51
|
Hassan MM, Zareef M, Xu Y, Li H, Chen Q. SERS based sensor for mycotoxins detection: Challenges and improvements. Food Chem 2020; 344:128652. [PMID: 33272760 DOI: 10.1016/j.foodchem.2020.128652] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has become a growing ultrasensitive analytical technique to quantify toxic molecules in foodstuffs. Monitoring the levels of chemical contaminants not only ensures food security but also offers a guideline on the production, processing, and risk analysis of consumer's health protection. The objective of this study was to point out the possible challenges associated with the detection of mycotoxins in foodstuffs. Herein, we have discussed briefly as to selectivity, accuracy, precision, robustness, ruggedness, non-specific adsorption (NSA), cross-reactivity (for both label-free and the target analyte capture approaches like the application of antibody, aptamer, molecularly imprinted polymer (MIP), linear polymer affinity agents and/or specific surface-modified nanomaterials) and their potential solution.
Collapse
Affiliation(s)
- Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
52
|
Subak H, Selvolini G, Macchiagodena M, Ozkan-Ariksoysal D, Pagliai M, Procacci P, Marrazza G. Mycotoxins aptasensing: From molecular docking to electrochemical detection of deoxynivalenol. Bioelectrochemistry 2020; 138:107691. [PMID: 33232846 DOI: 10.1016/j.bioelechem.2020.107691] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
This work proposes a voltammetric aptasensor to detect deoxynivalenol (DON) mycotoxin. The development steps of the aptasensor were partnered for the first time to a computational study to gain insights onto the molecular mechanisms involved into the interaction between a thiol-tethered DNA aptamer (80mer-SH) and DON. The exploited docking study allowed to find the binding region of the oligonucleotide sequence and to determine DON preferred orientation. A biotinylated oligonucleotide sequence (20mer-BIO) complementary to the aptamer was chosen to carry out a competitive format. Graphite screen-printed electrodes (GSPEs) were electrochemically modified with polyaniline and gold nanoparticles (AuNPs@PANI) by means of cyclic voltammetry (CV) and worked as a scaffold for the immobilization of the DNA aptamer. Solutions containing increasing concentrations of DON and a fixed amount of 20mer-BIO were dropped onto the aptasensor surface: the resulting hybrids were labeled with an alkaline phosphatase (ALP) conjugate to hydrolyze 1-naphthyl phosphate (1-NPP) substrate into 1-naphthol product, detected by differential pulse voltammetry (DPV). According to its competitive format, the aptasensor response was signal-off in the range 5.0-30.0 ng·mL-1 DON. A detection limit of 3.2 ng·mL-1 was achieved within a 1-hour detection time. Preliminary experiments on maize flour samples spiked with DON yielded good recovery values.
Collapse
Affiliation(s)
- Hasret Subak
- Yuzuncu Yil University, Department of Analytical Chemistry, Faculty of Pharmacy, 65010 Van, Turkey; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy.
| | - Giulia Selvolini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy.
| | - Marina Macchiagodena
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy.
| | - Dilsat Ozkan-Ariksoysal
- Ege University, Department of Analytical Chemistry, Faculty of Pharmacy, 35100 Bornova, Izmir, Turkey.
| | - Marco Pagliai
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy.
| | - Piero Procacci
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy.
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy; Istituto Nazionale Biostrutture e Biosistemi, Viale delle Medaglie D'Oro 305, 00136 Rome, Italy.
| |
Collapse
|
53
|
Wang C, Liu L, Zhao Q. Low Temperature Greatly Enhancing Responses of Aptamer Electrochemical Sensor for Aflatoxin B1 Using Aptamer with Short Stem. ACS Sens 2020; 5:3246-3253. [PMID: 33052655 DOI: 10.1021/acssensors.0c01572] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aflatoxin B1 (AFB1), one of the most toxic mycotoxins, poses great health risks. Rapid and sensitive detection of AFB1 is important for food safety, environment monitoring, and health risk assessment. We report here the development of a simple and reusable electrochemical aptasensor for rapid and sensitive detection of AFB1. Main improvements were achieved through engineering an aptamer containing a short stem-loop structure and enhancing the binding affinity at a lower temperature. The DNA aptamer with a methylene blue (MB) label at one end was immobilized on a gold electrode. Upon AFB1 binding, the aptamer folded into a stem-loop structure and brought MB close to the electrode surface, resulting in increases in electric current. The aptamer having a shorter stem (2-4 bp) underwent a larger conformation change upon target binding. The sensors built with the aptamer containing a 2 bp stem generated much higher signal-on responses to AFB1 at 4 °C than at room temperature (25 °C). The improvements resulted in a detection limit of 6 pM, enabling the determination of trace AFB1 in a complex sample matrix. This study demonstrates that low temperature greatly enhances the performance of aptamer electrochemical sensors. This aptasensor is simple to construct and readily regenerated by washing with deionized water for reuse. This aptasensor strategy could be applied to the development of an electrochemical aptasensor for other targets.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liying Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
54
|
Solhi E, Hasanzadeh M. Critical role of biosensing on the efficient monitoring of cancer proteins/biomarkers using label-free aptamer based bioassay. Biomed Pharmacother 2020; 132:110849. [PMID: 33068928 DOI: 10.1016/j.biopha.2020.110849] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is the second most extended disease during the world with an improved death rate over the past several time. Due to the restrictions of cancer analysis methods, the patient's real survival rate is unknown. Therefore early stage diagnosis of cancer is crucial for its strong detection. Bio-analysis based on biomarkers may help to overcome this problem. Aptamers can be employed as high-affinity tools for cancer detection. The utilization of aptamer-based strategy in cancer investigation and strategy shows new opportunities in biotechnology. The label-free system is an important method to study biomolecules in different sizes, such as biomarkers in real-time because of their greatest sensitivity, selectivity, and multi examination. In this review (with 75 references), excellent features of the label-free aptasensors on the sensitive and accurate monitoring of cancer biomarkers were discussed. Also, the role of advanced of nanomaterials on the construction of label-free aptasensors were investigated. In addition, application of different detection methods such as electrochemical, optical, electronic, and photoelectrochemical (PEC), electrochemiluminescence (ECL) were surveyed. Finally, advantages and limitation of different strategies on the early stage diagnosis of cancer biomarkers were discussed. This article has been updated until July 2020.
Collapse
Affiliation(s)
- Elham Solhi
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
55
|
|
56
|
Wang C, Zhao Q. A reagentless electrochemical sensor for aflatoxin B1 with sensitive signal-on responses using aptamer with methylene blue label at specific internal thymine. Biosens Bioelectron 2020; 167:112478. [PMID: 32810704 DOI: 10.1016/j.bios.2020.112478] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/21/2020] [Accepted: 07/25/2020] [Indexed: 12/21/2022]
Abstract
Aptamer electrochemical sensors using immobilized aptamers with redox tag rely on the target binding-induced changes of current signal on electrode, offering advantages in operation convenience, no separation, rapidity, and sensitivity. Usually, the redox tag is placed on aptamer terminal, however, sometimes the terminal label may be insensitive to target-binding and fail to generate sensitive responses. The redox tag methylene blue (MB) labeled on different sites of aptamer may experience distinct changes in local environment, distance to electrode, or interactions with aptamer bases during affinity binding, which affect the current signal. Thus, it is possible to construct aptamer electrochemical sensors with sensitive and significant responses to targets by screening a series of sites (e.g., internal thymine T) of the aptamer and placing MB tag on a specific site of the aptamer. With this strategy, we successfully fabricated an electrochemical sensor on gold electrode for rapid, reagentless, and sensitive detection of aflatoxin B1 (AFB1), an important mycotoxin causing great health risks, by using a 26-mer DNA aptamer with MB on an internal T site (e.g., 18th T) and a thiol moiety at 5' terminal. This sensor generated remarkable signal-on responses to AFB1, allowed a detection limit of 6 pM, and enabled detection of AFB1 in wine, milk and corn flour samples. This sensor can be well regenerated by rinsing with deionized water and reused, and shows good stability. This sensor and the demonstrated strategy are promising in wide applications.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China.
| |
Collapse
|
57
|
Shan H, Li X, Liu L, Song D, Wang Z. Recent advances in nanocomposite-based electrochemical aptasensors for the detection of toxins. J Mater Chem B 2020; 8:5808-5825. [PMID: 32538399 DOI: 10.1039/d0tb00705f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Toxins are one of the major threatening factors to human and animal health, as well as economic growth. There is therefore an urgent demand from various communities to develop novel analytical methods for the sensitive detection of toxins in complex matrixes. Among the as-developed toxin detection strategies, nanocomposite-based aptamer sensors (termed as aptasensors) show tremendous potential for combating toxin pollution; in particular electrochemical (EC) aptasensors have received significant attention because of their unique advantages, including simplicity, rapidness, high sensitivity, low cost and suitability for field-testing. This paper reviewed the recently published approaches for the development of nanocomposite-/nanomaterial-based EC aptasensors for the detection of toxins with high assaying performance, and their potential applications in environmental monitoring, clinical diagnostics, and food safety control by summarizing the detection of different types of toxins, including fungal mycotoxins, algal toxins and bacterial enterotoxins. The effects of nanocomposite properties on the detection performance of EC aptasensors have been fully addressed for supplying readers with a comprehensive understanding of their improvement. The current technical challenges and future prospects of this subject have also been discussed.
Collapse
Affiliation(s)
- Hongyan Shan
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | | | | | | | | |
Collapse
|
58
|
Li H, Wang D, Tang X, Zhang W, Zhang Q, Li P. Time-Resolved Fluorescence Immunochromatography Assay (TRFICA) for Aflatoxin: Aiming at Increasing Strip Method Sensitivity. Front Microbiol 2020; 11:676. [PMID: 32435234 PMCID: PMC7219281 DOI: 10.3389/fmicb.2020.00676] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
Aflatoxin is the most harmful mycotoxin that is ubiquitous in foods and agro-products. Because of its high toxicity, maximum admissible levels of aflatoxins (AF) is regulated worldwide, and monitoring of their occurrence in several commodities is mandatory for assuring food safety and consumers' health. Considering that the strip method is very simple and convenient for users, in order to enhance strip assay's sensitivity, a lot of time-resolved fluorescence immunochromatography assays (TRFICAs) were developed recently with increasing several times of assay sensitivity compared with traditional gold nanoparticle-based strip assay (GNP-SA). This review briefly describes the newly developed TRFICA for aflatoxin determination, including TRFICA for aflatoxin B1 (AFB1) detection, TRFICA for aflatoxin M1 (AFM1) detection, TRFICA for total aflatoxins (AFB1 + B2 + G1 + G2) detection and the latest identification-nanobody-based TRFICA for aflatoxin detection. The application of TRFICA for aflatoxin detection in different agro-products is also concluded in this review. Reasonably, TRFICA has been becoming one of the most important tool for monitoring aflatoxin in foods and agro-products.
Collapse
Affiliation(s)
- Hui Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan, China
| | - Du Wang
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan, China
| | - Xiaoqian Tang
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan, China
| | - Wen Zhang
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
59
|
Wang X, Wu X, Lu Z, Tao X. Comparative Study of Time-Resolved Fluorescent Nanobeads, Quantum Dot Nanobeads and Quantum Dots as Labels in Fluorescence Immunochromatography for Detection of Aflatoxin B 1 in Grains. Biomolecules 2020; 10:biom10040575. [PMID: 32283775 PMCID: PMC7226082 DOI: 10.3390/biom10040575] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 01/15/2023] Open
Abstract
Label selection is an essential procedure for improving the sensitivity of fluorescence immunochromatography assays (FICAs). Under optimum conditions, time-resolved fluorescent nanobeads (TRFN), quantum dots nanobeads (QB) and quantum dots (QD)-based immunochromatography assays (TRFN-FICA, QB-FICA and QD-FICA) were systematically and comprehensively compared for the quantitative detection of aflatoxin B1 (AFB1) in six grains (corn, soybeans, sorghum, wheat, rice and oat). All three FICAs can be applied as rapid, cost-effective and convenient qualitative tools for onsite screening of AFB1; TRFN-FICA exhibits the best performance with the least immune reagent consumption, shortest immunoassay duration and lowest limit of detection (LOD). The LODs for TRFN-FICA, QB-FICA and QD-FICA are 0.04, 0.30 and 0.80 μg kg−1 in six grains, respectively. Recoveries range from 83.64% to 125.61% at fortified concentrations of LOD, 2LOD and 4LOD, with the coefficient of variation less than 10.0%. Analysis of 60 field grain samples by three FICAs is in accordance with that of LC-MS/MS, and TRFN-FICA obtained the best fit. In conclusion, TRFN-FICA is more suitable for quantitative detection of AFB1 in grains when the above factors are taken into consideration.
Collapse
Affiliation(s)
- Xin Wang
- College of Food Science, Southwest University, Chongqing 400715, China;
| | - Xuan Wu
- Chongqing Animal Disease Prevention and Control Center, Chongqing 401120, China;
| | - Zhisong Lu
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, Chongqing 400715, China;
| | - Xiaoqi Tao
- College of Food Science, Southwest University, Chongqing 400715, China;
- Correspondence: ; Tel.: +86-18306008102
| |
Collapse
|
60
|
Wang Q, Yang Q, Wu W. Progress on Structured Biosensors for Monitoring Aflatoxin B1 From Biofilms: A Review. Front Microbiol 2020; 11:408. [PMID: 32292390 PMCID: PMC7119432 DOI: 10.3389/fmicb.2020.00408] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Aspergillus exists commonly in many crops and any process of crop growth, harvest, storage, and processing can be polluted by this fungus. Once it forms a biofilm, Aspergillus can produce many toxins, such as aflatoxin B1 (AFB1), ochratoxin, zearalenone, fumonisin, and patulin. Among these toxins, AFB1 possesses the highest toxicity and is labeled as a group I carcinogen in humans and animals. Consequently, the proper control of AFB1 produced from biofilms in food and feed has long been recognized. Moreover, many biosensors have been applied to monitor AFB1 in biofilms in food. Additionally, in recent years, novel molecular recognition elements and transducer elements have been introduced for the detection of AFB1. This review presents an outline of recent progress made in the development of biosensors capable of determining AFB1 in biofilms, such as aptasensors, immunosensors, and molecularly imprinted polymer (MIP) biosensors. In addition, the current feasibility, shortcomings, and future challenges of AFB1 determination and analysis are addressed.
Collapse
Affiliation(s)
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
61
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Marko D, Oswald IP, Piersma A, Routledge M, Schlatter J, Baert K, Gergelova P, Wallace H. Risk assessment of aflatoxins in food. EFSA J 2020; 18:e06040. [PMID: 32874256 PMCID: PMC7447885 DOI: 10.2903/j.efsa.2020.6040] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
EFSA was asked to deliver a scientific opinion on the risks to public health related to the presence of aflatoxins in food. The risk assessment was confined to aflatoxin B1 (AFB1), AFB2, AFG1, AFG2 and AFM1. More than 200,000 analytical results on the occurrence of aflatoxins were used in the evaluation. Grains and grain-based products made the largest contribution to the mean chronic dietary exposure to AFB1 in all age classes, while 'liquid milk' and 'fermented milk products' were the main contributors to the AFM1 mean exposure. Aflatoxins are genotoxic and AFB1 can cause hepatocellular carcinomas (HCCs) in humans. The CONTAM Panel selected a benchmark dose lower confidence limit (BMDL) for a benchmark response of 10% of 0.4 μg/kg body weight (bw) per day for the incidence of HCC in male rats following AFB1 exposure to be used in a margin of exposure (MOE) approach. The calculation of a BMDL from the human data was not appropriate; instead, the cancer potencies estimated by the Joint FAO/WHO Expert Committee on Food Additives in 2016 were used. For AFM1, a potency factor of 0.1 relative to AFB1 was used. For AFG1, AFB2 and AFG2, the in vivo data are not sufficient to derive potency factors and equal potency to AFB1 was assumed as in previous assessments. MOE values for AFB1 exposure ranged from 5,000 to 29 and for AFM1 from 100,000 to 508. The calculated MOEs are below 10,000 for AFB1 and also for AFM1 where some surveys, particularly for the younger age groups, have an MOE below 10,000. This raises a health concern. The estimated cancer risks in humans following exposure to AFB1 and AFM1 are in-line with the conclusion drawn from the MOEs. The conclusions also apply to the combined exposure to all five aflatoxins.
Collapse
|
62
|
Vaz A, Cabral Silva AC, Rodrigues P, Venâncio A. Detection Methods for Aflatoxin M1 in Dairy Products. Microorganisms 2020; 8:E246. [PMID: 32059461 PMCID: PMC7074771 DOI: 10.3390/microorganisms8020246] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Mycotoxins are toxic compounds produced mainly by fungi of the genera Aspergillus, Fusarium and Penicillium. In the food chain, the original mycotoxin may be transformed in other toxic compounds, reaching the consumer. A good example is the occurrence of aflatoxin M1 (AFM1) in dairy products, which is due to the presence of aflatoxin B1 (AFB1) in the animal feed. Thus, milk-based foods, such as cheese and yogurts, may be contaminated with this toxin, which, although less toxic than AFB1, also exhibits hepatotoxic and carcinogenic effects and is relatively stable during pasteurization, storage and processing. For this reason, the establishment of allowed maximum limits in dairy products and the development of methodologies for its detection and quantification are of extreme importance. There are several methods for the detection of AFM1 in dairy products. Usually, the analytical procedures go through the following stages: sampling, extraction, clean-up, determination and quantification. For the extraction stage, the use of organic solvents (as acetonitrile and methanol) is still the most common, but recent advances include the use of the Quick, Easy, Cheap, Effective, Rugged, and Safe method (QuEChERS) and proteolytic enzymes, which have been demonstrated to be good alternatives. For the clean-up stage, the high selectivity of immunoaffinity columns is still a good option, but alternative and cheaper techniques are becoming more competitive. Regarding quantification of the toxin, screening strategies include the use of the enzyme-linked immunosorbent assay (ELISA) to select presumptive positive samples from a wider range of samples, and more reliable methods-high performance liquid chromatography with fluorescence detection or mass spectroscopy-for the separation, identification and quantification of the toxin.
Collapse
Affiliation(s)
- Andreia Vaz
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (A.V.); (A.C.C.S.)
| | - Ana C. Cabral Silva
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (A.V.); (A.C.C.S.)
| | - Paula Rodrigues
- CIMO—Mountain Research Center, Bragança Polytechnic Institute, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Armando Venâncio
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (A.V.); (A.C.C.S.)
| |
Collapse
|
63
|
Lu Y, Yang L, Yang G, Chi Y, Sun Q, He Q. Insight into the Fermentation of Chinese Horse Bean-chili-paste. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1717525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yunhao Lu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, P. R. China
| | - Linzi Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, P. R. China
| | - Guohua Yang
- Sichuan Dandan Pixian-douban Co.; Ltd., Chengdu, P. R. China
| | - Yuanlong Chi
- College of Biomass Science and Engineering, Sichuan University, Chengdu, P. R. China
| | - Qun Sun
- College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Qiang He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
64
|
Wei M, Zhao F, Xie Y. A novel gold nanostars-based fluorescent aptasensor for aflatoxin B1 detection. Talanta 2019; 209:120599. [PMID: 31892078 DOI: 10.1016/j.talanta.2019.120599] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022]
Abstract
In this work, a simple and sensitive fluorescent aptasensor for aflatoxin B1 (AFB1) detection was proposed using gold nanostars (AuNSs) as a novel fluorescence quenching material. Carboxyfluorescein-labeled complementary DNA with hairpin structure (FAM-labeled HP) was designed to hybridize with AFB1 aptamer to form double-stranded DNA, resulting in the opening of hairpin structure. When double-stranded DNA was modified on AuNSs surface, FAM was far from AuNSs and produced a strong fluorescence intensity. The introduction of AFB1 in the system led to the specific interaction of AFB1 and aptamer, and changed the conformation of aptamer, inducing the release of aptamer from double-stranded DNA and the restoration of hairpin structure. Fluorescence quenching occurred when FAM was close to AuNSs, and the fluorescence intensity decreased. In the presence of 5 ng/mL AFB1, ΔF/F0 of the AuNSs/FAM-labeled HP/Apt was ~44.2%, higher than that of the AuNPs/FAM-labeled HP/Apt, indicating the better quenching effect of AuNSs. The change of fluorescence intensity linearly increased by adding AFB1 in the concentration range of 0.1 ng/mL-10 ng/mL, with the LOD of 21.3 pg/mL. The proposed aptasensor exhibited good selectivity in the presence of other toxins at 10-fold concentration of AFB1, and showed satisfactory recovery in the range of 92%-112% toward AFB1 detection in spiked corn flour sample.
Collapse
Affiliation(s)
- Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Fei Zhao
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Yanli Xie
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, PR China.
| |
Collapse
|
65
|
Wu J, Zeng L, Li N, Liu C, Chen J. A wash-free and label-free colorimetric biosensor for naked-eye detection of aflatoxin B1 using G-quadruplex as the signal reporter. Food Chem 2019; 298:125034. [DOI: 10.1016/j.foodchem.2019.125034] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 06/04/2019] [Accepted: 06/16/2019] [Indexed: 12/22/2022]
|
66
|
Nanomaterials and new biorecognition molecules based surface plasmon resonance biosensors for mycotoxin detection. Biosens Bioelectron 2019; 143:111603. [DOI: 10.1016/j.bios.2019.111603] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 02/04/2023]
|
67
|
Wang C, Li Y, Zhao Q. A signal-on electrochemical aptasensor for rapid detection of aflatoxin B1 based on competition with complementary DNA. Biosens Bioelectron 2019; 144:111641. [PMID: 31494505 DOI: 10.1016/j.bios.2019.111641] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
Aflatoxin B1 (AFB1) is the most toxic mycotoxin, causing harmful effects on human and animal health, and the rapid and sensitive detection of AFB1 is highly demanded. We developed a simple electrochemical aptasensor achieving rapid detection of aflatoxin B1 (AFB1). A short anti-AFB1 aptamer having a methylene blue (MB) redox tag at the 3'-end was immobilized on the surface of a gold electrode. In the absence of AFB1, a complementary DNA (cDNA) strand hybridized with the MB-labeled aptamer, causing MB apart from the electrode surface and low current of MB. In the presence of AFB1, AFB1 competed with the cDNA in the binding to the MB-labeled aptamer, and the aptamer-AFB1 binding caused formation of a hairpin structure, making the MB close to the electrode surface and current of MB increase. Under optimized conditions, we achieved detection of AFB1 over dynamic concentration range of 2 nM-4 μM by using this signal-on electrochemical aptasensor. This method only required a simple 5-min incubation of sample solution prior to rapid electrochemical sensing, more rapid than other electrochemical aptasensors. The sensor could be well regenerated and reused. This sensor allowed to detect AFB1 spiked in 20-fold diluted beer and 50-fold diluted white wine, respectively. It shows potential for detection of AFB1 in wide applications.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yapiao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
68
|
Wang C, Zhao Q. A competitive thrombin-linked aptamer assay for small molecule: aflatoxin B 1. Anal Bioanal Chem 2019; 411:6637-6644. [PMID: 31352501 DOI: 10.1007/s00216-019-02037-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 01/03/2023]
Abstract
We described a competitive thrombin-linked aptamer assay for small molecule, using aflatoxin B1 (AFB1) as a model, taking advantage of aptamer affinity binding and enzymatic activity of thrombin. We designed a dual functional DNA probe that contained the aptamer sequence for thrombin and the aptamer sequence for AFB1. Thrombin was labeled on the DNA probe by affinity binding between thrombin and anti-thrombin aptamer. This thrombin-labeled DNA probe was attached on AFB1-bovine serum albumin conjugate (BSA-AFB1) coated on a microplate through the affinity interaction between AFB1 and anti-AFB1 aptamer. The thrombin attached on the microplate catalyzed the cleavage of peptide substrate into detectable product, generating signal for detection. In the presence of AFB1, free AFB1 competed with BSA-AFB1 in the binding to the limited amount of DNA probe, leading to signal decrease. Detection of AFB1 was achieved by measuring the signal change. Under optimized conditions, AFB1 was successfully detected in the range from 0.5 nM to 1 μM when fluorogenic peptide substrate of thrombin and fluorescence analysis were applied. The use of chromogenic peptide substrate in the assay allowed the detection of AFB1 ranging from 0.5 to 125 nM by simple absorbance analysis. The thrombin-linked aptamer assay showed good selectivity towards AFB1, and enabled the detection of AFB1 spiked in diluted beer and corn flour. This TLAA strategy extends the analytical application of thrombin and aptamers in detection of small molecules. Graphical abstract.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, China. .,University of Chinese Academy of Science, Beijing, 100049, China.
| |
Collapse
|
69
|
Selvolini G, Lettieri M, Tassoni L, Gastaldello S, Grillo M, Maran C, Marrazza G. Electrochemical enzyme-linked oligonucleotide array for aflatoxin B 1 detection. Talanta 2019; 203:49-57. [PMID: 31202349 DOI: 10.1016/j.talanta.2019.05.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 01/21/2023]
Abstract
In this work, an electrochemical enzyme-linked oligonucleotide array to achieve simple and rapid multidetection of aflatoxin B1 (AFB1) is presented. The assay is based on a competitive format and disposable screen-printed cells (SPCs). Firstly, the electrodeposition of poly(aniline-anthranilic acid) copolymer (PANI-PAA) on graphite screen-printed working electrodes was performed by means of cyclic voltammetry (CV). Aflatoxin B1 conjugated with bovine serum albumin (AFB1-BSA) was then immobilized by covalent binding on PANI-PAA copolymer. After performing the affinity reaction between AFB1 and the biotinylated DNA-aptamer (apt-BIO), the solution was dropped on the modified SPCs and the competition was carried out. The biotinylated complexes formed onto the sensor surface were coupled with a streptavidin-alkaline phosphatase conjugate. 1-naphthyl phosphate was used as enzymatic substrate; the electroactive product was detected by differential pulse voltammetry (DPV). The response of the enzyme-linked oligonucleotide assay was signal-off, according to the competitive format. A dose-response curve was obtained between 0.1 ng mL-1 and 10 ng mL-1 and a limit of detection of 0.086 ng mL-1 was achieved. Finally, preliminary experiments in maize flour samples spiked with AFB1 were also performed.
Collapse
Affiliation(s)
- Giulia Selvolini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Mariagrazia Lettieri
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Luca Tassoni
- ATPr&d S.r.l, Via Ca' Marzare 3, 36043, Camisano Vicentino (VI), Italy
| | | | - Maria Grillo
- ATPr&d S.r.l, Via Ca' Marzare 3, 36043, Camisano Vicentino (VI), Italy
| | - Claudio Maran
- ATPr&d S.r.l, Via Ca' Marzare 3, 36043, Camisano Vicentino (VI), Italy
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy; Istituto Nazionale Biostrutture e Biosistemi, Viale delle Medaglie D'Oro 305, 00136 Rome, Italy.
| |
Collapse
|
70
|
Wang C, Sun L, Zhao Q. A simple aptamer molecular beacon assay for rapid detection of aflatoxin B1. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.01.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
71
|
Li Y, Sun L, Zhao Q. Aptamer-Structure Switch Coupled with Horseradish Peroxidase Labeling on a Microplate for the Sensitive Detection of Small Molecules. Anal Chem 2019; 91:2615-2619. [PMID: 30675773 DOI: 10.1021/acs.analchem.8b05606] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Detection of small molecules with good sensitivity, high throughput, simplicity, and generality using aptamers is desired but still remains challenging. We described an aptamer-structure-switch assay coupled with horseradish peroxidase (HRP) labeling on microplates for sensitive absorbance and chemiluminescence detection of small molecules. This assay relies on competition for affinity binding to a limited HRP-labeled aptamer between small-molecule targets and immobilized short DNA strands complementary to the aptamer (cDNA) on a microplate. In the absence of targets, the HRP-labeled aptamer hybridizes with the cDNA on the microplate, and HRP catalyzes substrate into product, generating absorbance or chemiluminescence signals. The binding of small-molecule targets to aptamers causes displacement of HRP-labeled aptamers from the cDNA and signal decrease. In chemiluminescence-analysis mode, the assay achieved detection of aflatoxin B1 (AFB1), ochratoxin A (OTA), and adenosine triphosphate (ATP) with detection limits of 10 pM, 20 pM, and 20 nM, respectively. This assay does not require enzyme-labeled small molecules or the conjugation of small molecules on solid phase. HRP, as an enzyme label, here allows for easily obtainable and highly active signal amplification. This microplate assay is rapid and promising for high-throughput analysis. It shows potential for wide applications in the detection of small molecules.
Collapse
Affiliation(s)
- Yapiao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Linlin Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
72
|
Turn-On Fluorescence Aptasensor on Magnetic Nanobeads for Aflatoxin M1 Detection Based on an Exonuclease III-Assisted Signal Amplification Strategy. NANOMATERIALS 2019; 9:nano9010104. [PMID: 30654528 PMCID: PMC6359137 DOI: 10.3390/nano9010104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/27/2022]
Abstract
In order to satisfy the need for sensitive detection of Aflatoxin M1 (AFM1), we constructed a simple and signal-on fluorescence aptasensor based on an autocatalytic Exonuclease III (Exo III)-assisted signal amplification strategy. In this sensor, the DNA hybridization on magnetic nanobeads could be triggered by the target AFM1, resulting in the release of a single-stranded DNA to induce an Exo III-assisted signal amplification, in which numerous G-quadruplex structures would be produced and then associated with the fluorescent dye to generate significantly amplified fluorescence signals resulting in the increased sensitivity. Under the optimized conditions, this aptasensor was able to detect AFM1 with a practical detection limit of 9.73 ng kg−1 in milk samples. Furthermore, the prepared sensor was successfully used for detection of AFM1 in the commercially available milk samples with the recovery percentages ranging from 80.13% to 108.67%. Also, the sensor performance was evaluated by the commercial immunoassay kit with satisfactory results.
Collapse
|
73
|
Thin Films Sensor Devices for Mycotoxins Detection in Foods: Applications and Challenges. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7010003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mycotoxins are a group of secondary metabolites produced by different species of filamentous fungi and pose serious threats to food safety due to their serious human and animal health impacts such as carcinogenic, teratogenic and hepatotoxic effects. Conventional methods for the detection of mycotoxins include gas chromatography and high-performance liquid chromatography coupled with mass spectrometry or other detectors (fluorescence or UV detection), thin layer chromatography and enzyme-linked immunosorbent assay. These techniques are generally straightforward and yield reliable results; however, they are time-consuming, require extensive preparation steps, use large-scale instruments, and consume large amounts of hazardous chemical reagents. Rapid detection of mycotoxins is becoming an increasingly important challenge for the food industry in order to effectively enforce regulations and ensure the safety of food and feed. In this sense, several studies have been done with the aim of developing strategies to detect mycotoxins using sensing devices that have high sensitivity and specificity, fast analysis, low cost and portability. The latter include the use of microarray chips, multiplex lateral flow, Surface Plasmon Resonance, Surface Enhanced Raman Scattering and biosensors using nanoparticles. In this perspective, thin film sensors have recently emerged as a good candidate technique to meet such requirements. This review summarizes the application and challenges of thin film sensor devices for detection of mycotoxins in food matrices.
Collapse
|
74
|
Xia X, Wang H, Yang H, Deng S, Deng R, Dong Y, He Q. Dual-Terminal Stemmed Aptamer Beacon for Label-Free Detection of Aflatoxin B 1 in Broad Bean Paste and Peanut Oil via Aggregation-Induced Emission. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12431-12438. [PMID: 30387615 DOI: 10.1021/acs.jafc.8b05217] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aflatoxin B1 (AFB1) contamination ranks as one of the most critical food safety issues, and assays for its on-site monitoring are highly demanded. Herein, we propose a label-free, one-tube, homogeneous, and cheap AFB1 assay based on a finely tunable dual-terminal stemmed aptamer beacon (DS aptamer beacon) and aggregation-induced emission (AIE) effects. The DS aptamer beacon structure could provide terminal protection of the aptamer probe against exonuclease I and confer specific and quick response to target AFB1. In comparison to the conventional molecule beacon structure, the stability of the DS aptamer beacon could be finely tuned by adjusting its two terminal stems, allowing for elaborately optimizing probe affinity and selectivity. By the utilization of an AIE-active fluorophore, which would be lighted up by aggregating to negatively charged DNA, AFB1 could be determined in a label-free manner. The proposed method could quantify AFB1 in one test tube using two unlabeled DNA strands. It has been successfully applied for analyzing AFB1 in peanut oil and broad bean sauce, with total recoveries ranging from 92.75 to 118.70%. Thus, the DS aptamer beacon-based assay could potentially facilitate real-time monitoring and controlling of AFB1 pollution.
Collapse
Affiliation(s)
- Xuhan Xia
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center, and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province , Sichuan University , Chengdu , Sichuan 610065 , People's Republic of China
| | - Haibo Wang
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center, and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province , Sichuan University , Chengdu , Sichuan 610065 , People's Republic of China
| | - Hao Yang
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center, and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province , Sichuan University , Chengdu , Sichuan 610065 , People's Republic of China
| | - Sha Deng
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center, and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province , Sichuan University , Chengdu , Sichuan 610065 , People's Republic of China
| | - Ruijie Deng
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center, and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province , Sichuan University , Chengdu , Sichuan 610065 , People's Republic of China
| | - Yi Dong
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center, and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province , Sichuan University , Chengdu , Sichuan 610065 , People's Republic of China
| | - Qiang He
- College of Light Industry, Textile and Food Engineering, Healthy Food Evaluation Research Center, and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province , Sichuan University , Chengdu , Sichuan 610065 , People's Republic of China
| |
Collapse
|
75
|
Bostan HB, Taghdisi SM, Bowen JL, Demertzis N, Rezaee R, Panahi Y, Tsatsakis AM, Karimi G. Determination of microcystin-LR, employing aptasensors. Biosens Bioelectron 2018; 119:110-118. [DOI: 10.1016/j.bios.2018.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 01/26/2023]
|
76
|
Aptamer-based assays and aptasensors for detection of pathogenic bacteria in food samples. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.016] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
77
|
Nosrati R, Dehghani S, Karimi B, Yousefi M, Taghdisi SM, Abnous K, Alibolandi M, Ramezani M. Siderophore-based biosensors and nanosensors; new approach on the development of diagnostic systems. Biosens Bioelectron 2018; 117:1-14. [DOI: 10.1016/j.bios.2018.05.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/19/2018] [Accepted: 05/29/2018] [Indexed: 02/06/2023]
|
78
|
Tang Y, Tang D, Zhang J, Tang D. Novel quartz crystal microbalance immunodetection of aflatoxin B 1 coupling cargo-encapsulated liposome with indicator-triggered displacement assay. Anal Chim Acta 2018; 1031:161-168. [PMID: 30119735 DOI: 10.1016/j.aca.2018.05.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 01/11/2023]
Abstract
A simple and sensitive quartz crystal microbalance (QCM) immunosensing platform was designed for the high-efficient detection of aflatoxin B1 (AFB1) in foodstuff. Initially, phenoxy-derived dextran molecule was immobilized on the surface of QCM gold substrate by using thiolated β-cyclodextrin based on the supramolecular host-guest chemistry between phenoxy group and cyclodextrin. Then, AFB1-bovine serum albumin (AFB1-BSA)-conjugated concanavalin A (Con A) was assembled onto the QCM probe through the dextran-Con A interaction. Glucose-loaded nanoliposome, labeled with monocolonal anti-AFB1 antibody, was used for the amplification of QCM signal. Upon target AFB1 introduction, the analyte competed with the immobilized AFB1-BSA on the probe for the labeled anti-AFB1 antibody on the nanoliposome. Based on specific antigen-antibody reaction, the amount of the conjugated nanoliposomes on the QCM probe gradually decreased with the increment of target AFB1 in the sample. Upon injection of Triton X-100 in the detection cell, the carried nanoliposome was lysed to release the encapsulated glucose molecules. Thanks to the stronger affinity of Con A toward glucose than that of dextran, AFB1-BSA-labeled Con A was displaced from the QCM probe, resulting in the change of the local frequency. Under the optimum conditions, the shift of the functionalized QCM immunosensing interface in the frequency shift was proportional to the concentration of target AFB1 within a dynamic range from 1.0 ng kg-1 to 10 μg kg-1 at a low detection limit of 0.83 ng kg-1. In addition, the acceptable assayed results on precision, reproducibility, specificity and method accuracy for the analysis of real samples were also acquired. Importantly, our strategy can provide a signal-on competitive immunoassay for the detection of small molecules, e.g., mycotoxins and biotoxins, thereby representing a versatile sensing schemes by controlling the corresponding antibody or hapten in the analysis of food safety.
Collapse
Affiliation(s)
- Ying Tang
- Collaborative Innovation Center of Targeted Therapeutics and Innovation, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing, 402160, PR China
| | - Dianyong Tang
- Collaborative Innovation Center of Targeted Therapeutics and Innovation, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing, 402160, PR China.
| | - Jin Zhang
- Collaborative Innovation Center of Targeted Therapeutics and Innovation, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing, 402160, PR China
| | - Dianping Tang
- Collaborative Innovation Center of Targeted Therapeutics and Innovation, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing, 402160, PR China; Key Laboratory of Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350116, PR China.
| |
Collapse
|