51
|
Abstract
The advent of the X-ray free electron laser (XFEL) in the last decade created the discipline of serial crystallography but also the challenge of how crystal samples are delivered to X-ray. Early sample delivery methods demonstrated the proof-of-concept for serial crystallography and XFEL but were beset with challenges of high sample consumption, jet clogging and low data collection efficiency. The potential of XFEL and serial crystallography as the next frontier of structural solution by X-ray for small and weakly diffracting crystals and provision of ultra-fast time-resolved structural data spawned a huge amount of scientific interest and innovation. To utilize the full potential of XFEL and broaden its applicability to a larger variety of biological samples, researchers are challenged to develop better sample delivery methods. Thus, sample delivery is one of the key areas of research and development in the serial crystallography scientific community. Sample delivery currently falls into three main systems: jet-based methods, fixed-target chips, and drop-on-demand. Huge strides have since been made in reducing sample consumption and improving data collection efficiency, thus enabling the use of XFEL for many biological systems to provide high-resolution, radiation damage-free structural data as well as time-resolved dynamics studies. This review summarizes the current main strategies in sample delivery and their respective pros and cons, as well as some future direction.
Collapse
|
52
|
Spaggiari G, Di Pizio A, Cozzini P. Sweet, umami and bitter taste receptors: State of the art of in silico molecular modeling approaches. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
53
|
Di Pizio A, Waterloo LAW, Brox R, Löber S, Weikert D, Behrens M, Gmeiner P, Niv MY. Rational design of agonists for bitter taste receptor TAS2R14: from modeling to bench and back. Cell Mol Life Sci 2020; 77:531-542. [PMID: 31236627 PMCID: PMC11104859 DOI: 10.1007/s00018-019-03194-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022]
Abstract
Human bitter taste receptors (TAS2Rs) are a subfamily of 25 G protein-coupled receptors that mediate bitter taste perception. TAS2R14 is the most broadly tuned bitter taste receptor, recognizing a range of chemically diverse agonists with micromolar-range potency. The receptor is expressed in several extra-oral tissues and is suggested to have physiological roles related to innate immune responses, male fertility, and cancer. Higher potency ligands are needed to investigate TAS2R14 function and to modulate it for future clinical applications. Here, a structure-based modeling approach is described for the design of TAS2R14 agonists beginning from flufenamic acid, an approved non-steroidal anti-inflammatory analgesic that activates TAS2R14 at sub-micromolar concentrations. Structure-based molecular modeling was integrated with experimental data to design new TAS2R14 agonists. Subsequent chemical synthesis and in vitro profiling resulted in new TAS2R14 agonists with improved potency compared to the lead. The integrated approach provides a validated and refined structural model of ligand-TAS2R14 interactions and a general framework for structure-based discovery in the absence of closely related experimental structures.
Collapse
Affiliation(s)
- Antonella Di Pizio
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University, Rehovot, Israel
- Section In Silico Biology & Machine Learning, Leibniz-Institute for Food Systems Biology at the Technical University of Munich, 85354, Freising, Germany
| | - Lukas A W Waterloo
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Regine Brox
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Department of Transfusion Medicine and Haemostaseology, University Hospital, Erlangen, Germany
| | - Stefan Löber
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Dorothee Weikert
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Maik Behrens
- Section Chemoreception and Biosignals, Leibniz-Institute for Food Systems Biology at the Technical University of Munich, 85354, Freising, Germany.
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
| | - Masha Y Niv
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University, Rehovot, Israel.
| |
Collapse
|
54
|
Pérez-Benito L, Llinas del Torrent C, Pardo L, Tresadern G. The computational modeling of allosteric modulation of metabotropic glutamate receptors. FROM STRUCTURE TO CLINICAL DEVELOPMENT: ALLOSTERIC MODULATION OF G PROTEIN-COUPLED RECEPTORS 2020; 88:1-33. [DOI: 10.1016/bs.apha.2020.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
55
|
Felsing DE, Jain MK, Allen JA. Advances in Dopamine D1 Receptor Ligands for Neurotherapeutics. Curr Top Med Chem 2019; 19:1365-1380. [PMID: 31553283 DOI: 10.2174/1568026619666190712210903] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/04/2019] [Accepted: 04/07/2019] [Indexed: 12/15/2022]
Abstract
The dopamine D1 receptor (D1R) is essential for neurotransmission in various brain pathways where it modulates key functions including voluntary movement, memory, attention and reward. Not surprisingly, the D1R has been validated as a promising drug target for over 40 years and selective activation of this receptor may provide novel neurotherapeutics for neurodegenerative and neuropsychiatric disorders. Several pharmacokinetic challenges with previously identified small molecule D1R agonists have been recently overcome with the discovery and advancement of new ligands, including drug-like non-catechol D1R agonists and positive allosteric modulators. From this, several novel molecules and mechanisms have recently entered clinical studies. Here we review the major classes of D1R selective ligands including antagonists, orthosteric agonists, non-catechol biased agonists and positive allosteric modulators, highlighting their structure-activity relationships and medicinal chemistry. Recent chemistry breakthroughs and innovative approaches to selectively target and activate the D1R also hold promise for creating pharmacotherapy for several neurological diseases.
Collapse
Affiliation(s)
- Daniel E Felsing
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States.,Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States
| | - Manish K Jain
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States.,Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States
| | - John A Allen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States.,Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, 77555-0615, United States
| |
Collapse
|
56
|
Orgován Z, Ferenczy GG, Keserű GM. The role of water and protein flexibility in the structure-based virtual screening of allosteric GPCR modulators: an mGlu 5 receptor case study. J Comput Aided Mol Des 2019; 33:787-797. [PMID: 31542869 PMCID: PMC6825653 DOI: 10.1007/s10822-019-00224-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022]
Abstract
Stabilizing unique receptor conformations, allosteric modulators of G-protein coupled receptors (GPCRs) might open novel treatment options due to their new pharmacological action, their enhanced specificity and selectivity in both binding and signaling. Ligand binding occurs at intrahelical allosteric sites and involves significant induced fit effects that include conformational changes in the local protein environment and water networks. Based on the analysis of available crystal structures of metabotropic glutamate receptor 5 (mGlu5) we investigated these effects in the binding of mGlu5 receptor negative allosteric modulators. A large set of retrospective virtual screens revealed that the use of multiple protein structures and the inclusion of selected water molecules improves virtual screening performance compared to conventional docking strategies. The role of water molecules and protein flexibility in ligand binding can be taken into account efficiently by the proposed docking protocol that provided reasonable enrichment of true positives. This protocol is expected to be useful also for identifying intrahelical allosteric modulators for other GPCR targets.
Collapse
Affiliation(s)
- Zoltán Orgován
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary
| | - György G Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary.
| |
Collapse
|
57
|
García-Nafría J, Tate CG. Cryo-Electron Microscopy: Moving Beyond X-Ray Crystal Structures for Drug Receptors and Drug Development. Annu Rev Pharmacol Toxicol 2019; 60:51-71. [PMID: 31348870 DOI: 10.1146/annurev-pharmtox-010919-023545] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electron cryo-microscopy (cryo-EM) has revolutionized structure determination of membrane proteins and holds great potential for structure-based drug discovery. Here we discuss the potential of cryo-EM in the rational design of therapeutics for membrane proteins compared to X-ray crystallography. We also detail recent progress in the field of drug receptors, focusing on cryo-EM of two protein families with established therapeutic value, the γ-aminobutyric acid A receptors (GABAARs) and G protein-coupled receptors (GPCRs). GABAARs are pentameric ion channels, and cryo-EM structures of physiological heteromeric receptors in a lipid environment have uncovered the molecular basis of receptor modulation by drugs such as diazepam. The structures of ten GPCR-G protein complexes from three different classes of GPCRs have now been determined by cryo-EM. These structures give detailed insights into molecular interactions with drugs, GPCR-G protein selectivity, how accessory membrane proteins alter receptor-ligand pharmacology, and the mechanism by which HIV uses GPCRs to enter host cells.
Collapse
Affiliation(s)
- Javier García-Nafría
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; .,Current affiliation: Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopias Avanzadas, University of Zaragoza, 50018 Zaragoza, Spain;
| | | |
Collapse
|
58
|
NMR investigation of protein-ligand interactions for G-protein coupled receptors. Future Med Chem 2019; 11:1811-1825. [PMID: 31287732 DOI: 10.4155/fmc-2018-0312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this review, we report NMR studies of ligand-GPCR interactions, including both ligand-observed and protein-observed NMR experiments. Published studies exemplify how NMR can be used as a powerful tool to design novel GPCR ligands and investigate the ligand-induced conformational changes of GPCRs. The strength of NMR also lies in its capability to explore the diverse signaling pathways and probe the allosteric modulation of these highly dynamic receptors. By offering unique opportunities for the identification, structural and functional characterization of GPCR ligands, NMR will likely play a major role for the generation of novel molecules both as new tools for the understanding of the GPCR function and as therapeutic compounds for a large diversity of pathologies.
Collapse
|
59
|
Utilization of Biased G Protein-Coupled ReceptorSignaling towards Development of Safer andPersonalized Therapeutics. Molecules 2019; 24:molecules24112052. [PMID: 31146474 PMCID: PMC6600667 DOI: 10.3390/molecules24112052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/19/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are involved in a wide variety of physiological processes. Therefore, approximately 40% of currently prescribed drugs have targeted this receptor family. Discovery of β-arrestin mediated signaling and also separability of G protein and β-arrestin signaling pathways have switched the research focus in the GPCR field towards development of biased ligands, which provide engagement of the receptor with a certain effector, thus enriching a specific signaling pathway. In this review, we summarize possible factors that impact signaling profiles of GPCRs such as oligomerization, drug treatment, disease conditions, genetic background, etc. along with relevant molecules that can be used to modulate signaling properties of GPCRs such as allosteric or bitopic ligands, ions, aptamers and pepducins. Moreover, we also discuss the importance of inclusion of pharmacogenomics and molecular dynamics simulations to achieve a holistic understanding of the relation between genetic background and structure and function of GPCRs and GPCR-related proteins. Consequently, specific downstream signaling pathways can be enriched while those that bring unwanted side effects can be prevented on a patient-specific basis. This will improve studies that centered on development of safer and personalized therapeutics, thus alleviating the burden on economy and public health.
Collapse
|
60
|
Importance of protein dynamics in the structure-based drug discovery of class A G protein-coupled receptors (GPCRs). Curr Opin Struct Biol 2019; 55:147-153. [PMID: 31102980 DOI: 10.1016/j.sbi.2019.03.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/06/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022]
Abstract
Demand for novel GPCR modulators is increasing as the association between the GPCR signaling pathway and numerous diseases such as cancers, psychological and metabolic disorders continues to be established. In silico structure-based drug design (SBDD) offers an outlet where researchers could exploit the accumulating structural information of GPCR to expedite the process of drug discovery. The coupling of structure-based approaches such as virtual screening and molecular docking with molecular dynamics and/or Monte Carlo simulation aids in reflecting the dynamics of proteins in nature into previously static docking studies, thus enhancing the accuracy of rationally designed ligands. This review will highlight recent computational strategies that incorporate protein flexibility into SBDD of GPCR-targeted ligands.
Collapse
|
61
|
Foglierini M, Marcandalli J, Perez L. HCMV Envelope Glycoprotein Diversity Demystified. Front Microbiol 2019; 10:1005. [PMID: 31156572 PMCID: PMC6529531 DOI: 10.3389/fmicb.2019.01005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/18/2019] [Indexed: 12/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the leading viral cause of congenital birth defects and is responsible for morbidity and mortality in immunosuppressed individuals. Considerable efforts have been deployed over the last decade to develop a vaccine capable of preventing HCMV infection. However, in recent clinical trials, vaccines showed at best modest efficacy in preventing infection. These findings might be explained by the high level of sequence polymorphism at the genomic level. To investigate if genomic variation also leads to antigenic variation, we performed a bioinformatic sequence analysis and evaluated the percentage of conservation at the amino acid level of all the proteins present in the virion envelope. Using more than two hundred sequences per envelope glycoprotein and analyzing their degree of conservation, we observe that antigenic variation is in large part limited to three proteins. In addition, we demonstrate that the two leading vaccine candidates, the pentamer and gB complexes, are well conserved at the amino acid level. These results suggest that despite genomic polymorphism, antigenic variability is not involved in the modest efficacy observed in the recent clinical trials for a HCMV vaccine. We therefore propose that next-generation vaccines should focus on stabilizing and refining the gB domains needed to induce a protective humoral response.
Collapse
Affiliation(s)
- Mathilde Foglierini
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jessica Marcandalli
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Laurent Perez
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| |
Collapse
|
62
|
Analysis of tractable allosteric sites in G protein-coupled receptors. Sci Rep 2019; 9:6180. [PMID: 30992500 PMCID: PMC6467999 DOI: 10.1038/s41598-019-42618-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/28/2019] [Indexed: 11/21/2022] Open
Abstract
Allosteric modulation of G protein-coupled receptors represent a promising mechanism of pharmacological intervention. Dramatic developments witnessed in the structural biology of membrane proteins continue to reveal that the binding sites of allosteric modulators are widely distributed, including along protein surfaces. Here we restrict consideration to intrahelical and intracellular sites together with allosteric conformational locks, and show that the protein mapping tools FTMap and FTSite identify 83% and 88% of such experimentally confirmed allosteric sites within the three strongest sites found. The methods were also able to find partially hidden allosteric sites that were not fully formed in X-ray structures crystallized in the absence of allosteric ligands. These results confirm that the intrahelical sites capable of binding druglike allosteric modulators are among the strongest ligand recognition sites in a large fraction of GPCRs and suggest that both FTMap and FTSite are useful tools for identifying allosteric sites and to aid in the design of such compounds in a range of GPCR targets.
Collapse
|
63
|
Szlenk CT, Gc JB, Natesan S. Does the Lipid Bilayer Orchestrate Access and Binding of Ligands to Transmembrane Orthosteric/Allosteric Sites of G Protein-Coupled Receptors? Mol Pharmacol 2019; 96:527-541. [PMID: 30967440 DOI: 10.1124/mol.118.115113] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/03/2019] [Indexed: 01/08/2023] Open
Abstract
The ligand-binding sites of many G protein-coupled receptors (GPCRs) are situated around and deeply embedded within the central pocket formed by their seven transmembrane-spanning α-helical domains. Generally, these binding sites are assumed accessible to endogenous ligands from the aqueous phase. Recent advances in the structural biology of GPCRs, along with biophysical and computational studies, suggest that amphiphilic and lipophilic molecules may gain access to these receptors by first partitioning into the membrane and then reaching the binding site via lateral diffusion through the lipid bilayer. In addition, several crystal structures of class A and class B GPCRs bound to their ligands offer unprecedented details on the existence of lipid-facing allosteric binding sites outside the transmembrane helices that can only be reached via lipid pathways. The highly organized structure of the lipid bilayer may direct lipophilic or amphiphilic drugs to a specific depth within the bilayer, changing local concentration of the drug near the binding site and affecting its binding kinetics. Additionally, the constraints of the lipid bilayer, including its composition and biophysical properties, may play a critical role in "pre-organizing" ligand molecules in an optimal orientation and conformation to facilitate receptor binding. Despite its clear involvement in molecular recognition processes, the critical role of the membrane in binding ligands to lipid-exposed transmembrane binding sites remains poorly understood and warrants comprehensive investigation. Understanding the mechanistic basis of the structure-membrane interaction relationship of drugs will not only provide useful insights about receptor binding kinetics but will also enhance our ability to take advantage of the apparent membrane contributions when designing drugs that target transmembrane proteins with improved efficacy and safety. In this minireview, we summarize recent structural and computational studies on membrane contributions to binding processes, elucidating both lipid pathways of ligand access and binding mechanisms for several orthosteric and allosteric ligands of class A and class B GPCRs.
Collapse
Affiliation(s)
- Christopher T Szlenk
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Jeevan B Gc
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Senthil Natesan
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
64
|
Laprairie RB, Bagher AM, Rourke JL, Zrein A, Cairns EA, Kelly MEM, Sinal CJ, Kulkarni PM, Thakur GA, Denovan-Wright EM. Positive allosteric modulation of the type 1 cannabinoid receptor reduces the signs and symptoms of Huntington's disease in the R6/2 mouse model. Neuropharmacology 2019; 151:1-12. [PMID: 30940536 DOI: 10.1016/j.neuropharm.2019.03.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/18/2022]
Abstract
Huntington's disease (HD) is an inherited progressive neurodegenerative disease characterized by motor, cognitive, and behavioural changes. One of the earliest changes to occur in HD is a reduction in cannabinoid 1 receptor (CB1) levels in the striatum, which is strongly correlated with HD pathogenesis. CB1 positive allosteric modulators (PAM) enhance receptor affinity for, and efficacy of activation by, orthosteric ligands, including the endocannabinoids anandamide and 2-arachidonoylglycerol. The goal of this study was to determine whether the recently characterized CB1 allosteric modulators GAT211 (racemic), GAT228 (R-enantiomer), and GAT229 (S-enantiomer), affected the signs and symptoms of HD. GAT211, GAT228, and GAT229 were evaluated in normal and HD cell models, and in a transgenic mouse model of HD (7-week-old male R6/2 mice, 10 mg/kg/d, 21 d, i.p.). GAT229 was a CB1 PAM that improved cell viability in HD cells and improved motor coordination, delayed symptom onset, and normalized gene expression in R6/2 HD mice. GAT228 was an allosteric agonist that did not enhance endocannabinoid signaling or change symptom progression in R6/2 mice. GAT211 displayed intermediate effects between its enantiomers. The compounds used here are not drugs, but probe compounds used to determine the potential utility of CB1 PAMs in HD. Changes in gene expression, and not protein, were quantified in R6/2 HD mice because HD pathogenesis is associated with dysregulation of mRNA levels. The data presented here provide the first proof of principle for the use of CB1 PAMs to treat the signs and symptoms of HD.
Collapse
Affiliation(s)
- Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Canada; Department of Pharmacology, Dalhousie University, Canada
| | - Amina M Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King AbdulAziz University,Saudi Arabia; Department of Pharmacology, Dalhousie University, Canada
| | - Jillian L Rourke
- Department of Pharmacology, Dalhousie University, Canada; Department of Chemistry & Biochemistry, Mount Allison University, Canada
| | - Adel Zrein
- Department of Pharmacology, Dalhousie University, Canada
| | | | - Melanie E M Kelly
- Department of Pharmacology, Dalhousie University, Canada; Department of Ophthalmology and Visual Sciences, Dalhousie University, Canada
| | | | - Pushkar M Kulkarni
- Center for Drug Discovery, Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, USA
| | - Ganesh A Thakur
- Center for Drug Discovery, Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, USA
| | | |
Collapse
|
65
|
Llinas Del Torrent C, Pérez-Benito L, Tresadern G. Computational Drug Design Applied to the Study of Metabotropic Glutamate Receptors. Molecules 2019; 24:molecules24061098. [PMID: 30897742 PMCID: PMC6470756 DOI: 10.3390/molecules24061098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 11/16/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors are a family of eight GPCRs that are attractive drug discovery targets to modulate glutamate action and response. Here we review the application of computational methods to the study of this family of receptors. X-ray structures of the extracellular and 7-transmembrane domains have played an important role to enable structure-based modeling approaches, whilst we also discuss the successful application of ligand-based methods. We summarize the literature and highlight the areas where modeling and experiment have delivered important understanding for mGlu receptor drug discovery. Finally, we offer suggestions of future areas of opportunity for computational work.
Collapse
Affiliation(s)
- Claudia Llinas Del Torrent
- Laboratori de Medicina Computacional Unitat de Bioestadistica, Facultat de Medicina, Universitat Autónoma de Barcelona, 08193 Bellaterra, Spain.
| | - Laura Pérez-Benito
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - Gary Tresadern
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium.
| |
Collapse
|
66
|
Coughlin Q, Hopper AT, Blanco MJ, Tirunagaru V, Robichaud AJ, Doller D. Allosteric Modalities for Membrane-Bound Receptors: Insights from Drug Hunting for Brain Diseases. J Med Chem 2019; 62:5979-6002. [PMID: 30721063 DOI: 10.1021/acs.jmedchem.8b01651] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Medicinal chemists are accountable for embedding the appropriate drug target profile into the molecular architecture of a clinical candidate. An accurate characterization of the functional effects following binding of a drug to its biological target is a fundamental step in the discovery of new medicines, informing the translation of preclinical efficacy and safety observations into human trials. Membrane-bound proteins, particularly ion channels and G protein-coupled receptors (GPCRs), are biological targets prone to allosteric modulation. Investigations using allosteric drug candidates and chemical tools suggest that their functional effects may be tailored with a high degree of translational alignment, making them molecular tools to correct pathophysiological functional tone and enable personalized medicine when a causative target-to-disease link is known. We present select examples of functional molecular fine-tuning of allosterism and discuss consequences relevant to drug design.
Collapse
|
67
|
Smelcerovic A, Lazarevic J, Tomovic K, Anastasijevic M, Jukic M, Kocic G, Anderluh M. An Overview, Advantages and Therapeutic Potential of Nonpeptide Positive Allosteric Modulators of Glucagon-Like Peptide-1 Receptor. ChemMedChem 2019; 14:514-521. [PMID: 30609277 DOI: 10.1002/cmdc.201800699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/21/2018] [Indexed: 11/12/2022]
Abstract
Due to uncomfortable injection regimens of peptidic agonists of glucagon-like peptide-1 receptor (GLP-1R), orally available nonpeptide positive allosteric modulators (PAMs) of GLP-1Rs are foreseen as the possible future mainstream therapy for type 2 diabetes. Herein, current GLP-1R PAMs are reviewed. Based on the effectiveness and in silico predicted physicochemical properties, pharmacokinetics, and toxicity, possible candidates for further development as oral drugs were selected. The suggestion is that GLP-1R PAMs might be used orally alone or in combination with dipeptidyl peptidase-4 (DPP-4) inhibitors, which could offer an optimal treatment option next to metformin monotherapy in type 2 diabetes mellitus, or in a wider spectrum of indications. Quercetin acts as a GLP-1R PAM and DPP-4 inhibitor, and therefore, might be considered as a pioneering agent with a dual mechanism of action, in terms of GLP-1R positive allosteric modulation and DPP-4 inhibition for potentiating GLP-1 dependent effects.
Collapse
Affiliation(s)
- Andrija Smelcerovic
- Department of Chemistry, Faculty of Medicine, University of Niš, Bulevar Dr Zorana Djindjica 81, 18000, Niš, Serbia
| | - Jelena Lazarevic
- Department of Chemistry, Faculty of Medicine, University of Niš, Bulevar Dr Zorana Djindjica 81, 18000, Niš, Serbia
| | - Katarina Tomovic
- Department of Pharmacy, Faculty of Medicine, University of Niš, Bulevar Dr Zorana Djindjica 81, 18000, Niš, Serbia
| | - Marija Anastasijevic
- Department of Pharmacy, Faculty of Medicine, University of Niš, Bulevar Dr Zorana Djindjica 81, 18000, Niš, Serbia
| | - Marko Jukic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Askerceva 7, 1000, Slovenia
| | - Gordana Kocic
- Institute of Biochemistry, Faculty of Medicine, University of Niš, Bulevar Dr Zorana Djindjica 81, 18000, Niš, Serbia
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Askerceva 7, 1000, Slovenia
| |
Collapse
|
68
|
Munk C, Mutt E, Isberg V, Nikolajsen LF, Bibbe JM, Flock T, Hanson MA, Stevens RC, Deupi X, Gloriam DE. An online resource for GPCR structure determination and analysis. Nat Methods 2019; 16:151-162. [PMID: 30664776 DOI: 10.1038/s41592-018-0302-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 12/14/2018] [Indexed: 01/08/2023]
Abstract
G-protein-coupled receptors (GPCRs) transduce physiological and sensory stimuli into appropriate cellular responses and mediate the actions of one-third of drugs. GPCR structural studies have revealed the general bases of receptor activation, signaling, drug action and allosteric modulation, but so far cover only 13% of nonolfactory receptors. We broadly surveyed the receptor modifications/engineering and methods used to produce all available GPCR crystal and cryo-electron microscopy (cryo-EM) structures, and present an interactive resource integrated in GPCRdb ( http://www.gpcrdb.org ) to assist users in designing constructs and browsing appropriate experimental conditions for structure studies.
Collapse
Affiliation(s)
- Christian Munk
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Eshita Mutt
- Paul Scherrer Institute, Villigen, Switzerland
| | - Vignir Isberg
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Novozymes A/S, Copenhagen, Denmark
| | - Louise F Nikolajsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Janne M Bibbe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Raymond C Stevens
- Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA.,iHuman Institute, ShanghaiTech University, Shanghai, China
| | | | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
69
|
Wold EA, Chen J, Cunningham KA, Zhou J. Allosteric Modulation of Class A GPCRs: Targets, Agents, and Emerging Concepts. J Med Chem 2019; 62:88-127. [PMID: 30106578 PMCID: PMC6556150 DOI: 10.1021/acs.jmedchem.8b00875] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptors (GPCRs) have been tractable drug targets for decades with over one-third of currently marketed drugs targeting GPCRs. Of these, the class A GPCR superfamily is highly represented, and continued drug discovery for this family of receptors may provide novel therapeutics for a vast range of diseases. GPCR allosteric modulation is an innovative targeting approach that broadens the available small molecule toolbox and is proving to be a viable drug discovery strategy, as evidenced by recent FDA approvals and clinical trials. Numerous class A GPCR allosteric modulators have been discovered recently, and emerging trends such as the availability of GPCR crystal structures, diverse functional assays, and structure-based computational approaches are improving optimization and development. This Perspective provides an update on allosterically targeted class A GPCRs and their disease indications and the medicinal chemistry approaches toward novel allosteric modulators and highlights emerging trends and opportunities in the field.
Collapse
Affiliation(s)
- Eric A. Wold
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Pharmacology and Toxicology, Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jianping Chen
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Pharmacology and Toxicology, Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Kathryn A. Cunningham
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Pharmacology and Toxicology, Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Pharmacology and Toxicology, Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
70
|
New Binding Sites, New Opportunities for GPCR Drug Discovery. Trends Biochem Sci 2019; 44:312-330. [PMID: 30612897 DOI: 10.1016/j.tibs.2018.11.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/11/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022]
Abstract
Many central biological events rely on protein-ligand interactions. The identification and characterization of protein-binding sites for ligands are crucial for the understanding of functions of both endogenous ligands and synthetic drug molecules. G protein-coupled receptors (GPCRs) typically detect extracellular signal molecules on the cell surface and transfer these chemical signals across the membrane, inducing downstream cellular responses via G proteins or β-arrestin. GPCRs mediate many central physiological processes, making them important targets for modern drug discovery. Here, we focus on the most recent breakthroughs in finding new binding sites and binding modes of GPCRs and their potentials for the development of new medicines.
Collapse
|
71
|
Song K, Zhang J, Lu S. Progress in Allosteric Database. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:65-87. [PMID: 31707700 DOI: 10.1007/978-981-13-8719-7_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An allosteric mechanism refers to the biological regulation process wherein macromolecules propagate the effect of ligand binding at one site to a spatially distant orthosteric locus, thus affecting activity. The theory has remained a trending topic in biology research for over 50 years, since the understanding of allostery is fundamental for gleaning numerous biological processes and developing new drug therapies. In the past two decades, the allosteric paradigm has evolved into more descriptive models, with ever-expanding amounts of experimental data pertaining to newly identified allosteric molecules. The AlloSteric Database (ASD, accessible at http://mdl.shsmu.edu.cn/ASD ), which is a comprehensive knowledge repository, has provided the public with integrated information encompassing allosteric proteins, modulators, sites, pathways, and networks to investigate allostery since 2009. In this chapter, we introduce the history and usage of the ASD and give attention to specific applications that have benefited from the ASD.
Collapse
Affiliation(s)
- Kun Song
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
72
|
He X, Ni D, Lu S, Zhang J. Characteristics of Allosteric Proteins, Sites, and Modulators. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:107-139. [DOI: 10.1007/978-981-13-8719-7_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
73
|
Lafreniere J, Kelly M. Potential for endocannabinoid system modulation in ocular pain and inflammation: filling the gaps in current pharmacological options. Neuronal Signal 2018; 2:NS20170144. [PMID: 32714590 PMCID: PMC7373237 DOI: 10.1042/ns20170144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 02/06/2023] Open
Abstract
Challenges in the management of ocular pain are an underappreciated topic. Currently available therapeutics lack both efficacy and clear guidelines for their use, with many also possessing unacceptable side effects. Promising novel agents would offer analgesic, anti-inflammatory, and possibly neuroprotective actions; have favorable ocular safety profiles; and show potential in managing neuropathic pain. Growing evidence supports a link between the endocannabinoid system (ECS) and a range of physiological and disease processes, notably those involving inflammation and pain. Both preclinical and clinical data suggest analgesic and anti-inflammatory actions of cannabinoids and ECS-modifying drugs in chronic pain conditions, including those of neuropathic origin. This review will examine existing evidence for the anatomical and physiological basis of ocular pain, specifically, ocular surface disease and the development of chronic ocular pain. The mechanism of action, efficacy, and limitations of currently available treatments will be discussed, and current knowledge related to ECS-modulation of ocular pain and inflammatory disease will be summarized. A perspective will be provided on the future directions of ECS research in terms of developing cannabinoid therapeutics for ocular pain.
Collapse
Affiliation(s)
| | - Melanie E.M. Kelly
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
74
|
GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures. Nat Rev Drug Discov 2018; 18:59-82. [PMID: 30410121 DOI: 10.1038/nrd.2018.180] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The 826 G protein-coupled receptors (GPCRs) in the human proteome regulate key physiological processes and thus have long been attractive drug targets. With the crystal structures of more than 50 different human GPCRs determined over the past decade, an initial platform for structure-based rational design has been established for drugs that target GPCRs, which is currently being augmented with cryo-electron microscopy (cryo-EM) structures of higher-order GPCR complexes. Nuclear magnetic resonance (NMR) spectroscopy in solution is one of the key approaches for expanding this platform with dynamic features, which can be accessed at physiological temperature and with minimal modification of the wild-type GPCR covalent structures. Here, we review strategies for the use of advanced biochemistry and NMR techniques with GPCRs, survey projects in which crystal or cryo-EM structures have been complemented with NMR investigations and discuss the impact of this integrative approach on GPCR biology and drug discovery.
Collapse
|
75
|
Adlere I, Sun S, Zarca A, Roumen L, Gozelle M, Viciano CP, Caspar B, Arimont M, Bebelman JP, Briddon SJ, Hoffmann C, Hill SJ, Smit MJ, Vischer HF, Wijtmans M, de Graaf C, de Esch IJP, Leurs R. Structure-based exploration and pharmacological evaluation of N-substituted piperidin-4-yl-methanamine CXCR4 chemokine receptor antagonists. Eur J Med Chem 2018; 162:631-649. [PMID: 30476826 DOI: 10.1016/j.ejmech.2018.10.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/23/2018] [Accepted: 10/27/2018] [Indexed: 01/20/2023]
Abstract
Using the available structural information of the chemokine receptor CXCR4, we present hit finding and hit exploration studies that make use of virtual fragment screening, design, synthesis and structure-activity relationship (SAR) studies. Fragment 2 was identified as virtual screening hit and used as a starting point for the exploration of 31 N-substituted piperidin-4-yl-methanamine derivatives to investigate and improve the interactions with the CXCR4 binding site. Additionally, subtle structural ligand changes lead to distinct interactions with CXCR4 resulting in a full to partial displacement of CXCL12 binding and competitive and/or non-competitive antagonism. Three-dimensional quantitative structure-activity relationship (3D-QSAR) and binding model studies were used to identify important hydrophobic interactions that determine binding affinity and indicate key ligand-receptor interactions.
Collapse
Affiliation(s)
- I Adlere
- Griffin Discoveries BV, Amsterdam, the Netherlands
| | - S Sun
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - A Zarca
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - L Roumen
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - M Gozelle
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06560, Ankara, Turkey
| | - C Perpiñá Viciano
- Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital Jena, Friedrich-Schiller University Jena, Hans-Knöll-Strasse 2, 07745, Jena, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| | - B Caspar
- Division of Pharmacology, Physiology and Neuroscience and Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - M Arimont
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - J P Bebelman
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - S J Briddon
- Division of Pharmacology, Physiology and Neuroscience and Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - C Hoffmann
- Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital Jena, Friedrich-Schiller University Jena, Hans-Knöll-Strasse 2, 07745, Jena, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| | - S J Hill
- Division of Pharmacology, Physiology and Neuroscience and Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - M J Smit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - H F Vischer
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - M Wijtmans
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - C de Graaf
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - I J P de Esch
- Griffin Discoveries BV, Amsterdam, the Netherlands; Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - R Leurs
- Griffin Discoveries BV, Amsterdam, the Netherlands; Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.
| |
Collapse
|
76
|
Burger WAC, Sexton PM, Christopoulos A, Thal DM. Toward an understanding of the structural basis of allostery in muscarinic acetylcholine receptors. J Gen Physiol 2018; 150:1360-1372. [PMID: 30190312 PMCID: PMC6168235 DOI: 10.1085/jgp.201711979] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/14/2018] [Indexed: 01/16/2023] Open
Abstract
Burger et al. summarize our mechanistic understanding of allostery in the prototypical GPCR, the muscarinic acetylcholine receptor. Recent breakthroughs and developments in structural biology have led to a spate of crystal structures for G protein–coupled receptors (GPCRs). This is the case for the muscarinic acetylcholine receptors (mAChRs) where inactive-state structures for four of the five subtypes and two active-state structures for one subtype are available. These mAChR crystal structures have provided new insights into receptor mechanisms, dynamics, and allosteric modulation. This is highly relevant to the mAChRs given that these receptors are an exemplar model system for the study of GPCR allostery. Allosteric mechanisms of the mAChRs are predominantly consistent with a two-state model, albeit with some notable recent exceptions. Herein, we discuss the mechanisms for positive and negative allosteric modulation at the mAChRs and compare and contrast these to evidence offered by pharmacological, biochemical, and computational approaches. This analysis provides insight into the fundamental pharmacological properties exhibited by GPCR allosteric modulators, such as enhanced subtype selectivity, probe dependence, and biased modulation while highlighting the current challenges that remain. Though complex, enhanced molecular understanding of allosteric mechanisms will have considerable influence on our understanding of GPCR activation and signaling and development of therapeutic interventions.
Collapse
Affiliation(s)
- Wessel A C Burger
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - David M Thal
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
77
|
Wang X, Heinz BA, Qian YW, Carter JH, Gadski RA, Beavers LS, Little SP, Yang CR, Beck JP, Hao J, Schaus JM, Svensson KA, Bruns RF. Intracellular Binding Site for a Positive Allosteric Modulator of the Dopamine D1 Receptor. Mol Pharmacol 2018; 94:1232-1245. [DOI: 10.1124/mol.118.112649] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/10/2018] [Indexed: 01/08/2023] Open
|
78
|
Tham M, Yilmaz O, Alaverdashvili M, Kelly MEM, Denovan-Wright EM, Laprairie RB. Allosteric and orthosteric pharmacology of cannabidiol and cannabidiol-dimethylheptyl at the type 1 and type 2 cannabinoid receptors. Br J Pharmacol 2018; 176:1455-1469. [PMID: 29981240 DOI: 10.1111/bph.14440] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE We sought to understand why (-)-cannabidiol (CBD) and (-)-cannabidiol-dimethylheptyl (CBD-DMH) exhibit distinct pharmacology, despite near identical structures. EXPERIMENTAL APPROACH HEK293A cells expressing either human type 1 cannabinoid (CB1 ) receptors or CB2 receptors were treated with CBD or CBD-DMH with or without the CB1 and CB2 receptor agonist CP55,940, CB1 receptor allosteric modulator Org27569 or CB2 receptor inverse agonist SR144528. Ligand binding, cAMP levels and βarrestin1 recruitment were measured. CBD and CBD-DMH binding was simulated with models of human CB1 or CB2 receptors, based on the recently published crystal structures of agonist-bound (5XRA) or antagonist-bound (5TGZ) human CB1 receptors. KEY RESULTS At CB1 receptors, CBD was a negative allosteric modulator (NAM), and CBD-DMH was a mixed agonist/positive allosteric modulator. CBD and Org27569 shared multiple interacting residues in the antagonist-bound model of CB1 receptors (5TGZ) but shared a binding site with CP55,940 in the agonist-bound model of CB1 receptors (5XRA). The binding site for CBD-DMH in the CB1 receptor models overlapped with CP55,940 and Org27569. At CB2 receptors, CBD was a partial agonist, and CBD-DMH was a positive allosteric modulator of cAMP modulation but a NAM of βarrestin1 recruitment. CBD, CP55,940 and SR144528 shared a binding site in the CB2 receptor models that was separate from CBD-DMH. CONCLUSION AND IMPLICATIONS The pharmacological activity of CBD and CBD-DMH in HEK293A cells and their modelled binding sites at CB1 and CB2 receptors may explain their in vivo effects and illuminates the difficulties associated with the development of allosteric modulators for CB1 and CB2 receptors. LINKED ARTICLES This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Mylyne Tham
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Orhan Yilmaz
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mariam Alaverdashvili
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Melanie E M Kelly
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.,Department of Opthamology and Visual Sciences, Dalhousie University, Halifax, NS, Canada
| | | | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
79
|
Weiss D, Karpiak J, Huang XP, Sassano MF, Lyu J, Roth BL, Shoichet BK. Selectivity Challenges in Docking Screens for GPCR Targets and Antitargets. J Med Chem 2018; 61:6830-6845. [PMID: 29990431 PMCID: PMC6105036 DOI: 10.1021/acs.jmedchem.8b00718] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Indexed: 12/14/2022]
Abstract
To investigate large library docking's ability to find molecules with joint activity against on-targets and selectivity versus antitargets, the dopamine D2 and serotonin 5-HT2A receptors were targeted, seeking selectivity against the histamine H1 receptor. In a second campaign, κ-opioid receptor ligands were sought with selectivity versus the μ-opioid receptor. While hit rates ranged from 40% to 63% against the on-targets, they were just as good against the antitargets, even though the molecules were selected for their putative lack of binding to the off-targets. Affinities, too, were often as good or better for the off-targets. Even though it was occasionally possible to find selective molecules, such as a mid-nanomolar D2/5-HT2A ligand with 21-fold selectivity versus the H1 receptor, this was the exception. Whereas false-negatives are tolerable in docking screens against on-targets, they are intolerable against antitargets; addressing this problem may demand new strategies in the field.
Collapse
Affiliation(s)
- Dahlia
R. Weiss
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California 94158-2550, United States
| | - Joel Karpiak
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California 94158-2550, United States
| | - Xi-Ping Huang
- Department
of Pharmacology and National Institute of Mental Health Psychoactive
Drug Screening Program, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Maria F. Sassano
- Department
of Pharmacology and National Institute of Mental Health Psychoactive
Drug Screening Program, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jiankun Lyu
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California 94158-2550, United States
| | - Bryan L. Roth
- Department
of Pharmacology and National Institute of Mental Health Psychoactive
Drug Screening Program, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Brian K. Shoichet
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California 94158-2550, United States
| |
Collapse
|
80
|
Morales P, Goya P, Jagerovic N. Emerging strategies targeting CB 2 cannabinoid receptor: Biased agonism and allosterism. Biochem Pharmacol 2018; 157:8-17. [PMID: 30055149 DOI: 10.1016/j.bcp.2018.07.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/23/2018] [Indexed: 01/24/2023]
Abstract
During these last years, the CB2 cannabinoid receptor has emerged as a potential anti-inflammatory target in diseases such as multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease, ischemic stroke, autoimmune diseases, osteoporosis, and cancer. However, the development of clinically useful CB2 agonists reveals to be very challenging. Allosterism and biased-signaling mechanisms at CB2 receptor may offer new avenues for the development of improved CB2 receptor-targeted therapies. Although there has been some exploration of CB1 receptor activation by new CB1 allosteric or biased-signaling ligands, the CB2 receptor is still at initial stages in this domain. In an effort to understand the molecular basis behind these pharmacological approaches, we have analyzed and summarized the structural data reported so far at CB2 receptor.
Collapse
Affiliation(s)
- Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Unidad Asociada I+D+i IQM/Universidad Rey Juan Carlos (URJC), Calle Juan de la Cierva, 3, E-28006 Madrid, Spain
| | - Pilar Goya
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Unidad Asociada I+D+i IQM/Universidad Rey Juan Carlos (URJC), Calle Juan de la Cierva, 3, E-28006 Madrid, Spain
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Unidad Asociada I+D+i IQM/Universidad Rey Juan Carlos (URJC), Calle Juan de la Cierva, 3, E-28006 Madrid, Spain.
| |
Collapse
|
81
|
Structural insights into G-protein-coupled receptor allostery. Nature 2018; 559:45-53. [DOI: 10.1038/s41586-018-0259-z] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/17/2018] [Indexed: 01/14/2023]
|
82
|
Crystal structure of the human angiotensin II type 2 receptor bound to an angiotensin II analog. Nat Struct Mol Biol 2018; 25:570-576. [PMID: 29967536 DOI: 10.1038/s41594-018-0079-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/26/2018] [Indexed: 12/12/2022]
Abstract
Angiotensin II (AngII) plays a central role in regulating human blood pressure, which is mainly mediated by interactions between AngII and the G-protein-coupled receptors (GPCRs) AngII type 1 receptor (AT1R) and AngII type 2 receptor (AT2R). We have solved the crystal structure of human AT2R binding the peptide ligand [Sar1, Ile8]AngII and its specific antibody at 3.2-Å resolution. [Sar1, Ile8]AngII interacts with both the 'core' binding domain, where the small-molecule ligands of AT1R and AT2R bind, and the 'extended' binding domain, which is equivalent to the allosteric modulator binding site of muscarinic acetylcholine receptor. We generated an antibody fragment to stabilize the extended binding domain that functions as a positive allosteric modulator. We also identified a signature positively charged cluster, which is conserved among peptide-binding receptors, to locate C termini at the bottom of the binding pocket. The reported results should help with designing ligands for angiotensin receptors and possibly to other peptide GPCRs.
Collapse
|
83
|
Igonet S, Raingeval C, Cecon E, Pučić-Baković M, Lauc G, Cala O, Baranowski M, Perez J, Jockers R, Krimm I, Jawhari A. Enabling STD-NMR fragment screening using stabilized native GPCR: A case study of adenosine receptor. Sci Rep 2018; 8:8142. [PMID: 29802269 PMCID: PMC5970182 DOI: 10.1038/s41598-018-26113-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/23/2018] [Indexed: 12/27/2022] Open
Abstract
Structural studies of integral membrane proteins have been limited by the intrinsic conformational flexibility and the need to stabilize the proteins in solution. Stabilization by mutagenesis was very successful for structural biology of G protein-coupled receptors (GPCRs). However, it requires heavy protein engineering and may introduce structural deviations. Here we describe the use of specific calixarenes-based detergents for native GPCR stabilization. Wild type, full length human adenosine A2A receptor was used to exemplify the approach. We could stabilize native, glycosylated, non-aggregated and homogenous A2AR that maintained its ligand binding capacity. The benefit of the preparation for fragment screening, using the Saturation-Transfer Difference nuclear magnetic resonance (STD-NMR) experiment is reported. The binding of the agonist adenosine and the antagonist caffeine were observed and competition experiments with CGS-21680 and ZM241385 were performed, demonstrating the feasibility of the STD-based fragment screening on the native A2A receptor. Interestingly, adenosine was shown to bind a second binding site in the presence of the agonist CGS-21680 which corroborates published results obtained with molecular dynamics simulation. Fragment-like compounds identified using STD-NMR showed antagonistic effects on A2AR in the cAMP cellular assay. Taken together, our study shows that stabilization of native GPCRs represents an attractive approach for STD-based fragment screening and drug design.
Collapse
Affiliation(s)
| | - Claire Raingeval
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon - 5, rue de la Doua, F-69100, Villeurbanne, France
| | - Erika Cecon
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Gordan Lauc
- GENOS, Borongajska cesta 83h, 10000, Zagreb, Croatia
| | - Olivier Cala
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon - 5, rue de la Doua, F-69100, Villeurbanne, France
| | - Maciej Baranowski
- SWING Beamline, Synchrotron SOLEIL, L'Orme des Merisiers, BP48, Saint-Aubin, Gif-sur-Yvette, F-91192, France
| | - Javier Perez
- SWING Beamline, Synchrotron SOLEIL, L'Orme des Merisiers, BP48, Saint-Aubin, Gif-sur-Yvette, F-91192, France
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Isabelle Krimm
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon - 5, rue de la Doua, F-69100, Villeurbanne, France
| | - Anass Jawhari
- CALIXAR, 60 avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
84
|
Ortiz Zacarías NV, Lenselink EB, IJzerman AP, Handel TM, Heitman LH. Intracellular Receptor Modulation: Novel Approach to Target GPCRs. Trends Pharmacol Sci 2018; 39:547-559. [PMID: 29653834 DOI: 10.1016/j.tips.2018.03.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 12/23/2022]
Abstract
Recent crystal structures of multiple G protein-coupled receptors (GPCRs) have revealed a highly conserved intracellular pocket that can be used to modulate these receptors from the inside. This novel intracellular site partially overlaps with the G protein and β-arrestin binding site, providing a new manner of pharmacological intervention. Here we provide an update of the architecture and function of the intracellular region of GPCRs, until now portrayed as the signaling domain. We review the available evidence on the presence of intracellular binding sites among chemokine receptors and other class A GPCRs, as well as different strategies to target it, including small molecules, pepducins, and nanobodies. Finally, the potential advantages of intracellular (allosteric) ligands over orthosteric ligands are also discussed.
Collapse
Affiliation(s)
- Natalia V Ortiz Zacarías
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Eelke B Lenselink
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Tracy M Handel
- University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA 92093, USA
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
85
|
Chemical Diversity in the G Protein-Coupled Receptor Superfamily. Trends Pharmacol Sci 2018; 39:494-512. [PMID: 29576399 DOI: 10.1016/j.tips.2018.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/20/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell signaling transmembrane proteins that can be modulated by a plethora of chemical compounds. Systematic cheminformatics analysis of structurally and pharmacologically characterized GPCR ligands shows that cocrystallized GPCR ligands cover a significant part of chemical ligand space, despite their limited number. Many GPCR ligands and substructures interact with multiple receptors, providing a basis for polypharmacological ligand design. Experimentally determined GPCR structures represent a variety of binding sites and receptor-ligand interactions that can be translated to chemically similar ligands for which structural data are lacking. This integration of structural, pharmacological, and chemical information on GPCR-ligand interactions enables the extension of the structural GPCR-ligand interactome and the structure-based design of novel modulators of GPCR function.
Collapse
|
86
|
Doornbos MLJ, Wang X, Vermond SC, Peeters L, Pérez-Benito L, Trabanco AA, Lavreysen H, Cid JM, Heitman LH, Tresadern G, IJzerman AP. Covalent Allosteric Probe for the Metabotropic Glutamate Receptor 2: Design, Synthesis, and Pharmacological Characterization. J Med Chem 2018; 62:223-233. [PMID: 29494768 PMCID: PMC6331142 DOI: 10.1021/acs.jmedchem.8b00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Covalent labeling
of G protein-coupled receptors (GPCRs) by small
molecules is a powerful approach to understand binding modes, mechanism
of action, pharmacology, and even facilitate structure elucidation.
We report the first covalent positive allosteric modulator (PAM) for
a class C GPCR, the mGlu2 receptor. Three putatively covalent
mGlu2 PAMs were designed and synthesized. Pharmacological
characterization identified 2 to bind the receptor covalently.
Computational modeling combined with receptor mutagenesis revealed
T7917.29×30 as the likely position of covalent interaction.
We show how this covalent ligand can be used to characterize the PAM
binding mode and that it is a valuable tool compound in studying receptor
function and binding kinetics. Our findings advance the understanding
of the mGlu2 PAM interaction and suggest that 2 is a valuable probe for further structural and chemical biology
approaches.
Collapse
Affiliation(s)
- Maarten L J Doornbos
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR) , Leiden University , P.O. Box 9502, 2300RA Leiden , The Netherlands
| | - Xuesong Wang
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR) , Leiden University , P.O. Box 9502, 2300RA Leiden , The Netherlands
| | - Sophie C Vermond
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR) , Leiden University , P.O. Box 9502, 2300RA Leiden , The Netherlands
| | - Luc Peeters
- Janssen Research and Development , Turnhoutseweg 30 , 2340 Beerse , Belgium
| | - Laura Pérez-Benito
- Janssen Research and Development , Calle Jarama 75A , 45007 Toledo , Spain.,Laboratori de Medicina Computacional Unitat de Bioestadistica, Facultat de Medicina , Universitat Autonoma de Barcelona , 08193 Bellaterra , Spain
| | - Andrés A Trabanco
- Janssen Research and Development , Calle Jarama 75A , 45007 Toledo , Spain
| | - Hilde Lavreysen
- Janssen Research and Development , Turnhoutseweg 30 , 2340 Beerse , Belgium
| | - José María Cid
- Janssen Research and Development , Calle Jarama 75A , 45007 Toledo , Spain
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR) , Leiden University , P.O. Box 9502, 2300RA Leiden , The Netherlands
| | - Gary Tresadern
- Janssen Research and Development , Calle Jarama 75A , 45007 Toledo , Spain
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR) , Leiden University , P.O. Box 9502, 2300RA Leiden , The Netherlands
| |
Collapse
|
87
|
Lu S, Zhang J. Small Molecule Allosteric Modulators of G-Protein-Coupled Receptors: Drug–Target Interactions. J Med Chem 2018; 62:24-45. [DOI: 10.1021/acs.jmedchem.7b01844] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
88
|
Christopher JA, Orgován Z, Congreve M, Doré AS, Errey JC, Marshall FH, Mason JS, Okrasa K, Rucktooa P, Serrano-Vega MJ, Ferenczy GG, Keserű GM. Structure-Based Optimization Strategies for G Protein-Coupled Receptor (GPCR) Allosteric Modulators: A Case Study from Analyses of New Metabotropic Glutamate Receptor 5 (mGlu5) X-ray Structures. J Med Chem 2018; 62:207-222. [DOI: 10.1021/acs.jmedchem.7b01722] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- John A. Christopher
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Zoltán Orgován
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest H-1117, Hungary
| | - Miles Congreve
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Andrew S. Doré
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - James C. Errey
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Fiona H. Marshall
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Jonathan S. Mason
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Krzysztof Okrasa
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | - Prakash Rucktooa
- Heptares Therapeutics Ltd., BioPark, Welwyn Garden City, Hertfordshire AL7 3AX, U.K
| | | | - György G. Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest H-1117, Hungary
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest H-1117, Hungary
| |
Collapse
|
89
|
Abstract
Allosteric modulation of the type 1 cannabinoid receptor (CB1R) holds great therapeutic potential. This is because allosteric modulators do not possess intrinsic efficacy, but instead augment (positive allosteric modulation) or diminish (negative allosteric modulation) the receptor's response to endogenous ligand. Consequently, CB1R allosteric modulators have an effect ceiling which allows for the tempering of CB1R signaling without the desensitization, tolerance, dependence, and psychoactivity associated with orthosteric compounds. Pain, movement disorders, epilepsy, obesity are all potential therapeutic targets for CB1R allosteric modulation. Several challenges exist for the development of CB1R allosteric modulators, such as receptor subtype specificity, translation to in vivo systems, and mixed allosteric/agonist/inverse agonist activity. Despite these challenges, elucidation of crystal structures of CB1R and compound design based on structure-activity relationships will advance the field. In this review, we will cover recent progress for CB1R allosteric modulators and discuss the future promise of this research.
Collapse
Affiliation(s)
- Mariam Alaverdashvili
- a College of Pharmacy and Nutrition , University of Saskatchewan , Saskatoon , Canada
| | - Robert B Laprairie
- a College of Pharmacy and Nutrition , University of Saskatchewan , Saskatoon , Canada
| |
Collapse
|
90
|
Hauser AS, Chavali S, Masuho I, Jahn LJ, Martemyanov KA, Gloriam DE, Babu MM. Pharmacogenomics of GPCR Drug Targets. Cell 2017; 172:41-54.e19. [PMID: 29249361 PMCID: PMC5766829 DOI: 10.1016/j.cell.2017.11.033] [Citation(s) in RCA: 392] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/11/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022]
Abstract
Natural genetic variation in the human genome is a cause of individual differences in responses to medications and is an underappreciated burden on public health. Although 108 G-protein-coupled receptors (GPCRs) are the targets of 475 (∼34%) Food and Drug Administration (FDA)-approved drugs and account for a global sales volume of over 180 billion US dollars annually, the prevalence of genetic variation among GPCRs targeted by drugs is unknown. By analyzing data from 68,496 individuals, we find that GPCRs targeted by drugs show genetic variation within functional regions such as drug- and effector-binding sites in the human population. We experimentally show that certain variants of μ-opioid and Cholecystokinin-A receptors could lead to altered or adverse drug response. By analyzing UK National Health Service drug prescription and sales data, we suggest that characterizing GPCR variants could increase prescription precision, improving patients’ quality of life, and relieve the economic and societal burden due to variable drug responsiveness. Video Abstract
GPCRs targeted by FDA-approved drugs show genetic variation in the human population Genetic variation occurs in functional sites and may result in altered drug response We present an online resource of GPCR genetic variants for pharmacogenomics research Understanding variation in drug targets may help alleviate economic healthcare burden
Collapse
Affiliation(s)
- Alexander S Hauser
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Sreenivas Chavali
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Leonie J Jahn
- The Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, Kemitorvet 2800 Kgs. Lyngby, Denmark
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
91
|
Wolf S, Jovancevic N, Gelis L, Pietsch S, Hatt H, Gerwert K. Dynamical Binding Modes Determine Agonistic and Antagonistic Ligand Effects in the Prostate-Specific G-Protein Coupled Receptor (PSGR). Sci Rep 2017; 7:16007. [PMID: 29167480 PMCID: PMC5700038 DOI: 10.1038/s41598-017-16001-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 11/03/2017] [Indexed: 01/14/2023] Open
Abstract
We analysed the ligand-based activation mechanism of the prostate-specific G-protein coupled receptor (PSGR), which is an olfactory receptor that mediates cellular growth in prostate cancer cells. Furthermore, it is an olfactory receptor with a known chemically near identic antagonist/agonist pair, α- and β-ionone. Using a combined theoretical and experimental approach, we propose that this receptor is activated by a ligand-induced rearrangement of a protein-internal hydrogen bond network. Surprisingly, this rearrangement is not induced by interaction of the ligand with the network, but by dynamic van der Waals contacts of the ligand with the involved amino acid side chains, altering their conformations and intraprotein connectivity. Ligand recognition in this GPCR is therefore highly stereo selective, but seemingly lacks any ligand recognition via polar contacts. A putative olfactory receptor-based drug design scheme will have to take this unique mode of protein/ligand action into account.
Collapse
Affiliation(s)
- Steffen Wolf
- Department of Biophysics, ND 04 North, Ruhr-University Bochum, 44780, Bochum, Germany.
- Department of Biophysics, CAS-MPG Partner Institute for Computational Biology, Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, P.R. China.
| | - Nikolina Jovancevic
- Department of Cellphysiology, ND 4, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Lian Gelis
- Department of Cellphysiology, ND 4, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Sebastian Pietsch
- Department of Biophysics, ND 04 North, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Hanns Hatt
- Department of Cellphysiology, ND 4, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Klaus Gerwert
- Department of Biophysics, ND 04 North, Ruhr-University Bochum, 44780, Bochum, Germany
- Department of Biophysics, CAS-MPG Partner Institute for Computational Biology, Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, P.R. China
| |
Collapse
|