51
|
Sukiran NA, Pollastri S, Steel PG, Knight MR. Plant growth promotion by the interaction of a novel synthetic small molecule with GA-DELLA function. PLANT DIRECT 2022; 6:e398. [PMID: 35492684 PMCID: PMC9039627 DOI: 10.1002/pld3.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 01/23/2022] [Accepted: 03/16/2022] [Indexed: 05/14/2023]
Abstract
Synthesized small molecules are useful as tools to investigate hormonal signaling involved in plant growth and development. They are also important as agrochemicals to promote beneficial properties of crops in the field. We describe here the synthesis and mode of action of a novel growth-promoting chemical, A1. A1 stimulates enhanced growth in both shoot and root tissues of plants, acting by increasing both dry and fresh weight. This suggests that A1 not only promotes uptake of water but also increases production of cellular material. A1 treatment of Arabidopsisleads to the degradation of DELLA growth-inhibitory proteins suggesting that A1-mediated growth promotion is dependent upon this mechanism. We performed genetic analysis to confirm this and further dissect the mechanism of A1 action upon growth in Arabidopsis. A quintuple dellamutant was insensitive to A1, confirming that the mode of action was indeed via a DELLA-dependent mechanism. The ga1-5gibberellin synthesis mutant was similarly insensitive, suggesting that to promote growth in ArabidopsisA1 requires the presence of endogenous gibberellins. This was further suggested by the observation that double mutants of GID1 gibberellin receptor genes were insensitive to A1. Taken together, our data suggest that A1 acts to enhance sensitivity to endogenous gibberellins thus leading to observed enhanced growth via DELLA degradation. A1 and related compounds will be useful to identify novel signaling components involved in plant growth and development, and as agrochemicals suitable for a wide range of crop species.
Collapse
Affiliation(s)
- Nur Afiqah Sukiran
- Department of BiosciencesDurham UniversityDurhamUK
- Department of ChemistryDurham UniversityDurhamUK
| | - Susanna Pollastri
- Institute for Sustainable Plant ProtectionNational Research Council of ItalyFlorenceItaly
| | | | | |
Collapse
|
52
|
Veciana N, Martín G, Leivar P, Monte E. BBX16 mediates the repression of seedling photomorphogenesis downstream of the GUN1/GLK1 module during retrograde signalling. THE NEW PHYTOLOGIST 2022; 234:93-106. [PMID: 35043407 PMCID: PMC9305768 DOI: 10.1111/nph.17975] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/05/2022] [Indexed: 05/03/2023]
Abstract
Plastid-to-nucleus retrograde signalling (RS) initiated by dysfunctional chloroplasts impact photomorphogenic development. We have previously shown that the transcription factor GLK1 acts downstream of the RS regulator GUN1 in photodamaging conditions to regulate not only the well established expression of photosynthesis-associated nuclear genes (PhANGs) but also to regulate seedling morphogenesis. Specifically, the GUN1/GLK1 module inhibits the light-induced phytochrome-interacting factor (PIF)-repressed transcriptional network to suppress cotyledon development when chloroplast integrity is compromised, modulating the area exposed to potentially damaging high light. However, how the GUN1/GLK1 module inhibits photomorphogenesis upon chloroplast damage remained undefined. Here, we report the identification of BBX16 as a novel direct target of GLK1. BBX16 is induced and promotes photomorphogenesis in moderate light and is repressed via GUN1/GLK1 after chloroplast damage. Additionally, we showed that BBX16 represents a regulatory branching point downstream of GUN1/GLK1 in the regulation of PhANG expression and seedling development upon RS activation. The gun1 phenotype in lincomycin and the gun1-like phenotype of GLK1OX are markedly suppressed in gun1bbx16 and GLK1OXbbx16. This study identified BBX16 as the first member of the BBX family involved in RS, and defines a molecular bifurcation mechanism operated by GLK1/BBX16 to optimise seedling de-etiolation, and to ensure photoprotection in unfavourable light conditions.
Collapse
Affiliation(s)
- Nil Veciana
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
| | - Guiomar Martín
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
| | - Pablo Leivar
- Laboratory of BiochemistryInstitut Químic de SarriàUniversitat Ramon Llull08017BarcelonaSpain
| | - Elena Monte
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
- Consejo Superior de Investigaciones Científicas (CSIC)08028BarcelonaSpain
| |
Collapse
|
53
|
Liu Y, Zhang XW, Liu X, Zheng PF, Su L, Wang GL, Wang XF, Li YY, You CX, An JP. Phytochrome interacting factor MdPIF7 modulates anthocyanin biosynthesis and hypocotyl growth in apple. PLANT PHYSIOLOGY 2022; 188:2342-2363. [PMID: 34983053 PMCID: PMC8968312 DOI: 10.1093/plphys/kiab605] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/26/2021] [Indexed: 06/10/2023]
Abstract
Light affects many physiological and developmental processes of plants by regulating the expression and activity of light-responsive proteins. Among them, phytochrome interacting factors (PIFs) play pivotal roles in the regulation of anthocyanin accumulation and hypocotyl growth. However, the molecular mechanism is not well understood, especially in woody plants, such as apple (Malus × domestica). In this study, we identified a light-responsive PIF protein, MdPIF7, in apple and investigated the molecular mechanism of its regulation of anthocyanin biosynthesis and hypocotyl growth. We found that overexpression of MdPIF7 decreased anthocyanin accumulation in transgenic apple materials and promoted hypocotyl elongation in ectopically expressed Arabidopsis (Arabidopsis thaliana). Further investigation showed that MdPIF7 functioned by interacting with B-box 23 (MdBBX23), a positive regulator of anthocyanin biosynthesis in apple and hypocotyl growth inhibition in ectopically expressed Arabidopsis, and attenuating the transcriptional activation of MdBBX23 on LONG HYPOCOTYL 5 (MdHY5). In addition, MdPIF7 interacted with basic region leucine zipper 44 (MdbZIP44) and ethylene response factor 38 (MdERF38), two positive regulators of anthocyanin biosynthesis, and it negatively regulated MdbZIP44- and MdERF38-promoted anthocyanin accumulation by interfering with the interaction between MdbZIP44/MdERF38 and MdMYB1. Taken together, our results reveal that MdPIF7 regulates anthocyanin biosynthesis in apple and hypocotyl growth in ectopically expressed Arabidopsis through MdPIF7-MdBBX23-MdHY5 and MdPIF7-MdbZIP44/MdERF38-MdMYB1 modules. Our findings enrich the functional studies of PIF proteins and provide insights into the molecular mechanism of PIF-mediated anthocyanin biosynthesis and hypocotyl growth.
Collapse
Affiliation(s)
- Yankai Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Xiao-Wei Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Xin Liu
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, China
| | - Peng-Fei Zheng
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Ling Su
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Gui-Luan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| | - Jian-Ping An
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
| |
Collapse
|
54
|
Liu X, Tang N, Xu F, Chen Z, Zhang X, Ye J, Liao Y, Zhang W, Kim SU, Wu P, Cao Z. SMRT and Illumina RNA sequencing reveal the complexity of terpenoid biosynthesis in Zanthoxylum armatum. TREE PHYSIOLOGY 2022; 42:664-683. [PMID: 34448876 DOI: 10.1093/treephys/tpab114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Sichuan pepper (Zanthoxylum armatum DC) is a popular spice and is often prescribed in traditional Chinese medicine to treat vomiting, diarrhea, ascariasis and eczema, among other conditions. Volatile oils from Z. armatum leaves contain active ingredients, with terpenoids being one of the main components. In the present study, the combination of sequencing data of Z. armatum from PacBio single molecule real time (SMRT) and Illumina RNA sequencing (RNA-Seq) platforms facilitated an understanding of the gene regulatory network of terpenoid biosynthesis in pepper leaves. The leaves of three developmental stages from two Z. armatum cultivars, 'Rongchangwuci' (WC) and 'Zhuye' (ZY), were selected as test materials to construct sequencing libraries. A total of 143,122 predictions of unique coding sequences, 105,465 simple sequence repeats, 20,145 transcription factors and 4719 long non-coding RNAs (lncRNAs) were identified, and 142,829 transcripts were successfully annotated. The occurrence of alternative splicing events was verified by reverse transcription PCR, and quantitative real-time PCR was used to confirm the expression pattern of six randomly selected lncRNAs. A total of 96,931 differentially expressed genes were filtered from different samples. According to functional annotation, a total of 560 candidate genes were involved in terpenoid synthesis, of which 526 were differentially expressed genes (DEGs). To identify the key genes involved in terpenoid biosynthesis, the module genes in different samples, including structural and transcription factors genes, were analyzed using the weighted gene co-expression network method, and the co-expression network of genes was constructed. Thirty-one terpenoids were identified by gas chromatography-mass spectrometry. The correlation between 18 compounds with significantly different contents and genes with high connectivity in the module was jointly analyzed in both cultivars, yielding 12 candidate DEGs presumably involved in the regulation of terpenoid biosynthesis. Our findings showed that full-length transcriptome SMRT and Illumina RNA-Seq can play an important role in studying organisms without reference genomes and elucidating the gene regulation of a biosynthetic pathway.
Collapse
Affiliation(s)
- Xiaomeng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Ning Tang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing 400000, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Zexiong Chen
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing 400000, China
| | - Xian Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Soo-Un Kim
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Peiyin Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Zhengyan Cao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| |
Collapse
|
55
|
Lazar D, Stirbet A, Björn L, Govindjee G. Light quality, oxygenic photosynthesis and more. PHOTOSYNTHETICA 2022; 60:25-28. [PMID: 39648998 PMCID: PMC11559484 DOI: 10.32615/ps.2021.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/10/2024]
Abstract
Oxygenic photosynthesis takes place in thylakoid membranes (TM) of cyanobacteria, algae, and higher plants. It begins with light absorption by pigments in large (modular) assemblies of pigment-binding proteins, which then transfer excitation energy to the photosynthetic reaction centers of photosystem (PS) I and PSII. In green algae and plants, these light-harvesting protein complexes contain chlorophylls (Chls) and carotenoids (Cars). However, cyanobacteria, red algae, and glaucophytes contain, in addition, phycobiliproteins in phycobilisomes that are attached to the stromal surface of TM, and transfer excitation energy to the reaction centers via the Chl a molecules in the inner antennas of PSI and PSII. The color and the intensity of the light to which these photosynthetic organisms are exposed in their environment have a great influence on the composition and the structure of the light-harvesting complexes (the antenna) as well as the rest of the photosynthetic apparatus, thus affecting the photosynthetic process and even the entire organism. We present here a perspective on 'Light Quality and Oxygenic Photosynthesis', in memory of George Christos Papageorgiou (9 May 1933-21 November 2020; see notes a and b). Our review includes (1) the influence of the solar spectrum on the antenna composition, and the special significance of Chl a; (2) the effects of light quality on photosynthesis, measured using Chl a fluorescence; and (3) the importance of light quality, intensity, and its duration for the optimal growth of photosynthetic organisms.
Collapse
Affiliation(s)
- D. Lazar
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - A. Stirbet
- Anne Burras Lane, Newport News, 23606 Virginia, USA
| | - L.O. Björn
- Department of Biology, Molecular Cell Biology, Lund University, Sölvegatan 35, SE-22462 Lund, Sweden
| | - G. Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
56
|
Yang C, Yan W, Chang H, Sun C. Arabidopsis CIA2 and CIL have distinct and overlapping functions in regulating chloroplast and flower development. PLANT DIRECT 2022; 6:e380. [PMID: 35106435 PMCID: PMC8786619 DOI: 10.1002/pld3.380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/14/2021] [Accepted: 12/26/2021] [Indexed: 05/05/2023]
Abstract
Arabidopsis CHLOROPLAST IMPORT APPARATUS 2 (CIA2) and its paralogous protein CIA2-LIKE (CIL) are nuclear transcription factors containing a C-terminal CCT motif. CIA2 promotes the expression of nuclear genes encoding chloroplast-localized translocons and ribosomal proteins, thereby increasing the efficiency of protein import and synthesis in chloroplasts. We have previously reported that CIA2 and CIL form a homodimer or heterodimer through their C-terminal sequences and interact with other nuclear proteins, such as CONSTANS (CO), via their N-terminal sequences, but the function of CIL had remained unclear. In this study, we verified through transgenic cia2 mutant plants expressing the CIL coding sequence that CIL is partially functionally redundant to CIA2 during vegetative growth. We also compared phenotypes and gene expression profiles of wildtype Col-0, cia2, cil, and cia2/cil mutants. Our results indicate that CIA2 and CIL coordinate chloroplast biogenesis and function mainly by upregulating the expression of the nuclear factor GOLDEN2-LIKE 1 (GLK1) and chloroplast transcription-, translation-, protein import-, and photosynthesis-related genes, with CIA2 playing a more crucial role. Furthermore, we compared flowering phenotypes in single, double, and triple mutant plants of co, cia2, and cil. We found that CIA2 and CIL participate in modulating long-day floral development. Notably, CIA2 increases flower number and height of the inflorescence main axis, whereas CIL promotes flowering.
Collapse
Affiliation(s)
- Chun‐Yen Yang
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| | - Wen‐You Yan
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| | - Hsin‐Yen Chang
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| | - Chih‐Wen Sun
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| |
Collapse
|
57
|
Xiang S, Wu S, Jing Y, Chen L, Yu D. Phytochrome B regulates jasmonic acid-mediated defense response against Botrytis cinerea in Arabidopsis. PLANT DIVERSITY 2022; 44:109-115. [PMID: 35281129 PMCID: PMC8897165 DOI: 10.1016/j.pld.2021.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/14/2021] [Accepted: 01/26/2021] [Indexed: 05/11/2023]
Abstract
The phytochrome B mediated light signaling integrates with various phytohormone signalings to control plant immune response. However, it is still unclear whether phyB-mediated light signaling has an effect on the biosynthesis of jasmonate during plant defense response against Botrytis cinerea. In this study, we demonstrated that phyB-mediated light signaling has a role in this process. Initially, we confirmed that phyb plants were obviously less resistant to B. cinerea while phyB overexpressing plants showed significantly enhanced resistance. We also found that the expression of numerous JA biosynthesis genes was promoted upon treatment with red or white light when compared to that of darkness, and that this promotion is dependent on phyB. Consistent with the gene expression results, phyb plants accumulated reduced pool of JA-Ile, indicating that phyB-mediated light signaling indeed increased JA biosynthesis. Further genetic analysis showed that light-mediated JAZ9 degradation and phyB-enhanced resistance were dependent on the receptor COI1, and that pif1/3/4/5 (pifq) can largely rescue the severe symptom of phyb. Taken together, our study demonstrates that phyB may participate in plant defense against B. cinerea through the modulation of the biosynthesis of JA.
Collapse
Affiliation(s)
- Shengyuan Xiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Songguo Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yifen Jing
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ligang Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
- Corresponding author. CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China; Fax: +86 871 65160916.
| | - Diqiu Yu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
- Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 666303, China
- Corresponding author. CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China; Fax: +86 871 65160916.
| |
Collapse
|
58
|
Ma L, Li X, Zhao Z, Hao Y, Shang R, Zeng D, Liu H. Light-Response Bric-A-Brack/Tramtrack/Broad proteins mediate cryptochrome 2 degradation in response to low ambient temperature. THE PLANT CELL 2021; 33:3610-3620. [PMID: 34463721 PMCID: PMC8643628 DOI: 10.1093/plcell/koab219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/26/2021] [Indexed: 05/20/2023]
Abstract
Cryptochromes (crys) are photolyase-like blue-light receptors first discovered in Arabidopsis thaliana and later identified in all major evolutionary lineages. Crys are involved in not only blue light responses but also in temperature responses; however, whether and how cry protein stability is regulated by temperature remains unknown. Here, we show that cry2 protein abundance is modulated by ambient temperature and cry2 protein is degraded under low ambient temperature via the 26S proteasome. Consistent with this, cry2 shows high levels of ubiquitination under low ambient temperatures. Interestingly, cry2 degradation at low ambient temperatures occurs only under blue light and not under red light or dark conditions, indicating blue-light-dependent degradation of cry2 at low ambient temperature. Furthermore, low ambient temperature promotes physical interaction of Light-Response Bric-a-Brack/Tramtrack/Broad (LRB) proteins with cry2 to modulate its ubiquitination and protein stability in response to ambient temperature. LRBs promote high-temperature-induced hypocotyl elongation by modulating the protein stability of cry2 protein. These results indicate that cry2 accumulation is regulated by not only blue light but also ambient temperature, and LRBs are responsible for cry2 degradation at low ambient temperature. The stabilization of cry2 by high temperature makes cry2 a better negative regulator of temperature responses.
Collapse
Affiliation(s)
- Libang Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xu Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiwei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuhao Hao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ruixin Shang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Desheng Zeng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
59
|
Zuo ZF, Sun HJ, Lee HY, Kang HG. Identification of bHLH genes through genome-wide association study and antisense expression of ZjbHLH076/ZjICE1 influence tolerance to low temperature and salinity in Zoysia japonica. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111088. [PMID: 34763873 DOI: 10.1016/j.plantsci.2021.111088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Abiotic stress greatly affects plant growth and developmental processes, resulting in poor productivity. A variety of basic helix-loop-helix (bHLH) transcription factors (TFs) that play important roles in plant abiotic stress response pathways have been identified. However, bHLH proteins of Zoysia japonica, one of the warm-season turfgrasses, have not been widely studied. In this study, 141 bHLH genes (ZjbHLHs) were identified and classified into 22 subfamilies. The ZjbHLHs were mapped on 19 chromosomes except for Chr17 and one pair of the tandemly arrayed genes was identified on Chr06. Also, the co-linearity of ZjbHLHs was found to have been driven mostly by segmental duplication events. The subfamily IIIb genes of our present interest, possessed various stress responsive cis-elements in their promoters. ZjbHLH076/ZjICE1, a MYC-type bHLH TF in subfamily IIIb was analyzed by overexpression and its loss-of-function via overexpressing a short ZjbHLH076/ZjICE1 fragment in the antisense direction. The overexpression of ZjbHLH076/ZjICE1 enhanced the tolerance to cold and salinity stress in the transgenic Z. japonica plants. However, the anti-sense expression of ZjbHLH076/ZjICE1 showed sensitive to these abiotic stresses. These results suggest that ZjbHLH076/ZjICE1 would be a promising candidate for the molecular breeding program to improve the abiotic stress tolerance of Z. japonica.
Collapse
Affiliation(s)
- Zhi-Fang Zuo
- Department of Biotechnology, Jeju National University, Jeju, Republic of Korea; Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Hyeon-Jin Sun
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Hyo-Yeon Lee
- Department of Biotechnology, Jeju National University, Jeju, Republic of Korea; Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea.
| | - Hong-Gyu Kang
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea.
| |
Collapse
|
60
|
Yan J, Li S, Kim YJ, Zeng Q, Radziejwoski A, Wang L, Nomura Y, Nakagami H, Somers DE. TOC1 clock protein phosphorylation controls complex formation with NF-YB/C to repress hypocotyl growth. EMBO J 2021; 40:e108684. [PMID: 34726281 DOI: 10.15252/embj.2021108684] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/09/2022] Open
Abstract
Plant photoperiodic growth is coordinated by interactions between circadian clock and light signaling networks. How post-translational modifications of clock proteins affect these interactions to mediate rhythmic growth remains unclear. Here, we identify five phosphorylation sites in the Arabidopsis core clock protein TIMING OF CAB EXPRESSION 1 (TOC1) which when mutated to alanine eliminate detectable phosphorylation. The TOC1 phospho-mutant fails to fully rescue the clock, growth, and flowering phenotypes of the toc1 mutant. Further, the TOC1 phospho-mutant shows advanced phase, a faster degradation rate, reduced interactions with PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) and HISTONE DEACETYLASE 15 (HDA15), and poor binding at pre-dawn hypocotyl growth-related genes (PHGs), leading to a net de-repression of hypocotyl growth. NUCLEAR FACTOR Y subunits B and C (NF-YB/C) stabilize TOC1 at target promoters, and this novel trimeric complex (NF-TOC1) acts as a transcriptional co-repressor with HDA15 to inhibit PIF-mediated hypocotyl elongation. Collectively, we identify a molecular mechanism suggesting how phosphorylation of TOC1 alters its phase, stability, and physical interactions with co-regulators to precisely phase PHG expression to control photoperiodic hypocotyl growth.
Collapse
Affiliation(s)
- Jiapei Yan
- Molecular Genetics, Ohio State University, Columbus, OH, USA
| | - Shibai Li
- Molecular Genetics, Ohio State University, Columbus, OH, USA.,Memorial Sloan Kettering Cancer Center, Molecular Biology Program, New York, NY, USA
| | - Yeon Jeong Kim
- Molecular Genetics, Ohio State University, Columbus, OH, USA
| | - Qingning Zeng
- Molecular Genetics, Ohio State University, Columbus, OH, USA
| | | | - Lei Wang
- Molecular Genetics, Ohio State University, Columbus, OH, USA.,The Chinese Academy of Sciences, Institute of Botany, Beijing, China
| | - Yuko Nomura
- RIKEN Center for Sustainable Resource Science (CSRS), Plant Proteomics Research Unit, Yokohama, Japan
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science (CSRS), Plant Proteomics Research Unit, Yokohama, Japan.,Max Planck Institute for Plant Breeding Research, Protein Mass Spectrometry, Cologne, Germany
| | - David E Somers
- Molecular Genetics, Ohio State University, Columbus, OH, USA.,POSTECH, Division of Integrative Biosciences and Biotechnology, Pohang, South Korea
| |
Collapse
|
61
|
Wu K, Duan X, Zhu Z, Sang Z, Duan J, Jia Z, Ma L. Physiological and transcriptome analysis of Magnolia denudata leaf buds during long-term cold acclimation. BMC PLANT BIOLOGY 2021; 21:460. [PMID: 34625030 PMCID: PMC8501692 DOI: 10.1186/s12870-021-03181-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 08/17/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Magonlia denudata is an important perennial tree species of the Magnoliaceae family, known for its ornamental value, resistance to smoke pollution and wind, role in air purification, and robust cold tolerance. In this study, a high-throughput transcriptome analysis of leaf buds was performed, and gene expression following artificial acclimation 22 °C, 4 °C and 0 °C, was compared by RNA sequencing. RESULTS Over 426 million clean reads were produced from three libraries (22 °C, 4 °C and 0 °C). A total of 74,503 non-redundant unigenes were generated, with an average length of 1173.7 bp (N50 = 1548). Based on transcriptional results, 357 and 235 unigenes were identified as being upregulated and downregulated under cold stress conditions, respectively. Differentially expressed genes were annotated using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway analyses. The transcriptomic analysis focused on carbon metabolism and plant hormone signal transduction associated with cold acclimation. Transcription factors such as those in the basic helix-loop-helix and AP2/ERF families were found to play an important role in M. denudata cold acclimation. CONCLUSION M. denudata exhibits responses to non-freezing cold temperature (4 °C) to increase its cold tolerance. Cold resistance was further strengthened with cold acclimation under freezing conditions (0 °C). Cold tolerance genes, and cold signaling transcriptional pathways, and potential functional key components for the regulation of the cold response were identified in M. denudata. These results provide a basis for further studies, and the verification of key genes involved in cold acclimation responses in M. denudata lays a foundation for developing breeding programs for Magnoliaceae species.
Collapse
Affiliation(s)
- Kunjing Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Xiaojing Duan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Zhonglong Zhu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Ziyang Sang
- Forestry Science Research Institute of Wufeng County, Wufeng, 443400, Hubei Province, China
| | - Jie Duan
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Zhongkui Jia
- College of Forestry, Engineering Technology Research Center of Pinus tabuliformis of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| | - Luyi Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
- National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
62
|
Pan C, Yang D, Zhao X, Liu Y, Li M, Ye L, Ali M, Yu F, Lamin-Samu AT, Fei Z, Lu G. PIF4 negatively modulates cold tolerance in tomato anthers via temperature-dependent regulation of tapetal cell death. THE PLANT CELL 2021; 33:2320-2339. [PMID: 34009394 PMCID: PMC8364245 DOI: 10.1093/plcell/koab120] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/28/2021] [Indexed: 05/30/2023]
Abstract
Extreme temperature conditions seriously impair male reproductive development in plants; however, the molecular mechanisms underlying the response of anthers to extreme temperatures remain poorly described. The transcription factor phytochrome-interacting factor4 (PIF4) acts as a hub that integrates multiple signaling pathways to regulate thermosensory growth and architectural adaptation in plants. Here, we report that SlPIF4 in tomato (Solanum lycopersicum) plays a pivotal role in regulating cold tolerance in anthers. CRISPR (clustered regularly interspaced short palindromic repeats)-associated nuclease Cas9-generated SlPIF4 knockout mutants showed enhanced cold tolerance in pollen due to reduced temperature sensitivity of the tapetum, while overexpressing SlPIF4 conferred pollen abortion by delaying tapetal programmed cell death (PCD). SlPIF4 directly interacts with SlDYT1, a direct upstream regulator of SlTDF1, both of which (SlDYT1 and SlTDF1) play important roles in regulating tapetum development and tapetal PCD. Moderately low temperature (MLT) promotes the transcriptional activation of SlTDF1 by the SlPIF4-SlDYT1 complex, resulting in pollen abortion, while knocking out SlPIF4 blocked the MLT-induced activation of SlTDF1. Furthermore, SlPIF4 directly binds to the canonical E-box sequence in the SlDYT1 promoter. Collectively, these findings suggest that SlPIF4 negatively regulates cold tolerance in anthers by directly interacting with the tapetal regulatory module in a temperature-dependent manner. Our results shed light on the molecular mechanisms underlying the adaptation of anthers to low temperatures.
Collapse
Affiliation(s)
- Changtian Pan
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Dandan Yang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Xiaolin Zhao
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Yue Liu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Mengzhuo Li
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Lei Ye
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Ali
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Fangjie Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | | | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
- USDA Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Gang Lu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
63
|
Hu L, Liu P, Jin Z, Sun J, Weng Y, Chen P, Du S, Wei A, Li Y. A mutation in CsHY2 encoding a phytochromobilin (PΦB) synthase leads to an elongated hypocotyl 1(elh1) phenotype in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2639-2652. [PMID: 34091695 DOI: 10.1007/s00122-021-03849-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
The elongated hypocotyl1 (elh1) mutant in cucumber is due to a mutation in CsHY2, which is a homolog of the Arabidopsis HY2 encoding the phytochromobilin (PΦB) synthase for phytochrome biosynthesis Hypocotyl length is a critical determinant in establishing high quality seedlings for successful cucumber production, but knowledge on the molecular regulation of hypocotyl growth in cucumber is very limited. Here, we reported identification and characterization of a cucumber elongated hypocotyl 1 (elh1) mutant. We found that the longer hypocotyl in elh1 was due to longitudinal growth of hypocotyl cells. With fine mapping, the elh1 locus was delimited to a 20.9-kb region containing three annotated genes; only one polymorphism was identified in this region between two parental lines, which was a non-synonymous SNP (G28153633A) in the third exon of CsHY2 (CsGy1G030000) that encodes a phytochromobilin (PΦB) synthase. Uniqueness of the mutant allele at CsHY2 was verified in natural cucumber populations. Ectopic expression of CsHY2 in Arabidopsis hy2-1 long-hypocotyl mutant led to reduced hypocotyl length. The PΦB protein was targeted to the chloroplast. The expression levels of CsHY2 and five phytochrome genes CsPHYA1, CsPHYA2, CsPHYB, CsPHYC and CsPHYE were all significantly down-regulated while several cell elongation related genes were up-regulated in elh1 mutant compared to wild-type cucumber, which are correlated with dynamic hypocotyl elongation in the mutant. RNA-seq analysis in the WT and mutant revealed differentially expressed genes involved in porphyrin and chlorophyll metabolisms, cell elongation and plant hormone signal transduction pathways. This is the first report to characterize and clone the CsHY2 gene in cucumber. This work reveals the important of CsHY2 in regulating hypocotyl length and extends our understanding of the roles of CsHY2 in cucumber.
Collapse
Affiliation(s)
- Liangliang Hu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peng Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhuoshuai Jin
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jing Sun
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiqun Weng
- Horticulture Department, USDA-ARS Vegetable Crops Research Unit, University of Wisconsin, Madison, WI, 53706, USA
| | - Peng Chen
- College of Life Science, Northwest A & F University, Yangling, 712100, Shaanxi,, China
| | - Shengli Du
- Tianjin Vegetable Research Center, Tianjin, 300192, China
- National Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300192, China
| | - Aimin Wei
- Tianjin Vegetable Research Center, Tianjin, 300192, China.
- National Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300192, China.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
64
|
Jiang A, Guo Z, Pan J, Yang Y, Zhuang Y, Zuo D, Hao C, Gao Z, Xin P, Chu J, Zhong S, Li L. The PIF1-miR408-PLANTACYANIN repression cascade regulates light-dependent seed germination. THE PLANT CELL 2021; 33:1506-1529. [PMID: 33616669 PMCID: PMC8254493 DOI: 10.1093/plcell/koab060] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/11/2021] [Indexed: 05/15/2023]
Abstract
Light-dependent seed germination is a vital process for many seed plants. A decisive event in light-induced germination is degradation of the central repressor PHYTOCHROME INTERACTING FACTOR 1 (PIF1). The balance between gibberellic acid (GA) and abscisic acid (ABA) helps to control germination. However, the cellular mechanisms linking PIF1 turnover to hormonal balancing remain elusive. Here, employing far-red light-induced Arabidopsis thaliana seed germination as the experimental system, we identified PLANTACYANIN (PCY) as an inhibitor of germination. It is a blue copper protein associated with the vacuole that is both highly expressed in mature seeds and rapidly silenced during germination. Molecular analyses showed that PIF1 binds to the miR408 promoter and represses miR408 accumulation. This in turn posttranscriptionally modulates PCY abundance, forming the PIF1-miR408-PCY repression cascade for translating PIF1 turnover to PCY turnover during early germination. Genetic analysis, RNA-sequencing, and hormone quantification revealed that PCY is necessary and sufficient to maintain the PIF1-mediated seed transcriptome and the low-GA-high-ABA state. Furthermore, we found that PCY domain organization and regulation by miR408 are conserved features in seed plants. These results revealed a cellular mechanism whereby PIF1-relayed external light signals are converted through PCY turnover to internal hormonal profiles for controlling seed germination.
Collapse
Affiliation(s)
- Anlong Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhonglong Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Jiawei Pan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yanzhi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yan Zhuang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Daqing Zuo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Chen Hao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Zhaoxu Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Peiyong Xin
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shangwei Zhong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Author for correspondence:
| |
Collapse
|
65
|
Hao Y, Zong X, Ren P, Qian Y, Fu A. Basic Helix-Loop-Helix (bHLH) Transcription Factors Regulate a Wide Range of Functions in Arabidopsis. Int J Mol Sci 2021; 22:ijms22137152. [PMID: 34281206 PMCID: PMC8267941 DOI: 10.3390/ijms22137152] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 01/30/2023] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factor family is one of the largest transcription factor gene families in Arabidopsis thaliana, and contains a bHLH motif that is highly conserved throughout eukaryotic organisms. Members of this family have two conserved motifs, a basic DNA binding region and a helix-loop-helix (HLH) region. These proteins containing bHLH domain usually act as homo- or heterodimers to regulate the expression of their target genes, which are involved in many physiological processes and have a broad range of functions in biosynthesis, metabolism and transduction of plant hormones. Although there are a number of articles on different aspects to provide detailed information on this family in plants, an overall summary is not available. In this review, we summarize various aspects of related studies that provide an overview of insights into the pleiotropic regulatory roles of these transcription factors in plant growth and development, stress response, biochemical functions and the web of signaling networks. We then provide an overview of the functional profile of the bHLH family and the regulatory mechanisms of other proteins.
Collapse
|
66
|
Arefian M, Bhagya N, Prasad TSK. Phosphorylation-mediated signalling in flowering: prospects and retrospects of phosphoproteomics in crops. Biol Rev Camb Philos Soc 2021; 96:2164-2191. [PMID: 34047006 DOI: 10.1111/brv.12748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022]
Abstract
Protein phosphorylation is a major post-translational modification, regulating protein function, stability, and subcellular localization. To date, annotated phosphorylation data are available mainly for model organisms and humans, despite the economic importance of crop species and their large kinomes. Our understanding of the phospho-regulation of flowering in relation to the biology and interaction between the pollen and pistil is still significantly lagging, limiting our knowledge on kinase signalling and its potential applications to crop production. To address this gap, we bring together relevant literature that were previously disconnected to present an overview of the roles of phosphoproteomic signalling pathways in modulating molecular and cellular regulation within specific tissues at different morphological stages of flowering. This review is intended to stimulate research, with the potential to increase crop productivity by providing a platform for novel molecular tools.
Collapse
Affiliation(s)
- Mohammad Arefian
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - N Bhagya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, 575018, India
| |
Collapse
|
67
|
Hussain A, Noman A, Arif M, Farooq S, Khan MI, Cheng P, Qari SH, Anwar M, Hashem M, Ashraf MF, Alamri S, Adnan M, Khalofah A, Al-Zoubi OM, Ansari MJ, Khan KA, Sun Y. A basic helix-loop-helix transcription factor CabHLH113 positively regulate pepper immunity against Ralstonia solanacearum. Microb Pathog 2021; 156:104909. [PMID: 33964418 DOI: 10.1016/j.micpath.2021.104909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/26/2021] [Accepted: 04/15/2021] [Indexed: 11/26/2022]
Abstract
Pepper's (Capsicum annum) response to bacterial pathogen Ralstonia solanacearm inoculation (RSI) and abiotic stresses is known to be synchronized by transcriptional network; however, related molecular mechanisms need extensive experimentation. We identified and characterized functions of CabHLH113 -a basic helix-loop-helix transcription factor-in pepper immunity to R. solanacearum infection. The RSI and foliar spray of phytohormones, including salicylic acid (SA), methyl jasmonate (MeJA), ethylene (ETH), and absicic acid (ABA) induced transcription of CabHLH113 in pepper. Loss of function of CabHLH113 by virus-induced-gene-silencing (VIGS) compromised defense of pepper plants against RSI and suppressed relative expression levels of immunity-associated marker genes, i.e., CaPR1, CaNPR1, CaDEF1, CaHIR1 and CaABR1. Pathogen growth was significantly increased after loss of function of CabHLH113 compared with un-silenced plants with remarkable increase in pepper susceptibility. Besides, transiently over-expression of CabHLH113 induced HR-like cell death, H2O2 accumulation and up-regulation of defense-associated marker genes, e.g. CaPR1, CaNPR1, CaDEF1, CaHIR1 and CaABR1. Additionally, transient over-expression of CabHLH113 enhanced the transcriptional levels of CaWRKY6, CaWRKY27 and CaWRKY40. Conversely, transient over-expression of CaWRKY6, CaWRKY27 and CaWRKY40 enhanced the transcriptional levels of CabHLH113. Collectively, our results indicate that newly characterized CabHLH113 has novel defense functions in pepper immunity against RSI via triggering HR-like cell death and cellular levels of defense linked genes.
Collapse
Affiliation(s)
- Ansar Hussain
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China; Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan, Pakistan.
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan.
| | - Muhammad Arif
- Department of Plant Protection, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Shahid Farooq
- Department of Agronomy, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Ifnan Khan
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Ping Cheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Sameer H Qari
- Biology Department, Aljumum University College, Umm Al - Qura University, Makkah, Saudi Arabia
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Mohamed Hashem
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Assiut University, Faculty of Science, Botany and Microbiology Department, Assiut, 71516, Egypt
| | - Muhammad Furqan Ashraf
- College of Life Sciences, South China Agricultural University, No.483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Saad Alamri
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia
| | - Muhammad Adnan
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Ahlam Khalofah
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | | | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (MJP Rohilkhand University Bareilly), 244001, India
| | - Khalid Ali Khan
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Yunhao Sun
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China; College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China.
| |
Collapse
|
68
|
Chen F, Zheng G, Qu M, Wang Y, Lyu MJA, Zhu XG. Knocking out NEGATIVE REGULATOR OF PHOTOSYNTHESIS 1 increases rice leaf photosynthesis and biomass production in the field. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1836-1849. [PMID: 33258954 DOI: 10.1093/jxb/eraa566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Improving photosynthesis is a major approach to increasing crop yield potential. Here we identify a transcription factor as a negative regulator of photosynthesis, which can be manipulated to increase rice photosynthesis and plant biomass in the field. This transcription factor, named negative regulator of photosynthesis 1 (NRP1; Os07g0471900), was identified through a co-expression analysis using rice leaf RNA sequencing data. NRP1 expression showed significantly negative correlation with the expression of many genes involved in photosynthesis. Knocking out NRP1 led to greater photosynthesis and increased biomass in the field, while overexpression of NRP1 decreased photosynthesis and biomass. Transcriptomic data analysis shows that NRP1 can negatively regulate the expression of photosynthetic genes. Protein transactivation experiments show that NRP1 is a transcription activator, implying that NRP1 may indirectly regulate photosynthetic gene expression through an unknown regulator. This study shows that combination of bioinformatics analysis with transgenic testing can be used to identify new regulators to improve photosynthetic efficiency in crops.
Collapse
Affiliation(s)
- Faming Chen
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangyong Zheng
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingnan Qu
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yanjie Wang
- University of Chinese Academy of Sciences, Beijing, China
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Ju Amy Lyu
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Guang Zhu
- National Key Laboratory for Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
69
|
Ikeda M, Mitsuda N, Ishizuka T, Satoh M, Ohme-Takagi M. The CIB1 transcription factor regulates light- and heat-inducible cell elongation via a two-step HLH/bHLH system. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1795-1808. [PMID: 33258952 DOI: 10.1093/jxb/eraa567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/30/2020] [Indexed: 05/14/2023]
Abstract
Light and high temperature promote plant cell elongation. PHYTOCHROME INTERACTING FACTOR4 (PIF4, a typical basic helix-loop-helix [bHLH] transcriptional activator) and the non-DNA binding atypical HLH inhibitors PHYTOCHROME RAPIDLY REGULATED1 (PAR1) and LONG HYPOCOTYL IN FAR-RED 1 (HFR1) competitively regulate cell elongation in response to light conditions and high temperature. However, the underlying mechanisms have not been fully clarified. Here, we show that in Arabidopsis thaliana, the bHLH transcription factor CRYPTOCHROME-INTERACTING BASIC HELIX-LOOP-HELIX 1 (CIB1) positively regulates cell elongation under the control of PIF4, PAR1, and HFR1. Furthermore, PIF4 directly regulates CIB1 expression by interacting with its promoter, and PAR1 and HFR1 interfere with PIF4 binding to the CIB1 promoter. CIB1 activates genes that function in cell elongation, and PAR1 interferes with the DNA binding activity of CIB1, thus suppressing cell elongation. Hence, two antagonistic HLH/bHLH systems, the PIF4-PAR1/HFR1 and CIB1-PAR1 systems, regulate cell elongation in response to light and high temperature. We thus demonstrate the important role of non-DNA binding small HLH proteins in the transcriptional regulation of cell elongation in plants.
Collapse
Affiliation(s)
- Miho Ikeda
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Toru Ishizuka
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Mai Satoh
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Masaru Ohme-Takagi
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
70
|
IAA3-mediated repression of PIF proteins coordinates light and auxin signaling in Arabidopsis. PLoS Genet 2021; 17:e1009384. [PMID: 33600444 PMCID: PMC7924758 DOI: 10.1371/journal.pgen.1009384] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/02/2021] [Accepted: 01/29/2021] [Indexed: 11/20/2022] Open
Abstract
The exogenous light signal and endogenous auxin are two critical factors that antagonistically regulate hypocotyl growth. However, the regulatory mechanisms integrating light and auxin signaling pathways need further investigation. In this study, we identified a direct link between the light and auxin signaling pathways mediated by the auxin transcriptional repressor IAA3 and light-controlled PIF transcription factors in Arabidopsis. The gain-of-function mutation in IAA3 caused hyposensitivity to light, whereas disruption of IAA3 led to an elongated hypocotyl under different light intensity conditions, indicating that IAA3 is required in light regulated hypocotyl growth. Genetic studies showed that the function of IAA3 in hypocotyl elongation is dependent on PIFs. Our data further demonstrated that IAA3 interacts with PIFs in vitro and in vivo, and it attenuates the DNA binding activities of PIFs to the target genes. Moreover, IAA3 negatively regulates the expression of PIFs-dependent genes. Collectively, our study reveals an interplay mechanism of light and auxin on the regulation of hypocotyl growth, coordinated by the IAA3 and PIFs transcriptional regulatory module. Sessile plants integrate environmental and endogenous signals to optimize their growth and development. Hypocotyl growth is a crucial developmental process tightly affected by light and auxin, but the underlying mechanism is still not well understood. Here, we demonstrate that the IAA3, a suppressor in auxin signaling, negatively regulates the light signaling regulator PIF protein activities. The IAA3 gain-of-function mutant displays reduced responses to light, while disruption of IAA3 results in elongated hypocotyl under various light intensity conditions. Genetic studies showed that IAA3 functions through PIFs to regulate hypocotyl growth. IAA3 physically interacts with PIFs through its C-terminal region and inhibits PIFs binding to target genes. Furthermore, IAA3 and PIFs coregulated a subset of downstream genes. The IAA3-PIFs interaction represents a novel layer of the regulatory mechanism by which light and auxin signals are integrated to affect hypocotyl growth.
Collapse
|
71
|
Zhao P, Zhang X, Gong Y, Wang D, Xu D, Wang N, Sun Y, Gao L, Liu SS, Deng XW, Kliebenstein DJ, Zhou X, Fang RX, Ye J. Red-light is an environmental effector for mutualism between begomovirus and its vector whitefly. PLoS Pathog 2021; 17:e1008770. [PMID: 33428670 PMCID: PMC7822537 DOI: 10.1371/journal.ppat.1008770] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/22/2021] [Accepted: 10/31/2020] [Indexed: 01/04/2023] Open
Abstract
Environments such as light condition influence the spread of infectious diseases by affecting insect vector behavior. However, whether and how light affects the host defense which further affects insect preference and performance, remains unclear, nor has been demonstrated how pathogens co-adapt light condition to facilitate vector transmission. We previously showed that begomoviral βC1 inhibits MYC2-mediated jasmonate signaling to establish plant-dependent mutualism with its insect vector. Here we show red-light as an environmental catalyzer to promote mutualism of whitefly-begomovirus by stabilizing βC1, which interacts with PHYTOCHROME-INTERACTING FACTORS (PIFs) transcription factors. PIFs positively control plant defenses against whitefly by directly binding to the promoter of terpene synthase genes and promoting their transcription. Moreover, PIFs interact with MYC2 to integrate light and jasmonate signaling and regulate the transcription of terpene synthase genes. However, begomovirus encoded βC1 inhibits PIFs' and MYC2' transcriptional activity via disturbing their dimerization, thereby impairing plant defenses against whitefly-transmitted begomoviruses. Our results thus describe how a viral pathogen hijacks host external and internal signaling to enhance the mutualistic relationship with its insect vector.
Collapse
Affiliation(s)
- Pingzhi Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuqing Gong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Duan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Ning Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanwei Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lianbo Gao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shu-Sheng Liu
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Daniel J. Kliebenstein
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong-Xiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
72
|
Song B, Zhao H, Dong K, Wang M, Wu S, Li S, Wang Y, Chen P, Jiang L, Tao Y. Phytochrome A inhibits shade avoidance responses under strong shade through repressing the brassinosteroid pathway in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1520-1534. [PMID: 33037720 DOI: 10.1111/tpj.15018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
In dense canopy, a reduction in red to far-red (R/FR) light ratio triggers shade avoidance responses (SARs) in Arabidopsis thaliana, a shade avoiding plant. Two red/far-red (R/FR) light photoreceptors, PHYB and PHYA, were reported to be key negative regulators of the SARs. PHYB represses the SARs under normal light conditions; however, the role of PHYA in the SARs remains elusive. We set up two shade conditions: Shade and strong Shade (s-Shade) with different R/FR ratios (0.7 and 0.1), which allowed us to observe phenotypes dominated by PHYB- and PHYA-mediated pathway, respectively. By comparing the hypocotyl growth under these two conditions with time, we found PHYA was predominantly activated in the s-Shade after prolonged shade treatment. We further showed that under s-Shade, PHYA inhibits hypocotyl elongation partially through repressing the brassinosteroid (BR) pathway. COP1 and PIF4,5 act downstream of PHYA. After prolonged shade treatment, the nuclear localization of COP1 was reduced, while the PIF4 protein level was much lower in the s-Shade than that in Shade. Both changes occurred in a PHYA-dependent manner. We propose that under deep canopy, the R/FR ratio is extremely low, which promotes the nuclear accumulation of PHYA. Activated PHYA reduces COP1 nuclear speckle, which may lead to changes of downstream targets, such as PIF4,5 and HY5. Together, these proteins regulate the BR pathway through modulating BES1/BZR1 and the expression of BR biosynthesis and BR target genes.
Collapse
Affiliation(s)
- Bin Song
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Hongli Zhao
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Kangmei Dong
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Meiling Wang
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Shujuan Wu
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Si Li
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Yuxiang Wang
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Peirui Chen
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Liangrong Jiang
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Yi Tao
- Xiamen Plant Genetics Key Laboratory and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361102, China
| |
Collapse
|
73
|
Bassolino L, Buti M, Fulvio F, Pennesi A, Mandolino G, Milc J, Francia E, Paris R. In Silico Identification of MYB and bHLH Families Reveals Candidate Transcription Factors for Secondary Metabolic Pathways in Cannabis sativa L. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1540. [PMID: 33187168 PMCID: PMC7697600 DOI: 10.3390/plants9111540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022]
Abstract
Plant secondary metabolic pathways are finely regulated by the activity of transcription factors, among which members of the bHLH and MYB subfamilies play a main role. Cannabis sativa L. is a unique officinal plant species with over 600 synthesized phytochemicals having diverse scale-up industrial and pharmaceutical usage. Despite comprehensive knowledge of cannabinoids' metabolic pathways, very little is known about their regulation, while the literature on flavonoids' metabolic pathways is still scarce. In this study, we provide the first genome-wide analysis of bHLH and MYB families in C. sativa reference cultivar CBDRx and identification of candidate coding sequences for these transcription factors. Cannabis sativa bHLHs and MYBs were then classified into functional subfamilies through comparative phylogenetic analysis with A. thaliana transcription factors. Analyses of gene structure and motif distribution confirmed that CsbHLHs and CsMYBs belonging to the same evolutionary clade share common features at both gene and amino acidic level. Candidate regulatory genes for key metabolic pathways leading to flavonoid and cannabinoid synthesis in Cannabis were also retrieved. Furthermore, a candidate gene approach was used to identify structural enzyme-coding genes for flavonoid and cannabinoid synthesis. Taken as a whole, this work represents a valuable resource of candidate genes for further investigation of the C. sativa cannabinoid and flavonoid metabolic pathways for genomic studies and breeding programs.
Collapse
Affiliation(s)
- Laura Bassolino
- CREA-Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (F.F.); (A.P.); (G.M.)
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Firenze, Italy;
| | - Flavia Fulvio
- CREA-Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (F.F.); (A.P.); (G.M.)
| | - Alessandro Pennesi
- CREA-Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (F.F.); (A.P.); (G.M.)
| | - Giuseppe Mandolino
- CREA-Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (F.F.); (A.P.); (G.M.)
| | - Justyna Milc
- Department of Life Sciences, Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (J.M.); (E.F.)
| | - Enrico Francia
- Department of Life Sciences, Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (J.M.); (E.F.)
| | - Roberta Paris
- CREA-Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (F.F.); (A.P.); (G.M.)
| |
Collapse
|
74
|
Effects of shading on lignin biosynthesis in the leaf of tea plant (Camellia sinensis (L.) O. Kuntze). Mol Genet Genomics 2020; 296:165-177. [PMID: 33112986 DOI: 10.1007/s00438-020-01737-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
Shading can effectively reduce photoinhibition and improve the quality of tea. Lignin is one of the most important secondary metabolites that play vital functions in plant growth and development. However, little is known about the relationship between shading and xylogenesis in tea plant. To investigate the effects of shading on lignin accumulation in tea plants, 'Longjing 43' was treated with no shading (S0), 40% (S1) and 80% (S2) shading treatments, respectively. The leaf area and lignin content of tea plant leaves decreased under shading treatments (especially S2). The anatomical characteristics showed that lignin is mainly distributed in the xylem of tea leaves. Promoter analysis indicated that the genes involved in lignin pathway contain several light recognition elements. The transcript abundances of 12 lignin-associated genes were altered under shading treatments. Correlation analysis indicated that most genes showed strong positive correlation with lignin content, and CsPAL, Cs4CL, CsF5H, and CsLAC exhibited significant positively correlation under 40% and 80% shading treatments. The results showed that shading may have an important effect on lignin accumulation in tea leaves. This work will potentially helpful to understand the regulation mechanism of lignin pathway under shading treatment, and provide reference for reducing lignin content and improving tea quality through shading treatment in field operation.
Collapse
|
75
|
Zhang Z, Chen J, Liang C, Liu F, Hou X, Zou X. Genome-Wide Identification and Characterization of the bHLH Transcription Factor Family in Pepper ( Capsicum annuum L.). Front Genet 2020; 11:570156. [PMID: 33101390 PMCID: PMC7545091 DOI: 10.3389/fgene.2020.570156] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022] Open
Abstract
Plant basic helix–loop–helix (bHLH) transcription factors are involved in the regulation of various biological processes in plant growth, development, and stress response. However, members of this important transcription factor family have not been systematically identified and analyzed in pepper (Capsicum annuum L.). In this study, we identified 122 CabHLH genes in the pepper genome and renamed them based on their chromosomal locations. CabHLHs were divided into 21 subfamilies according to their phylogenetic relationships, and genes from the same subfamily had similar motif compositions and gene structures. Sixteen pairs of tandem and segmental duplicated genes were detected in the CabHLH family. Cis-elements identification and expression analysis of the CabHLHs revealed that they may be involved in plant development and stress responses. This study is the first comprehensive analysis of the CabHLH genes and will serve as a reference for further characterization of their molecular functions.
Collapse
Affiliation(s)
- Zhishuo Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China.,Hunan Vegetable Research Institute, Changsha, China
| | - Juan Chen
- Hunan Vegetable Research Institute, Changsha, China
| | | | - Feng Liu
- Hunan Vegetable Research Institute, Changsha, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xuexiao Zou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China.,Hunan Vegetable Research Institute, Changsha, China.,College of Horticulture, Hunan Agricultural University, Changsha, China
| |
Collapse
|
76
|
Lange I, Lange BM, Navarre DA. Altering potato isoprenoid metabolism increases biomass and induces early flowering. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4109-4124. [PMID: 32296842 DOI: 10.1093/jxb/eraa185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Isoprenoids constitute the largest class of plant natural products and have diverse biological functions including in plant growth and development. In potato (Solanum tuberosum), the regulatory mechanism underlying the biosynthesis of isoprenoids through the mevalonate pathway is unclear. We assessed the role of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) homologs in potato development and in the metabolic regulation of isoprenoid biosynthesis by generating transgenic lines with down-regulated expression (RNAi-hmgr) or overexpression (OE) of one (StHMGR1 or StHMGR3) or two genes, HMGR and farnesyl diphosphate synthase (FPS; StHMGR1/StFPS1 or StHMGR3/StFPS1). Levels of sterols, steroidal glycoalkaloids (SGAs), and plastidial isoprenoids were elevated in the OE-HMGR1, OE-HMGR1/FPS1, and OE-HMGR3/FPS1 lines, and these plants exhibited early flowering, increased stem height, increased biomass, and increased total tuber weight. However, OE-HMGR3 lines showed dwarfism and had the highest sterol amounts, but without an increase in SGA levels, supporting a rate-limiting role for HMGR3 in the accumulation of sterols. Potato RNAi-hmgr lines showed inhibited growth and reduced cytosolic isoprenoid levels. We also determined the relative importance of transcriptional control at regulatory points of isoprenoid precursor biosynthesis by assessing gene-metabolite correlations. These findings provide novel insights into specific end-products of the sterol pathway and could be important for crop yield and bioenergy crops.
Collapse
Affiliation(s)
- Iris Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, USA
| | - B Markus Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, USA
| | - Duroy A Navarre
- Washington State University/IAREC, Prosser, WA, USA
- USDA/Agricultural Research Service, Prosser, WA, USA
| |
Collapse
|
77
|
Leivar P, Martín G, Soy J, Dalton-Roesler J, Quail PH, Monte E. Phytochrome-imposed inhibition of PIF7 activity shapes photoperiodic growth in Arabidopsis together with PIF1, 3, 4 and 5. PHYSIOLOGIA PLANTARUM 2020; 169:452-466. [PMID: 32412656 DOI: 10.1111/ppl.13123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 05/29/2023]
Abstract
Under photoperiodic conditions, Arabidopsis thaliana seedling growth is inhibited in long days (LDs), but promoted under the extended nights of short days (SDs). This behavior is partly implemented by phytochrome (phy)-imposed oscillations in the abundance of the growth-promoting, phy-interacting bHLH transcription factors PHY-INTERACTING FACTOR 1 (PIF1), PIF3, PIF4 and PIF5 (PIF quartet or PIFq). However, the observation that a pifq mutant is still stimulated to elongate when given a phy-inactivating end-of-day far-red pulse (EODFR), suggests that additional factors are involved in the phy-mediated suppression of growth during the subsequent dark period. Here, by combining growth-analysis of pif7 single- and higher-order mutants with gene expression analysis under SD, LD, SD-EODFR, and LD-EODFR, we show that PIF7 promotes growth during the dark hours of SD, by regulating growth-related gene expression. Interestingly, the relative contribution of PIF7 in promoting growth is stronger under EODFR, whereas PIF3 role is more important under SD, suggesting that PIF7 is a prominent target of phy-suppression. Indeed, we show that phy imposes phosphorylation and inactivation of PIF7 during the light hours in SD, and prevents full dephosphorylation during the night. This repression can be lifted with an EODFR, which correlates with increased PIF7-mediated gene expression and elongation. In addition, our results suggest that PIF7 function might involve heterodimerization with PIF3. Furthermore, our data indicate that a pifqpif7 quintuple mutant is largely insensitive to photoperiod for hypocotyl elongation. Collectively, the data suggest that PIF7, together with the PIFq, is required for the photoperiodic regulation of seasonal growth.
Collapse
Affiliation(s)
- Pablo Leivar
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - Guiomar Martín
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Judit Soy
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Jutta Dalton-Roesler
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
- United States Department of Agriculture, Plant Gene Expression Center, Albany, CA, USA
| | - Peter H Quail
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
- United States Department of Agriculture, Plant Gene Expression Center, Albany, CA, USA
| | - Elena Monte
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| |
Collapse
|
78
|
Liang S, Gao X, Wang Y, Zhang H, Yin K, Chen S, Zhang M, Zhao R. Phytochrome-interacting factors regulate seedling growth through ABA signaling. Biochem Biophys Res Commun 2020; 526:1100-1105. [DOI: 10.1016/j.bbrc.2020.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 11/26/2022]
|
79
|
Sun W, Xu XH, Li Y, Xie L, He Y, Li W, Lu X, Sun H, Xie X. OsmiR530 acts downstream of OsPIL15 to regulate grain yield in rice. THE NEW PHYTOLOGIST 2020; 226:823-837. [PMID: 31883119 PMCID: PMC7187366 DOI: 10.1111/nph.16399] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/15/2019] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that play important roles in plant growth and development as well as in stress responses. However, little is known about their regulatory functions affecting rice grain yield. We functionally characterized a novel miRNA in rice, OsmiR530, its target OsPL3, and its upstream regulator phytochrome-interacting factor-like 15 (OsPIL15). Their effects on rice yield were dissected comprehensively. We determined that OsmiR530 negatively regulates grain yield. Blocking OsmiR530 increases grain yield, whereas OsmiR530 overexpression significantly decreases grain size and panicle branching, leading to yield loss. Additionally, OsPL3, which encodes a PLUS3 domain-containing protein, is targeted directly by OsmiR530. Knocking out OsPL3 decreases the grain yield. In-depth analyses indicated that OsPIL15 activates OsMIR530 expression by directly binding to the G-box elements in the promoter. Analyses of genetic variations suggested that the OsMIR530 locus has likely been subjected to artificial selection during rice breeding. The results presented herein reveal a novel OsPIL15-OsmiR530 module controlling rice grain yield, thus providing researchers with a new target for the breeding of high-yielding rice.
Collapse
Affiliation(s)
- Wei Sun
- Shandong Rice Engineering Technology Research CenterShandong Rice Research InstituteShandong Academy of Agricultural SciencesJinan250100China
| | - Xiao Hui Xu
- Shandong Key Laboratory of Plant VirologyInstitute of Plant ProtectionShandong Academy of Agricultural SciencesJinan250100China
| | - Yaping Li
- Shandong Rice Engineering Technology Research CenterShandong Rice Research InstituteShandong Academy of Agricultural SciencesJinan250100China
| | - Lixia Xie
- Shandong Rice Engineering Technology Research CenterShandong Rice Research InstituteShandong Academy of Agricultural SciencesJinan250100China
| | - Yanan He
- Shandong Rice Engineering Technology Research CenterShandong Rice Research InstituteShandong Academy of Agricultural SciencesJinan250100China
| | - Wen Li
- Shandong Rice Engineering Technology Research CenterShandong Rice Research InstituteShandong Academy of Agricultural SciencesJinan250100China
| | - Xingbo Lu
- Shandong Key Laboratory of Plant VirologyInstitute of Plant ProtectionShandong Academy of Agricultural SciencesJinan250100China
| | - Hongwei Sun
- Shandong Key Laboratory of Plant VirologyInstitute of Plant ProtectionShandong Academy of Agricultural SciencesJinan250100China
| | - Xianzhi Xie
- Shandong Rice Engineering Technology Research CenterShandong Rice Research InstituteShandong Academy of Agricultural SciencesJinan250100China
| |
Collapse
|
80
|
Crawford T, Karamat F, Lehotai N, Rentoft M, Blomberg J, Strand Å, Björklund S. Specific functions for Mediator complex subunits from different modules in the transcriptional response of Arabidopsis thaliana to abiotic stress. Sci Rep 2020; 10:5073. [PMID: 32193425 PMCID: PMC7081235 DOI: 10.1038/s41598-020-61758-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/26/2020] [Indexed: 11/22/2022] Open
Abstract
Adverse environmental conditions are detrimental to plant growth and development. Acclimation to abiotic stress conditions involves activation of signaling pathways which often results in changes in gene expression via networks of transcription factors (TFs). Mediator is a highly conserved co-regulator complex and an essential component of the transcriptional machinery in eukaryotes. Some Mediator subunits have been implicated in stress-responsive signaling pathways; however, much remains unknown regarding the role of plant Mediator in abiotic stress responses. Here, we use RNA-seq to analyze the transcriptional response of Arabidopsis thaliana to heat, cold and salt stress conditions. We identify a set of common abiotic stress regulons and describe the sequential and combinatorial nature of TFs involved in their transcriptional regulation. Furthermore, we identify stress-specific roles for the Mediator subunits MED9, MED16, MED18 and CDK8, and putative TFs connecting them to different stress signaling pathways. Our data also indicate different modes of action for subunits or modules of Mediator at the same gene loci, including a co-repressor function for MED16 prior to stress. These results illuminate a poorly understood but important player in the transcriptional response of plants to abiotic stress and identify target genes and mechanisms as a prelude to further biochemical characterization.
Collapse
Affiliation(s)
- Tim Crawford
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, 901 87, Sweden
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Fazeelat Karamat
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 901 87, Sweden
| | - Nóra Lehotai
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, 901 87, Sweden
| | - Matilda Rentoft
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 901 87, Sweden
| | - Jeanette Blomberg
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 901 87, Sweden
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, 901 87, Sweden
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 901 87, Sweden.
| |
Collapse
|
81
|
Abstract
Circadian gene expression oscillates over a 24-h period and regulates many genes critical for growth and development in plants. A key component of the circadian clock is the Evening Complex (EC), a transcriptional repressor complex that contains the proteins LUX ARRHYTHMO, EARLY FLOWERING 3, and EARLY FLOWERING 4 (ELF4). By repressing the expression of genes such as PHYTOCHROME INTERACTING FACTOR4 (PIF4), the EC reduces elongation growth. At warmer temperatures, EC activity is lost, promoting thermomorphogenesis via PIF4 expression. The molecular mechanisms underlying EC activity are not well understood. Here, we combined structural studies with extensive in vitro assays to determine the molecular mechanisms of the temperature-dependent EC binding to DNA and demonstrate the critical role of ELF4 in this activity. The Evening Complex (EC), composed of the DNA binding protein LUX ARRHYTHMO (LUX) and two additional proteins EARLY FLOWERING 3 (ELF3) and ELF4, is a transcriptional repressor complex and a core component of the plant circadian clock. In addition to maintaining oscillations in clock gene expression, the EC also participates in temperature and light entrainment, acting as an important environmental sensor and conveying this information to growth and developmental pathways. However, the molecular basis for EC DNA binding specificity and temperature-dependent activity were not known. Here, we solved the structure of the DNA binding domain of LUX in complex with DNA. Residues critical for high-affinity binding and direct base readout were determined and tested via site-directed mutagenesis in vitro and in vivo. Using extensive in vitro DNA binding assays of LUX alone and in complex with ELF3 and ELF4, we demonstrate that, while LUX alone binds DNA with high affinity, the LUX–ELF3 complex is a relatively poor binder of DNA. ELF4 restores binding to the complex. In vitro, the full EC is able to act as a direct thermosensor, with stronger DNA binding at 4 °C and weaker binding at 27 °C. In addition, an excess of ELF4 is able to restore EC binding even at 27 °C. Taken together, these data suggest that ELF4 is a key modulator of thermosensitive EC activity.
Collapse
|
82
|
IPyA glucosylation mediates light and temperature signaling to regulate auxin-dependent hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci U S A 2020; 117:6910-6917. [PMID: 32152121 DOI: 10.1073/pnas.2000172117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Auxin is a class of plant hormone that plays a crucial role in the life cycle of plants, particularly in the growth response of plants to ever-changing environments. Since the auxin responses are concentration-dependent and higher auxin concentrations might often be inhibitory, the optimal endogenous auxin level must be closely controlled. However, the underlying mechanism governing auxin homeostasis remains largely unknown. In this study, a UDP-glycosyltransferase (UGT76F1) was identified from Arabidopsis thaliana, which participates in the regulation of auxin homeostasis by glucosylation of indole-3-pyruvic acid (IPyA), a major precursor of the auxin indole-3-acetic acid (IAA) biosynthesis, in the formation of IPyA glucose conjugates (IPyA-Glc). In addition, UGT76F1 was found to mediate hypocotyl growth by modulating active auxin levels in a light- and temperature-dependent manner. Moreover, the transcription of UGT76F1 was demonstrated to be directly and negatively regulated by PIF4, which is a key integrator of both light and temperature signaling pathways. This study sheds a light on the trade-off between IAA biosynthesis and IPyA-Glc formation in controlling auxin levels and reveals a regulatory mechanism for plant growth adaptation to environmental changes through glucosylation of IPyA.
Collapse
|
83
|
Sanchez SE, Rugnone ML, Kay SA. Light Perception: A Matter of Time. MOLECULAR PLANT 2020; 13:363-385. [PMID: 32068156 PMCID: PMC7056494 DOI: 10.1016/j.molp.2020.02.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 05/02/2023]
Abstract
Optimizing the perception of external cues and regulating physiology accordingly help plants to cope with the constantly changing environmental conditions to which they are exposed. An array of photoreceptors and intricate signaling pathways allow plants to convey the surrounding light information and synchronize an endogenous timekeeping system known as the circadian clock. This biological clock integrates multiple cues to modulate a myriad of downstream responses, timing them to occur at the best moment of the day and the year. Notably, the mechanism underlying entrainment of the light-mediated clock is not clear. This review addresses known interactions between the light-signaling and circadian-clock networks, focusing on the role of light in clock entrainment and known molecular players in this process.
Collapse
Affiliation(s)
- Sabrina E Sanchez
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matias L Rugnone
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
84
|
Qi L, Liu S, Li C, Fu J, Jing Y, Cheng J, Li H, Zhang D, Wang X, Dong X, Han R, Li B, Zhang Y, Li Z, Terzaghi W, Song CP, Lin R, Gong Z, Li J. PHYTOCHROME-INTERACTING FACTORS Interact with the ABA Receptors PYL8 and PYL9 to Orchestrate ABA Signaling in Darkness. MOLECULAR PLANT 2020; 13:414-430. [PMID: 32059872 DOI: 10.1016/j.molp.2020.02.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 05/18/2023]
Abstract
PHYTOCHROME-INTERACTING FACTORS (PIFs) are a group of basic helix-loop-helix transcription factors that can physically interact with photoreceptors, including phytochromes and cryptochromes. It was previously demonstrated that PIFs accumulated in darkness and repressed seedling photomorphogenesis, and that PIFs linked different photosensory and hormonal pathways to control plant growth and development. In this study, we show that PIFs positively regulate the ABA signaling pathway during the seedling stage specifically in darkness. We found that PIFs positively regulate ABI5 transcript and protein levels in darkness in response to exogenous ABA treatment by binding directly to the G-box motifs in the ABI5 promoter. Consistently, PIFs and the G-box motifs in the ABI5 promoter determine ABI5 expression in darkness, and overexpression of ABI5 could rescue the ABA-insensitive phenotypes of pifq mutants in the dark. Moreover, we discovered that PIFs can physically interact with the ABA receptors PYL8 and PYL9, and that this interaction is not regulated by ABA. Further analyses showed that PYL8 and PYL9 promote PIF4 protein accumulation in the dark and enhance PIF4 binding to the ABI5 promoter, but negatively regulate PIF4-mediated ABI5 activation. Taken together, our data demonstrate that PIFs interact with ABA receptors to orchestrate ABA signaling in darkness by controlling ABI5 expression, providing new insights into the pivotal roles of PIFs as signal integrators in regulating plant growth and development.
Collapse
Affiliation(s)
- Lijuan Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Cong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jingying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinkui Cheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dun Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoji Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaojing Dong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Run Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bosheng Li
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yu Zhang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Plant Gene Expression Center, Agriculture Research Service, U.S. Department of Agriculture, Albany, CA 94710, USA
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Chun-Peng Song
- Institute of Plant Stress Biology, Collaborative Innovation Center of Crop Stress Biology, Henan University, Kaifeng 475001, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
85
|
Wang X, Ma Q, Wang R, Wang P, Liu Y, Mao T. Submergence stress-induced hypocotyl elongation through ethylene signaling-mediated regulation of cortical microtubules in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1067-1077. [PMID: 31638649 DOI: 10.1093/jxb/erz453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/29/2019] [Indexed: 05/21/2023]
Abstract
Plant growth is significantly altered in response to submergence stress. However, the molecular mechanisms used by seedlings in response to this stress, especially for hypocotyl growth, are largely unknown in terrestrial plants such as Arabidopsis thaliana. The microtubule cytoskeleton participates in plant cell growth, but it remains unclear whether submergence-mediated plant growth involves the microtubule cytoskeleton. We demonstrated that in Arabidopsis submergence induced underwater hypocotyl elongation through the activation of ethylene signaling, which modulated cortical microtubule reorganization. Submergence enhanced ethylene signaling, which then activated and stabilized its downstream transcription factor, phytochrome-interacting factor 3 (PIF3), to promote hypocotyl elongation. In particular, the regulation of microtubule organization was important for this physiological process. Microtubule-destabilizing protein 60 (MDP60), which was previously identified as a downstream effector of PIF3, played a positive role in submergence-induced hypocotyl elongation. Submergence induced MDP60 expression through ethylene signaling. The effects of submergence on hypocotyl elongation and cortical microtubule reorganization were suppressed in mdp60 mutants. These data suggest a potential mechanism by which submergence activates ethylene signaling to promote underwater hypocotyl elongation via alteration of the microtubule cytoskeleton in Arabidopsis.
Collapse
Affiliation(s)
- Xiaohong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qianqian Ma
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ran Wang
- Zhengzhou Tabacco Research Institute, Zhengzhou, Henan, China
| | - Pan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yimin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
86
|
Xia Y, Li Z, Wang J, Li Y, Ren Y, Du J, Song Q, Ma S, Song Y, Zhao H, Yang Z, Zhang G, Niu N. Isolation and Identification of a TaTDR-Like Wheat Gene Encoding a bHLH Domain Protein, Which Negatively Regulates Chlorophyll Biosynthesis in Arabidopsis. Int J Mol Sci 2020; 21:ijms21020629. [PMID: 31963591 PMCID: PMC7014150 DOI: 10.3390/ijms21020629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/12/2020] [Accepted: 01/15/2020] [Indexed: 11/26/2022] Open
Abstract
Chlorophyll biosynthesis plays a vital role in chloroplast development and photosynthesis in plants. In this study, we identified an orthologue of the rice gene TDR (Oryza sativa L., Tapetum Degeneration Retardation) in wheat (Triticum aestivum L.) called TaTDR-Like (TaTDRL) by sequence comparison. TaTDRL encodes a putative 557 amino acid protein with a basic helix-loop-helix (bHLH) conserved domain at the C-terminal (295–344 aa). The TaTDRL protein localised to the nucleus and displayed transcriptional activation activity in a yeast hybrid system. TaTDRL was expressed in the leaf tissue and expression was induced by dark treatment. Here, we revealed the potential function of TaTDRL gene in wheat by utilizing transgenic Arabidopsis plants TaTDRL overexpressing (TaTDRL-OE) and TaTDRL-EAR (EAR-motif, a repression domain of only 12 amino acids). Compared with wild-type plants (WT), both TaTDRL-OE and TaTDRL-EAR were characterized by a deficiency of chlorophyll. Moreover, the expression level of the chlorophyll-related gene AtPORC (NADPH:protochlorophyllide oxidoreductase C) in TaTDRL-OE and TaTDRL-EAR was lower than that of WT. We found that TaTDRL physically interacts with wheat Phytochrome Interacting Factor 1 (PIF1) and Arabadopsis PIF1, suggesting that TaTDRL regulates light signaling during dark or light treatment. In summary, TaTDRL may respond to dark or light treatment and negatively regulate chlorophyll biosynthesis by interacting with AtPIF1 in transgenic Arabidopsis.
Collapse
Affiliation(s)
- Yu Xia
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; (Y.X.); (Z.L.); (J.W.); (Y.L.); (Y.R.); (J.D.); (Q.S.); (S.M.); (Y.S.); (Z.Y.)
| | - Zheng Li
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; (Y.X.); (Z.L.); (J.W.); (Y.L.); (Y.R.); (J.D.); (Q.S.); (S.M.); (Y.S.); (Z.Y.)
| | - Junwei Wang
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; (Y.X.); (Z.L.); (J.W.); (Y.L.); (Y.R.); (J.D.); (Q.S.); (S.M.); (Y.S.); (Z.Y.)
| | - Yanhong Li
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; (Y.X.); (Z.L.); (J.W.); (Y.L.); (Y.R.); (J.D.); (Q.S.); (S.M.); (Y.S.); (Z.Y.)
| | - Yang Ren
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; (Y.X.); (Z.L.); (J.W.); (Y.L.); (Y.R.); (J.D.); (Q.S.); (S.M.); (Y.S.); (Z.Y.)
| | - Jingjing Du
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; (Y.X.); (Z.L.); (J.W.); (Y.L.); (Y.R.); (J.D.); (Q.S.); (S.M.); (Y.S.); (Z.Y.)
| | - Qilu Song
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; (Y.X.); (Z.L.); (J.W.); (Y.L.); (Y.R.); (J.D.); (Q.S.); (S.M.); (Y.S.); (Z.Y.)
| | - Shoucai Ma
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; (Y.X.); (Z.L.); (J.W.); (Y.L.); (Y.R.); (J.D.); (Q.S.); (S.M.); (Y.S.); (Z.Y.)
| | - Yulong Song
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; (Y.X.); (Z.L.); (J.W.); (Y.L.); (Y.R.); (J.D.); (Q.S.); (S.M.); (Y.S.); (Z.Y.)
| | - Huiyan Zhao
- College of Plant Protection, Northwest A & F University, Yangling 712100, Shaanxi, China;
| | - Zhiquan Yang
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; (Y.X.); (Z.L.); (J.W.); (Y.L.); (Y.R.); (J.D.); (Q.S.); (S.M.); (Y.S.); (Z.Y.)
| | - Gaisheng Zhang
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; (Y.X.); (Z.L.); (J.W.); (Y.L.); (Y.R.); (J.D.); (Q.S.); (S.M.); (Y.S.); (Z.Y.)
- Correspondence: (G.Z.); (N.N.)
| | - Na Niu
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China; (Y.X.); (Z.L.); (J.W.); (Y.L.); (Y.R.); (J.D.); (Q.S.); (S.M.); (Y.S.); (Z.Y.)
- Correspondence: (G.Z.); (N.N.)
| |
Collapse
|
87
|
Chang X, Xie S, Wei L, Lu Z, Chen ZH, Chen F, Lai Z, Lin Z, Zhang L. Origins and Stepwise Expansion of R2R3-MYB Transcription Factors for the Terrestrial Adaptation of Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:575360. [PMID: 33424877 PMCID: PMC7785938 DOI: 10.3389/fpls.2020.575360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/30/2020] [Indexed: 05/14/2023]
Abstract
The R2R3-MYB transcription factors play critical roles in various processes in embryophytes (land plants). Here, we identified genes encoding R2R3-MYB proteins from rhodophytes, glaucophytes, Chromista, chlorophytes, charophytes, and embryophytes. We classified the R2R3-MYB genes into three subgroups (I, II, and III) based on their evolutionary history and gene structure. The subgroup I is the most ancient group that includes members from all plant lineages. The subgroup II was formed before the divergence of charophytes and embryophytes. The subgroup III genes form a monophyletic group and only comprise members from land plants with conserved exon-intron structure. Each subgroup was further divided into multiple clades. The subgroup I can be divided into I-A, I-B, I-C, and I-D. The I-A, I-B, and I-C are the most basal clades that have originated before the divergence of Archaeplastida. The I-D with the II and III subgroups form a monophyletic group, containing only green plants. The II and III subgroups form another monophyletic group with Streptophyta only. Once on land, the subgroup III genes have experienced two rounds of major expansions. The first round occurred before the origin of land plants, and the second round occurred after the divergence of land plants. Due to significant gene expansion, the subgroup III genes have become the predominant group of R2R3-MYBs in land plants. The highly unbalanced pattern of birth and death evolution of R2R3-MYB genes indicates their important roles in the successful adaptation and massive radiation of land plants to occupy a multitude of terrestrial environments.
Collapse
Affiliation(s)
- Xiaojun Chang
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shupeng Xie
- Suihua Branch of Heilongjiang Academy of Agricultural Sciences, Suihua, China
| | - Lanlan Wei
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhaolian Lu
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Fei Chen
- College of Horticulture, Faculty of Plant Science, Nanjing Agricultural University, Nanjing, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- Zhongxiong Lai,
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, MO, United States
- Zhenguo Lin,
| | - Liangsheng Zhang
- College of Horticulture, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- *Correspondence: Liangsheng Zhang, ;
| |
Collapse
|
88
|
Xiaoxia L, Zhang J, Jinkai S, Ying L, Guodong R. The Salix SmSPR1 Involved in Light-Regulated Cell Expansion by Modulating Microtubule Arrangement. Front Cell Dev Biol 2019; 7:309. [PMID: 31850345 PMCID: PMC6892981 DOI: 10.3389/fcell.2019.00309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022] Open
Abstract
Light signaling and cortical microtubule (MT) arrays are essential to the anisotropic growth of plant cells. Microtubule-associated proteins (MAPs) function as regulators that mediate plant cell expansion or elongation by altering the arrangements of the MT arrays. However, current understanding of the molecular mechanism of MAPs in relation to light to regulate cell expansion or elongation is limited. Here, we show that the MPS SPR1 is involved in light-regulated directional cell expansion by modulating microtubule arrangement. Overexpression of SmSPR1 in Arabidopsis results in right-handed helical orientation of hypocotyls in dark-grown etiolated seedlings, whereas the phenotype of transgenic plants was indistinguishable from those of wild-type plants under light conditions. Phenotypic characterization of the transgenic plants showed reduced anisotropic growth and left-handed helical MT arrays in etiolated hypocotyl cells. Protein interaction assays revealed that SPR1, CSN5A (subunits of COP9 signalosome, a negative regulator of photomorphogenesis), and ELONGATED HYPOCOTYL 5 (HY5, a transcription factor that promotes photomorphogenesis) interacted with each other in vivo. The phenotype of Arabidopsis AtSPR1-overexpressing transgenic lines was similar to that of SmSPR1-overexpressing transgenic plants, and overexpression of Salix SmSPR1 can rescue the spr1 mutant phenotype, thereby revealing the function of SPR1 in plants.
Collapse
Affiliation(s)
- Liu Xiaoxia
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.,Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Sui Jinkai
- Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Luo Ying
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Rao Guodong
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
89
|
Hong M, Chi ZH, Wang YQ, Tang YM, Deng QX, He MY, Wang RK, He YZ. Expression of a Chromoplast-Specific Lycopene β-Cyclase Gene ( CYC- B) Is Implicated in Carotenoid Accumulation and Coloration in the Loquat. Biomolecules 2019; 9:E874. [PMID: 31847172 PMCID: PMC6995616 DOI: 10.3390/biom9120874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 01/24/2023] Open
Abstract
Carotenoids are the principal pigments in the loquat. Although the metabolic pathway of plant carotenoids has been extensively investigated, few studies have been explored the regulatory mechanisms of loquat carotenoids because knowledge of the loquat genome is incomplete. The chromoplast-specific lycopene β-cyclase gene (CYC-B) could catalyze cyclization of lycopene to β-carotene. In this study, the differential accumulation patterns of loquat with different colors were analyzed and virus-induced gene silencing (VIGS) was utilized in order to verify CYC-B gene function. Using a cloning strategy of homologous genes, a CYC-B gene orthologue was successfully identified from the loquat. At a later stage of maturation, CYC-B gene expression and carotenoids concentrations in the 'Dawuxing' variety were higher than in 'Chuannong 1-5-9', possibly leading to the difference in pulp coloration of loquat. Interference of CYC-B gene expression in the loquat demonstrated clear visual changes. The green color in negative control fruits became yellow, while TRV2-CYC-B silenced fruits remained green. CYC-B gene expression and total carotenoid content in the pulp decreased by 32.5% and 44.1%, respectively. Furthermore, multiple key genes in the carotenoid metabolic pathway synergistically responded to downregulation of CYC-B gene expression. In summary, we provide direct evidences that CYC-B gene is involved in carotenoid accumulation and coloration in the loquat.
Collapse
Affiliation(s)
- Min Hong
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (M.H.); (M.-Y.H.); (R.-K.W.); (Y.-Z.H.)
| | - Zhuo-Heng Chi
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.-H.C.); (Q.-X.D.)
| | - Yong-Qing Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.-H.C.); (Q.-X.D.)
| | - Yue-Ming Tang
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Qun-Xian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.-H.C.); (Q.-X.D.)
| | - Ming-Yang He
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (M.H.); (M.-Y.H.); (R.-K.W.); (Y.-Z.H.)
| | - Ri-Kui Wang
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (M.H.); (M.-Y.H.); (R.-K.W.); (Y.-Z.H.)
| | - Yi-Zhong He
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; (M.H.); (M.-Y.H.); (R.-K.W.); (Y.-Z.H.)
| |
Collapse
|
90
|
Deconstructing and repurposing the light-regulated interplay between Arabidopsis phytochromes and interacting factors. Commun Biol 2019; 2:448. [PMID: 31815202 PMCID: PMC6888877 DOI: 10.1038/s42003-019-0687-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/07/2019] [Indexed: 01/30/2023] Open
Abstract
Phytochrome photoreceptors mediate adaptive responses of plants to red and far-red light. These responses generally entail light-regulated association between phytochromes and other proteins, among them the phytochrome-interacting factors (PIF). The interaction with Arabidopsis thaliana phytochrome B (AtPhyB) localizes to the bipartite APB motif of the A. thaliana PIFs (AtPIF). To address a dearth of quantitative interaction data, we construct and analyze numerous AtPIF3/6 variants. Red-light-activated binding is predominantly mediated by the APB N-terminus, whereas the C-terminus modulates binding and underlies the differential affinity of AtPIF3 and AtPIF6. We identify AtPIF variants of reduced size, monomeric or homodimeric state, and with AtPhyB affinities between 10 and 700 nM. Optogenetically deployed in mammalian cells, the AtPIF variants drive light-regulated gene expression and membrane recruitment, in certain cases reducing basal activity and enhancing regulatory response. Moreover, our results provide hitherto unavailable quantitative insight into the AtPhyB:AtPIF interaction underpinning vital light-dependent responses in plants. David Golonka et al. report the epitopes in Arabidopsis phytochrome-interacting factors (PIF) that underlie light-dependent interactions with phytochrome B. They identify compact PIF variants that enable light-activated gene expression and membrane recruitment with reduced basal activity and enhanced regulatory response.
Collapse
|
91
|
Sun W, Jin X, Ma Z, Chen H, Liu M. Basic helix-loop-helix (bHLH) gene family in Tartary buckwheat (Fagopyrum tataricum): Genome-wide identification, phylogeny, evolutionary expansion and expression analyses. Int J Biol Macromol 2019; 155:1478-1490. [PMID: 31734362 DOI: 10.1016/j.ijbiomac.2019.11.126] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022]
Abstract
Tartary buckwheat (Fagopyrum tataricum) a kind of edible and medicinal plant, is of great nutritional value. It is difficult to remove the hull of Tartary buckwheat fruit and breeding new easy-dehulled varieties has been one of the major breeding objectives. The bHLH gene family plays a vital role in plant growth and fruit dehiscence. In order to improve Tartary buckwheat breeding, we need to study the bHLH gene family for excavating genes with potential regulation of fruit development and dehiscence. Here, 164 Fagopyrum tataricum bHLH (FtbHLH) genes were identified. Analyses of gene structure and motif composition illustrate that the members of specific FtbHLH subfamily are relatively conserved. Synteny and phylogenetic analyses of bHLH genes in Tartary buckwheat and other plants lay a foundation for further exploring the evolutionary characteristic of the FtbHLH genes (FtbHLHs). qRT-PCR experiments showed that FtbHLHs expression patterns were different in plant organs, indicating that they may perform diverse functions. In addition, some genes that potentially regulate flower and fruit development and easy dehulling were screened out. Overall, this study will be helpful for further analyzing the biological function of FtbHLHs and provides clues for improving the genetic breeding and economic value of the Tartary buckwheat.
Collapse
Affiliation(s)
- Wenjun Sun
- Shanghai Jiao Tong University, School of Agriculture and Biology, Shanghai, China; Sichuan Agricultural University, College of Life Science, Ya'an, China
| | - Xiu Jin
- Sichuan Agricultural University, College of Life Science, Ya'an, China
| | - Zhaotang Ma
- Shanghai Jiao Tong University, School of Agriculture and Biology, Shanghai, China; Sichuan Agricultural University, College of Life Science, Ya'an, China
| | - Hui Chen
- Sichuan Agricultural University, College of Life Science, Ya'an, China.
| | - Moyang Liu
- Shanghai Jiao Tong University, School of Agriculture and Biology, Shanghai, China.
| |
Collapse
|
92
|
Genome-Wide Analysis of Basic Helix-Loop-Helix Superfamily Members Reveals Organization and Chilling-Responsive Patterns in Cabbage (Brassica oleracea var. capitata L.). Genes (Basel) 2019; 10:genes10110914. [PMID: 31717469 PMCID: PMC6895899 DOI: 10.3390/genes10110914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 11/16/2022] Open
Abstract
Basic helix–loop–helix (bHLH) transcription factor (TF) family is commonly found in eukaryotes, which is one of the largest families of regulator proteins. It plays an important role in plant growth and development, as well as various biotic and abiotic stresses. However, a comprehensive analysis of the bHLH family has not been reported in Brassica oleracea. In this study, we systematically describe the BobHLHs in the phylogenetic relationships, expression patterns in different organs/tissues, and in response to chilling stress, and gene and protein characteristics. A total of 234 BobHLH genes were identified in the B. oleracea genome and were further clustered into twenty-three subfamilies based on the phylogenetic analyses. A large number of BobHLH genes were unevenly located on nine chromosomes of B. oleracea. Analysis of RNA-Seq expression profiles revealed that 21 BobHLH genes exhibited organ/tissue-specific expression. Additionally, the expression of six BobHLHs (BobHLH003, -048, -059, -093, -109, and -148) were significantly down-regulated in chilling-sensitive cabbage (CS-D9) and chilling-tolerant cabbage (CT-923). At 24 h chilling stress, BobHLH054 was significantly down-regulated and up-regulated in chilling-treated CS-D9 and CT-923. Conserved motif characterization and exon/intron structural patterns showed that BobHLH genes had similar structures in the same subfamily. This study provides a comprehensive analysis of BobHLH genes and reveals several candidate genes involved in chilling tolerance of B. oleracea, which may be helpful to clarify the roles of bHLH family members and understand the regulatory mechanisms of BobHLH genes in response to the chilling stress of cabbage.
Collapse
|
93
|
Identification of CBF Transcription Factors in Tea Plants and a Survey of Potential CBF Target Genes under Low Temperature. Int J Mol Sci 2019; 20:ijms20205137. [PMID: 31627263 PMCID: PMC6829267 DOI: 10.3390/ijms20205137] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 12/05/2022] Open
Abstract
C-repeat binding factors (CBFs) are key signaling genes that can be rapidly induced by cold and bind to the C-repeat/dehydration-responsive motif (CRT/DRE) in the promoter region of the downstream cold-responsive (COR) genes, which play a vital role in the plant response to low temperature. However, the CBF family in tea plants has not yet been elucidated, and the possible target genes regulated by this family under low temperature are still unclear. In this study, we identified five CsCBF family genes in the tea plant genome and analyzed their phylogenetic tree, conserved domains and motifs, and cis-elements. These results indicate that CsCBF3 may be unique in the CsCBF family. This is further supported by our findings from the low-temperature treatment: all the CsCBF genes except CsCBF3 were significantly induced after treatment at 4 °C. The expression profiles of eight tea plant tissues showed that CsCBFs were mainly expressed in winter mature leaves, roots and fruits. Furthermore, 685 potential target genes were identified by transcriptome data and CRT/DRE element information. These target genes play a functional role under the low temperatures of winter through multiple pathways, including carbohydrate metabolism, lipid metabolism, cell wall modification, circadian rhythm, calcium signaling, transcriptional cascade, and hormone signaling pathways. Our findings will further the understanding of the stress regulatory network of CsCBFs in tea plants.
Collapse
|
94
|
Hou J, Li J, Yang Y, Wang Z, Chang B, Yu X, Yuan L, Wang C, Chen G, Tang X, Zhu S. Physiological and Transcriptomic Analyses Elucidate That Exogenous Calcium Can Relieve Injuries to Potato Plants ( Solanum tuberosum L.) under Weak Light. Int J Mol Sci 2019; 20:E5133. [PMID: 31623239 PMCID: PMC6829426 DOI: 10.3390/ijms20205133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 01/15/2023] Open
Abstract
Light is one of the most important abiotic factors for most plants, which affects almost all growth and development stages. In this study, physiological indicators suggest that the application of exogenous Ca2+ improves photosynthesis and changes phytohormone levels. Under weak light, photosynthetic parameters of the net photosynthetic rate (PN), stomatal conductance (Gs), and transpiration rate (Tr) decreased; the antioxidation systems peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) reduced; the degrees of malondialdehyde (MDA), H2O2, and superoxide anion (O2-) free radical damage increased; while exogenous Ca2+ treatment was significantly improved. RNA-seq analysis indicated that a total of 13,640 differently expressed genes (DEGs) were identified and 97 key DEGs related to hormone, photosynthesis, and calcium regulation were differently transcribed. Gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses, plant hormone signal transduction, photosynthesis, carbon metabolism, and phenylpropanoid biosynthesis were significantly enriched. Additionally, quantitative real-time PCR (qRT-PCR) analysis confirmed some of the key gene functions in response to Ca2+. Overall, these results provide novel insights into the complexity of Ca2+ to relieve injuries under weak light, and they are helpful for potato cultivation under weak light stress.
Collapse
Affiliation(s)
- Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei 230036, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei 230036, China.
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China.
| | - Jie Li
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei 230036, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei 230036, China.
| | - Yang Yang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei 230036, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei 230036, China.
| | - Zixin Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei 230036, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei 230036, China.
| | - Bowen Chang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei 230036, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei 230036, China.
| | - Xiaowei Yu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei 230036, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei 230036, China.
| | - Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei 230036, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei 230036, China.
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China.
| | - Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei 230036, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei 230036, China.
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China.
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei 230036, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei 230036, China.
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China.
| | - Xiaoyan Tang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei 230036, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei 230036, China.
| | - Shidong Zhu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Hefei 230036, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, Hefei 230036, China.
- Department of vegetable culture and breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China.
| |
Collapse
|
95
|
Mortezaeefar M, Fotovat R, Shekari F, Sasani S. Comprehensive Understanding of the Interaction Among Stress Hormones Signalling Pathways by Gene Co-expression Network. Curr Bioinform 2019. [DOI: 10.2174/1574893614666190226160742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Plants respond to various stresses at the same time. Recent studies show
that interactions of various phytohormones can play important roles in response to stresses.
Objective:
Although many studies have been done about the effects of the individual hormones,
little information exists about the crosstalk among the hormone signalling pathways in plants.
Methods:
In this work, the weighted gene co-expression network analysis method was used to
define modules containing genes with highly correlated expression patterns in response to abscisic
acid, jasmonic acid, and salicylic acid in Arabidopsis.
Results:
Results indicate that plant hormones cause major changes the expression profile and
control diverse cell functions, including response to environmental stresses and external factors,
cell cycle, and antioxidant activity. In addition, AtbHLH15 and HY5 transcription factors can
participate in phytochrome pathways in response to the phytohormones. It is probable that some
Type III WRKY transcription factors control the response to bacterium separately from the other
stresses. The E2Fa/DPa transcription factor also regulates the cell cycle.
Conclusion:
In general, many processes and pathways in plants may be regulated using a
combination of abscisic acid, jasmonic acid, and salicylic acid.
Collapse
Affiliation(s)
- Maryam Mortezaeefar
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Reza Fotovat
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Farid Shekari
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Shahryar Sasani
- Crop and Horticultural Sciences Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Kermanshah, Iran
| |
Collapse
|
96
|
Paik I, Chen F, Ngoc Pham V, Zhu L, Kim JI, Huq E. A phyB-PIF1-SPA1 kinase regulatory complex promotes photomorphogenesis in Arabidopsis. Nat Commun 2019; 10:4216. [PMID: 31527679 PMCID: PMC6746701 DOI: 10.1038/s41467-019-12110-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 08/22/2019] [Indexed: 01/20/2023] Open
Abstract
CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) is a highly conserved E3 ubiquitin ligase from plants to animals and acts as a central repressor of photomorphogenesis in plants. SUPPRESSOR OF PHYA-105 1 family members (SPA1-SPA4) directly interact with COP1 and enhance COP1 activity. Despite the presence of a kinase domain at the N-terminus, no COP1-independent role of SPA proteins has been reported. Here we show that SPA1 acts as a serine/threonine kinase and directly phosphorylates PIF1 in vitro and in vivo. SPAs are necessary for the light-induced phosphorylation, ubiquitination and subsequent degradation of PIF1. Moreover, the red/far-red light photoreceptor phyB interacts with SPA1 through its C-terminus and enhances the recruitment of PIF1 for phosphorylation. These data provide a mechanistic view on how the COP1-SPA complexes serve as an example of a cognate kinase-E3 ligase complex that selectively triggers rapid phosphorylation and removal of its substrates, and how phyB modulates this process to promote photomorphogenesis. SPA proteins repress plant photomorphogenesis by promoting the E3 ligase activity of COP1. Here the authors show that SPAs also act as serine/threonine kinase and are required for phyB-mediated light-dependent phosphorylation and degradation of the PIF1 transcription factor.
Collapse
Affiliation(s)
- Inyup Paik
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Fulu Chen
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA.,MOA Key Laboratory of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Vinh Ngoc Pham
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ling Zhu
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA.,Syngenta Crop Protection, LLC., Research Triangle Park, NC, 27709, USA
| | - Jeong-Il Kim
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA.,Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Korea
| | - Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
97
|
Wang F, Gao Y, Liu Y, Zhang X, Gu X, Ma D, Zhao Z, Yuan Z, Xue H, Liu H. BES1-regulated BEE1 controls photoperiodic flowering downstream of blue light signaling pathway in Arabidopsis. THE NEW PHYTOLOGIST 2019; 223:1407-1419. [PMID: 31009078 DOI: 10.1111/nph.15866] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 04/14/2019] [Indexed: 05/23/2023]
Abstract
BRI1-EMS-SUPPRESSOR 1 (BES1) functions as a key regulator in the brassinosteroid (BR) pathway that promotes plant growth. However, whether BES1 is involved in photoperiodic flowering is unknown. Here we report that BES1 acts as a positive regulator of photoperiodic flowering, but it cannot directly bind FLOWERING LOCUS T (FT) promoter. BR ENHANCED EXPRESSION 1 (BEE1) is the direct target of BES1 and acts downstream of BES1. BEE1 is also a positive regulator of photoperiodic flowering. BEE1 binds directly to the FT chromatin to activate the transcription of FT and promote flowering initiation. More importantly, BEE1 promotes flowering in a blue light photoreceptor CRYPTOCHROME 2 (CRY2) partially dependent manner, as it physically interacts with CRY2 under the blue light. Furthermore, BEE1 is regulated by both BRs and blue light. The transcription of BEE1 is induced by BRs, and the BEE1 protein is stabilized under the blue light. Our findings indicate that BEE1 is the integrator of BES1 and CRY2 mediating flowering, and BES1-BEE1-FT is a new signaling pathway in regulating photoperiodic flowering.
Collapse
Affiliation(s)
- Fei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yongshun Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture/College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yawen Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xin Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xingxing Gu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Dingbang Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhiwei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhenjiang Yuan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hongwei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
98
|
SHB1 and CCA1 interaction desensitizes light responses and enhances thermomorphogenesis. Nat Commun 2019; 10:3110. [PMID: 31308379 PMCID: PMC6629618 DOI: 10.1038/s41467-019-11071-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/18/2019] [Indexed: 12/13/2022] Open
Abstract
Light and temperature are two important environmental signals to plants. After dawn, photo-activated phytochromes translocate into the nucleus and interact with a family of negative basic helix-loop-helix PIF regulators. Subsequent phosphorylation and degradation of PIFs triggers a series of photomorphogenic responses. However, excess light can damage the photosynthetic apparatus and leads to photoinhibition. Plants acclimate to a balanced state of photomorphogenesis to avoid photodamage. Here, we show that upregulation of PIF4 expression by SHB1 and CCA1 under red light represents a desensitization step. After dawn, the highly expressed circadian clock protein CCA1 brings circadian signals to the regulatory region of the PIF4 signaling hub. Recruitment of SHB1 by CCA1 modulates red light-specific induction of PIF4 expression thus integrating circadian and light signals. As noon approaches and light intensity and ambient temperature tend to increase, the SHB1–CCA1 interaction sustains PIF4 expression to trigger thermomorphogenic responses to changing light and temperature conditions. The PIF4 transcription factor promotes adaptation to elevated temperature but is degraded under red light to trigger photomorphogenesis. Here Sun et al. show that the core circadian component CCA1 recruits SHB1 to sustain PIF4 expression after dawn to balance thermomorphogenesis and light responses.
Collapse
|
99
|
Ranade SS, Delhomme N, García-Gil MR. Global gene expression analysis in etiolated and de-etiolated seedlings in conifers. PLoS One 2019; 14:e0219272. [PMID: 31276530 PMCID: PMC6611632 DOI: 10.1371/journal.pone.0219272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/19/2019] [Indexed: 12/02/2022] Open
Abstract
Plant life cycle begins with germination of seed below the ground. This is followed by seedling's development in the dark: skotomorphogenesis; and then a light-mediated growth: photomorphogenesis. After germination, hypocotyl grows rapidly to reach the sun, which involves elongation of shoot at the expense of root and cotyledons. Upon reaching ground level, seedling gets exposed to sunlight following a switch from the etiolated (skotomorphogenesis) to the de-etiolated (photomorphogenesis) stage, involving a series of molecular and physiological changes. Gymnosperms have evolved very differently and adopted diverse strategies as compared to angiosperms; with regards to response to light quality, conifers display a very mild high-irradiance response as compared to angiosperms. Absence of apical hook and synthesis of chlorophyll during skotomorphogenesis are two typical features in gymnosperms which differentiate them from angiosperms (dicots). Information regarding etiolation and de-etiolation processes are well understood in angiosperms, but these mechanisms are less explored in conifer species. It is, therefore, interesting to know how similar these processes are in conifers as compared to angiosperms. We performed a global expression analysis (RNA sequencing) on etiolated and de-etiolated seedlings of two economically important conifer species in Sweden to review the differentially expressed genes associated with the two processes. Based on the results, we propose that high levels of HY5 in conifers under DARK condition coupled with expression of few other genes associated with de-etiolation in angiosperms e.g. SPA, DET1 (lower expression under DARK) and CRY1 (higher expression under DARK), leads to partial expression of photomorphogenic genes in the DARK phenotype in conifers as displayed by absence of apical hook, opening of cotyledons and synthesis of chlorophyll.
Collapse
Affiliation(s)
- Sonali Sachin Ranade
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE, Umeå, Sweden
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE, Umeå, Sweden
| | - Nicolas Delhomme
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE, Umeå, Sweden
| | - M. Rosario García-Gil
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE, Umeå, Sweden
| |
Collapse
|
100
|
Nohales MA, Liu W, Duffy T, Nozue K, Sawa M, Pruneda-Paz JL, Maloof JN, Jacobsen SE, Kay SA. Multi-level Modulation of Light Signaling by GIGANTEA Regulates Both the Output and Pace of the Circadian Clock. Dev Cell 2019; 49:840-851.e8. [PMID: 31105011 PMCID: PMC6597437 DOI: 10.1016/j.devcel.2019.04.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/16/2019] [Accepted: 04/17/2019] [Indexed: 01/29/2023]
Abstract
Integration of environmental signals with endogenous biological processes is essential for organisms to thrive in their natural environment. Being entrained by periodic environmental changes, the circadian clock incorporates external information to coordinate physiological processes, phasing them to the optimal time of the day and year. Here, we present a pivotal role for the clock component GIGANTEA (GI) as a genome-wide regulator of transcriptional networks mediating growth and adaptive processes in plants. We provide mechanistic details on how GI integrates endogenous timing with light signaling pathways through the global modulation of PHYTOCHROME-INTERACTING FACTORs (PIFs). Gating of the activity of these transcriptional regulators by GI directly affects a wide array of output rhythms, including photoperiodic growth. Furthermore, we uncover a role for PIFs in mediating light input to the circadian oscillator and show how their regulation by GI is required to set the pace of the clock in response to light-dark cycles.
Collapse
Affiliation(s)
- Maria A Nohales
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Wanlu Liu
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Zhejiang University, University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Tomas Duffy
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Kazunari Nozue
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Mariko Sawa
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, San Diego, La Jolla, CA 92093, USA
| | - Jose L Pruneda-Paz
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, San Diego, La Jolla, CA 92093, USA
| | - Julin N Maloof
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Steve A Kay
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|