51
|
Bystrova EI, Zhukovskaya NV, Ivanov VB. Dependence of Root Cell Growth and Division on Root Diameter. Russ J Dev Biol 2018. [DOI: 10.1134/s1062360418020029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
52
|
Jiang K, Yung V, Chiba T, Feldman LJ. Longitudinal patterning in roots: a GATA2-auxin interaction underlies and maintains the root transition domain. PLANTA 2018; 247:831-843. [PMID: 29249045 DOI: 10.1007/s00425-017-2831-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
In Arabidopsis thaliana root meristems the GATA2 transcription factor is a marker for the root transition domain, is auxin regulated, and functions to restrict cell division activity. The growing part of roots is comprised of three discrete regions; the proliferative domain (PD), an elongation zone, and interposed between these two, the transition domain (TD), which is the focus of this investigation. Within the TD, it is hypothesized that cells are reprogrammed, losing the capacity to divide and begin to differentiate. In recently germinated Arabidopsis thaliana seedlings, a TD is not anatomically evident, but subsequently forms in a region of the root in which there has occurred prior expression of both AUX1/PIN2 proteins and of transcripts of the GATA transcription factor family (pGATA2:H2B-YFP or pGATA2:GUS). pGATA2:GUS expression is regulated by auxin and is reduced in seedlings in which either auxin transport or auxin sensitivity is perturbed. Application of cytokinin results in a reduction in both pGATA2:GUS expression and in TD cell number, via a pathway involving ARR1 and ARR12. Overexpression of GATA2 is accompanied by a reduction in cell number in the PD, but has no effect on cell number in the TD, whereas in knockdowns of GATA transcription factors, cell number is reduced in both the PD and TD. We conclude: (1) that GATA2 expression is localized to (a marker for) the TD; (2) that development and maintenance of the TD are associated with an auxin-regulation of GATA2 expression; (3) that GATA transcription factors function to restrict cell division activity.
Collapse
Affiliation(s)
- Keni Jiang
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA, 94720, USA
| | - Vincent Yung
- Department of Sociology, Northwestern University, 1810 Chicago Avenue, Evanston, IL, 60208, USA
| | - Taisei Chiba
- Japan External Trade Organization San Francisco, 575 Market Street, Suite 2400, San Francisco, CA, 94105, USA
| | - Lewis J Feldman
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA, 94720, USA.
| |
Collapse
|
53
|
Pavelescu I, Vilarrasa-Blasi J, Planas-Riverola A, González-García MP, Caño-Delgado AI, Ibañes M. A Sizer model for cell differentiation in Arabidopsis thaliana root growth. Mol Syst Biol 2018; 14:e7687. [PMID: 29321184 PMCID: PMC5787709 DOI: 10.15252/msb.20177687] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Plant roots grow due to cell division in the meristem and subsequent cell elongation and differentiation, a tightly coordinated process that ensures growth and adaptation to the changing environment. How the newly formed cells decide to stop elongating becoming fully differentiated is not yet understood. To address this question, we established a novel approach that combines the quantitative phenotypic variability of wild‐type Arabidopsis roots with computational data from mathematical models. Our analyses reveal that primary root growth is consistent with a Sizer mechanism, in which cells sense their length and stop elongating when reaching a threshold value. The local expression of brassinosteroid receptors only in the meristem is sufficient to set this value. Analysis of roots insensitive to BR signaling and of roots with gibberellin biosynthesis inhibited suggests distinct roles of these hormones on cell expansion termination. Overall, our study underscores the value of using computational modeling together with quantitative data to understand root growth.
Collapse
Affiliation(s)
- Irina Pavelescu
- Department of Molecular Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.,Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain
| | - Josep Vilarrasa-Blasi
- Department of Molecular Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Ainoa Planas-Riverola
- Department of Molecular Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Mary-Paz González-García
- Department of Molecular Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Ana I Caño-Delgado
- Department of Molecular Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Marta Ibañes
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain .,Universitat de Barcelona Institute of Complex Systems (UBICS) Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
54
|
Ivanov VB, Filin AN. Cytokinins regulate root growth through its action on meristematic cell proliferation but not on the transition to differentiation. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:215-221. [PMID: 32291035 DOI: 10.1071/fp16340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/01/2017] [Indexed: 06/11/2023]
Abstract
Contrary to the wide-spread view that cytokinins change the rate of root growth and meristem size by regulating the cell transition to elongation (differentiation), our data showed that cytokinins affected the cell cycle duration in the meristem. The rate of meristematic cell transition to elongation itself is regulated by two groups of independent processes, through influence on (i) the life-span of cells in the meristem, and (ii) the cell proliferation rate in the meristem. Trans-zeatin slows down the root growth rate and the cell transition to elongation as a result of prolongation of mitotic cycles. The life-span of cells in the meristem does not change. The number of meristematic cells in one file decreases due to inhibition of cell proliferation but not to an acceleration of cell transition to elongation. Roots of triple mutant ipt3ipt5ipt7, in which cytokinin synthesis is slowed down, behave in an opposite way such that the rate of cell transition to elongation and cell proliferation is speeded up. Their peculiarity is that the life-span of cells in meristem becomes shorter than in control roots. In both cases, a change in concentration of endogenous cytokinin or in its signalling are associated with a change in mitotic cycle duration.
Collapse
Affiliation(s)
- Victor B Ivanov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, 127276, Moscow, Russia
| | - Alexey N Filin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, 127276, Moscow, Russia
| |
Collapse
|
55
|
Chen DH, Huang Y, Jiang C, Si JP. Chromatin-Based Regulation of Plant Root Development. FRONTIERS IN PLANT SCIENCE 2018; 9:1509. [PMID: 30386363 PMCID: PMC6198463 DOI: 10.3389/fpls.2018.01509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/26/2018] [Indexed: 05/10/2023]
Abstract
Plant is endowed with sessile habit and nutrient acquisition mainly through the root organ, which also provides an excellent model to study stem cell fate and asymmetric division due to well-organized cell layers and relatively simple cell types in root meristem. Besides genetic material DNA wrapped around histone octamer, chromatin structure determined by chromatin modification including DNA methylation, histone modification and chromatin remodeling also contributes greatly to the regulation of gene expression. In this review, we summarize the current progresses on the molecular mechanisms of chromatin modification in regulating root development.
Collapse
Affiliation(s)
- Dong-Hong Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium Catenatum, Zhejiang A&F University, Hangzhou, China
- *Correspondence: Dong-Hong Chen
| | - Yong Huang
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, China
| | | | - Jin-Ping Si
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium Catenatum, Zhejiang A&F University, Hangzhou, China
- Jin-Ping Si
| |
Collapse
|
56
|
Šimkūnas A, Valašinaitė S, Denisov V. Comparative systemic analysis of the cellular growth of leaves and roots in controlled conditions. JOURNAL OF PLANT PHYSIOLOGY 2018; 220:128-135. [PMID: 29175544 DOI: 10.1016/j.jplph.2017.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
The comparative cytological analysis of the leaf/root growth of Lolium multiflorum has been performed. It revealed differences of the mentioned above/under-ground organs that express the whole plant's polarity. To perform accurate and simultaneous growth comparison a climatic-hydroponics system has been implemented. A sharp increase in the epidermis cell length of the leaf meristem has been detected for the first time. It allows the proposal of a new way to demarcate the boundary of the meristem and suggests a lengthed leaf meristem, that is 4 times longer than the root meristem. As the cell cycle duration in leaves and roots is similar, the prolonged leaf meristem and a higher leaf growth rate could be determined by the longer life span of cells in meristem, resulting in more cell cycles. The prolonged meristem provides a significantly higher leaf growth rate, ensuring a functional balance with roots. The elongation zone of the roots is significantly shorter than in leaves, which is caused by the larger relative root elongation rate and the slower meristemic root growth rate. The novelty formulated, i.e., the prolonged leaf meristem, opens theoretical perspectives in longitudinal zonation, in finding molecular markers and provides practical significance for the biology of productivity.
Collapse
Affiliation(s)
- Alvydas Šimkūnas
- Marine Technology and Natural Sciences Faculty, Klaipeda University, Bijūnų str. 17, 91225 Klaipėda, Lithuania.
| | - Sandra Valašinaitė
- Marine Technology and Natural Sciences Faculty, Klaipeda University, Bijūnų str. 17, 91225 Klaipėda, Lithuania.
| | - Vitalij Denisov
- Marine Technology and Natural Sciences Faculty, Klaipeda University, Bijūnų str. 17, 91225 Klaipėda, Lithuania.
| |
Collapse
|
57
|
Blob B, Heo JO, Helariutta Y. Phloem differentiation: an integrative model for cell specification. JOURNAL OF PLANT RESEARCH 2018; 131:31-36. [PMID: 29204753 PMCID: PMC5762813 DOI: 10.1007/s10265-017-0999-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/18/2017] [Indexed: 05/21/2023]
Abstract
Plant vasculature consists of two major conductive cell types, xylem tracheary elements and phloem sieve elements (SEs). Both cell types undergo a highly specialized differentiation process. The root meristem of Arabidopsis displays a stereotypical anatomy in which the central vasculature is surrounded by concentric layers of outer tissues. Each cell file is derived from stem cells located in the root tip. A series of formative and proliferative divisions take place in the meristem; these are followed by cell expansion and differentiation. Protophloem differentiation is unique in being complete only 20-25 cells away from the first stem cell, and during the differentiation process the cells lose several organelles, including the nucleus, while the remaining organelles are rearranged. Defects in SE development have been shown to result in impaired auxin transport and response and therefore systemically affect root growth. Although a few genes have been demonstrated to function in phloem development, detailed analyses and a comprehensive understanding of sieve element development (i.e. how often the stem cells divide, how frequently enucleation takes place, and how SE development is coordinated between cell division and differentiation on a molecular level) are still lacking. Advanced live-imaging techniques which enable prolonged time-lapse captures of root tip growth as well as single-cell transcriptomic analysis of the 20-25 cells in the SE file could help resolve these questions. In addition, understanding the interplay between the PLETHORA (PLT) gradient, which is known to govern the root zonation, and phloem development within the root meristem could shed light on the rapidity of SE differentiation and its importance to the meristem.
Collapse
Affiliation(s)
- Bernhard Blob
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge, CB2 1LR, UK
| | - Jung-Ok Heo
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge, CB2 1LR, UK
- Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | - Yka Helariutta
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge, CB2 1LR, UK.
- Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
58
|
Cajero Sánchez W, García-Ponce B, Sánchez MDLP, Álvarez-Buylla ER, Garay-Arroyo A. Identifying the transition to the maturation zone in three ecotypes of Arabidopsis thaliana roots. Commun Integr Biol 2017; 11:e1395993. [PMID: 29497470 PMCID: PMC5824961 DOI: 10.1080/19420889.2017.1395993] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 11/23/2022] Open
Abstract
The Arabidopsis thaliana (hereafter Arabidopsis) root has become a useful model for studying how organ morphogenesis emerge from the coordination and balance of cell proliferation and differentiation, as both processes may be observed and quantified in the root at different stages of development. Hence, being able to objectively identify and delimit the different stages of root development has been very important. Up to now, three different zones along the longitudinal axis of the primary root of Arabidopsis, have been identified: the root apical meristematic zone (RAM) with two domains [the proliferative (PD) and the transition domain (TD)], the elongation zone (EZ) and the maturation zone (MZ). We previously reported a method to quantify the length of the cells of the meristematic and the elongation zone, as well as the boundaries or transitions between the root domains along the growing part of the Arabidopsis root. In this study, we provide a more accurate criterion to identify the MZ. Traditionally, the transition between the EZ to the MZ has been established by the emergence of the first root-hair bulge in the epidermis, because this emergence coincides with cell maturation in this cell type. But we have found here that after the emergence of the first root-hair bulge some cells continue to elongate and we have confirmed this in three different Arabidopsis ecotypes. We established the limit between the EZ and the MZ by looking for the closest cortical cell with a longer length than the average cell length of 10 cells after the cortical cell closest to the epidermal cell with the first root-hair bulge in these three ecotypes. In Col-0 and Ws this cell is four cells above the one with the root hair bulge and, in the Ler ecotype, this cell is five cells above. To unambiguously identifying the site at which cells stop elongating and attain their final length and fate at the MZ, we propose to calculate the length of completely elongated cortical cells counting 10 cells starting from the sixth cell above the cortical cell closest to the epidermal cell with the first root-hair bulge. We validated this proposal in the three ecotypes analyzed and consider that this proposal may aid at having a more objective way to characterize root phenotypes and compare among them.
Collapse
Affiliation(s)
- Wendy Cajero Sánchez
- Laboratorio de Genética Molecular, Desarrollo, Evolución y Epigenética de Plantas, Universidad Nacional Autónoma de México, 3er Circuito Exterior junto al Jardín Botánico, Ciudad Universitaria, Ciudad de México, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo, Evolución y Epigenética de Plantas, Universidad Nacional Autónoma de México, 3er Circuito Exterior junto al Jardín Botánico, Ciudad Universitaria, Ciudad de México, Mexico
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Desarrollo, Evolución y Epigenética de Plantas, Universidad Nacional Autónoma de México, 3er Circuito Exterior junto al Jardín Botánico, Ciudad Universitaria, Ciudad de México, Mexico
| | - Elena R Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo, Evolución y Epigenética de Plantas, Universidad Nacional Autónoma de México, 3er Circuito Exterior junto al Jardín Botánico, Ciudad Universitaria, Ciudad de México, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo, Evolución y Epigenética de Plantas, Universidad Nacional Autónoma de México, 3er Circuito Exterior junto al Jardín Botánico, Ciudad Universitaria, Ciudad de México, Mexico
| |
Collapse
|
59
|
Lavrekha VV, Pasternak T, Ivanov VB, Palme K, Mironova VV. 3D analysis of mitosis distribution highlights the longitudinal zonation and diarch symmetry in proliferation activity of the Arabidopsis thaliana root meristem. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:834-845. [PMID: 28921702 DOI: 10.1111/tpj.13720] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/26/2017] [Accepted: 09/04/2017] [Indexed: 05/13/2023]
Abstract
To date CYCB1;1 marker and cortex cell lengths have been conventionally used to determine the proliferation activity of the Arabidopsis root meristem. By creating a 3D map of mitosis distribution we showed that these markers overlooked that stele and endodermis save their potency to divide longer than the cortex and epidermis. Cessation of cell divisions is not a random process, so that mitotic activity within the endodermis and stele shows a diarch pattern. Mitotic activity of all root tissues peaked at the same distance from the quiescent center (QC); however, different tissues stopped dividing at different distances, with cells of the protophloem exiting the cell cycle first and the procambial cells being the last. The robust profile of mitotic activity in the root tip defines the longitudinal zonation in the meristem with the proliferation domain, where all cells are able to divide; and the transition domain, where the cell files cease to divide. 3D analysis of cytokinin deficient and cytokinin signaling mutants showed that their proliferation domain is similar to that of the wild type, but the transition domain is much longer. Our data suggest a strong inhibitory effect of cytokinin on anticlinal cell divisions in the stele.
Collapse
Affiliation(s)
- Viktoriya V Lavrekha
- Institute of Cytology and Genetics SB RAS, 10 Lavrentyev Ave., Novosibirsk, 630090, Russia
- LCTEB, Novosibirsk State University, 2 Pirogova Str., Novosibirsk, 630090, Russia
| | - Taras Pasternak
- Institute of Biology II/Molecular Plant Physiology, Centre for BioSystems Analysis, BIOSS Centre for Biological Signalling Studies University of Freiburg, Freiburg, 79104, Germany
| | - Victor B Ivanov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Str. 35, 127276, Moscow, Russia
| | - Klaus Palme
- Institute of Biology II/Molecular Plant Physiology, Centre for BioSystems Analysis, BIOSS Centre for Biological Signalling Studies University of Freiburg, Freiburg, 79104, Germany
| | - Victoria V Mironova
- Institute of Cytology and Genetics SB RAS, 10 Lavrentyev Ave., Novosibirsk, 630090, Russia
- LCTEB, Novosibirsk State University, 2 Pirogova Str., Novosibirsk, 630090, Russia
| |
Collapse
|
60
|
Moreno-Ortega B, Fort G, Muller B, Guédon Y. Identifying Developmental Zones in Maize Lateral Root Cell Length Profiles using Multiple Change-Point Models. FRONTIERS IN PLANT SCIENCE 2017; 8:1750. [PMID: 29123533 PMCID: PMC5662930 DOI: 10.3389/fpls.2017.01750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/25/2017] [Indexed: 05/04/2023]
Abstract
The identification of the limits between the cell division, elongation and mature zones in the root apex is still a matter of controversy when methods based on cellular features, molecular markers or kinematics are compared while methods based on cell length profiles have been comparatively underexplored. Segmentation models were developed to identify developmental zones within a root apex on the basis of epidermal cell length profiles. Heteroscedastic piecewise linear models were estimated for maize lateral roots of various lengths of both wild type and two mutants affected in auxin signaling (rtcs and rum-1). The outputs of these individual root analyses combined with morphological features (first root hair position and root diameter) were then globally analyzed using principal component analysis. Three zones corresponding to the division zone, the elongation zone and the mature zone were identified in most lateral roots while division zone and sometimes elongation zone were missing in arrested roots. Our results are consistent with an auxin-dependent coordination between cell flux, cell elongation and cell differentiation. The proposed segmentation models could extend our knowledge of developmental regulations in longitudinally organized plant organs such as roots, monocot leaves or internodes.
Collapse
Affiliation(s)
- Beatriz Moreno-Ortega
- LEPSE, INRA, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR AGAP, Montpellier, France
- Inria, Virtual Plants, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Guillaume Fort
- LEPSE, INRA, Montpellier SupAgro, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Bertrand Muller
- LEPSE, INRA, Montpellier SupAgro, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Yann Guédon
- CIRAD, UMR AGAP, Montpellier, France
- Inria, Virtual Plants, Montpellier, France
- Université de Montpellier, Montpellier, France
| |
Collapse
|
61
|
Pasternak T, Haser T, Falk T, Ronneberger O, Palme K, Otten L. A 3D digital atlas of the Nicotiana tabacum root tip and its use to investigate changes in the root apical meristem induced by the Agrobacterium 6b oncogene. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:31-42. [PMID: 28670824 DOI: 10.1111/tpj.13631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 05/12/2023]
Abstract
Using the intrinsic Root Coordinate System (iRoCS) Toolbox, a digital atlas at cellular resolution has been constructed for Nicotiana tabacum roots. Mitotic cells and cells labeled for DNA replication with 5-ethynyl-2'-deoxyuridine (EdU) were mapped. The results demonstrate that iRoCS analysis can be applied to roots that are thicker than those of Arabidopsis thaliana without histological sectioning. A three-dimensional (3-D) analysis of the root tip showed that tobacco roots undergo several irregular periclinal and tangential divisions. Irrespective of cell type, rapid cell elongation starts at the same distance from the quiescent center, however, boundaries between cell proliferation and transition domains are cell-type specific. The data support the existence of a transition domain in tobacco roots. Cell endoreduplication starts in the transition domain and continues into the elongation zone. The tobacco root map was subsequently used to analyse root organization changes caused by the inducible expression of the Agrobacterium 6b oncogene. In tobacco roots that express the 6b gene, the root apical meristem was shorter and radial cell growth was reduced, but the mitotic and DNA replication indexes were not affected. The epidermis of 6b-expressing roots produced less files and underwent abnormal periclinal divisions. The periclinal division leading to mature endodermis and cortex3 cell files was delayed. These findings define additional targets for future studies on the mode of action of the Agrobacterium 6b oncogene.
Collapse
Affiliation(s)
- Taras Pasternak
- Institute of Biology II, University of Freiburg, 79104, Freiburg, Germany
| | - Thomas Haser
- Institute of Biology II, University of Freiburg, 79104, Freiburg, Germany
| | - Thorsten Falk
- Institute of Computer Science, University of Freiburg, 79110, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Olaf Ronneberger
- Institute of Computer Science, University of Freiburg, 79110, Freiburg, Germany
| | - Klaus Palme
- Institute of Biology II, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Centre for Biological Systems Analysis (ZBSA), University of Freiburg, 79104, Freiburg, Germany
| | - Léon Otten
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes, Rue du Général Zimmer 12, 67084, Strasbourg, France
| |
Collapse
|
62
|
Kirschner GK, Stahl Y, Von Korff M, Simon R. Unique and Conserved Features of the Barley Root Meristem. FRONTIERS IN PLANT SCIENCE 2017; 8:1240. [PMID: 28785269 PMCID: PMC5519606 DOI: 10.3389/fpls.2017.01240] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/30/2017] [Indexed: 05/20/2023]
Abstract
Plant root growth is enabled by root meristems that harbor the stem cell niches as a source of progenitors for the different root tissues. Understanding the root development of diverse plant species is important to be able to control root growth in order to gain better performances of crop plants. In this study, we analyzed the root meristem of the fourth most abundant crop plant, barley (Hordeum vulgare). Cell division studies revealed that the barley stem cell niche comprises a Quiescent Center (QC) of around 30 cells with low mitotic activity. The surrounding stem cells contribute to root growth through the production of new cells that are displaced from the meristem, elongate and differentiate into specialized root tissues. The distal stem cells produce the root cap and lateral root cap cells, while cells lateral to the QC generate the epidermis, as it is typical for monocots. Endodermis and inner cortex are derived from one common initial lateral to the QC, while the outer cortex cell layers are derived from a distinct stem cell. In rice and Arabidopsis, meristem homeostasis is achieved through feedback signaling from differentiated cells involving peptides of the CLE family. Application of synthetic CLE40 orthologous peptide from barley promotes meristem cell differentiation, similar to rice and Arabidopsis. However, in contrast to Arabidopsis, the columella stem cells do not respond to the CLE40 peptide, indicating that distinct mechanisms control columella cell fate in monocot and dicot plants.
Collapse
Affiliation(s)
- Gwendolyn K. Kirschner
- Institute for Developmental Genetics, Heinrich Heine UniversityDüsseldorf, Germany
- Institute for Plant Genetics, Heinrich Heine UniversityDüsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine UniversityDüsseldorf, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich Heine UniversityDüsseldorf, Germany
| | - Maria Von Korff
- Institute for Plant Genetics, Heinrich Heine UniversityDüsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine UniversityDüsseldorf, Germany
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich Heine UniversityDüsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine UniversityDüsseldorf, Germany
| |
Collapse
|
63
|
García-Gómez ML, Azpeitia E, Álvarez-Buylla ER. A dynamic genetic-hormonal regulatory network model explains multiple cellular behaviors of the root apical meristem of Arabidopsis thaliana. PLoS Comput Biol 2017; 13:e1005488. [PMID: 28426669 PMCID: PMC5417714 DOI: 10.1371/journal.pcbi.1005488] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 05/04/2017] [Accepted: 03/30/2017] [Indexed: 11/18/2022] Open
Abstract
The study of the concerted action of hormones and transcription factors is fundamental to understand cell differentiation and pattern formation during organ development. The root apical meristem of Arabidopsis thaliana is a useful model to address this. It has a stem cell niche near its tip conformed of a quiescent organizer and stem or initial cells around it, then a proliferation domain followed by a transition domain, where cells diminish division rate before transiting to the elongation zone; here, cells grow anisotropically prior to their final differentiation towards the plant base. A minimal model of the gene regulatory network that underlies cell-fate specification and patterning at the root stem cell niche was proposed before. In this study, we update and couple such network with both the auxin and cytokinin hormone signaling pathways to address how they collectively give rise to attractors that correspond to the genetic and hormonal activity profiles that are characteristic of different cell types along A. thaliana root apical meristem. We used a Boolean model of the genetic-hormonal regulatory network to integrate known and predicted regulatory interactions into alternative models. Our analyses show that, after adding some putative missing interactions, the model includes the necessary and sufficient components and regulatory interactions to recover attractors characteristic of the root cell types, including the auxin and cytokinin activity profiles that correlate with different cellular behaviors along the root apical meristem. Furthermore, the model predicts the existence of activity configurations that could correspond to the transition domain. The model also provides a possible explanation for apparently paradoxical cellular behaviors in the root meristem. For example, how auxin may induce and at the same time inhibit WOX5 expression. According to the model proposed here the hormonal regulation of WOX5 might depend on the cell type. Our results illustrate how non-linear multi-stable qualitative network models can aid at understanding how transcriptional regulators and hormonal signaling pathways are dynamically coupled and may underlie both the acquisition of cell fate and the emergence of hormonal activity profiles that arise during complex organ development.
Collapse
Affiliation(s)
- Mónica L. García-Gómez
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Eugenio Azpeitia
- INRIA project-team Virtual Plants, joint with CIRAD and INRA, Montpellier, France
| | - Elena R. Álvarez-Buylla
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| |
Collapse
|
64
|
Romero-Arias JR, Hernández-Hernández V, Benítez M, Alvarez-Buylla ER, Barrio RA. Model of polar auxin transport coupled to mechanical forces retrieves robust morphogenesis along the Arabidopsis root. Phys Rev E 2017; 95:032410. [PMID: 28415207 DOI: 10.1103/physreve.95.032410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 11/06/2022]
Abstract
Stem cells are identical in many scales, they share the same molecular composition, DNA, genes, and genetic networks, yet they should acquire different properties to form a functional tissue. Therefore, they must interact and get some external information from their environment, either spatial (dynamical fields) or temporal (lineage). In this paper we test to what extent coupled chemical and physical fields can underlie the cell's positional information during development. We choose the root apical meristem of Arabidopsis thaliana to model the emergence of cellular patterns. We built a model to study the dynamics and interactions between the cell divisions, the local auxin concentration, and physical elastic fields. Our model recovers important aspects of the self-organized and resilient behavior of the observed cellular patterns in the Arabidopsis root, in particular, the reverse fountain pattern observed in the auxin transport, the PIN-FORMED (protein family of auxin transporters) polarization pattern and the accumulation of auxin near the region of maximum curvature in a bent root. Our model may be extended to predict altered cellular patterns that are expected under various applied auxin treatments or modified physical growth conditions.
Collapse
Affiliation(s)
- J Roberto Romero-Arias
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México Distrito Federal, Mexico.,Instituto de Matemáticas, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro 76230, Mexico
| | - Valeria Hernández-Hernández
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, 04510 México Distrito Federal, Mexico.,Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Mariana Benítez
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, 04510 México Distrito Federal, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México Distrito Federal, Mexico
| | - Elena R Alvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, 04510 México Distrito Federal, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México Distrito Federal, Mexico
| | - Rafael A Barrio
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México Distrito Federal, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México Distrito Federal, Mexico
| |
Collapse
|
65
|
Wegner LH. A pump/leak model of growth: the biophysics of cell elongation in higher plants revisited. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:185-197. [PMID: 32480556 DOI: 10.1071/fp16184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/08/2016] [Indexed: 06/11/2023]
Abstract
Current concepts of growth hydraulics in higher plants are critically revisited, and it is concluded that they partly fail to interpret the experimental data adequately, particularly in the case of hydroponics-grown roots. Theoretical considerations indicate that the growth rate in roots is controlled by the extensibility of the cell wall, excluding water availability (i.e. hydraulic conductance) as a major constraint. This is supported by the findings that the growth rate does not scale with turgor, and that no radial nor axial water potential gradients have been observed in the root elongation zone. Nevertheless, a water potential deficit ranging from -0.2 to -0.6MPa has repeatedly been reported for growing cells that by far exceeds the shallow trans-membrane water potential difference required for the uptake of growth water. Unexpectedly, growth was also shown to depend on the hydraulic conductance (LP) of the plasma membrane of root cells, even though LP should generally be too large to have an impact on growth. For leaves, similar observations have been reported, but the interpretation of the data is less straightforward. Inconsistencies associated with the current model of growth hydraulics prompt the author to suggest a revised model that comprises, in addition to a passive mechanism of water transport across the plasma membrane of growing cells mediated by aquaporins ('leak') a secondary active water transport ('pump'), in analogy to a mechanism previously demonstrated for mammalian epithelia and postulated for xylem parenchyma cells in roots. Water is hypothesised to be secreted against a trans-membrane water potential difference by cotransport with solutes (salts, sugars, and/or amino acids), taking advantage of the free energy released by this transport step. The solute concentration gradient is supposed to be maintained by a subsequent retrieval of the solutes from the apoplast and back-transport at the expense of metabolic energy. Water secretion tends to reduce the turgor pressure and retards growth, but turgor and, in turn, growth can be upregulated very rapidly independent from any adjustment in the osmolyte deposition rate by increasing LP and/or reducing secondary active water transport, e.g. when the root is exposed to mild osmotic stress, as confirmed by experimental studies.
Collapse
Affiliation(s)
- Lars H Wegner
- Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology (IHM), Campus North, Building 630, Hermann v. Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Email
| |
Collapse
|
66
|
Yang X, Dong G, Palaniappan K, Mi G, Baskin TI. Temperature-compensated cell production rate and elongation zone length in the root of Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2017; 40:264-276. [PMID: 27813107 DOI: 10.1111/pce.12855] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/26/2016] [Accepted: 10/31/2016] [Indexed: 05/13/2023]
Abstract
To understand how root growth responds to temperature, we used kinematic analysis to quantify division and expansion parameters in the root of Arabidopsis thaliana. Plants were grown at temperatures from 15 to 30 °C, given continuously from germination. Over these temperatures, root length varies more than threefold in the wild type but by only twofold in a double mutant for phytochrome-interacting factor 4 and 5. For kinematics, the spatial profile of velocity was obtained with new software, Stripflow. We find that 30 °C truncates the elongation zone and curtails cell production, responses that probably reflect the elicitation of a common pathway for handling severe stresses. Curiously, rates of cell division at all temperatures are closely correlated with rates of radial expansion. Between 15 to 25 °C, root growth rate, maximal elemental elongation rate, and final cell length scale positively with temperature whereas the length of the meristem scales negatively. Non-linear temperature scaling characterizes meristem cell number, time to transit through either meristem or elongation zone, and average cell division rate. Surprisingly, the length of the elongation zone and the total rate of cell production are temperature invariant, constancies that have implications for our understanding of how the underlying cellular processes are integrated.
Collapse
Affiliation(s)
- Xiaoli Yang
- Biology Department, University of Massachusetts, Amherst, 01003, MA, USA
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Gang Dong
- Biology Department, University of Massachusetts, Amherst, 01003, MA, USA
| | - K Palaniappan
- Computer Science Department, University of Missouri, Columbia, 65211, MO, USA
| | - Guohua Mi
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Tobias I Baskin
- Biology Department, University of Massachusetts, Amherst, 01003, MA, USA
| |
Collapse
|
67
|
Salazar-Blas A, Noriega-Calixto L, Campos ME, Eapen D, Cruz-Vázquez T, Castillo-Olamendi L, Sepulveda-Jiménez G, Porta H, Dubrovsky JG, Cassab GI. Robust root growth in altered hydrotropic response1 (ahr1) mutant of Arabidopsis is maintained by high rate of cell production at low water potential gradient. JOURNAL OF PLANT PHYSIOLOGY 2017; 208:102-114. [PMID: 27912083 DOI: 10.1016/j.jplph.2016.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/28/2016] [Accepted: 11/09/2016] [Indexed: 05/03/2023]
Abstract
Hydrotropism is the directional root growth response determined by water stimulus. In a water potential gradient system (WPGS) the roots of the Arabidopsis wild type have a diminished root growth compared to normal medium (NM). In contrast, the altered hydrotropic response1 (ahr1) mutant roots maintain their robust growth in the same WPGS. The aims of this work were to ascertain how ahr1 roots could sustain growth in the WPGS, with a special focus on the integration of cellular processes involved in the signaling that determines root growth during abiotic stress and their relation to hydrotropism. Cellular analysis of the root apical meristem of ahr1 mutant contrary to the wild type showed an absence of changes in the meristem length, the elongation zone length, the length of fully elongated cells, and the cell cycle duration. The robust and steady root growth of ahr1 seedlings in the WPGS is explained by the mutant capacity to maintain cell production and cell elongation at the same level as in the NM. Analysis of auxin response at a transcriptional level showed that roots of the ahr1 mutant had a lower auxin response when grown in the WPGS, compared to wild type, indicating that auxin signaling participates in attenuation of root growth under water stress conditions. Also, wild type plants exhibited a high increase in proline content while ahr1 mutants showed minimum changes in the Normal Medium→Water Stress Medium (NM→WSM), a lower water potential gradient system than the WPGS. Accordingly, in this condition, gene expression of Δ1-6 Pyrroline-5-Carboxylate Synthetase1 (P5CS1) involved in proline synthesis strongly increased in wild type but not in ahr1 seedlings. The ahr1 phenotype shows unique features since the mutant root cells continue to proliferate and grow in the presence of a progressively negative water potential gradient at a level comparable to wild type growing in the NM. As such, it represents an exceptional resource for understanding hydrotropism.
Collapse
Affiliation(s)
- Amed Salazar-Blas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Laura Noriega-Calixto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - María E Campos
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Delfeena Eapen
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Tania Cruz-Vázquez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Luis Castillo-Olamendi
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Gabriela Sepulveda-Jiménez
- Doctorado en Ciencias Biológicas, Facultad de Ciencias UNAM, Centro de Desarrollo de Productos Bióticos-IPN, Calle CeProBi No. 8, Col. San Isidro, Yautepec Morelos 62731, México
| | - Helena Porta
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Gladys I Cassab
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México.
| |
Collapse
|
68
|
Zubairova U, Nikolaev S, Penenko A, Podkolodnyy N, Golushko S, Afonnikov D, Kolchanov N. Mechanical Behavior of Cells within a Cell-Based Model of Wheat Leaf Growth. FRONTIERS IN PLANT SCIENCE 2016; 7:1878. [PMID: 28018409 PMCID: PMC5156783 DOI: 10.3389/fpls.2016.01878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Understanding the principles and mechanisms of cell growth coordination in plant tissue remains an outstanding challenge for modern developmental biology. Cell-based modeling is a widely used technique for studying the geometric and topological features of plant tissue morphology during growth. We developed a quasi-one-dimensional model of unidirectional growth of a tissue layer in a linear leaf blade that takes cell autonomous growth mode into account. The model allows for fitting of the visible cell length using the experimental cell length distribution along the longitudinal axis of a wheat leaf epidermis. Additionally, it describes changes in turgor and osmotic pressures for each cell in the growing tissue. Our numerical experiments show that the pressures in the cell change over the cell cycle, and in symplastically growing tissue, they vary from cell to cell and strongly depend on the leaf growing zone to which the cells belong. Therefore, we believe that the mechanical signals generated by pressures are important to consider in simulations of tissue growth as possible targets for molecular genetic regulators of individual cell growth.
Collapse
Affiliation(s)
- Ulyana Zubairova
- Department of Systems Biology, Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of ScienceNovosibirsk, Russia
| | - Sergey Nikolaev
- Department of Systems Biology, Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of ScienceNovosibirsk, Russia
- Laboratory of Analysis and Optimization of Non-Linear Systems, Institute of Computational Technologies (ICG), Siberian Branch of Russian Academy of ScienceNovosibirsk, Russia
| | - Aleksey Penenko
- Laboratory of Mathematical Modeling of Hydrodynamic Processes in the Environment, Institute of Computational Mathematics and Mathematical Geophysics (ICM & MG), Siberian Branch of Russian Academy of ScienceNovosibirsk, Russia
- Chair of Mathematical Methods in Geophysics, Faculty of Mechanics and Mathematics, Novosibirsk State UniversityNovosibirsk, Russia
| | - Nikolay Podkolodnyy
- Department of Systems Biology, Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of ScienceNovosibirsk, Russia
- Laboratory of Mathematical Problems of Geophysics, Institute of Computational Mathematics and Mathematical Geophysics (ICM & MG), Siberian Branch of Russian Academy of ScienceNovosibirsk, Russia
- Chair of Informatics Systems, Faculty of Information Technologies, Novosibirsk State UniversityNovosibirsk, Russia
| | - Sergey Golushko
- Laboratory of Analysis and Optimization of Non-Linear Systems, Institute of Computational Technologies (ICG), Siberian Branch of Russian Academy of ScienceNovosibirsk, Russia
- Chair of Mathematical Modeling, Faculty of Mechanics and Mathematics, Novosibirsk State UniversityNovosibirsk, Russia
| | - Dmitry Afonnikov
- Department of Systems Biology, Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of ScienceNovosibirsk, Russia
- Chair of Informational Biology, Faculty of Natural Sciences, Novosibirsk State UniversityNovosibirsk, Russia
| | - Nikolay Kolchanov
- Department of Systems Biology, Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of ScienceNovosibirsk, Russia
- Chair of Informational Biology, Faculty of Natural Sciences, Novosibirsk State UniversityNovosibirsk, Russia
| |
Collapse
|
69
|
Gutierrez C, Desvoyes B, Vergara Z, Otero S, Sequeira-Mendes J. Links of genome replication, transcriptional silencing and chromatin dynamics. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:92-99. [PMID: 27816819 DOI: 10.1016/j.pbi.2016.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/06/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
Genome replication in multicellular organisms involves duplication of both the genetic material and the epigenetic information stored in DNA and histones. In some cases, the DNA replication process provides a window of opportunity for resetting chromatin marks in the genome of the future daughter cells instead of transferring them identical copies. This crucial step of genome replication depends on the correct function of DNA replication factors and the coordination between replication and transcription in proliferating cells. In fact, the histone composition and modification status appears to be intimately associated with the proliferation potential of cells within developing organs. Here we discuss these topics in the light of recent advances in our understanding of how genome replication, transcriptional silencing and chromatin dynamics are coordinated in proliferating cells.
Collapse
Affiliation(s)
- Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain.
| | - Bénédicte Desvoyes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Zaida Vergara
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Sofía Otero
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Joana Sequeira-Mendes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
70
|
Lozano-Sotomayor P, Chávez Montes RA, Silvestre-Vañó M, Herrera-Ubaldo H, Greco R, Pablo-Villa J, Galliani BM, Diaz-Ramirez D, Weemen M, Boutilier K, Pereira A, Colombo L, Madueño F, Marsch-Martínez N, de Folter S. Altered expression of the bZIP transcription factor DRINK ME affects growth and reproductive development in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:437-451. [PMID: 27402171 DOI: 10.1111/tpj.13264] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 05/05/2023]
Abstract
Here we describe an uncharacterized gene that negatively influences Arabidopsis growth and reproductive development. DRINK ME (DKM; bZIP30) is a member of the bZIP transcription factor family, and is expressed in meristematic tissues such as the inflorescence meristem (IM), floral meristem (FM), and carpel margin meristem (CMM). Altered DKM expression affects meristematic tissues and reproductive organ development, including the gynoecium, which is the female reproductive structure and is determinant for fertility and sexual reproduction. A microarray analysis indicates that DKM overexpression affects the expression of cell cycle, cell wall, organ initiation, cell elongation, hormone homeostasis, and meristem activity genes. Furthermore, DKM can interact in yeast and in planta with proteins involved in shoot apical meristem maintenance such as WUSCHEL, KNAT1/BP, KNAT2 and JAIBA, and with proteins involved in medial tissue development in the gynoecium such as HECATE, BELL1 and NGATHA1. Taken together, our results highlight the relevance of DKM as a negative modulator of Arabidopsis growth and reproductive development.
Collapse
Affiliation(s)
- Paulina Lozano-Sotomayor
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Gto., México
| | - Ricardo A Chávez Montes
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Gto., México
| | - Marina Silvestre-Vañó
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Campus de la Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | - Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Gto., México
| | | | - Jeanneth Pablo-Villa
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Gto., México
| | - Bianca M Galliani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - David Diaz-Ramirez
- Departamento de Biotecnología y Bioquímica, CINVESTAV-IPN, Irapuato, Gto., México
| | - Mieke Weemen
- Wageningen University and Research Centre, Bioscience, P.O. Box 619, 6700 AP, Wageningen, The Netherlands
| | - Kim Boutilier
- Wageningen University and Research Centre, Bioscience, P.O. Box 619, 6700 AP, Wageningen, The Netherlands
| | - Andy Pereira
- Crop, Soil and Environmental Sciences, University of Arkansas, 115 Plant Science Building, Fayetteville, AR, 72701, USA
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Francisco Madueño
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Campus de la Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | | | - Stefan de Folter
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Gto., México
| |
Collapse
|
71
|
García-Cruz KV, García-Ponce B, Garay-Arroyo A, Sanchez MDLP, Ugartechea-Chirino Y, Desvoyes B, Pacheco-Escobedo MA, Tapia-López R, Ransom-Rodríguez I, Gutierrez C, Alvarez-Buylla ER. The MADS-box XAANTAL1 increases proliferation at the Arabidopsis root stem-cell niche and participates in transition to differentiation by regulating cell-cycle components. ANNALS OF BOTANY 2016; 118:787-796. [PMID: 27474508 PMCID: PMC5055633 DOI: 10.1093/aob/mcw126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/16/2016] [Indexed: 05/08/2023]
Abstract
Background Morphogenesis depends on the concerted modulation of cell proliferation and differentiation. Such modulation is dynamically adjusted in response to various external and internal signals via complex transcriptional regulatory networks that mediate between such signals and regulation of cell-cycle and cellular responses (proliferation, growth, differentiation). In plants, which are sessile, the proliferation/differentiation balance is plastically adjusted during their life cycle and transcriptional networks are important in this process. MADS-box genes are key developmental regulators in eukaryotes, but their role in cell proliferation and differentiation modulation in plants remains poorly studied. Methods We characterize the XAL1 loss-of-function xal1-2 allele and overexpression lines using quantitative cellular and cytometry analyses to explore its role in cell cycle, proliferation, stem-cell patterning and transition to differentiation. We used quantitative PCR and cellular markers to explore if XAL1 regulates cell-cycle components and PLETHORA1 (PLT1) gene expression, as well as confocal microscopy to analyse stem-cell niche organization. Key Results We previously showed that XAANTAL1 (XAL1/AGL12) is necessary for Arabidopsis root development as a promoter of cell proliferation in the root apical meristem. Here, we demonstrate that XAL1 positively regulates the expression of PLT1 and important components of the cell cycle: CYCD3;1, CYCA2;3, CYCB1;1, CDKB1;1 and CDT1a. In addition, we show that xal1-2 mutant plants have a premature transition to differentiation with root hairs appearing closer to the root tip, while endoreplication in these plants is partially compromised. Coincidently, the final size of cortex cells in the mutant is shorter than wild-type cells. Finally, XAL1 overexpression-lines corroborate that this transcription factor is able to promote cell proliferation at the stem-cell niche. Conclusion XAL1 seems to be an important component of the networks that modulate cell proliferation/differentiation transition and stem-cell proliferation during Arabidopsis root development; it also regulates several cell-cycle components.
Collapse
Affiliation(s)
- Karla V. García-Cruz
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - María De La Paz Sanchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - Yamel Ugartechea-Chirino
- Centro de Investigación en Dinámica Celular, Facultad de Ciencias, Universidad Autónoma de Morelos, Av. Universidad 1001, Col Chamilpa, Cuernavaca, Morelos, 62209, México
| | - Bénédicte Desvoyes
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Mario A. Pacheco-Escobedo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - Rosalinda Tapia-López
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - Ivan Ransom-Rodríguez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Elena R. Alvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México
- *For correspondence. E-mail
| |
Collapse
|
72
|
Pacheco-Escobedo MA, Ivanov VB, Ransom-Rodríguez I, Arriaga-Mejía G, Ávila H, Baklanov IA, Pimentel A, Corkidi G, Doerner P, Dubrovsky JG, Álvarez-Buylla ER, Garay-Arroyo A. Longitudinal zonation pattern in Arabidopsis root tip defined by a multiple structural change algorithm. ANNALS OF BOTANY 2016; 118:763-776. [PMID: 27358290 PMCID: PMC5055628 DOI: 10.1093/aob/mcw101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/08/2016] [Accepted: 04/08/2016] [Indexed: 05/23/2023]
Abstract
Background and Aims The Arabidopsis thaliana root is a key experimental system in developmental biology. Despite its importance, we are still lacking an objective and broadly applicable approach for identification of number and position of developmental domains or zones along the longitudinal axis of the root apex or boundaries between them, which is essential for understanding the mechanisms underlying cell proliferation, elongation and differentiation dynamics during root development. Methods We used a statistics approach, the multiple structural change algorithm (MSC), for estimating the number and position of developmental transitions in the growing portion of the root apex. Once the positions of the transitions between domains and zones were determined, linear models were used to estimate the critical size of dividing cells (LcritD) and other parameters. Key Results The MSC approach enabled identification of three discrete regions in the growing parts of the root that correspond to the proliferation domain (PD), the transition domain (TD) and the elongation zone (EZ). Simultaneous application of the MSC approach and G2-to-M transition (CycB1;1DB:GFP) and endoreduplication (pCCS52A1:GUS) molecular markers confirmed the presence and position of the TD. We also found that the MADS-box gene XAANTAL1 (XAL1) is required for the wild-type (wt) PD increase in length during the first 2 weeks of growth. Contrary to wt, in the xal1 loss-of-function mutant the increase and acceleration of root growth were not detected. We also found alterations in LcritD in xal1 compared with wt, which was associated with longer cell cycle duration in the mutant. Conclusions The MSC approach is a useful, objective and versatile tool for identification of the PD, TD and EZ and boundaries between them in the root apices and can be used for the phenotyping of different genetic backgrounds, experimental treatments or developmental changes within a genotype. The tool is publicly available at www.ibiologia.com.mx/MSC_analysis.
Collapse
Affiliation(s)
- Mario A. Pacheco-Escobedo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, México DF, Mexico
| | - Victor B. Ivanov
- Department of Root Physiology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, Moscow, 127276 Russia
| | - Iván Ransom-Rodríguez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, México DF, Mexico
| | - Germán Arriaga-Mejía
- Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, U.P. Adolfo López Mateos, México DF, México
| | - Hibels Ávila
- Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, U.P. Adolfo López Mateos, México DF, México
| | - Ilya A. Baklanov
- Department of Root Physiology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, Moscow, 127276 Russia
| | - Arturo Pimentel
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
| | - Gabriel Corkidi
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
| | - Peter Doerner
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Joseph G. Dubrovsky
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, México DF, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, México DF, Mexico
| |
Collapse
|
73
|
Aceves-García P, Álvarez-Buylla ER, Garay-Arroyo A, García-Ponce B, Muñoz R, Sánchez MDLP. Root Architecture Diversity and Meristem Dynamics in Different Populations of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:858. [PMID: 27379140 PMCID: PMC4910468 DOI: 10.3389/fpls.2016.00858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/31/2016] [Indexed: 05/26/2023]
Abstract
Arabidopsis thaliana has been an excellent model system for molecular genetic approaches to development and physiology. More recently, the potential of studying various accessions collected from diverse habitats has been started to exploit. Col-0 has been the best-studied accession but we now know that several traits show significant divergences among them. In this work, we focused in the root that has become a key system for development. We studied root architecture and growth dynamics of 12 Arabidopsis accessions. Our data reveal a wide variability in root architecture and root length among accessions. We also found variability in the root apical meristem (RAM), explained mainly by cell size at the RAM transition domain and possibly by peculiar forms of organization at the stem cell niche in some accessions. Contrary to Col-0 reports, in some accessions the RAM size not always explains the variations in the root length; indicating that elongated cell size could be more relevant in the determination of root length than the RAM size itself. This study contributes to investigations dealing with understanding the molecular and cellular basis of phenotypic variation, the role of plasticity on adaptation, and the developmental mechanisms that may restrict phenotypic variation in response to contrasting environmental conditions.
Collapse
Affiliation(s)
- Pamela Aceves-García
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, MéxicoMexico
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, MéxicoMexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, MéxicoMexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, MéxicoMexico
| | - Rodrigo Muñoz
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, MéxicoMexico
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, MéxicoMexico
| |
Collapse
|
74
|
Omelyanchuk NA, Kovrizhnykh VV, Oshchepkova EA, Pasternak T, Palme K, Mironova VV. A detailed expression map of the PIN1 auxin transporter in Arabidopsis thaliana root. BMC PLANT BIOLOGY 2016; 16 Suppl 1:5. [PMID: 26821586 PMCID: PMC4895256 DOI: 10.1186/s12870-015-0685-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
BACKGROUND Theauxin efflux carrier PIN1 is a key mediator of polar auxin transport in developing plant tissues. This is why factors that are supposed to be involved in auxin distribution are frequently tested in the regulation of PIN1 expression. As a result, diverse aspects of PIN1 expression are dispersed across dozens of papers entirely devoted to other specific topics related to the auxin pathway. Integration of these puzzle pieces about PIN1 expression revealed that, along with a recurring pattern, some features of PIN1 expression varied from article to article. To determine if this uncertainty is related to the specific foci of articles or has a basis in the variability of PIN1 gene activity, we performed a comprehensive 3D analysis of PIN1 expression patterns in Arabidopsis thaliana roots. RESULTS We provide here a detailed map of PIN1 expression in the primary root, in the lateral root primordia and at the root-shoot junction. The variability in PIN1 expression pattern observed in individual roots may occur due to differences in auxin distribution between plants. To simulate this effect, we analysed PIN1 expression in the roots from wild type seedlings treated with different IAA concentrations and pin mutants. Most changes in PIN1 expression after exogenous IAA treatment and in pin mutants were also recorded in wild type but with lower frequency and intensity. Comparative studies of exogenous auxin effects on PIN1pro:GUS and PIN1pro:PIN1-GFP plants indicated that a positive auxin effect is explicit at the level of PIN1 promoter activity, whereas the inhibitory effect relates to post-transcriptional regulation. CONCLUSIONS Our results suggest that the PIN1 expression pattern in the root meristem accurately reflects changes in auxin content. This explains the variability of PIN1 expression in the individual roots and makes PIN1 a good marker for studying root meristem activity.
Collapse
Affiliation(s)
- N A Omelyanchuk
- Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - V V Kovrizhnykh
- Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - E A Oshchepkova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - T Pasternak
- Institute of Biology II/Molecular Plant Physiology, Centre for BioSystems Analysis (ZBSA), BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, 79104, Germany
| | - K Palme
- Institute of Biology II/Molecular Plant Physiology, Centre for BioSystems Analysis (ZBSA), BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, 79104, Germany.
| | - V V Mironova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia.
| |
Collapse
|
75
|
Gavrilovic S, Yan Z, Jurkiewicz AM, Stougaard J, Markmann K. Inoculation insensitive promoters for cell type enriched gene expression in legume roots and nodules. PLANT METHODS 2016; 12:4. [PMID: 26807140 PMCID: PMC4724153 DOI: 10.1186/s13007-016-0105-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/05/2016] [Indexed: 05/13/2023]
Abstract
BACKGROUND Establishment and maintenance of mutualistic plant-microbial interactions in the rhizosphere and within plant roots involve several root cell types. The processes of host-microbe recognition and infection require complex signal exchange and activation of downstream responses. These molecular events coordinate host responses across root cell layers during microbe invasion, ultimately triggering changes of root cell fates. The progression of legume root interactions with rhizobial bacteria has been addressed in numerous studies. However, tools to globally resolve the succession of molecular events in the host root at the cell type level have been lacking. To this end, we aimed to identify promoters exhibiting cell type enriched expression in roots of the model legume Lotus japonicus, as no comprehensive set of such promoters usable in legume roots is available to date. RESULTS Here, we use promoter:GUS fusions to characterize promoters stemming from Arabidopsis, tomato (Lycopersicon esculentum) or L. japonicus with respect to their expression in major cell types of the L. japonicus root differentiation zone, which shows molecular and morphological responses to symbiotic bacteria and fungi. Out of 24 tested promoters, 11 showed cell type enriched activity in L. japonicus roots. Covered cell types or cell type combinations are epidermis (1), epidermis and cortex (2), cortex (1), endodermis and pericycle (2), pericycle and phloem (4), or xylem (1). Activity of these promoters in the respective cell types was stable during early stages of infection of transgenic roots with the rhizobial symbiont of L. japonicus, Mesorhizobium loti. For a subset of five promoters, expression stability was further demonstrated in whole plant transgenics as well as in active nodules. CONCLUSIONS 11 promoters from Arabidopsis (10) or tomato (1) with enriched activity in major L. japonicus root and nodule cell types have been identified. Root expression patterns are independent of infection with rhizobial bacteria, providing a stable read-out in the root section responsive to symbiotic bacteria. Promoters are available as cloning vectors. We expect these tools to help provide a new dimension to our understanding of signaling circuits and transcript dynamics in symbiotic interactions of legumes with microbial symbionts.
Collapse
Affiliation(s)
- Srdjan Gavrilovic
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Zhe Yan
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Anna M. Jurkiewicz
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Katharina Markmann
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| |
Collapse
|
76
|
Volkov V. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. FRONTIERS IN PLANT SCIENCE 2015; 6:873. [PMID: 26579140 PMCID: PMC4621421 DOI: 10.3389/fpls.2015.00873] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/01/2015] [Indexed: 05/18/2023]
Abstract
Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarizes current data concerning Na(+) and K(+) concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows choosing specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX, and SOS1 proteins. Comparison between non-selective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is discussed and questioned. An alternative approach from synthetic biology is to create new regulation networks using novel transport proteins with desired properties for transforming agricultural crops. The approach had not been widely used earlier; it leads also to theoretical and pure scientific aspects of protein chemistry, structure-function relations of membrane proteins, systems biology and physiology of stress and ion homeostasis. Summarizing, several potential ways are aimed at required increase in salinity tolerance of plants of interest.
Collapse
Affiliation(s)
- Vadim Volkov
- Faculty of Life Sciences and Computing, London Metropolitan UniversityLondon, UK
| |
Collapse
|
77
|
Yruela I. Plant development regulation: Overview and perspectives. JOURNAL OF PLANT PHYSIOLOGY 2015; 182:62-78. [PMID: 26056993 DOI: 10.1016/j.jplph.2015.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/28/2015] [Accepted: 05/04/2015] [Indexed: 05/07/2023]
Abstract
Plant development, as occur in other eukaryotes, is conducted through a complex network of hormones, transcription factors, enzymes and micro RNAs, among other cellular components. They control developmental processes such as embryo, apical root and shoot meristem, leaf, flower, or seed formation, among others. The research in these topics has been very active in last decades. Recently, an explosion of new data concerning regulation mechanisms as well as the response of these processes to environmental changes has emerged. Initially, most of investigations were carried out in the model eudicot Arabidopsis but currently data from other plant species are available in the literature, although they are still limited. The aim of this review is focused on summarize the main molecular actors involved in plant development regulation in diverse plant species. A special attention will be given to the major families of genes and proteins participating in these regulatory mechanisms. The information on the regulatory pathways where they participate will be briefly cited. Additionally, the importance of certain structural features of such proteins that confer ductility and flexibility to these mechanisms will also be reported and discussed.
Collapse
Affiliation(s)
- Inmaculada Yruela
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain; Instituto de Biocomputacióon y Física de Sistemas Complejos, Mariano Esquillor, Edificio I+D, 50018 Zaragoza, Spain.
| |
Collapse
|
78
|
Kobayashi K, Suzuki T, Iwata E, Nakamichi N, Suzuki T, Chen P, Ohtani M, Ishida T, Hosoya H, Müller S, Leviczky T, Pettkó-Szandtner A, Darula Z, Iwamoto A, Nomoto M, Tada Y, Higashiyama T, Demura T, Doonan JH, Hauser MT, Sugimoto K, Umeda M, Magyar Z, Bögre L, Ito M. Transcriptional repression by MYB3R proteins regulates plant organ growth. EMBO J 2015; 34:1992-2007. [PMID: 26069325 DOI: 10.15252/embj.201490899] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/12/2015] [Indexed: 11/09/2022] Open
Abstract
In multicellular organisms, temporal and spatial regulation of cell proliferation is central for generating organs with defined sizes and morphologies. For establishing and maintaining the post-mitotic quiescent state during cell differentiation, it is important to repress genes with mitotic functions. We found that three of the Arabidopsis MYB3R transcription factors synergistically maintain G2/M-specific genes repressed in post-mitotic cells and restrict the time window of mitotic gene expression in proliferating cells. The combined mutants of the three repressor-type MYB3R genes displayed long roots, enlarged leaves, embryos, and seeds. Genome-wide chromatin immunoprecipitation revealed that MYB3R3 binds to the promoters of G2/M-specific genes and to E2F target genes. MYB3R3 associates with the repressor-type E2F, E2FC, and the RETINOBLASTOMA RELATED proteins. In contrast, the activator MYB3R4 was in complex with E2FB in proliferating cells. With mass spectrometry and pairwise interaction assays, we identified some of the other conserved components of the multiprotein complexes, known as DREAM/dREAM in human and flies. In plants, these repressor complexes are important for periodic expression during cell cycle and to establish a post-mitotic quiescent state determining organ size.
Collapse
Affiliation(s)
- Kosuke Kobayashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Toshiya Suzuki
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan JST, CREST, Chikusa, Nagoya, Japan
| | - Eriko Iwata
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Norihito Nakamichi
- WPI Institute of Transformative Bio-Molecules, Nagoya University, Chikusa, Nagoya, Japan Graduate School of Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Takamasa Suzuki
- Graduate School of Sciences, Nagoya University, Chikusa, Nagoya, Japan JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Chikusa, Nagoya, Japan
| | - Poyu Chen
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Takashi Ishida
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Hanako Hosoya
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo, Japan
| | - Sabine Müller
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Tünde Leviczky
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | | | - Zsuzsanna Darula
- Laboratory of Proteomic Research, Biological Research Centre, Szeged, Hungary
| | - Akitoshi Iwamoto
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo, Japan
| | - Mika Nomoto
- Graduate School of Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Yasuomi Tada
- Center for Gene Research, Division of Biological Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Tetsuya Higashiyama
- WPI Institute of Transformative Bio-Molecules, Nagoya University, Chikusa, Nagoya, Japan Graduate School of Sciences, Nagoya University, Chikusa, Nagoya, Japan JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Chikusa, Nagoya, Japan
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - John H Doonan
- The National Plant Phenomics Centre, Aberystwyth University, Aberystwyth, UK
| | - Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Masaaki Umeda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan JST, CREST, Ikoma, Nara, Japan
| | - Zoltán Magyar
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary Royal Holloway, School of Biological Sciences, University of London, Egham, Surrey, UK
| | - László Bögre
- Royal Holloway, School of Biological Sciences, University of London, Egham, Surrey, UK
| | - Masaki Ito
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan JST, CREST, Chikusa, Nagoya, Japan
| |
Collapse
|
79
|
Bizet F, Hummel I, Bogeat-Triboulot MB. Length and activity of the root apical meristem revealed in vivo by infrared imaging. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1387-95. [PMID: 25540436 PMCID: PMC4339598 DOI: 10.1093/jxb/eru488] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Understanding how cell division and cell elongation influence organ growth and development is a long-standing issue in plant biology. In plant roots, most of the cell divisions occur in a short and specialized region, the root apical meristem (RAM). Although RAM activity has been suggested to be of high importance to understand how roots grow and how the cell cycle is regulated, few experimental and numeric data are currently available. The characterization of the RAM is difficult and essentially based upon cell length measurements through destructive and time-consuming microscopy approaches. Here, a new non-invasive method is described that couples infrared light imaging and kinematic analyses and that allows in vivo measurements of the RAM length. This study provides a detailed description of the RAM activity, especially in terms of cell flux and cell division rate. We focused on roots of hydroponic grown poplars and confirmed our method on maize roots. How the RAM affects root growth rate is studied by taking advantage of the high inter-individual variability of poplar root growth. An osmotic stress was applied and did not significantly affect the RAM length, highlighting its homeostasis in short to middle-term responses. The methodology described here simplifies a lot experimental procedures, allows an increase in the number of individuals that can be taken into account in experiments, and means new experiments can be formulated that allow temporal monitoring of the RAM length.
Collapse
Affiliation(s)
- François Bizet
- INRA, UMR Ecologie et Ecophysiologie Forestière, F-25420 Champenoux, France Université de Lorraine, UMR Ecologie et Ecophysiologie Forestière, BP 239, F-54506 Vandoeuvre, France
| | - Irène Hummel
- INRA, UMR Ecologie et Ecophysiologie Forestière, F-25420 Champenoux, France Université de Lorraine, UMR Ecologie et Ecophysiologie Forestière, BP 239, F-54506 Vandoeuvre, France
| | - Marie-Béatrice Bogeat-Triboulot
- INRA, UMR Ecologie et Ecophysiologie Forestière, F-25420 Champenoux, France Université de Lorraine, UMR Ecologie et Ecophysiologie Forestière, BP 239, F-54506 Vandoeuvre, France
| |
Collapse
|
80
|
Meldau S, Woldemariam MG, Fatangare A, Svatos A, Galis I. Using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) to study carbon allocation in plants after herbivore attack. BMC Res Notes 2015; 8:45. [PMID: 25888779 PMCID: PMC4341241 DOI: 10.1186/s13104-015-0989-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 01/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although leaf herbivory-induced changes in allocation of recently assimilated carbon between the shoot and below-ground tissues have been described in several species, it is still unclear which part of the root system is affected by resource allocation changes and which signalling pathways are involved. We investigated carbon partitioning in root tissues following wounding and simulated leaf herbivory in young Nicotiana attenuata plants. RESULTS Using 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG), which was incorporated into disaccharides in planta, we found that simulated herbivory reduced carbon partitioning specifically to the root tips in wild type plants. In jasmonate (JA) signalling-deficient COI1 plants, the wound-induced allocation of [(18)F]FDG to the roots was decreased, while more [(18)F]FDG was transported to young leaves, demonstrating an important role of the JA pathway in regulating the wound-induced carbon partitioning between shoots and roots. CONCLUSIONS Our data highlight the use of [(18)F]FDG to study stress-induced carbon allocation responses in plants and indicate an important role of the JA pathway in regulating wound-induced shoot to root signalling.
Collapse
Affiliation(s)
- Stefan Meldau
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745, Jena, Germany.
- German Centre for integrative Biodiversity Research (iDiv), Deutscher Platz 5, 04107, Leipzig, Germany.
- Present address: KWS SAAT AG, Molecular Physiology, R&D, RD-ME-MP, Grimsehlstrasse 31, D-37555, Einbeck, Germany.
| | - Melkamu G Woldemariam
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745, Jena, Germany.
- Present address: Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, 14853, NY, USA.
| | - Amol Fatangare
- Mass Spectrometry Research Group, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745, Jena, Germany.
| | - Ales Svatos
- Mass Spectrometry Research Group, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745, Jena, Germany.
| | - Ivan Galis
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745, Jena, Germany.
- Present address: Okayama University, Institute of Plant Science and Resources, Chuo 2-20-1, 710-0046, Kurashiki, Japan.
| |
Collapse
|
81
|
Napsucialy-Mendivil S, Alvarez-Venegas R, Shishkova S, Dubrovsky JG. Arabidopsis homolog of trithorax1 (ATX1) is required for cell production, patterning, and morphogenesis in root development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6373-84. [PMID: 25205583 PMCID: PMC4246177 DOI: 10.1093/jxb/eru355] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Arabidopsis homolog of trithorax1 (ATX1/SDG27), a known regulator of flower development, encodes a H3K4histone methyltransferase that maintains a number of genes in an active state. In this study, the role of ATX1 in root development was evaluated. The loss-of-function mutant atx1-1 was impaired in primary root growth. The data suggest that ATX1 controls root growth by regulating cell cycle duration, cell production, and the transition from cell proliferation in the root apical meristem (RAM) to cell elongation. In atx1-1, the quiescent centre (QC) cells were irregular in shape and more expanded than those of the wild type. This feature, together with the atypical distribution of T-divisions, the presence of oblique divisions, and the abnormal cell patterning in the RAM, suggests a lack of coordination between cell division and cell growth in the mutant. The expression domain of QC-specific markers was expanded both in the primary RAM and in the developing lateral root primordia of atx1-1 plants. These abnormalities were independent of auxin-response gradients. ATX1 was also found to be required for lateral root initiation, morphogenesis, and emergence. The time from lateral root initiation to emergence was significantly extended in the atx1-1 mutant. Overall, these data suggest that ATX1 is involved in the timing of root development, stem cell niche maintenance, and cell patterning during primary and lateral root development. Thus, ATX1 emerges as an important player in root system architecture.
Collapse
Affiliation(s)
- Selene Napsucialy-Mendivil
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
| | - Raúl Alvarez-Venegas
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Irapuato, Gto., CP 36821, México
| | - Svetlana Shishkova
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
| |
Collapse
|
82
|
Szymanowska-Pułka J, Lipowczan M. Growth rate distribution in the forming lateral root of arabidopsis. ANNALS OF BOTANY 2014; 114:913-921. [PMID: 25108392 PMCID: PMC4171069 DOI: 10.1093/aob/mcu159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/16/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND AND AIMS Microscopic observations of lateral roots (LRs) in Arabidopsis thaliana reveal that the cross-sectional shape of the organ changes from its basal to its apical region. The founder cells for LRs are elongated along the parent root axis, and thus from the site of initiation the base of LRs resemble an ellipse. The circumference of the apical part of LRs is usually a circle. The objective of this study was to analyse the characteristics of changes in the growth field of LRs possessing various shapes in their basal regions. METHODS The LRs of the wild type (Col-0) and two transgenic arabidopsis lines were analysed. On the basis of measurements of the long and short diameters (DL and DS, respectively) of the ellipse-like figure representing the bases of particular LRs, their asymmetry ratios (DL/DS) were determined. Possible differences between accessions were analysed by applying statistical methods. KEY RESULTS No significant differences between accessions were detected. Comparisons were therefore made of the maximal, minimal and mean value of the ratio of all the LRs analysed. Taking into consideration the lack of circular symmetry of the basal part, rates of growth were determined at selected points on the surface of LRs by the application of the growth tensor method, a mathematical tool previously applied only to describe organs with rotational symmetry. Maps showing the distribution of growth rates were developed for surfaces of LRs of various asymmetry ratios. CONCLUSIONS The maps of growth rates on the surfaces of LRs having various shapes of the basal part show differences in both the geometry and the manner of growth, thus indicating that the manner of growth of the LR primordium is correlated to its shape. This is the first report of a description of growth of an asymmetric plant organ using the growth tensor method. The mathematical modelling adopted in the study provides new insights into plant organ formation and shape.
Collapse
Affiliation(s)
| | - Marcin Lipowczan
- Department of Biophysics and Plant Morphogenesis, University of Silesia, Katowice, Poland
| |
Collapse
|
83
|
Reyes-Hernández BJ, Srivastava AC, Ugartechea-Chirino Y, Shishkova S, Ramos-Parra PA, Lira-Ruan V, Díaz de la Garza RI, Dong G, Moon JC, Blancaflor EB, Dubrovsky JG. The root indeterminacy-to-determinacy developmental switch is operated through a folate-dependent pathway in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2014; 202:1223-1236. [PMID: 24635769 DOI: 10.1111/nph.12757] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/02/2014] [Indexed: 05/02/2023]
Abstract
Roots have both indeterminate and determinate developmental programs. The latter is preceded by the former. It is not well understood how the indeterminacy-to-determinacy switch (IDS) is regulated. We isolated a moots koom2 (mko2; 'short root' in Mayan) Arabidopsis thaliana mutant with determinate primary root growth and analyzed the root apical meristem (RAM) behavior using various marker lines. Deep sequencing and genetic and pharmacological complementation permitted the identification of a point mutation in the FOLYLPOLYGLUTAMATE SYNTHETASE1 (FPGS1) gene responsible for the mko2 phenotype. Wild-type FPGS1 is required to maintain the IDS in the 'off' state. When FPGS1 function is compromised, the IDS is turned on and the RAM becomes completely consumed. The polyglutamate-dependent pathway of the IDS involves activation of the quiescent center independently of auxin gradients and regulatory modules participating in RAM maintenance (WUSCHEL-RELATED HOMEOBOX5 (WOX5), PLETHORA, and SCARECROW (SCR)). The mko2 mutation causes drastic changes in folate metabolism and also affects lateral root primordium morphogenesis but not initiation. We identified a metabolism-dependent pathway involved in the IDS in roots. We suggest that the root IDS represents a specific developmental pathway that regulates RAM behaviour and is a different level of regulation in addition to RAM maintenance.
Collapse
Affiliation(s)
- Blanca Jazmín Reyes-Hernández
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 510-3, 62250, Cuernavaca, Mexico
| | - Avinash C Srivastava
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Yamel Ugartechea-Chirino
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 510-3, 62250, Cuernavaca, Mexico
| | - Svetlana Shishkova
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 510-3, 62250, Cuernavaca, Mexico
| | - Perla A Ramos-Parra
- Escuela de Biotecnología y Alimentos, Centro de Biotecnología - FEMSA, Monterrey, 64849, Mexico
| | - Verónica Lira-Ruan
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 510-3, 62250, Cuernavaca, Mexico
| | | | - Gaofeng Dong
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 510-3, 62250, Cuernavaca, Mexico
| | - Jun-Cheol Moon
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 510-3, 62250, Cuernavaca, Mexico
| | - Elison B Blancaflor
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 510-3, 62250, Cuernavaca, Mexico
| |
Collapse
|
84
|
López-Bucio JS, Dubrovsky JG, Raya-González J, Ugartechea-Chirino Y, López-Bucio J, de Luna-Valdez LA, Ramos-Vega M, León P, Guevara-García AA. Arabidopsis thaliana mitogen-activated protein kinase 6 is involved in seed formation and modulation of primary and lateral root development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:169-83. [PMID: 24218326 PMCID: PMC3883294 DOI: 10.1093/jxb/ert368] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPKs) cascades are signal transduction modules highly conserved in all eukaryotes regulating various aspects of plant biology, including stress responses and developmental programmes. In this study, we characterized the role of MAPK 6 (MPK6) in Arabidopsis embryo development and in post-embryonic root system architecture. We found that the mpk6 mutation caused altered embryo development giving rise to three seed phenotypes that, post-germination, correlated with alterations in root architecture. In the smaller seed class, mutant seedlings failed to develop the primary root, possibly as a result of an earlier defect in the division of the hypophysis cell during embryo development, but they had the capacity to develop adventitious roots to complete their life cycle. In the larger class, the MPK6 loss of function did not cause any evident alteration in seed morphology, but the embryo and the mature seed were bigger than the wild type. Seedlings developed from these bigger seeds were characterized by a primary root longer than that of the wild type, accompanied by significantly increased lateral root initiation and more and longer root hairs. Apparently, the increment in primary root growth resulted from an enhanced cell production and cell elongation. Our data demonstrated that MPK6 plays an important role during embryo development and acts as a repressor of primary and lateral root development.
Collapse
Affiliation(s)
- J. S. López-Bucio
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
| | - J. G. Dubrovsky
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
| | - J. Raya-González
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio A-1′, CP 58030 Morelia, Michoacán, México
| | - Y. Ugartechea-Chirino
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 3er circuito exterior SN, Del. Coyoacán, México D.F. 04510, México
| | - J. López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio A-1′, CP 58030 Morelia, Michoacán, México
| | - L. A. de Luna-Valdez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
| | - M. Ramos-Vega
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
| | - P. León
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
| | - A. A. Guevara-García
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
85
|
Garay-Arroyo A, Ortiz-Moreno E, de la Paz Sánchez M, Murphy AS, García-Ponce B, Marsch-Martínez N, de Folter S, Corvera-Poiré A, Jaimes-Miranda F, Pacheco-Escobedo MA, Dubrovsky JG, Pelaz S, Álvarez-Buylla ER. The MADS transcription factor XAL2/AGL14 modulates auxin transport during Arabidopsis root development by regulating PIN expression. EMBO J 2013; 32:2884-95. [PMID: 24121311 DOI: 10.1038/emboj.2013.216] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 08/28/2013] [Indexed: 12/29/2022] Open
Abstract
Elucidating molecular links between cell-fate regulatory networks and dynamic patterning modules is a key for understanding development. Auxin is important for plant patterning, particularly in roots, where it establishes positional information for cell-fate decisions. PIN genes encode plasma membrane proteins that serve as auxin efflux transporters; mutations in members of this gene family exhibit smaller roots with altered root meristems and stem-cell patterning. Direct regulators of PIN transcription have remained elusive. Here, we establish that a MADS-box gene (XAANTAL2, XAL2/AGL14) controls auxin transport via PIN transcriptional regulation during Arabidopsis root development; mutations in this gene exhibit altered stem-cell patterning, root meristem size, and root growth. XAL2 is necessary for normal shootward and rootward auxin transport, as well as for maintaining normal auxin distribution within the root. Furthermore, this MADS-domain transcription factor upregulates PIN1 and PIN4 by direct binding to regulatory regions and it is required for PIN4-dependent auxin response. In turn, XAL2 expression is regulated by auxin levels thus establishing a positive feedback loop between auxin levels and PIN regulation that is likely to be important for robust root patterning.
Collapse
Affiliation(s)
- Adriana Garay-Arroyo
- Depto. de Ecología Funcional. Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, México DF, México
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Baluška F, Mancuso S. Root apex transition zone as oscillatory zone. FRONTIERS IN PLANT SCIENCE 2013; 4:354. [PMID: 24106493 PMCID: PMC3788588 DOI: 10.3389/fpls.2013.00354] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/22/2013] [Indexed: 05/17/2023]
Abstract
Root apex of higher plants shows very high sensitivity to environmental stimuli. The root cap acts as the most prominent plant sensory organ; sensing diverse physical parameters such as gravity, light, humidity, oxygen, and critical inorganic nutrients. However, the motoric responses to these stimuli are accomplished in the elongation region. This spatial discrepancy was solved when we have discovered and characterized the transition zone which is interpolated between the apical meristem and the subapical elongation zone. Cells of this zone are very active in the cytoskeletal rearrangements, endocytosis and endocytic vesicle recycling, as well as in electric activities. Here we discuss the oscillatory nature of the transition zone which, together with several other features of this zone, suggest that it acts as some kind of command center. In accordance with the early proposal of Charles and Francis Darwin, cells of this root zone receive sensory information from the root cap and instruct the motoric responses of cells in the elongation zone.
Collapse
Affiliation(s)
- František Baluška
- Institute of Cellular and Molecular Botany, Department of Plant Cell Biology, University of BonnBonn, Germany
| | - Stefano Mancuso
- LINV – DiSPAA, Department of Agri-Food and Environmental Science, University of FlorenceSesto Fiorentino, Italy
| |
Collapse
|
87
|
Peng Y, Chen L, Lu Y, Ma W, Tong Y, Li Y. DAR2 acts as an important node connecting cytokinin, auxin, SHY2 and PLT1/2 in root meristem size control. PLANT SIGNALING & BEHAVIOR 2013; 8:e24226. [PMID: 23518585 PMCID: PMC3907457 DOI: 10.4161/psb.24226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 05/20/2023]
Abstract
Cytokinin and auxin antagonistically affect cell proliferation and differentiation and thus regulate root meristem size by influencing the abundance of SHORT HYPOCOTYL2 (SHY2/IAA3). SHY2 affects auxin distribution in the root meristem by repressing the auxin-inducible expression of PIN-FORMED (PIN) auxin transport genes. The PLETHORA (PLT1/2) genes influence root meristem growth by promoting stem cells and transit-amplifying cells. However, the factors connecting cytokinin, auxin, SHY2 and PLT1/2 are largely unknown. In a recent study, we have shown that the DA1-related protein 2 (DAR2) acts downstream of cytokinin and SHY2 but upstream of PLT1/2 to affect root meristem size. Here, we discuss the possible molecular mechanisms by which Arabidopsis DAR2 controls root meristem size.
Collapse
|
88
|
Barrio RA, Romero-Arias JR, Noguez MA, Azpeitia E, Ortiz-Gutiérrez E, Hernández-Hernández V, Cortes-Poza Y, Álvarez-Buylla ER. Cell patterns emerge from coupled chemical and physical fields with cell proliferation dynamics: the Arabidopsis thaliana root as a study system. PLoS Comput Biol 2013; 9:e1003026. [PMID: 23658505 PMCID: PMC3642054 DOI: 10.1371/journal.pcbi.1003026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 02/25/2013] [Indexed: 11/18/2022] Open
Abstract
A central issue in developmental biology is to uncover the mechanisms by which stem cells maintain their capacity to regenerate, yet at the same time produce daughter cells that differentiate and attain their ultimate fate as a functional part of a tissue or an organ. In this paper we propose that, during development, cells within growing organs obtain positional information from a macroscopic physical field that is produced in space while cells are proliferating. This dynamical interaction triggers and responds to chemical and genetic processes that are specific to each biological system. We chose the root apical meristem of Arabidopsis thaliana to develop our dynamical model because this system is well studied at the molecular, genetic and cellular levels and has the key traits of multicellular stem-cell niches. We built a dynamical model that couples fundamental molecular mechanisms of the cell cycle to a tension physical field and to auxin dynamics, both of which are known to play a role in root development. We perform extensive numerical calculations that allow for quantitative comparison with experimental measurements that consider the cellular patterns at the root tip. Our model recovers, as an emergent pattern, the transition from proliferative to transition and elongation domains, characteristic of stem-cell niches in multicellular organisms. In addition, we successfully predict altered cellular patterns that are expected under various applied auxin treatments or modified physical growth conditions. Our modeling platform may be extended to explicitly consider gene regulatory networks or to treat other developmental systems. The emergence of tumors results from altered cell differentiation and proliferation during organ and tissue development. Understanding how such altered or normal patterns are established is still a challenge. Molecular genetic approaches to understanding pattern formation have searched for key central genetic controllers. However, biological patterns emerge as a consequence of coupled complex genetic and non-genetic sub-systems operating at various spatial and temporal scales and levels of organization. We present a two-dimensional model and simulation benchmark that considers the integrated dynamics of physical and chemical fields that result from cell proliferation. We aim at understanding how the cellular patterns of stem-cell niches emerge. In these, organizer cells with very low rates of proliferation are surrounded by stem cells with slightly higher proliferation rates that transit to a domain of active proliferation and then of elongation and differentiation. We quantified such cellular patterns in the Arabidopsis thaliana root to test our theoretical propositions. The results of our simulations closely mimic observed root cellular patterns, thus providing a proof of principle that coupled physical fields and chemical processes under active cell proliferation give rise to stem-cell patterns. Our framework may be extended to other developmental systems and to consider gene regulatory networks.
Collapse
Affiliation(s)
- Rafael A. Barrio
- Instituto de Física, Universidad Nacional Autónoma de México (UNAM), México, Distrito Federal, México
- * E-mail: (RAB); (ERAB)
| | - José Roberto Romero-Arias
- Instituto de Física, Universidad Nacional Autónoma de México (UNAM), México, Distrito Federal, México
| | - Marco A. Noguez
- Universidad Autónoma de la Ciudad de México, Mexico, Distrito Federal, México
| | - Eugenio Azpeitia
- Instituto de Ecología, Universidad Nacional Autónoma de México, México, Distrito Federal, México
- Centro de Ciencias de la Complejidad-C3, Universidad Nacional Autónoma de México, Distrito Federal, México
| | - Elizabeth Ortiz-Gutiérrez
- Instituto de Ecología, Universidad Nacional Autónoma de México, México, Distrito Federal, México
- Centro de Ciencias de la Complejidad-C3, Universidad Nacional Autónoma de México, Distrito Federal, México
| | - Valeria Hernández-Hernández
- Instituto de Ecología, Universidad Nacional Autónoma de México, México, Distrito Federal, México
- Centro de Ciencias de la Complejidad-C3, Universidad Nacional Autónoma de México, Distrito Federal, México
| | - Yuriria Cortes-Poza
- Centro de Ciencias de la Complejidad-C3, Universidad Nacional Autónoma de México, Distrito Federal, México
| | - Elena R. Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, México, Distrito Federal, México
- Centro de Ciencias de la Complejidad-C3, Universidad Nacional Autónoma de México, Distrito Federal, México
- * E-mail: (RAB); (ERAB)
| |
Collapse
|
89
|
Baluška F, Mancuso S. Ion channels in plants: from bioelectricity, via signaling, to behavioral actions. PLANT SIGNALING & BEHAVIOR 2013; 8:e23009. [PMID: 23221742 PMCID: PMC3745586 DOI: 10.4161/psb.23009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 05/20/2023]
Abstract
In his recent opus magnum review paper published in the October issue of Physiology Reviews, Rainer Hedrich summarized the field of plant ion channels. (1) He started from the earliest electric recordings initiated by Charles Darwin of carnivorous Dionaea muscipula, (1,2) known as Venus flytrap, and covered the topic extensively up to the most recent discoveries on Shaker-type potassium channels, anion channels of SLAC/SLAH families, and ligand-activated channels of glutamate receptor-like type (GLR) and cyclic nucleotide-gated channels (CNGC). (1.)
Collapse
Affiliation(s)
- František Baluška
- University of Bonn; IZMB; Bonn, Germany
- Correspondence to: František Baluška,
| | | |
Collapse
|