resources to search for the signal of an ancient duplication at the avian MHC-IIA genes, as well as to compare phylogenetic distribution and selection between MHC-IIA and IIB gene lineages. Results The analysis of MHC sequences from over 230 species representing ca. 70 bird families revealed the presence of two ancient MHC-IIA gene lineages (DAA1 and DAA2) and showed that their phylogenetic distribution matches exactly the distribution of DAB1 and DAB2 lineages, suggesting tight coevolution. The early post-duplication divergence of DAA1 and DAA2 was driven by positive selection fixing radical amino acid differences within the membrane-proximal domain and, most probably, being functionally related to the interactions between α2 and β2 chains of the MHC-II heterodimer. We detected no evidence for an overall (gene-wide) relaxation or intensification of selection at either DAA1/DAB1 or DAA2/DAB2, but codon-specific differences in selection signature were found at the peptide-binding sites between the two gene lineages, perhaps implying specialization to different pathogen regimes. Discussion Our results suggest that specific pairing of MHC-II α and β chains may have an adaptive significance, a conclusion that advances knowledge on the macroevolution of the avian MHC-II and opens exciting novel directions for future research.
Collapse
Affiliation(s)
- Piotr Minias
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation, Lodz, Poland
| | - Scott V. Edwards
- Harvard University, Museum of Comparative Zoology, Cambridge, MA, United States
- Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA, United States
| | - Wiesław Babik
- Jagiellonian University, Institute of Environmental Sciences, Faculty of Biology, Kraków, Poland
| |
Collapse
|
56
|
Li Q, Lin L, Shou P, Liu K, Xue Y, Hu M, Ling W, Huang Y, Du L, Zheng C, Wang X, Zheng F, Zhang T, Wang Y, Shao C, Melino G, Shi Y, Wang Y. MHC class Ib-restricted CD8 + T cells possess strong tumoricidal activities. Proc Natl Acad Sci U S A 2023; 120:e2304689120. [PMID: 37856544 PMCID: PMC10614629 DOI: 10.1073/pnas.2304689120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/28/2023] [Indexed: 10/21/2023] Open
Abstract
The importance of classical CD8+ T cells in tumor eradication is well acknowledged. However, the anti-tumor activity of MHC (major histocompatibility complex) Ib-restricted CD8+ T (Ib-CD8+ T) cells remains obscure. Here, we show that CX3CR1-expressing Ib-CD8+ T cells (Ib-restricted CD8+ T cells) highly express cytotoxic factors, austerely resist exhaustion, and effectively eliminate various tumors. These Ib-CD8+ T cells can be primed by MHC Ia (MHC class Ia molecules) expressed on various cell types for optimal activation in a Tbet-dependent manner. Importantly, MHC Ia does not allogeneically activate Ib-CD8+ T cells, rather, sensitizes these cells for T cell receptor activation. Such effects were observed when MHC Ia+ cells were administered to tumor-bearing Kb-/-Db-/-mice. A similar population of tumoricidal CX3CR1+CD8+ T cells was identified in wild-type mice and melanoma patients. Adoptive transfer of Ib-CD8+ T cells to wild-type mice inhibited tumor progression without damaging normal tissues. Taken together, we demonstrate that MHC class Ia can prime Ib-CD8+ T cells for robust tumoricidal activities.
Collapse
Affiliation(s)
- Qing Li
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Liangyu Lin
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Peishun Shou
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Keli Liu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yueqing Xue
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Mingyuan Hu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Weifang Ling
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yin Huang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Liming Du
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Chunxing Zheng
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Xuefeng Wang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Fanjun Zheng
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Tao Zhang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yu Wang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu215123, China
| | - Gerry Melino
- Department of Experimental Medicine, Tor Vergata Oncoscience Research, University of Rome Tor Vergata, Rome00133, Italy
| | - Yufang Shi
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu215123, China
| | - Ying Wang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| |
Collapse
|
57
|
Boughter CT, Meier-Schellersheim M. An integrated approach to the characterization of immune repertoires using AIMS: An Automated Immune Molecule Separator. PLoS Comput Biol 2023; 19:e1011577. [PMID: 37862356 PMCID: PMC10619816 DOI: 10.1371/journal.pcbi.1011577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 11/01/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023] Open
Abstract
The adaptive immune system employs an array of receptors designed to respond with high specificity to pathogens or molecular aberrations faced by the host organism. Binding of these receptors to molecular fragments-collectively referred to as antigens-initiates immune responses. These antigenic targets are recognized in their native state on the surfaces of pathogens by antibodies, whereas T cell receptors (TCR) recognize processed antigens as short peptides, presented on major histocompatibility complex (MHC) molecules. Recent research has led to a wealth of immune repertoire data that are key to interrogating the nature of these molecular interactions. However, existing tools for the analysis of these large datasets typically focus on molecular sets of a single type, forcing researchers to separately analyze strongly coupled sequences of interacting molecules. Here, we introduce a software package for the integrated analysis of immune repertoire data, capable of identifying distinct biophysical differences in isolated TCR, MHC, peptide, antibody, and antigen sequence data. This integrated analytical approach allows for direct comparisons across immune repertoire subsets and provides a starting point for the identification of key interaction hotspots in complementary receptor-antigen pairs. The software (AIMS-Automated Immune Molecule Separator) is freely available as an open access package in GUI or command-line form.
Collapse
Affiliation(s)
- Christopher T. Boughter
- Computational Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Martin Meier-Schellersheim
- Computational Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
58
|
Minias P, Podlaszczuk P, Indykiewicz P, Ledwoń M, Nowakowski J, Chyb A, Janiszewski T. Genetic variation at innate and adaptive immune genes - contrasting patterns of differentiation and local adaptation in a wild gull. Heredity (Edinb) 2023; 131:282-291. [PMID: 37553491 PMCID: PMC10539538 DOI: 10.1038/s41437-023-00645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/15/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023] Open
Abstract
Immunogenetic variation in natural vertebrate populations is expected to respond to spatial and temporal fluctuations in pathogen assemblages. While spatial heterogeneity in pathogen-driven selection enhances local immunogenetic adaptations and population divergence, different immune genes may yield contrasting responses to the environment. Here, we investigated population differentiation at the key pathogen recognition genes of the innate and adaptive immune system in a colonial bird species, the black-headed gull Chroicocephalus ridibundus. We assessed genetic variation at three toll-like receptor (TLR) genes (innate immunity) and the major histocompatibility complex (MHC) class I and II genes (adaptive immunity) in gulls from seven colonies scattered across Poland. As expected, we found much greater polymorphism at the MHC than TLRs. Population differentiation at the MHC class II, but not MHC-I, was significantly stronger than at neutral microsatellite loci, suggesting local adaptation. This could reflect spatial variation in the composition of extracellular parasite communities (e.g., helminths), possibly driven by sharp differences in habitat structure between colonies. Despite contrasting patterns of population differentiation, both MHC classes showed similar regimes of diversifying selection. Some significant population differentiation was also observed at TLRs, suggesting that innate immune receptors may respond to fine-scale spatial variation in pathogen pressure, although this pattern could have been enhanced by drift. Our results suggested that local adaptation at the pathogen recognition immune genes can be maintained at relatively small or moderate spatial scales in species with high dispersal potential and they highlighted the complexity of immunogenetic responses of animals to heterogeneous environments.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland.
| | - Patrycja Podlaszczuk
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| | - Piotr Indykiewicz
- Department of Biology and Animal Environment, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| | - Mateusz Ledwoń
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016, Kraków, Poland
| | - Jacek Nowakowski
- Department of Ecology and Environmental Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727, Olsztyn, Poland
| | - Amelia Chyb
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| | - Tomasz Janiszewski
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| |
Collapse
|
59
|
Plasil M, Oppelt J, Klumplerova M, Bubenikova J, Vychodilova L, Janova E, Stejskalova K, Futas J, Knoll A, Leblond A, Mihalca AD, Horin P. Newly identified variability of the antigen binding site coding sequences of the equine major histocompatibility complex class I and class II genes. HLA 2023; 102:489-500. [PMID: 37106476 DOI: 10.1111/tan.15078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
The major histocompatibility complex (MHC) with its class I and II genes plays a crucial role in the immune response to pathogens by presenting oligopeptide antigens to various immune response effector cells. In order to counteract the vast variability of infectious agents, MHC class I and II genes usually retain high levels of SNPs mainly concentrated in the exons encoding the antigen binding sites. The aim of the study was to reveal new variability of selected MHC genes with a special focus on MHC class I physical haplotypes. Long-range NGS to was used to identify exon 2-exon 3 alleles in three genetically distinct horse breeds. A total of 116 allelic variants were found in the MHC class I genes Eqca-1, Eqca-2, Eqca-7 and Eqca-Ψ, 112 of which were novel. The MHC class II DRA locus was confirmed to comprise five exon 2 alleles, and no new sequences were observed. Additional variability in terms of 15 novel exon 2 alleles was identified in the DQA1 locus. Extensive overall variability across the entire MHC region was confirmed by an analysis of MHC-linked microsatellite loci. Both diversifying and purifying selection were detected within the MHC class I and II loci analyzed.
Collapse
Affiliation(s)
- Martin Plasil
- Research group Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czechia
| | - Jan Oppelt
- Research group Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czechia
| | - Marie Klumplerova
- Research group Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czechia
| | - Jana Bubenikova
- Research group Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czechia
| | - Leona Vychodilova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czechia
| | - Eva Janova
- Research group Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czechia
| | - Karla Stejskalova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czechia
| | - Jan Futas
- Research group Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czechia
| | - Ales Knoll
- Department of Animal Morphology, Physiology and Genetics, Faculty of Agronomy, Mendel University in Brno, Brno, Czechia
| | - Agnes Leblond
- Clinical Department of Companion, Leisure & Sport Animals, INRAE-VetAgro Sup, Campus vétérinaire de Lyon, Marcy L'Etoile, France
| | - Andrei D Mihalca
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Petr Horin
- Research group Animal Immunogenomics, CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czechia
| |
Collapse
|
60
|
Biedrzycka A, Konopiński MK, Popiołek M, Zawiślak M, Bartoszewicz M, Kloch A. Non-MHC immunity genes do not affect parasite load in European invasive populations of common raccoon. Sci Rep 2023; 13:15696. [PMID: 37735177 PMCID: PMC10514260 DOI: 10.1038/s41598-023-41721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
Understanding the evolutionary mechanisms behind invasion success enables predicting which alien species and populations are the most predisposed to become invasive. Parasites may mediate the success of biological invasions through their effect on host fitness. The evolution of increased competitive ability (EICA) hypothesis assumes that escape from parasites during the invasion process allows introduced species to decrease investment in immunity and allocate resources to dispersal and reproduction. Consequently, the selective pressure of parasites on host species in the invasive range should be relaxed. We used the case of the raccoon Procyon lotor invasion in Europe to investigate the effect of gastrointestinal pathogen pressure on non-MHC immune genetic diversity of newly established invasive populations. Despite distinct differences in parasite prevalence between analysed populations, we detected only marginal associations between two analysed SNPs and infection intensity. We argue that the differences in parasite prevalence are better explained by detected earlier associations with specific MHC-DRB alleles. While the escape from native parasites seems to allow decreased investment in overall immunity, which relaxes selective pressure imposed on immune genes, a wide range of MHC variants maintained in the invasive range may protect from newly encountered parasites.
Collapse
Affiliation(s)
- Aleksandra Biedrzycka
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Mickiewicza 33, 31-120, Kraków, Poland.
| | - Maciej K Konopiński
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Mickiewicza 33, 31-120, Kraków, Poland
| | - Marcin Popiołek
- Department of Parasitology, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/67, 51-148, Wrocław, Poland
| | - Marlena Zawiślak
- Department of Parasitology, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/67, 51-148, Wrocław, Poland
| | | | - Agnieszka Kloch
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-089, Warszawa, Poland
| |
Collapse
|
61
|
Minias P, Peng WXVH, Matson KD. Evolutionary trade-off between innate and acquired immune defences in birds. Front Zool 2023; 20:32. [PMID: 37684615 PMCID: PMC10486109 DOI: 10.1186/s12983-023-00511-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND The development, maintenance, and use of immune defences are costly. Therefore, animals face trade-offs in terms of resource allocation within their immune system and between their immune system and other physiological processes. To maximize fitness, evolution may favour investment in one immunological defence or subsystem over another in a way that matches a species broader life history strategy. Here, we used phylogenetically-informed comparative analyses to test for relationships between two immunological components. Natural antibodies and complement were used as proxies for the innate branch; structural complexity of the major histocompatibility complex (MHC) region was used for the acquired branch. RESULTS We found a negative association between the levels of natural antibodies (i.e., haemagglutination titre) and the total MHC gene copy number across the avian phylogeny, both at the species and family level. The family-level analysis indicated that this association was apparent for both MHC-I and MHC-II, when copy numbers within these two MHC regions were analysed separately. The association remained significant after controlling for basic life history components and for ecological traits commonly linked to pathogen exposure. CONCLUSION Our results provide the first phylogenetically robust evidence for an evolutionary trade-off within the avian immune system, with a more developed acquired immune system (i.e., more complex MHC architecture) in more derived bird lineages (e.g., passerines) being accompanied by an apparent downregulation of the innate immune system.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland.
| | - Wei-Xuan V-H Peng
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Droevendaalsesteeg 3a, 6708PB, Wageningen, Netherlands
| | - Kevin D Matson
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Droevendaalsesteeg 3a, 6708PB, Wageningen, Netherlands
| |
Collapse
|
62
|
Fu M, Eimes JA, Kong S, Lamichhaney S, Waldman B. Identification of major histocompatibility complex genotypes associated with resistance to an amphibian emerging infectious disease. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105470. [PMID: 37336279 DOI: 10.1016/j.meegid.2023.105470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Amphibian chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), emerged from Asia and spread globally. By comparing functional MHC IIß1 alleles from an Asian Bd-resistant anuran species (Bufo gargarizans) with those of an Australasian Bd-susceptible species (Litoria caerulea), we identified MHC genotypes associated with Bd resistance. These alleles encode a glycine deletion (G90β1) and adjacent motifs in the deepest pathogen-derived peptide-binding groove. Every Bd-resistant individual, but no susceptible individuals, possessed at least one allele encoding the variant. We detected trans-species polymorphism at the end of the MHC IIβ1 sequences. The G90β1 deletion was encoded by different alleles in the two species, suggesting it may have evolved independently in each species rather than having been derived from a common ancestor. These results are consistent with a scenario by which MHC adaptations that confer resistance to the pathogen have evolved by convergent evolution. Immunogenetic studies such as this are critical to ongoing conservation efforts.
Collapse
Affiliation(s)
- Minjie Fu
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea.
| | - John A Eimes
- University College, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Sungsik Kong
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Sangeet Lamichhaney
- Department of Biological Sciences, Kent State University, Kent, OH 44243, USA
| | - Bruce Waldman
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
63
|
Sakaue S, Gurajala S, Curtis M, Luo Y, Choi W, Ishigaki K, Kang JB, Rumker L, Deutsch AJ, Schönherr S, Forer L, LeFaive J, Fuchsberger C, Han B, Lenz TL, de Bakker PIW, Okada Y, Smith AV, Raychaudhuri S. Tutorial: a statistical genetics guide to identifying HLA alleles driving complex disease. Nat Protoc 2023; 18:2625-2641. [PMID: 37495751 PMCID: PMC10786448 DOI: 10.1038/s41596-023-00853-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/27/2023] [Indexed: 07/28/2023]
Abstract
The human leukocyte antigen (HLA) locus is associated with more complex diseases than any other locus in the human genome. In many diseases, HLA explains more heritability than all other known loci combined. In silico HLA imputation methods enable rapid and accurate estimation of HLA alleles in the millions of individuals that are already genotyped on microarrays. HLA imputation has been used to define causal variation in autoimmune diseases, such as type I diabetes, and in human immunodeficiency virus infection control. However, there are few guidelines on performing HLA imputation, association testing, and fine mapping. Here, we present a comprehensive tutorial to impute HLA alleles from genotype data. We provide detailed guidance on performing standard quality control measures for input genotyping data and describe options to impute HLA alleles and amino acids either locally or using the web-based Michigan Imputation Server, which hosts a multi-ancestry HLA imputation reference panel. We also offer best practice recommendations to conduct association tests to define the alleles, amino acids, and haplotypes that affect human traits. Along with the pipeline, we provide a step-by-step online guide with scripts and available software ( https://github.com/immunogenomics/HLA_analyses_tutorial ). This tutorial will be broadly applicable to large-scale genotyping data and will contribute to defining the role of HLA in human diseases across global populations.
Collapse
Affiliation(s)
- Saori Sakaue
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Saisriram Gurajala
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michelle Curtis
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yang Luo
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Wanson Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Kazuyoshi Ishigaki
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Joyce B Kang
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Laurie Rumker
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Aaron J Deutsch
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Metabolism, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Department of Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Forer
- Institute of Genetic Epidemiology, Department of Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Jonathon LeFaive
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Christian Fuchsberger
- Institute of Genetic Epidemiology, Department of Genetics, Medical University of Innsbruck, Innsbruck, Austria
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
| | - Buhm Han
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Tobias L Lenz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Paul I W de Bakker
- Data and Computational Sciences, Vertex Pharmaceuticals, Boston, MA, USA
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Albert V Smith
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Centre for Genetics and Genomics Versus Arthritis, University of Manchester, Manchester, UK.
| |
Collapse
|
64
|
Przesmycka K, Herdegen-Radwan M, Phillips KP, Mohammed RS, Radwan J. The quest for good genes: Epigamic traits, fitness, MHC and multilocus heterozygosity in the guppy. Mol Ecol 2023; 32:5055-5070. [PMID: 37492990 DOI: 10.1111/mec.17083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
The 'good genes' hypothesis for the evolution of male secondary sexual traits poses that female preferences for such traits are driven by indirect genetic benefits. However, support for the hypothesis remains ambiguous, and, in particular, the genetic basis for the benefits has rarely been investigated. Here, we use seminatural populations of Trinidadian guppies to investigate whether sexually selected traits (orange, black and iridescent colouration, gonopodium length and body size) predict fitness measured as the number of grandoffspring, a metric that integrates across fitness components and sexes. Furthermore, we tested whether two potential sources of genetic benefits-major histocompatibility complex (MHC) genotypes and multilocus heterozygosity (MLH)-are significant predictors of fitness and of the size of sexually selected traits. We found a significant, nonlinear effect of the area of black pigmentation and male body size on the number of grandoffspring, suggesting stabilizing selection on black area, and nonlinear selection favouring small body size. MLH was heritable (h2 = 0.14) and significantly predicted the number of grandoffspring, indicating the potential for genetic benefits based on heterozygosity. We also found support for local heterozygosity effects, which may reflect a noneven distribution of genetic load across the genome. MHC genotype was not significantly associated with any tested fitness component, or with the load of Gyrodactylus parasites. Neither MHC nor MLH was significant predictor of sexually selected traits. Overall, our results highlight the role of heterozygosity in determining fitness, but do not provide support for male sexually selected traits being indicators of genetic quality.
Collapse
Affiliation(s)
- Karolina Przesmycka
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | | - Karl P Phillips
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
- School of Biological Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Canadian Rivers Institute, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Ryan S Mohammed
- Department of Biology, Auburn University, Auburn, Alabama, USA
| | - Jacek Radwan
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
65
|
Tong X, Chen D, Hu J, Lin S, Ling Z, Ai H, Zhang Z, Huang L. Accurate haplotype construction and detection of selection signatures enabled by high quality pig genome sequences. Nat Commun 2023; 14:5126. [PMID: 37612277 PMCID: PMC10447580 DOI: 10.1038/s41467-023-40434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/27/2023] [Indexed: 08/25/2023] Open
Abstract
High-quality whole-genome resequencing in large-scale pig populations with pedigree structure and multiple breeds would enable accurate construction of haplotype and robust selection-signature detection. Here, we sequence 740 pigs, combine with 149 of our previously published resequencing data, retrieve 207 resequencing datasets, and form a panel of worldwide distributed wild boars, aboriginal and highly selected pigs with pedigree structures, amounting to 1096 genomes from 43 breeds. Combining with their haplotype-informative reads and pedigree structure, we accurately construct a panel of 1874 haploid genomes with 41,964,356 genetic variants. We further demonstrate its valuable applications in GWAS by identifying five novel loci for intramuscular fat content, and in genomic selection by increasing the accuracy of estimated breeding value by 36.7%. In evolutionary selection, we detect MUC13 gene under a long-term balancing selection, as well as NPR3 gene under positive selection for pig stature. Our study provides abundant genomic variations for robust selection-signature detection and accurate haplotypes for deciphering complex traits in pigs.
Collapse
Affiliation(s)
- Xinkai Tong
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, PR China
- College of Life Sciences, Jiangxi Normal University, NanChang, Jiangxi Province, PR China
| | - Dong Chen
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, PR China
| | - Jianchao Hu
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, PR China
| | - Shiyao Lin
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, PR China
| | - Ziqi Ling
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, PR China
| | - Huashui Ai
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, PR China
| | - Zhiyan Zhang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, PR China.
| | - Lusheng Huang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, PR China.
| |
Collapse
|
66
|
Zhang J, Wang S, Xu C, Wang S, Du J, Niu M, Yang J, Li Y. Pathogenic selection promotes adaptive immune variations against serious bottlenecks in early invasions of bullfrogs. iScience 2023; 26:107316. [PMID: 37539025 PMCID: PMC10393753 DOI: 10.1016/j.isci.2023.107316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/22/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
Adaptive genetic variations are key for understanding evolutionary processes influencing invasions. However, we have limited knowledge on how adaptive genetic diversity in invasive species responds to new pathogenic environments. Here, we compared variations in immune major histocompatibility complex (MHC) class-II β gene and neutral loci in relation to pathogenic chytrid fungus (Batrachochytrium dendrobatidis, Bd) infection across invasive and native populations of American bullfrog between China and United States (US). Chinese invasive populations show a 60% reduction in neutral cytb variations relative to US native populations, and there were similar MHC variation and functional diversity between them. One MHC allele private to China was under recent positive selection and associated with decreased Bd infection, partly explaining the lower Bd prevalence for Chinese populations than for native US populations. These results suggest that pathogen-mediated selection favors adaptive MHC variations and functional diversity maintenance against serious bottlenecks during the early invasions (within 15 generations) of bullfrogs.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
- University of Chinese Academy of Sciences Beijing 100049, China
| | - Supen Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
| | - Chunxia Xu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
- University of Chinese Academy of Sciences Beijing 100049, China
| | - Siqi Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
- University of Chinese Academy of Sciences Beijing 100049, China
| | - Jiacong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Meiling Niu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Jiaxue Yang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Yiming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
- University of Chinese Academy of Sciences Beijing 100049, China
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
67
|
Yang R, Deng F, Yang Y, Tian Q, Huangfu S, Yang L, Hou J, Yang G, Pang W, Lu J, Liu H, Chen Y, Gao J, Zhang L. Blue light promotes vitamin C-mediated ferroptosis of melanoma through specifically upregulating transporter SVCT2 and generating Fe 2. Biomaterials 2023; 299:122186. [PMID: 37276798 DOI: 10.1016/j.biomaterials.2023.122186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Vitamin C (VC)-based cancer therapy is a promising therapeutic approach for a variety of cancers due to its profound effects on redox reactions and metabolic pathways. However, high administration dosage of VC for necessary therapeutic efficacy for cancers increases the risk of overt side effects and limits its clinical use. Here, we show cutaneous blue light irradiation can specifically upregulate the sodium-dependent vitamin C transporter 2 (SVCT2) of the tumor and increase effectively the VC concentration at the tumor sites by an overall low dosage administration. In the mouse melanoma model, blue light stimulates the SVCT2 expression through the nuclear factor-kappa B (NF-κB) signaling pathway both in vitro and in vivo. The increased cellular VC together with Fe2+ generated by blue light simultaneously elevate cellular oxidative stress and trigger the ferroptosis of melanoma. With this revealed mechanism, the synergistic actions of blue light on the VC transporter and Fe2+ generation lead to a ca. 20-fold reduction in the administration dosage of VC with an effective melanoma elimination and prolonged survival. The work defines the killing mechanism of blue light on VC-based cancer therapy and provides a practical approach for promoting VC uptake. This light-assisted VC therapy is not only highly efficient for melanoma but also considerable for a broad clinical utility.
Collapse
Affiliation(s)
- Rong Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Fangqing Deng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yingchun Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Qing Tian
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shuaiqi Huangfu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Luqiu Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jing Hou
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guanghao Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Pang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jueru Lu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hui Liu
- Analytical & Testing Center, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yao Chen
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jie Gao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Lianbing Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
68
|
Khan T, Ledoux IM, Aziz F, Al Ali F, Chin-Smith E, Ata M, Karim MY, Marr N. Associations between HLA class II alleles and IgE sensitization to allergens in the Qatar Biobank cohort. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100117. [PMID: 37779520 PMCID: PMC10509938 DOI: 10.1016/j.jacig.2023.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/16/2023] [Accepted: 02/05/2023] [Indexed: 10/03/2023]
Abstract
Background Allergic disorders are the consequence of IgE sensitization to allergens. Population studies have shown that certain human leukocyte antigen (HLA) alleles are associated with increased or decreased risk of developing allergy. Objective We aimed to characterize the relationship between HLA class II allelic diversity and IgE sensitization in an understudied Arab population. Methods We explored associations between IgE sensitization to 7 allergen mixes and mesquite (comprising 41 food or aeroallergens) and 45 common classical HLA class II alleles in a well-defined cohort of 797 individuals representing the general adult population of Qatari nationals and long-term residents. To do so, we performed HLA calling from whole genome sequencing data at 2-field resolution using 2 independent algorithms. We then applied 3 different regression models to assess either each allergen mix independently, in the context of IgE sensitization to other allergens tested, or polysensitization. Results More than half (n = 447) of the study participants showed IgE sensitization to at least 1 allergen, most of them (n = 400) to aeroallergens (Phadiatop). We identified statistically significant negative and positive associations with 24 HLA class II alleles. These have been reported to confer risk or protection from variety of diseases; however, only a few have previously been associated with allergy in other populations. Conclusions Our study reveals several new risk and protective genetic markers for allergen-specific IgE sensitization. This is a first and essential step toward a better understanding of the origins of allergic diseases in this understudied population.
Collapse
Affiliation(s)
- Taushif Khan
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- Department of Computational Science, The Jackson Laboratory, Farmington, Conn
| | | | - Ferdousey Aziz
- the Department of Pathology, Sidra Medicine, Doha, Qatar
| | - Fatima Al Ali
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
| | | | - Manar Ata
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
| | - Mohammed Yousuf Karim
- the Department of Pathology, Sidra Medicine, Doha, Qatar
- the College of Medicine, Qatar University, Doha, Qatar
| | - Nico Marr
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- the College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Institute of Translational Immunology, Brandenburg Medical School, Brandenburg an der Havel, Germany
| |
Collapse
|
69
|
Liu P, Li G, Zhao N, Song X, Wang J, Shi X, Wang B, Zhang L, Dong L, Li Q, Liu Q, Lu L. Neutral Forces and Balancing Selection Interplay to Shape the Major Histocompatibility Complex Spatial Patterns in the Striped Hamster in Inner Mongolia: Suggestive of Broad-Scale Local Adaptation. Genes (Basel) 2023; 14:1500. [PMID: 37510404 PMCID: PMC10379431 DOI: 10.3390/genes14071500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The major histocompatibility complex (MHC) plays a key role in the adaptive immune response to pathogens due to its extraordinary polymorphism. However, the spatial patterns of MHC variation in the striped hamster remain unclear, particularly regarding the relative contribution of the balancing selection in shaping MHC spatial variation and diversity compared to neutral forces. METHODS In this study, we investigated the immunogenic variation of the striped hamster in four wild populations in Inner Mongolia which experience a heterogeneous parasitic burden. Our goal was to identify local adaptation by comparing the genetic structure at the MHC with that at seven microsatellite loci, taking into account neutral processes. RESULTS We observed significant variation in parasite pressure among sites, with parasite burden showing a correlation with temperature and precipitation. Molecular analysis revealed a similar co-structure between MHC and microsatellite loci. We observed lower genetic differentiation at MHC loci compared to microsatellite loci, and no correlation was found between the two. CONCLUSIONS Overall, these results suggest a complex interplay between neutral evolutionary forces and balancing selection in shaping the spatial patterns of MHC variation. Local adaptation was not detected on a small scale but may be applicable on a larger scale.
Collapse
Affiliation(s)
- Pengbo Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Guichang Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ning Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiuping Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jun Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xinfei Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Bin Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Public Health School, Jiamusi University, Jiamusi 154007, China
| | - Lu Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Li Dong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Qingduo Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Liang Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
70
|
Stražar M, Park J, Abelin JG, Taylor HB, Pedersen TK, Plichta DR, Brown EM, Eraslan B, Hung YM, Ortiz K, Clauser KR, Carr SA, Xavier RJ, Graham DB. HLA-II immunopeptidome profiling and deep learning reveal features of antigenicity to inform antigen discovery. Immunity 2023; 56:1681-1698.e13. [PMID: 37301199 PMCID: PMC10519123 DOI: 10.1016/j.immuni.2023.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/08/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
CD4+ T cell responses are exquisitely antigen specific and directed toward peptide epitopes displayed by human leukocyte antigen class II (HLA-II) on antigen-presenting cells. Underrepresentation of diverse alleles in ligand databases and an incomplete understanding of factors affecting antigen presentation in vivo have limited progress in defining principles of peptide immunogenicity. Here, we employed monoallelic immunopeptidomics to identify 358,024 HLA-II binders, with a particular focus on HLA-DQ and HLA-DP. We uncovered peptide-binding patterns across a spectrum of binding affinities and enrichment of structural antigen features. These aspects underpinned the development of context-aware predictor of T cell antigens (CAPTAn), a deep learning model that predicts peptide antigens based on their affinity to HLA-II and full sequence of their source proteins. CAPTAn was instrumental in discovering prevalent T cell epitopes from bacteria in the human microbiome and a pan-variant epitope from SARS-CoV-2. Together CAPTAn and associated datasets present a resource for antigen discovery and the unraveling genetic associations of HLA alleles with immunopathologies.
Collapse
Affiliation(s)
- Martin Stražar
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jihye Park
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Hannah B Taylor
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thomas K Pedersen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Eric M Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Basak Eraslan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yuan-Mao Hung
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kayla Ortiz
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karl R Clauser
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
71
|
Vasoya D, Tzelos T, Benedictus L, Karagianni AE, Pirie S, Marr C, Oddsdóttir C, Fintl C, Connelley T. High-Resolution Genotyping of Expressed Equine MHC Reveals a Highly Complex MHC Structure. Genes (Basel) 2023; 14:1422. [PMID: 37510326 PMCID: PMC10379315 DOI: 10.3390/genes14071422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The Major Histocompatibility Complex (MHC) genes play a key role in a number of biological processes, most notably in immunological responses. The MHCI and MHCII genes incorporate a complex set of highly polymorphic and polygenic series of genes, which, due to the technical limitations of previously available technologies, have only been partially characterized in non-model but economically important species such as the horse. The advent of high-throughput sequencing platforms has provided new opportunities to develop methods to generate high-resolution sequencing data on a large scale and apply them to the analysis of complex gene sets such as the MHC. In this study, we developed and applied a MiSeq-based approach for the combined analysis of the expressed MHCI and MHCII repertoires in cohorts of Thoroughbred, Icelandic, and Norwegian Fjord Horses. The approach enabled us to generate comprehensive MHCI/II data for all of the individuals (n = 168) included in the study, identifying 152 and 117 novel MHCI and MHCII sequences, respectively. There was limited overlap in MHCI and MHCII haplotypes between the Thoroughbred and the Icelandic/Norwegian Fjord horses, showcasing the variation in MHC repertoire between genetically divergent breeds, and it can be inferred that there is much more MHC diversity in the global horse population. This study provided novel insights into the structure of the expressed equine MHC repertoire and highlighted unique features of the MHC in horses.
Collapse
Affiliation(s)
- Deepali Vasoya
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Thomas Tzelos
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| | - Lindert Benedictus
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Anna Eleonora Karagianni
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Scott Pirie
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Celia Marr
- Rossdales Equine Hospital, Cotton End Road, Exning, Newmarket CD8 7NN, UK
| | - Charlotta Oddsdóttir
- The Institute for Experimental Pathology at Keldur, University of Iceland Keldnavegur 3, 112 Reykjavík, Iceland
| | - Constanze Fintl
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Timothy Connelley
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| |
Collapse
|
72
|
Wong-Benito V, de Rijke J, Dixon B. Antigen presentation in vertebrates: Structural and functional aspects. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104702. [PMID: 37116963 DOI: 10.1016/j.dci.2023.104702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 06/05/2023]
Abstract
Antigen presentation is a key process of the immune system and is responsible for the activation of T cells. The main characters are the major histocompatibility complex class I (MHC-I) and class II (MHC-II) molecules, and accessory proteins that act as chaperones for these glycoproteins. Current knowledge of this process and also the elucidation of the structural features of these proteins, has been extensively reviewed in humans. Unfortunately, this is not the case for non-human species, wherein the function and structural characteristic of the antigen presentation proteins is far from being understood. The majority of previous studies in non-human species, especially in teleost fish and lower vertebrates, are limited to the transcriptomic level, which leads to gaps in the knowledge about the functional process of antigen presentation in these species. This review summarizes what is known so far about antigen presentation pathways in vertebrates from a structural and functional perspective. The focus is not only on the MHC receptors, but also, on the forgotten characters of these pathways such as the proteins of the peptide loading complex, and the MHC-II chaperone invariant chain.
Collapse
Affiliation(s)
| | - Jill de Rijke
- Department of Biology, University of Waterloo, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, Canada.
| |
Collapse
|
73
|
Winternitz J, Chakarov N, Rinaud T, Ottensmann M, Krüger O. High functional allelic diversity and copy number in both MHC classes in the common buzzard. BMC Ecol Evol 2023; 23:24. [PMID: 37355591 PMCID: PMC10290333 DOI: 10.1186/s12862-023-02135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/12/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND The major histocompatibility complex (MHC), which encodes molecules that recognize various pathogens and parasites and initiates the adaptive immune response in vertebrates, is renowned for its exceptional polymorphism and is a model of adaptive gene evolution. In birds, the number of MHC genes and sequence diversity varies greatly among taxa, believed due to evolutionary history and differential selection pressures. Earlier characterization studies and recent comparative studies suggest that non-passerine species have relatively few MHC gene copies compared to passerines. Additionally, comparative studies that have looked at partial MHC sequences have speculated that non-passerines have opposite patterns of selection on MHC class I (MHC-I) and class II (MHC-II) loci than passerines: namely, greater sequence diversity and signals of selection on MHC-II than MHC-I. However, new sequencing technology is revealing much greater MHC variation than previously expected while also facilitating full sequence variant detection directly from genomic data. Our study aims to take advantage of high-throughput sequencing methods to fully characterize both classes and domains of MHC of a non-passerine bird of prey, the common buzzard (Buteo buteo), to test predictions of MHC variation and differential selection on MHC classes. RESULTS Using genetic, genomic, and transcriptomic high-throughput sequencing data, we established common buzzards have at least three loci that produce functional alleles at both MHC classes. In total, we characterize 91 alleles from 113 common buzzard chicks for MHC-I exon 3 and 41 alleles from 125 chicks for MHC-IIB exon 2. Among these alleles, we found greater sequence polymorphism and stronger diversifying selection at MHC-IIB exon 2 than MHC-I exon 3, suggesting differential selection pressures on MHC classes. However, upon further investigation of the entire peptide-binding groove by including genomic data from MHC-I exon 2 and MHC-IIA exon 2, this turned out to be false. MHC-I exon 2 was as polymorphic as MHC-IIB exon 2 and MHC-IIA exon 2 was essentially invariant. Thus, comparisons between MHC-I and MHC-II that included both domains of the peptide-binding groove showed no differences in polymorphism nor diversifying selection between the classes. Nevertheless, selection analysis indicates balancing selection has been acting on common buzzard MHC and phylogenetic inference revealed that trans-species polymorphism is present between common buzzards and species separated for over 33 million years for class I and class II. CONCLUSIONS We characterize and confirm the functionality of unexpectedly high copy number and allelic diversity in both MHC classes of a bird of prey. While balancing selection is acting on both classes, there is no evidence of differential selection pressure on MHC classes in common buzzards and this result may hold more generally once more data for understudied MHC exons becomes available.
Collapse
Affiliation(s)
- Jamie Winternitz
- Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany
| | - Nayden Chakarov
- Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany
| | - Tony Rinaud
- Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany
| | - Meinolf Ottensmann
- Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany
| | - Oliver Krüger
- Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany
| |
Collapse
|
74
|
Lozano-Martín C, Bracamonte SE, Barluenga M. Evolution of MHC IIB Diversity Across Cichlid Fish Radiations. Genome Biol Evol 2023; 15:evad110. [PMID: 37314153 PMCID: PMC10306275 DOI: 10.1093/gbe/evad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
The genes of the major histocompatibility complex (MHC) are among the most polymorphic genes in vertebrates and crucial for their adaptive immune response. These genes frequently show inconsistencies between allelic genealogies and species phylogenies. This phenomenon is thought to be the result of parasite-mediated balancing selection maintaining ancient alleles through speciation events (trans-species polymorphism [TSP]). However, allele similarities may also arise from postspeciation mechanisms, such as convergence or introgression. Here, we investigated the evolution of MHC class IIB diversity in the cichlid fish radiations across Africa and the Neotropics by a comprehensive review of available MHC IIB DNA sequence information. We explored what mechanism explains the MHC allele similarities found among cichlid radiations. Our results showed extensive allele similarity among cichlid fish across continents, likely due to TSP. Functionality at MHC was also shared among species of the different continents. The maintenance of MHC alleles for long evolutionary times and their shared functionality may imply that certain MHC variants are essential in immune adaptation, even in species that diverged millions of years ago and occupy different environments.
Collapse
|
75
|
Vinkler M, Fiddaman SR, Těšický M, O'Connor EA, Savage AE, Lenz TL, Smith AL, Kaufman J, Bolnick DI, Davies CS, Dedić N, Flies AS, Samblás MMG, Henschen AE, Novák K, Palomar G, Raven N, Samaké K, Slade J, Veetil NK, Voukali E, Höglund J, Richardson DS, Westerdahl H. Understanding the evolution of immune genes in jawed vertebrates. J Evol Biol 2023; 36:847-873. [PMID: 37255207 PMCID: PMC10247546 DOI: 10.1111/jeb.14181] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Driven by co-evolution with pathogens, host immunity continuously adapts to optimize defence against pathogens within a given environment. Recent advances in genetics, genomics and transcriptomics have enabled a more detailed investigation into how immunogenetic variation shapes the diversity of immune responses seen across domestic and wild animal species. However, a deeper understanding of the diverse molecular mechanisms that shape immunity within and among species is still needed to gain insight into-and generate evolutionary hypotheses on-the ultimate drivers of immunological differences. Here, we discuss current advances in our understanding of molecular evolution underpinning jawed vertebrate immunity. First, we introduce the immunome concept, a framework for characterizing genes involved in immune defence from a comparative perspective, then we outline how immune genes of interest can be identified. Second, we focus on how different selection modes are observed acting across groups of immune genes and propose hypotheses to explain these differences. We then provide an overview of the approaches used so far to study the evolutionary heterogeneity of immune genes on macro and microevolutionary scales. Finally, we discuss some of the current evidence as to how specific pathogens affect the evolution of different groups of immune genes. This review results from the collective discussion on the current key challenges in evolutionary immunology conducted at the ESEB 2021 Online Satellite Symposium: Molecular evolution of the vertebrate immune system, from the lab to natural populations.
Collapse
Affiliation(s)
- Michal Vinkler
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Martin Těšický
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Anna E. Savage
- Department of BiologyUniversity of Central FloridaFloridaOrlandoUSA
| | - Tobias L. Lenz
- Research Unit for Evolutionary ImmunogenomicsDepartment of BiologyUniversity of HamburgHamburgGermany
| | | | - Jim Kaufman
- Institute for Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | | | - Neira Dedić
- Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
| | - Andrew S. Flies
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - M. Mercedes Gómez Samblás
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
- Department of ParasitologyUniversity of GranadaGranadaSpain
| | | | - Karel Novák
- Department of Genetics and BreedingInstitute of Animal SciencePragueUhříněvesCzech Republic
| | - Gemma Palomar
- Faculty of BiologyInstitute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - Nynke Raven
- Department of ScienceEngineering and Build EnvironmentDeakin UniversityVictoriaWaurn PondsAustralia
| | - Kalifa Samaké
- Department of Genetics and MicrobiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Joel Slade
- Department of BiologyCalifornia State UniversityFresnoCaliforniaUSA
| | | | - Eleni Voukali
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Jacob Höglund
- Department of Ecology and GeneticsUppsala UniversitetUppsalaSweden
| | | | | |
Collapse
|
76
|
Palmer WH, Norman PJ. The impact of HLA polymorphism on herpesvirus infection and disease. Immunogenetics 2023; 75:231-247. [PMID: 36595060 PMCID: PMC10205880 DOI: 10.1007/s00251-022-01288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/24/2022] [Indexed: 01/04/2023]
Abstract
Human Leukocyte Antigens (HLA) are cell surface molecules, central in coordinating innate and adaptive immune responses, that are targets of strong diversifying natural selection by pathogens. Of these pathogens, human herpesviruses have a uniquely ancient relationship with our species, where coevolution likely has reciprocating impact on HLA and viral genomic diversity. Consistent with this notion, genetic variation at multiple HLA loci is strongly associated with modulating immunity to herpesvirus infection. Here, we synthesize published genetic associations of HLA with herpesvirus infection and disease, both from case/control and genome-wide association studies. We analyze genetic associations across the eight human herpesviruses and identify HLA alleles that are associated with diverse herpesvirus-related phenotypes. We find that whereas most HLA genetic associations are virus- or disease-specific, HLA-A*01 and HLA-A*02 allotypes may be more generally associated with immune susceptibility and control, respectively, across multiple herpesviruses. Connecting genetic association data with functional corroboration, we discuss mechanisms by which diverse HLA and cognate receptor allotypes direct variable immune responses during herpesvirus infection and pathogenesis. Together, this review examines the complexity of HLA-herpesvirus interactions driven by differential T cell and Natural Killer cell immune responses.
Collapse
Affiliation(s)
- William H. Palmer
- Department of Biomedical Informatics, University of Colorado, Aurora, CO USA
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO USA
| | - Paul J. Norman
- Department of Biomedical Informatics, University of Colorado, Aurora, CO USA
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO USA
| |
Collapse
|
77
|
Nandakumar M, Lundberg M, Carlsson F, Råberg L. Balancing selection on the complement system of a wild rodent. BMC Ecol Evol 2023; 23:21. [PMID: 37231383 DOI: 10.1186/s12862-023-02122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Selection pressure exerted by pathogens can influence patterns of genetic diversity in the host. In the immune system especially, numerous genes encode proteins involved in antagonistic interactions with pathogens, paving the way for coevolution that results in increased genetic diversity as a consequence of balancing selection. The complement system is a key component of innate immunity. Many complement proteins interact directly with pathogens, either by recognising pathogen molecules for complement activation, or by serving as targets of pathogen immune evasion mechanisms. Complement genes can therefore be expected to be important targets of pathogen-mediated balancing selection, but analyses of such selection on this part of the immune system have been limited. RESULTS Using a population sample of whole-genome resequencing data from wild bank voles (n = 31), we estimated the extent of genetic diversity and tested for signatures of balancing selection in multiple complement genes (n = 44). Complement genes showed higher values of standardised β (a statistic expected to be high under balancing selection) than the genome-wide average of protein coding genes. One complement gene, FCNA, a pattern recognition molecule that interacts directly with pathogens, was found to have a signature of balancing selection, as indicated by the Hudson-Kreitman-Aguadé test (HKA) test. Scans for localised signatures of balancing selection in this gene indicated that the target of balancing selection was found in exonic regions involved in ligand binding. CONCLUSION The present study adds to the growing evidence that balancing selection may be an important evolutionary force on components of the innate immune system. The identified target in the complement system typifies the expectation that balancing selection acts on genes encoding proteins involved in direct interactions with pathogens.
Collapse
Affiliation(s)
| | - Max Lundberg
- Department of Biology, Lund University, Lund, Sweden
| | | | - Lars Råberg
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
78
|
Soliman AM, Barreda DR. The acute inflammatory response of teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104731. [PMID: 37196851 DOI: 10.1016/j.dci.2023.104731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Acute inflammation is crucial to the immune responses of fish. The process protects the host from infection and is central to induction of subsequent tissue repair programs. Activation of proinflammatory signals reshapes the microenvironment within an injury/infection site, initiates leukocyte recruitment, promotes antimicrobial mechanisms and contributes to the resolution of inflammation. Inflammatory cytokines and lipid mediators are primary contributors to these processes. Uncontrolled or persistent induction results in delayed tissue healing. The kinetics by which inducers and regulators of acute inflammation exert their actions is essential for understanding the pathogenesis of fish diseases and identifying potential treatments. Although, a number of these are well-conserved across, others are not, reflecting the unique physiologies and life histories of members of this unique animal group.
Collapse
Affiliation(s)
- Amro M Soliman
- Department of Biological Sciences, University of Alberta, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Canada.
| |
Collapse
|
79
|
Admon A. The biogenesis of the immunopeptidome. Semin Immunol 2023; 67:101766. [PMID: 37141766 DOI: 10.1016/j.smim.2023.101766] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The immunopeptidome is the repertoire of peptides bound and presented by the MHC class I, class II, and non-classical molecules. The peptides are produced by the degradation of most cellular proteins, and in some cases, peptides are produced from extracellular proteins taken up by the cells. This review attempts to first describe some of its known and well-accepted concepts, and next, raise some questions about a few of the established dogmas in this field: The production of novel peptides by splicing is questioned, suggesting here that spliced peptides are extremely rare, if existent at all. The degree of the contribution to the immunopeptidome by degradation of cellular protein by the proteasome is doubted, therefore this review attempts to explain why it is likely that this contribution to the immunopeptidome is possibly overstated. The contribution of defective ribosome products (DRiPs) and non-canonical peptides to the immunopeptidome is noted and methods are suggested to quantify them. In addition, the common misconception that the MHC class II peptidome is mostly derived from extracellular proteins is noted, and corrected. It is stressed that the confirmation of sequence assignments of non-canonical and spliced peptides should rely on targeted mass spectrometry using spiking-in of heavy isotope-labeled peptides. Finally, the new methodologies and modern instrumentation currently available for high throughput kinetics and quantitative immunopeptidomics are described. These advanced methods open up new possibilities for utilizing the big data generated and taking a fresh look at the established dogmas and reevaluating them critically.
Collapse
Affiliation(s)
- Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Israel.
| |
Collapse
|
80
|
Sun Y, Ma L, Li S, Wang Y, Xiao R, Yang J, Dijkstra JM, Xia C. Crystal Structure of a Classical MHC Class I Molecule in Dogs; Comparison of DLA-88*0 and DLA-88*5 Category Molecules. Cells 2023; 12:cells12071097. [PMID: 37048169 PMCID: PMC10093629 DOI: 10.3390/cells12071097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
DLA-88 is a classical major histocompatibility complex (MHC) class I gene in dogs, and allelic DLA-88 molecules have been divided into two categories named "DLA-88*0" and "DLA-88*5." The defining difference between the two categories concerns an LQW motif in the α2 domain helical region of the DLA-88*5 molecules that includes the insertion of an extra amino acid compared to MHC class I consensus length. We here show that this motif has been exchanged by recombination between different DLA-88 evolutionary lineages. Previously, with pDLA-88*508:01, the structure of a molecule of the DLA-88*5 category was elucidated. The present study is the first to elucidate a structure, using X-ray crystallography, of the DLA-88*0 category, namely DLA-88*001:04 complexed with β2m and a nonamer peptide derived from canine distemper virus (CDV). The LQW motif that distinguishes DLA-88*5 from DLA-88*0 causes a shallower peptide binding groove (PBG) and a leucine exposed at the top of the α2 domain helix expected to affect T cell selection. Peptide ligand amino acid substitution and pMHC-I complex formation and stability analyses revealed that P2 and P3 are the major anchor residue positions for binding to DLA-88*001:04. We speculate that the distribution pattern of the LQW motif among canine classical MHC class I alleles represents a strategy to enhance allogeneic rejection by T cells of transmissible cancers such as canine transmissible venereal tumor (CTVT).
Collapse
Affiliation(s)
- Yujiao Sun
- Yantai Institute of China Agricultural University, No. 2006, Binhai Mid-Rd, High-Tech Zone, Yantai City 264003, China
| | - Lizhen Ma
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Shen Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yawen Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ruiqi Xiao
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Junqi Yang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Johannes M Dijkstra
- Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Chun Xia
- Yantai Institute of China Agricultural University, No. 2006, Binhai Mid-Rd, High-Tech Zone, Yantai City 264003, China
| |
Collapse
|
81
|
Nelson-Flower MJ, Grieves LA, Reid JM, Germain RR, Lazic S, Taylor SS, MacDougall-Shackleton EA, Arcese P. Immune genotypes, immune responses, and survival in a wild bird population. Mol Ecol 2023. [PMID: 36919652 DOI: 10.1111/mec.16923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023]
Abstract
Individuals vary in their immune genotype, inbreeding coefficient f, immune responses, survival to adulthood, and adult longevity. However, whether immune genes predict survival or longevity, whether such relationships are mediated through immune responses, and how f affects immune genotype remain unclear. We use a wild song sparrow (Melospiza melodia) population in which survival to adulthood, adult longevity, and f were measured precisely, and in which immune responses have previously been assessed. We investigate four toll-like receptor (TLR) and the major histocompatibility complex (MHC) class IIB exon 2 genes. We test whether immune genes predict fitness (survival to adulthood or adult longevity); whether immune genes predict immune response; whether immune response predicts fitness and whether fitness, immune responses, or immune genotypes are correlated with f. We find that survival to adulthood is not associated with immune gene variation, but adult longevity is decreased by high MHC allele diversity (especially in birds that were relatively outbred), and by the presence of a specific MHC supertype. Immune responses were affected by specific immune genotypes. Survival to adulthood and adult longevity were not predicted by immune response, implying caution in the use of immune response as a predictor for fitness. We also found no relationship between f and immune genotype. This finding indicates that immune gene associations with longevity and immune response are not artefacts of f, and suggests that pathogen-mediated selection at functional loci can slow the loss of genetic variation arising from genetic drift and small population size.
Collapse
Affiliation(s)
- Martha J Nelson-Flower
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biology, Langara College, Vancouver, British Columbia, Canada
| | - Leanne A Grieves
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Jane M Reid
- Centre for Biodiversity Dynamics, Institut for Biologi, NTNU, Trondheim, Norway
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Ryan R Germain
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Kobenhavn, Denmark
| | - Savo Lazic
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Sabrina S Taylor
- School of Renewable Natural Resources, Louisiana State University and AgCenter, Baton Rouge, Louisiana, USA
| | | | - Peter Arcese
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
82
|
Gaigher A, Rota A, Neves F, Muñoz-Mérida A, Blasco-Aróstegui J, Almeida T, Veríssimo A. Extensive MHC class IIβ diversity across multiple loci in the small-spotted catshark (Scyliorhinus canicula). Sci Rep 2023; 13:3837. [PMID: 36882519 PMCID: PMC9992475 DOI: 10.1038/s41598-023-30876-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
The major histocompatibility complex (MHC) is a multigene family responsible for pathogen detection, and initiation of adaptive immune responses. Duplication, natural selection, recombination, and their resulting high functional genetic diversity spread across several duplicated loci are the main hallmarks of the MHC. Although these features were described in several jawed vertebrate lineages, a detailed MHC IIβ characterization at the population level is still lacking for chondrichthyans (chimaeras, rays and sharks), i.e. the most basal lineage to possess an MHC-based adaptive immune system. We used the small-spotted catshark (Scyliorhinus canicula, Carcharhiniformes) as a case-study species to characterize MHC IIβ diversity using complementary molecular tools, including publicly available genome and transcriptome datasets, and a newly developed high-throughput Illumina sequencing protocol. We identified three MHC IIβ loci within the same genomic region, all of which are expressed in different tissues. Genetic screening of the exon 2 in 41 individuals of S. canicula from a single population revealed high levels of sequence diversity, evidence for positive selection, and footprints of recombination. Moreover, the results also suggest the presence of copy number variation in MHC IIβ genes. Thus, the small-spotted catshark exhibits characteristics of functional MHC IIβ genes typically observed in other jawed vertebrates.
Collapse
Affiliation(s)
- Arnaud Gaigher
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany.
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany.
| | - Alessia Rota
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Fabiana Neves
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Antonio Muñoz-Mérida
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Javier Blasco-Aróstegui
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Faculty of Sciences, University of Lisbon, Campo Grande 016, 1749-016, Lisbon, Portugal
| | - Tereza Almeida
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Ana Veríssimo
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| |
Collapse
|
83
|
Fu M, Eimes JA, Waldman B. Divergent allele advantage in the MHC and amphibian emerging infectious disease. INFECTION, GENETICS AND EVOLUTION 2023; 111:105429. [PMID: 36990307 DOI: 10.1016/j.meegid.2023.105429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Genetic variation in the major histocompatibility complex (MHC) may be associated with resistance to the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd). The pathogen originated in Asia, then spread worldwide, causing amphibian population declines and species extinctions. We compared the expressed MHC IIβ1 alleles of a Bd-resistant toad species, Bufo gargarizans, from South Korea with those of a Bd-susceptible Australasian frog species, Litoria caerulea. We found at least six expressed MHC IIβ1 loci in each of the two species. Amino acid diversity encoded by these MHC alleles was similar between species, but the genetic divergence of those alleles known for broader pathogen-derived peptide binding was greater in the Bd-resistant species. In addition, we found a potentially rare allele in one resistant individual from the Bd-susceptible species. Deep next-generation sequencing recovered approximately triple the genetic resolution accessible from traditional cloning-based genotyping. Targeting more than one MHC IIβ1 expressed locus enables us to better understand how host MHC may adapt to emerging infectious diseases.
Collapse
|
84
|
Gaczorek TS, Marszałek M, Dudek K, Arntzen JW, Wielstra B, Babik W. Interspecific introgression of MHC genes in Triturus newts: Evidence from multiple contact zones. Mol Ecol 2023; 32:867-880. [PMID: 36458894 PMCID: PMC10108261 DOI: 10.1111/mec.16804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/03/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022]
Abstract
The major histocompatibility complex (MHC) genes are central to the adaptive immune response in vertebrates. Selection generally maintains high MHC variation because the spectrum of recognized pathogens depends on MHC polymorphism. Novel alleles favoured by selection originate by interallelic recombination or de novo mutations but may also be acquired by introgression from related species. However, the extent and prevalence of MHC introgression remain an open question. In this study, we tested for MHC introgression in six hybrid zones formed by six Triturus newt species. We sequenced and genotyped the polymorphic second exons of the MHC class I and II genes and compared their interspecific similarity at various distances from the centre of the hybrid zone. We found evidence for introgression of both MHC classes in the majority of examined hybrid zones, with support for a more substantial class I introgression. Furthermore, the overall MHC allele sharing outside of hybrid zones was elevated between pairs of Triturus species with abutting ranges, regardless of the phylogenetic distance between them. No effect of past hybrid zone movement on MHC allele sharing was found. Finally, using previously published genome-wide data, we demonstrated that MHC introgression was more extensive than genome-wide introgression, supporting its adaptive potential. Our study thus provides evidence for the prevalence of MHC introgression across multiple Triturus hybrid zones, indicating that MHC introgression between divergent hybridizing species may be widespread and adaptive.
Collapse
Affiliation(s)
- Tomasz S Gaczorek
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Marzena Marszałek
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Katarzyna Dudek
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Jan W Arntzen
- Naturalis Biodiversity Center, Leiden, The Netherlands.,Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Ben Wielstra
- Naturalis Biodiversity Center, Leiden, The Netherlands.,Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Wiesław Babik
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
85
|
Gong Y, Guo Y, He YM, Yuan Y, Yang BG, Duan XH, Liu CL, Zhang JH, Hong QH, Ma YH, Na RS, Han YG, Zeng Y, Huang YF, Zhao YJ, Zhao ZQ, E G. Comparative analysis of the genetic diversity of the neutral microsatellite loci and second exon of the goat MHC-DQB1 gene. Anim Biotechnol 2023; 34:85-92. [PMID: 34289783 DOI: 10.1080/10495398.2021.1935980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
This study compared and analyzed the genetic diversity and population structure of exon 2 of the DQB1 gene and 13 autosomal neutral microsatellite markers from 14 Chinese goat breeds to explore the potential evolutionary mechanism of the major histocompatibility complex (MHC). A total of 287 haplotypes were constructed from MHC-DQB1 exon 2 from 14 populations, and 82 nucleotide polymorphic sites (SNPs, 31.78%) and 172 heterozygous individuals (79.12%) were identified. The FST values of the microsatellites and MHC-DQB ranged between 0.01831-0.26907 and 0.00892-0.38871, respectively. Furthermore, 14 goat populations showed rich genetic diversity in the microsatellite loci and MHC-DQB1 exon 2. However, the population structure and phylogenetic relationship represented by the two markers were different. Positive selection and Tajima's D test results showed the occurrence of a diversified selection mechanism, which was primarily based on a positive and balancing selection in goat DQB. This study also found that the DQB sequences of bovines exhibited trans-species polymorphism (TSP) among species and families. In brief, this study indicated that positive and balancing selection played a major role in maintaining the genetic diversity of DQB, and TSP of MHC in bovines was common, which enhanced the understanding of the MHC evolution.
Collapse
Affiliation(s)
- Ying Gong
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Yi Guo
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Yong-Meng He
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Ying Yuan
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Bai-Gao Yang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Xing-Hai Duan
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Cheng-Li Liu
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Jia-Hua Zhang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Qiong-Hua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Yue-Hui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ri-Su Na
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Yan-Guo Han
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Yan Zeng
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Yong-Fu Huang
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Yong-Ju Zhao
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Zhong-Quan Zhao
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| | - Guangxin E
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China
| |
Collapse
|
86
|
Aguiar VRC, Castelli EC, Single RM, Bashirova A, Ramsuran V, Kulkarni S, Augusto DG, Martin MP, Gutierrez-Arcelus M, Carrington M, Meyer D. Comparison between qPCR and RNA-seq reveals challenges of quantifying HLA expression. Immunogenetics 2023; 75:249-262. [PMID: 36707444 PMCID: PMC9883133 DOI: 10.1007/s00251-023-01296-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/11/2023] [Indexed: 01/29/2023]
Abstract
Human leukocyte antigen (HLA) class I and II loci are essential elements of innate and acquired immunity. Their functions include antigen presentation to T cells leading to cellular and humoral immune responses, and modulation of NK cells. Their exceptional influence on disease outcome has now been made clear by genome-wide association studies. The exons encoding the peptide-binding groove have been the main focus for determining HLA effects on disease susceptibility/pathogenesis. However, HLA expression levels have also been implicated in disease outcome, adding another dimension to the extreme diversity of HLA that impacts variability in immune responses across individuals. To estimate HLA expression, immunogenetic studies traditionally rely on quantitative PCR (qPCR). Adoption of alternative high-throughput technologies such as RNA-seq has been hampered by technical issues due to the extreme polymorphism at HLA genes. Recently, however, multiple bioinformatic methods have been developed to accurately estimate HLA expression from RNA-seq data. This opens an exciting opportunity to quantify HLA expression in large datasets but also brings questions on whether RNA-seq results are comparable to those by qPCR. In this study, we analyze three classes of expression data for HLA class I genes for a matched set of individuals: (a) RNA-seq, (b) qPCR, and (c) cell surface HLA-C expression. We observed a moderate correlation between expression estimates from qPCR and RNA-seq for HLA-A, -B, and -C (0.2 ≤ rho ≤ 0.53). We discuss technical and biological factors which need to be accounted for when comparing quantifications for different molecular phenotypes or using different techniques.
Collapse
Affiliation(s)
- Vitor R. C. Aguiar
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP Brazil ,Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA ,Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Erick C. Castelli
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University, Botucatu, SP Brazil
| | - Richard M. Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT USA
| | - Arman Bashirova
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA
| | - Veron Ramsuran
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA ,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa ,School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Smita Kulkarni
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA ,Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX USA
| | - Danillo G. Augusto
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA ,Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC USA ,Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, PR Brazil
| | - Maureen P. Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA ,Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA ,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA USA
| | - Diogo Meyer
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP Brazil
| |
Collapse
|
87
|
Lam DK, Frantz AC, Burke T, Geffen E, Sin SYW. Both selection and drift drive the spatial pattern of adaptive genetic variation in a wild mammal. Evolution 2023; 77:221-238. [PMID: 36626810 DOI: 10.1093/evolut/qpac014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 10/03/2022] [Accepted: 11/04/2022] [Indexed: 01/12/2023]
Abstract
The major histocompatibility complex (MHC) has been intensively studied for the relative effects of different evolutionary forces in recent decades. Pathogen-mediated balancing selection is generally thought to explain the high polymorphism observed in MHC genes, but it is still unclear to what extent MHC diversity is shaped by selection relative to neutral drift. In this study, we genotyped MHC class II DRB genes and 15 neutral microsatellite loci across 26 geographic populations of European badgers (Meles meles) covering most of their geographic range. By comparing variation of microsatellite and diversity of MHC at different levels, we demonstrate that both balancing selection and drift have shaped the evolution of MHC genes. When only MHC allelic identity was investigated, the spatial pattern of MHC variation was similar to that of microsatellites. By contrast, when functional aspects of the MHC diversity (e.g., immunological supertypes) were considered, balancing selection appears to decrease genetic structuring across populations. Our comprehensive sampling and analytical approach enable us to conclude that the likely mechanisms of selection are heterozygote advantage and/or rare-allele advantage. This study is a clear demonstration of how both balancing selection and genetic drift simultaneously affect the evolution of MHC genes in a widely distributed wild mammal.
Collapse
Affiliation(s)
- Derek Kong Lam
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Alain C Frantz
- Musée National d'Histoire Naturelle, Luxembourg, Luxembourg
| | - Terry Burke
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Eli Geffen
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
88
|
Li T, Du D, Zhang D, Lin Y, Ma J, Zhou M, Meng W, Jin Z, Chen Z, Yuan H, Wang J, Dong S, Sun S, Ye W, Li B, Liu H, Zhang Z, Jiao Y, Xie Z, Qiu W, Liu Y. CRISPR-based targeted haplotype-resolved assembly of a megabase region. Nat Commun 2023; 14:22. [PMID: 36596772 PMCID: PMC9810730 DOI: 10.1038/s41467-022-35389-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/29/2022] [Indexed: 01/04/2023] Open
Abstract
Constructing high-quality haplotype-resolved genome assemblies has substantially improved the ability to detect and characterize genetic variants. A targeted approach providing readily access to the rich information from haplotype-resolved genome assemblies will be appealing to groups of basic researchers and medical scientists focused on specific genomic regions. Here, using the 4.5 megabase, notoriously difficult-to-assemble major histocompatibility complex (MHC) region as an example, we demonstrated an approach to construct haplotype-resolved assembly of the targeted genomic region with the CRISPR-based enrichment. Compared to the results from haplotype-resolved genome assembly, our targeted approach achieved comparable completeness and accuracy with reduced computing complexity, sequencing cost, as well as the amount of starting materials. Moreover, using the targeted assembled personal MHC haplotypes as the reference both improves the quantification accuracy for sequencing data and enables allele-specific functional genomics analyses of the MHC region. Given its highly efficient use of resources, our approach can greatly facilitate population genetic studies of targeted regions, and may pave a new way to elucidate the molecular mechanisms in disease etiology.
Collapse
Affiliation(s)
- Taotao Li
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Duo Du
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Dandan Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yicheng Lin
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jiakang Ma
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mengyu Zhou
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Weida Meng
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zelin Jin
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ziqiang Chen
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Haozhe Yuan
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jue Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shulong Dong
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shaoyang Sun
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenjing Ye
- Division of Rheumatology and Immunology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bosen Li
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Houbao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhao Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuchen Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenqing Qiu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China. .,Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China.
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China. .,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
89
|
Kloch A, Mierzejewska EJ, Welc-Falęciak R, Bajer A, Biedrzycka A. Cytokine gene polymorphism and parasite susceptibility in free-living rodents: Importance of non-coding variants. PLoS One 2023; 18:e0258009. [PMID: 36693052 PMCID: PMC9873194 DOI: 10.1371/journal.pone.0258009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/06/2023] [Indexed: 01/25/2023] Open
Abstract
Associations between genetic variants and susceptibility to infections have long been studied in free-living hosts so as to infer the contemporary evolutionary forces that shape the genetic polymorphisms of immunity genes. Despite extensive studies of proteins interacting with pathogen-derived ligands, such as MHC (major histocompatilbility complex) or TLR (Toll-like receptors), little is known about the efferent arm of the immune system. Cytokines are signalling molecules that trigger and modulate the immune response, acting as a crucial link between innate and adaptive immunity. In the present study we investigated how genetic variation in cytokines in bank voles Myodes glareolus affects their susceptibility to infection by parasites (nematodes: Aspiculuris tianjensis, Heligmosomum mixtum, Heligmosomoides glareoli) and microparasites (Cryptosporidium sp, Babesia microti, Bartonella sp.). We focused on three cytokines: tumour necrosis factor (TNF), lymphotoxin alpha (LTα), and interferon beta (IFNβ1). Overall, we identified four single nucleotide polymorphisms (SNPs) associated with susceptibility to nematodes: two located in LTα and two in IFNβ1. One of those variants was synonymous, another located in an intron. Each SNP associated with parasite load was located in or next to a codon under selection, three codons displayed signatures of positive selection, and one of purifying selection. Our results indicate that cytokines are prone to parasite-driven selection and that non-coding variants, although commonly disregarded in studies of the genetic background of host-parasite co-evolution, may play a role in susceptibility to infections in wild systems.
Collapse
Affiliation(s)
- Agnieszka Kloch
- Department of Ecology, Faculty of Biology, University of Warsaw, Warszawa, Poland
- * E-mail:
| | - Ewa J. Mierzejewska
- Wild Urban Evolution and Ecology Laboratory, Centre of New Technologies, University of Warsaw, Warszawa, Poland
| | - Renata Welc-Falęciak
- Department of Parasitology, Faculty of Biology, University of Warsaw, Warszawa, Poland
| | - Anna Bajer
- Department of Eco-epidemiology of Parasitic Diseases, Faculty of Biology, University of Warsaw, Warszawa, Poland
| | | |
Collapse
|
90
|
Konopiński MK, Fijarczyk AM, Biedrzycka A. Complex patterns shape immune genes diversity during invasion of common raccoon in Europe - Selection in action despite genetic drift. Evol Appl 2023; 16:134-151. [PMID: 36699132 PMCID: PMC9850017 DOI: 10.1111/eva.13517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Rapid adaptation is common in invasive populations and is crucial to their long-term success. The primary target of selection in the invasive species' new range is standing genetic variation. Therefore, genetic drift and natural selection acting on existing variation are key evolutionary processes through which invaders will evolve over a short timescale. In this study, we used the case of the raccoon Procyon lotor invasion in Europe to identify the forces shaping the diversity of immune genes during invasion. The genes involved in the defence against infection should be under intense selection pressure in the invasive range where novel pathogens are expected to occur. To disentangle the selective and demographic processes shaping the adaptive immune diversity of its invasive and expanding populations, we have developed species-specific single-nucleotide polymorphism markers located in the coding regions of targeted immune-related genes. We characterised the genetic diversity of 110 functionally important immune genes in two invasive and one native raccoon genetic clusters, each presenting a different demographic history. Despite the strong effect of demographic processes in the invasive clusters, we detected a subset of genes exhibiting the diversity pattern suggestive of selection. The most likely process shaping the variation in those genes was balancing selection. The selected genes belong to toll-like receptors and cytokine-related genes. Our results suggest that the prevalence of selection depends on the level of diversity, that is - less genetically diverse invasive population from the Czech Republic displayed fewer signs of selection. Our results highlight the role of standing genetic variation in adapting to new environment. Understanding the evolutionary mechanisms behind invasion success would enable predicting how populations may respond to environmental change.
Collapse
Affiliation(s)
| | - Anna M. Fijarczyk
- Laval University Département de BiologieUniversité LavalQuébecQuébecCanada
| | | |
Collapse
|
91
|
Worsley SF, Davies CS, Mannarelli ME, Komdeur J, Dugdale HL, Richardson DS. Assessing the causes and consequences of gut mycobiome variation in a wild population of the Seychelles warbler. MICROBIOME 2022; 10:242. [PMID: 36575553 PMCID: PMC9795730 DOI: 10.1186/s40168-022-01432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Considerable research has focussed on the importance of bacterial communities within the vertebrate gut microbiome (GM). However, studies investigating the significance of other microbial kingdoms, such as fungi, are notably lacking, despite their potential to influence host processes. Here, we characterise the fungal GM of individuals living in a natural population of Seychelles warblers (Acrocephalus sechellensis). We evaluate the extent to which fungal GM structure is shaped by environment and host factors, including genome-wide heterozygosity and variation at key immune genes (major histocompatibility complex (MHC) and Toll-like receptor (TLR)). Importantly, we also explore the relationship between fungal GM differences and subsequent host survival. To our knowledge, this is the first time that the genetic drivers and fitness consequences of fungal GM variation have been characterised for a wild vertebrate population. RESULTS Environmental factors, including season and territory quality, explain the largest proportion of variance in the fungal GM. In contrast, neither host age, sex, genome-wide heterozygosity, nor TLR3 genotype was associated with fungal GM differences in Seychelles warblers. However, the presence of four MHC-I alleles and one MHC-II allele was associated with changes in fungal GM alpha diversity. Changes in fungal richness ranged from between 1 and 10 sequencing variants lost or gained; in some cases, this accounted for 20% of the fungal variants carried by an individual. In addition to this, overall MHC-I allelic diversity was associated with small, but potentially important, changes in fungal GM composition. This is evidenced by the fact that fungal GM composition differed between individuals that survived or died within 7 months of being sampled. CONCLUSIONS Our results suggest that environmental factors play a primary role in shaping the fungal GM, but that components of the host immune system-specifically the MHC-may also contribute to the variation in fungal communities across individuals within wild populations. Furthermore, variation in the fungal GM can be associated with differential survival in the wild. Further work is needed to establish the causality of such relationships and, thus, the extent to which components of the GM may impact host evolution. Video Abstract.
Collapse
Affiliation(s)
- Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK.
| | - Charli S Davies
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Maria-Elena Mannarelli
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| | - Hannah L Dugdale
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK.
- Nature Seychelles, Roche Caiman, Mahé, Republic of Seychelles.
| |
Collapse
|
92
|
Qiu J, Li X, He Y, Wang Q, Li J, Wu J, Jiang Y, Han J. Identification of comutation in signaling pathways to predict the clinical outcomes of immunotherapy. J Transl Med 2022; 20:613. [PMID: 36564823 PMCID: PMC9783967 DOI: 10.1186/s12967-022-03836-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Immune checkpoint blockades (ICBs) have emerged as a promising treatment for cancer. Recently, tumour mutational burden (TMB) and neoantigen load (NAL) have been proposed to be potential biomarkers to predict the efficacy of ICB; however, they were limited by difficulties in defining the cut-off values and inconsistent detection platforms. Therefore, it is critical to identify more effective predictive biomarkers for screening patients who will potentially benefit from immunotherapy. In this study, we aimed to identify comutated signaling pathways to predict the clinical outcomes of immunotherapy. METHODS Here, we comprehensively analysed the signaling pathway mutation status of 9763 samples across 33 different cancer types from The Cancer Genome Atlas (TCGA) by mapping the somatic mutations to the pathways. We then explored the comutated pathways that were associated with increased TMB and NAL by using receiver operating characteristic (ROC) curve analysis and multiple linear regressions. RESULTS Our results revealed that comutation of the Spliceosome (Sp) pathway and Hedgehog (He) signaling pathway (defined as SpHe-comut+) could be used as a predictor of increased TMB and NAL and was associated with increased levels of immune-related signatures. In seven independent immunotherapy cohorts, we validated that SpHe-comut+ patients exhibited a longer overall survival (OS) or progression-free survival (PFS) and a higher objective response rate (ORR) than SpHe-comut- patients. Moreover, a combination of SpHe-comut status with PD-L1 expression further improved the predictive value for ICB therapy. CONCLUSION Overall, SpHe-comut+ was demonstrated to be an effective predictor of immunotherapeutic benefit in seven independent immunotherapy cohorts and may serve as a potential and convenient biomarker for the clinical application of ICB therapy.
Collapse
Affiliation(s)
- Jiayue Qiu
- grid.410736.70000 0001 2204 9268College of Bioinformatics Science and Technology, Harbin Medical University, 157 BaoJian Road, Harbin, 150081 People’s Republic of China
| | - Xiangmei Li
- grid.410736.70000 0001 2204 9268College of Bioinformatics Science and Technology, Harbin Medical University, 157 BaoJian Road, Harbin, 150081 People’s Republic of China
| | - Yalan He
- grid.410736.70000 0001 2204 9268College of Bioinformatics Science and Technology, Harbin Medical University, 157 BaoJian Road, Harbin, 150081 People’s Republic of China
| | - Qian Wang
- grid.410736.70000 0001 2204 9268College of Bioinformatics Science and Technology, Harbin Medical University, 157 BaoJian Road, Harbin, 150081 People’s Republic of China
| | - Ji Li
- grid.410736.70000 0001 2204 9268College of Bioinformatics Science and Technology, Harbin Medical University, 157 BaoJian Road, Harbin, 150081 People’s Republic of China
| | - Jiashuo Wu
- grid.410736.70000 0001 2204 9268College of Bioinformatics Science and Technology, Harbin Medical University, 157 BaoJian Road, Harbin, 150081 People’s Republic of China
| | - Ying Jiang
- grid.412068.90000 0004 1759 8782College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin, 150040 People’s Republic of China
| | - Junwei Han
- grid.410736.70000 0001 2204 9268College of Bioinformatics Science and Technology, Harbin Medical University, 157 BaoJian Road, Harbin, 150081 People’s Republic of China
| |
Collapse
|
93
|
Dearborn DC, Warren S, Hailer F. Meta-analysis of major histocompatibility complex (MHC) class IIA reveals polymorphism and positive selection in many vertebrate species. Mol Ecol 2022; 31:6390-6406. [PMID: 36208104 PMCID: PMC9729452 DOI: 10.1111/mec.16726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 01/13/2023]
Abstract
Pathogen-mediated selection and sexual selection are important drivers of evolution. Both processes are known to target genes of the major histocompatibility complex (MHC), a gene family encoding cell-surface proteins that display pathogen peptides to the immune system. The MHC is also a model for understanding processes such as gene duplication and trans-species allele sharing. The class II MHC protein is a heterodimer whose peptide-binding groove is encoded by an MHC-IIA gene and an MHC-IIB gene. However, our literature review found that class II MHC papers on infectious disease or sexual selection included IIA data only 18% and 9% of the time, respectively. To assess whether greater emphasis on MHC-IIA is warranted, we analysed MHC-IIA sequence data from 50 species of vertebrates (fish, amphibians, birds, mammals) to test for polymorphism and positive selection. We found that the number of MHC-IIA alleles within a species was often high, and covaried with sample size and number of MHC-IIA genes assayed. While MHC-IIA variability tended to be lower than that of MHC-IIB, the difference was only ~25%, with ~3 fewer IIA alleles than IIB. Furthermore, the unexpectedly high MHC-IIA variability showed clear signatures of positive selection in most species, and positive selection on MHC-IIA was stronger in fish than in other surveyed vertebrate groups. Our findings underscore that MHC-IIA can be an important target of selection. Future studies should therefore expand the characterization of MHC-IIA at both allelic and genomic scales, and incorporate MHC-IIA into models of fitness consequences of MHC variation.
Collapse
Affiliation(s)
- Donald C Dearborn
- Biology Department, Bates College, 44 Campus Ave, Lewiston, Maine, USA,Roux Institute, Northeastern University, Fore St, Portland, Maine, USA,Co-corresponding authors: and
| | - Sophie Warren
- Biology Department, Bates College, 44 Campus Ave, Lewiston, Maine, USA,Present address: Department of Health Policy, London School of Economics and Political Science, Houghton Street, London WC2A 2AE, UK
| | - Frank Hailer
- Organisms and Environment, School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK,Co-corresponding authors: and
| |
Collapse
|
94
|
Ren X, Liu Y, Zhao Y, Li B, Bai D, Bou G, Zhang X, Du M, Wang X, Bou T, Shen Y, Dugarjaviin M. Analysis of the Whole-Genome Sequences from an Equus Parent-Offspring Trio Provides Insight into the Genomic Incompatibilities in the Hybrid Mule. Genes (Basel) 2022; 13:genes13122188. [PMID: 36553455 PMCID: PMC9778318 DOI: 10.3390/genes13122188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Interspecific hybridization often shows negative effects on hybrids. However, only a few multicellular species, limited to a handful of plants and animals, have shown partial genetic mechanisms by which hybridization leads to low fitness in hybrids. Here, to explore the outcome of combining the two genomes of a horse and donkey, we analyzed the whole-genome sequences from an Equus parent-offspring trio using Illumina platforms. We generated 41.39× and 46.21× coverage sequences for the horse and mule, respectively. For the donkey, a 40.38× coverage sequence was generated and stored in our laboratory. Approximately 24.86 million alleles were discovered that varied from the reference genome. Single nucleotide polymorphisms were used as polymorphic markers for assigning alleles to their parental genomic inheritance. We identified 25,703 Mendelian inheritance error single nucleotide polymorphisms in the mule genome that were not inherited from the parents through Mendelian inheritance. A total of 555 de novo single nucleotide polymorphisms were also identified. The rate of de novo single nucleotide polymorphisms was 2.21 × 10-7 in the mule from the Equus parent-offspring trio. This rate is obviously higher than the natural mutation rate for Equus, which is also consistent with the previous hypothesis that interracial crosses may have a high mutation rate. The genes associated with these single nucleotide polymorphisms are mainly involved in immune processes, DNA repair, and cancer processes. The results of the analysis of three genomes from an Equus parent-offspring trio improved our knowledge of the consequences of the integration of parental genomes in mules.
Collapse
|
95
|
Ameline C, Voegtli F, Andras J, Dexter E, Engelstädter J, Ebert D. Genetic slippage after sex maintains diversity for parasite resistance in a natural host population. SCIENCE ADVANCES 2022; 8:eabn0051. [PMID: 36399570 PMCID: PMC9674289 DOI: 10.1126/sciadv.abn0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Although parasite-mediated selection is a major driver of host evolution, its influence on genetic variation for parasite resistance is not yet well understood. We monitored resistance in a large population of the planktonic crustacean Daphnia magna over 8 years, as it underwent yearly epidemics of the bacterial pathogen Pasteuria ramosa. We observed cyclic dynamics of resistance: Resistance increased throughout the epidemics, but susceptibility was restored each spring when hosts hatched from sexual resting stages. Host resting stages collected across the year showed that largely resistant host populations can produce susceptible sexual offspring. A genetic model of resistance developed for this host-parasite system, based on multiple loci and strong epistasis, is in partial agreement with our findings. Our results reveal that, despite strong selection for resistance in a natural host population, genetic slippage after sexual reproduction can be a strong factor for the maintenance of genetic diversity of host resistance.
Collapse
Affiliation(s)
- Camille Ameline
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Felix Voegtli
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Jason Andras
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Eric Dexter
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| |
Collapse
|
96
|
Evaluation of Genetic Diversity and Parasite-Mediated Selection of MHC Class I Genes in Emberiza godlewskii (Passeriformes: Emberizidae). DIVERSITY 2022. [DOI: 10.3390/d14110925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The major histocompatibility complex (MHC) is a multi-copy immune gene family in vertebrates. Its genes are highly variable and code for antigen-presenting molecules. Characterization of MHC genes in different species and investigating the mechanisms that shape MHC diversity is an important goal in understanding the evolution of biological diversity. Here we developed a next-generation sequencing (NGS) protocol to genotype the MHC class I genes of 326 Godlewski’s buntings (Emberiza godlewskii) sampled in the Western mountain area of Beijing from 2014 to 2016. A total of 184 functional alleles were identified, including both non-classical and classical alleles, clustering into nine supertypes. Compared with other passerine birds, the number of MHC class I alleles per individual in Godlewski’s buntings is high (mean 16.1 ± 3.3, median 16). In addition, we demonstrated signatures of historical and contemporary selection on MHC genes. Reflecting historical selection, ten amino acid sites in the antigen-binding domain showed signatures of balancing selection, eight of which exhibit high amino acid polymorphism. In terms of contemporary selection, we found that specific MHC supertypes were nominally associated with the infection of two malaria parasite lineages. These findings indicate the action of historical and possibly also contemporary balancing selection and suggest negative frequency-dependent or fluctuating selection as possible selection mechanisms.
Collapse
|
97
|
Intronic primers reveal unexpectedly high major histocompatibility complex diversity in Antarctic fur seals. Sci Rep 2022; 12:17933. [PMID: 36289307 PMCID: PMC9606363 DOI: 10.1038/s41598-022-21658-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/29/2022] [Indexed: 01/20/2023] Open
Abstract
The major histocompatibility complex (MHC) is a group of genes comprising one of the most important components of the vertebrate immune system. Consequently, there has been much interest in characterising MHC variation and its relationship with fitness in a variety of species. Due to the exceptional polymorphism of MHC genes, careful PCR primer design is crucial for capturing all of the allelic variation present in a given species. We therefore developed intronic primers to amplify the full-length 267 bp protein-coding sequence of the MHC class II DQB exon 2 in the Antarctic fur seal. We then characterised patterns of MHC variation among mother-offspring pairs from two breeding colonies and detected 19 alleles among 771 clone sequences from 56 individuals. The distribution of alleles within and among individuals was consistent with a single-copy, classical DQB locus showing Mendelian inheritance. Amino acid similarity at the MHC was significantly associated with genome-wide relatedness, but no relationship was found between MHC heterozygosity and genome-wide heterozygosity. Finally, allelic diversity was several times higher than reported by a previous study based on partial exon sequences. This difference appears to be related to allele-specific amplification bias, implying that primer design can strongly impact the inference of MHC diversity.
Collapse
|
98
|
Castelli EC, de Castro MV, Naslavsky MS, Scliar MO, Silva NSB, Pereira RN, Ciriaco VAO, Castro CFB, Mendes-Junior CT, Silveira EDS, de Oliveira IM, Antonio EC, Vieira GF, Meyer D, Nunes K, Matos LRB, Silva MVR, Wang JYT, Esposito J, Cória VR, Magawa JY, Santos KS, Cunha-Neto E, Kalil J, Bortolin RH, Hirata MH, Dell’Aquila LP, Razuk-Filho A, Batista-Júnior PB, Duarte-Neto AN, Dolhnikoff M, Saldiva PHN, Passos-Bueno MR, Zatz M. MUC22, HLA-A, and HLA-DOB variants and COVID-19 in resilient super-agers from Brazil. Front Immunol 2022; 13:975918. [PMID: 36389712 PMCID: PMC9641602 DOI: 10.3389/fimmu.2022.975918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/15/2022] [Indexed: 08/08/2023] Open
Abstract
Background Although aging correlates with a worse prognosis for Covid-19, super elderly still unvaccinated individuals presenting mild or no symptoms have been reported worldwide. Most of the reported genetic variants responsible for increased disease susceptibility are associated with immune response, involving type I IFN immunity and modulation; HLA cluster genes; inflammasome activation; genes of interleukins; and chemokines receptors. On the other hand, little is known about the resistance mechanisms against SARS-CoV-2 infection. Here, we addressed polymorphisms in the MHC region associated with Covid-19 outcome in super elderly resilient patients as compared to younger patients with a severe outcome. Methods SARS-CoV-2 infection was confirmed by RT-PCR test. Aiming to identify candidate genes associated with host resistance, we investigated 87 individuals older than 90 years who recovered from Covid-19 with mild symptoms or who remained asymptomatic following positive test for SARS-CoV-2 as compared to 55 individuals younger than 60 years who had a severe disease or died due to Covid-19, as well as to the general elderly population from the same city. Whole-exome sequencing and an in-depth analysis of the MHC region was performed. All samples were collected in early 2020 and before the local vaccination programs started. Results We found that the resilient super elderly group displayed a higher frequency of some missense variants in the MUC22 gene (a member of the mucins' family) as one of the strongest signals in the MHC region as compared to the severe Covid-19 group and the general elderly control population. For example, the missense variant rs62399430 at MUC22 is two times more frequent among the resilient super elderly (p = 0.00002, OR = 2.24). Conclusion Since the pro-inflammatory basal state in the elderly may enhance the susceptibility to severe Covid-19, we hypothesized that MUC22 might play an important protective role against severe Covid-19, by reducing overactive immune responses in the senior population.
Collapse
Affiliation(s)
- Erick C. Castelli
- Department of Pathology, School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit (Unipex), School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Mateus V. de Castro
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Michel S. Naslavsky
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Marilia O. Scliar
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Nayane S. B. Silva
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit (Unipex), School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Raphaela N. Pereira
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit (Unipex), School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Viviane A. O. Ciriaco
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit (Unipex), School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Camila F. B. Castro
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit (Unipex), School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
- Centro Universitário Sudoeste Paulista, Avaré, Brazil
| | - Celso T. Mendes-Junior
- Departamento de Química, Faculdade de Filosofa, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Etiele de S. Silveira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Iuri M. de Oliveira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Eduardo C. Antonio
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Gustavo F. Vieira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratório de Saúde Humana In Silico, Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, Canoas, Brazil
| | - Diogo Meyer
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Kelly Nunes
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Larissa R. B. Matos
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Monize V. R. Silva
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Jaqueline Y. T. Wang
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Joyce Esposito
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Vivian R. Cória
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Jhosiene Y. Magawa
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciências e Tecnologia-iii (INCT), São Paulo, Brazil
| | - Keity S. Santos
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciências e Tecnologia-iii (INCT), São Paulo, Brazil
| | - Edecio Cunha-Neto
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciências e Tecnologia-iii (INCT), São Paulo, Brazil
| | - Jorge Kalil
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciências e Tecnologia-iii (INCT), São Paulo, Brazil
| | - Raul H. Bortolin
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mário Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Amaro N. Duarte-Neto
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Marisa Dolhnikoff
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Paulo H. N. Saldiva
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
99
|
Bernhardt M, Cruz-Garcia Y, Rech A, Meierjohann S, Erhard F, Schilling B, Schlosser A. Extending the Mass Spectrometry-Detectable Landscape of MHC Peptides by Use of Restricted Access Material. Anal Chem 2022; 94:14214-14222. [PMID: 36194871 DOI: 10.1021/acs.analchem.2c02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass spectrometry-based immunopeptidomics enables the comprehensive identification of major histocompatibility complex (MHC) peptides from a cell culture as well as from tissue or tumor samples and is applied for the identification of tumor-specific and viral T-cell epitopes. Although mass spectrometry is generally considered an "unbiased" method for MHC peptide identification, the physicochemical properties of MHC peptides can greatly influence their detectability. Here, we demonstrate that highly hydrophobic peptides are lost during sample preparation when C18 solid-phase extraction (SPE) is used for separating MHC peptides from proteins. To overcome this limitation, we established an optimized protocol involving restricted access material (RAM). Compared to C18-SPE, RAM-SPE improved the overall MHC peptide recovery and extended the landscape of mass spectrometry-detectable MHC peptides toward more hydrophobic peptides.
Collapse
Affiliation(s)
- Melissa Bernhardt
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, Julius Maximilians University Würzburg, 97080 Würzburg, Germany
| | - Yiliam Cruz-Garcia
- Department of Biochemistry and Molecular Biology, Julius Maximilians University Würzburg, 97080 Würzburg, Germany
| | - Anne Rech
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Svenja Meierjohann
- Institute of Pathology, Julius Maximilians University Würzburg, 97080 Würzburg, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, Julius Maximilians University Würzburg, 97080 Würzburg, Germany
| | - Bastian Schilling
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, Julius Maximilians University Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
100
|
Minias P, Palomar G, Dudek K, Babik W. Salamanders reveal novel trajectories of amphibian MHC evolution. Evolution 2022; 76:2436-2449. [PMID: 36000494 DOI: 10.1111/evo.14601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/06/2022] [Accepted: 07/29/2022] [Indexed: 01/22/2023]
Abstract
Genes of the major histocompatibility complex (MHC) code for immune proteins that are crucial for pathogen recognition in vertebrates. MHC research in nonmodel taxa has long been hampered by its genomic complexity that makes the locus-specific genotyping challenging. The recent progress in sequencing and genotyping methodologies allows an extensive phylogenetic coverage in studies of MHC evolution. Here, we analyzed the peptide-binding region of MHC class I (MHC-I) in 30 species of salamanders from six families representative of Urodela phylogeny. This extensive dataset revealed an extreme diversity of MHC-I in salamanders, both in terms of sequence diversity (about 3000 variants) and architecture (2-22 gene copies per species). The signal of positive selection was moderate and consistent between both peptide-binding domains, but varied greatly between genera. Positions of positively selected sites mostly coincided with human peptide-binding sites, suggesting similar structural properties of MHC-I molecules across distant vertebrate lineages. Finally, we provided evidence for the common intraexonic recombination at MHC-I and for the role of life history traits in the processes of MHC-I expansion/contraction. Our study revealed novel evolutionary trajectories of amphibian MHC and it contributes to the understanding of the mechanisms that generated extraordinary MHC diversity throughout vertebrate evolution.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, 90-237, Poland
| | - Gemma Palomar
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, 30-387, Poland.,Parasitology Unit, Department of Biomedicine and Biotechnology, Faculty of Pharmacy, Universidad de Alcalá (UAH), Alcalá de Henares, Madrid, 28805, Spain
| | - Katarzyna Dudek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, 30-387, Poland
| | - Wiesław Babik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, 30-387, Poland
| |
Collapse
|