51
|
Liang Y, Zou D, Zhang Y, Zhong Z. Indirect method for preparing dual crosslinked eutectogels with high strength, stretchability, conductivity and rapid self-recovery capability as flexible and freeze-resistant strain sensors. CHEMICAL ENGINEERING JOURNAL 2023; 475:145928. [DOI: 10.1016/j.cej.2023.145928] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
|
52
|
Bai Y, Yan S, Wang Y, Wang Q, Duan X. Facile Preparation of a Self-Adhesive Conductive Hydrogel with Long-Term Usability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48744-48753. [PMID: 37802535 DOI: 10.1021/acsami.3c12831] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Although conductive hydrogels (CHs) have been investigated as the wearable sensor in recent years, how to prepare the multifunctional CHs with long-term usability is still a big challenge. In this paper, we successfully prepared a kind of conductive and self-adhesive hydrogel with a simple method, and its excellent ductility makes it possible as a flexible strain sensor for intelligent monitoring. The CHs are constructed by poly(vinyl alcohol) (PVA), polydopamine (PDA), and phytic acid (PA) through the freeze-thaw cycle method. The introduction of PA enhanced the intermolecular force with PVA and provided much H+ for augmented conductivity, while the catechol group on PDA endows the hydrogel with self-adhesion ability. The PVA/PA/PDA hydrogel can directly contact with the skin and adhere to it stably, which makes the hydrogel potentially a wearable strain sensor. The PVA/PA/PDA hydrogel can monitor human motion signals (including fingers, elbows, knees, etc.) in real-time and can accurately monitor tiny electrical signals for smile and handwriting recognition. Notably, the composite CHs can be used in a normal environment even after 4 months. Because of its excellent ductility, self-adhesiveness, and conductivity, the PVA/PA/PDA hydrogel provides a new idea for wearable bioelectronic sensors.
Collapse
Affiliation(s)
- Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shiqin Yan
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yinbin Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qiang Wang
- Department of Pharmacy, Changzhi Medical College, Changzhi 046000, China
| | - Xiao Duan
- Department of Pharmacy, Changzhi Medical College, Changzhi 046000, China
| |
Collapse
|
53
|
Wang Y, Song L, Wang Q, Wang L, Li S, Du H, Wang C, Wang Y, Xue P, Nie WC, Wang X, Tang S. Multifunctional acetylated distarch phosphate based conducting hydrogel with high stretchability, ultralow hysteresis and fast response for wearable strain sensors. Carbohydr Polym 2023; 318:121106. [PMID: 37479435 DOI: 10.1016/j.carbpol.2023.121106] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 07/23/2023]
Abstract
The rapid development of flexible sensors has greatly increased the demand for high-performance hydrogels. However, it remains a challenge to fabricate flexible hydrogel sensors with high stretching, low hysteresis, excellent adhesion, good conductivity, sensing characteristics and bacteriostatic function in a simple way. Herein, a highly conducting double network hydrogel is presented by incorporating lithium chloride (LiCl) into the hydrogel consisting of poly (2-acrylamide-2-methylpropanesulfonic acid/acrylamide/acrylic acid) (3A) network and acetylated distarch phosphate (ADSP). The addition of ADSP not only formed hydrogen bonds with 3A to improve the toughness of the hydrogel but also plays the role of "physical cross-linking" in 3A by "anchoring" the polymer molecular chains together. Tuning the composition of the hydrogel allows the attainment of the best functions, such as high stretchability (∼770 %), ultralow hysteresis (2.2 %, ε = 100 %), excellent electrical conductivity (2.9 S/m), strain sensitivity (GF = 3.0 at 200-500 % strain) and fast response (96 ms). Based on the above performance, the 3A/ADSP/LiCl hydrogel strain sensor can repeatedly and stably detect and monitor large-scale human movements and subtle sensing signals. In addition, the 3A/ADSP/LiCl hydrogel shows a good biocompatibility and bacteriostatic ability. This work provides an effective strategy for constructing the conductive hydrogels for wearable devices and flexible sensors.
Collapse
Affiliation(s)
- Yingjie Wang
- School of Pharmacy, Weifang Medical University, No. 7166, Baotong West Road, Weifang, Shandong 261053, PR China
| | - Linmeng Song
- School of Public Health, Weifang Medical University, No. 7166, Baotong West Road, Weifang, Shandong 261053, PR China
| | - Qi Wang
- School of Pharmacy, Weifang Medical University, No. 7166, Baotong West Road, Weifang, Shandong 261053, PR China
| | - Lu Wang
- School of Pharmacy, Weifang Medical University, No. 7166, Baotong West Road, Weifang, Shandong 261053, PR China
| | - Shiya Li
- School of Pharmacy, Weifang Medical University, No. 7166, Baotong West Road, Weifang, Shandong 261053, PR China
| | - HongChao Du
- School of Pharmacy, Weifang Medical University, No. 7166, Baotong West Road, Weifang, Shandong 261053, PR China
| | - Chenchen Wang
- School of Pharmacy, Weifang Medical University, No. 7166, Baotong West Road, Weifang, Shandong 261053, PR China
| | - Yifan Wang
- School of Pharmacy, Weifang Medical University, No. 7166, Baotong West Road, Weifang, Shandong 261053, PR China
| | - Peng Xue
- School of Public Health, Weifang Medical University, No. 7166, Baotong West Road, Weifang, Shandong 261053, PR China
| | - Wu-Cheng Nie
- Sichuan Jinjiang Building Materials Technology Co. Ltd, Deyang, Sichuan 618304, PR China
| | - Xuedong Wang
- School of Pharmacy, Weifang Medical University, No. 7166, Baotong West Road, Weifang, Shandong 261053, PR China
| | - Shaojian Tang
- School of Pharmacy, Weifang Medical University, No. 7166, Baotong West Road, Weifang, Shandong 261053, PR China.
| |
Collapse
|
54
|
Luo J, Meng J, Zhennan C, Xueli Y, Xinran W, Ze L, Luo S, Wang L, Zhou J, Qin H. Preparation and properties of lignin-based dual network hydrogel and its application in sensing. Int J Biol Macromol 2023; 249:125913. [PMID: 37481187 DOI: 10.1016/j.ijbiomac.2023.125913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Ionic conductive hydrogels prepared from various biological macromolecules are ideal materials for the manufacture of human motion sensors from the perspective of resource regeneration and environmental sustainability. However, it is now difficult to develop conductive hydrogels including excellent self-healing and mechanical properties, mainly due to their inherent trade-off between dynamic cross-linked healing and stable cross-linked mechanical strength. In this work, alkali lignin-Polyvinyl alcohol-polyacrylic acid double network conductive hydrogels with high mechanical strength and good self-healing properties were prepared. We formed the primary network structure by hydrogen bonding interaction between polyvinyl alcohol, alkali lignin and polyacrylic acid, and the secondary network structure by coordination interaction with polyacrylic acid through the addition of Fe3+. The added lignin acts as a dynamic linkage bridge in a porous network mediated by multiple ligand bonds, imparting superior mechanical properties to the hydrogels. The relationships between the alkali lignin and iron ion dosage and the comprehensive properties of hydrogels (adhesion, antibacterial, self-healing, electrical conductivity and mechanical properties) were studied in detail. On this basis, the hydrogels explored the role of lignin in the regulation of hydrogels properties and revealed the self-healing and conductive mechanism.
Collapse
Affiliation(s)
- Jing Luo
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Juan Meng
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Chen Zhennan
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Yang Xueli
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Wang Xinran
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Li Ze
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Shipeng Luo
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Liangcai Wang
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, China
| | - Jianbin Zhou
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, China
| | - Hengfei Qin
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China; Key Laboratory of precious metal deep processing technology and application of Jiangsu Province, Jiangsu University of Technology, Changzhou 213001, China.
| |
Collapse
|
55
|
Deng B, Wang Z, Liu W, Hu B. Multifunctional Motion Sensing Enabled by Laser-Induced Graphene. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6363. [PMID: 37834499 PMCID: PMC10573838 DOI: 10.3390/ma16196363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
The development of flexible sensors based on laser-induced graphene (LIG) has recently attracted much attention. It was commonly generated by laser-ablating commercial polyimide (PI). However, the weak mechanical extensibility of PI limits the development and diversified applications of LIG-based sensors. In this work, we adopted medical polyurethane (PU) tapes to peel off the LIG generated on PI and developed flexible and wearable sensors based on the proposed LIG/PU composite structure. Compared with other methods for LIG transfer, PU tape has many advantages, including a simplified process and being less time-consuming. We characterized the LIG samples generated under different laser powers and analyzed the property differences introduced by the transfer operation. We then studied the impact of fabrication mode on the strain sensitivity of the LIG/PU and optimized the design of a LIG/PU-based strain sensor, which possessed a gauge factor (GF) of up to 263.6 in the strain range of 75-90%. In addition, we designed a capacitive pressure sensor for tactile sensing, which is composed of two LIG/PU composite structures and a PI space layer. These LIG flexible devices can be used for human motion monitoring and tactile perception in sports events. This work provides a simple, fast, and low-cost way for the preparation of multifunctional sensor systems with good performance, which has a broad application prospect in human motion monitoring.
Collapse
Affiliation(s)
| | | | | | - Bin Hu
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (B.D.); (Z.W.); (W.L.)
| |
Collapse
|
56
|
Guo Z, Ma C, Xie W, Tang A, Liu W. An effective DLP 3D printing strategy of high strength and toughness cellulose hydrogel towards strain sensing. Carbohydr Polym 2023; 315:121006. [PMID: 37230626 DOI: 10.1016/j.carbpol.2023.121006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Photocurable 3D printing technology has outperformed extrusion-based 3D printing technology in material adaptability, resolution, and printing rate, yet is still limited by the insecure preparation and selection of photoinitiators and thus less reported. In this work, we developed a printable hydrogel that can effectively facilitate various solid or hollow structures and even lattice structures. The chemical and physical dual-crosslinking strategy combined with cellulose nanofibers (CNF) significantly improved the strength and toughness of photocurable 3D printed hydrogels. In this study, the tensile breaking strength, Young's modulus, and toughness of poly(acrylamide-co-acrylic acid)D/cellulose nanofiber (PAM-co-PAA)D/CNF hydrogels were 375 %, 203 % and 544 % higher than those of the traditional single chemical crosslinked (PAM-co-PAA)S hydrogels, respectively. Notably, its outstanding compressive elasticity enabled it to recover under 90 % strain compression (about 4.12 MPa). Resultantly, the proposed hydrogel can be utilized as a flexible strain sensor to monitor the motions of human movements, such as the bending of fingers, wrists, and arms, and even the vibration of a speaking throat. The output of electrical signals can still be collected through strain even under the condition of energy shortage. In addition, photocurable 3D printing technology can provide customized services for hydrogel-based e-skin, such as hydrogel-based bracelets, fingerstall, and finger joint sleeves.
Collapse
Affiliation(s)
- Zhengqiang Guo
- School of Mechanical and Automotive Engineering, South China University of Technology, Wushan Road, Tianhe District, 510641 Guangzhou City, PR China
| | - Chengdong Ma
- School of Mechanical and Automotive Engineering, South China University of Technology, Wushan Road, Tianhe District, 510641 Guangzhou City, PR China
| | - Weigui Xie
- School of Mechanical and Automotive Engineering, South China University of Technology, Wushan Road, Tianhe District, 510641 Guangzhou City, PR China
| | - Aimin Tang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Wushan Road, Tianhe District, 510641 Guangzhou City, PR China
| | - Wangyu Liu
- School of Mechanical and Automotive Engineering, South China University of Technology, Wushan Road, Tianhe District, 510641 Guangzhou City, PR China.
| |
Collapse
|
57
|
Naik K, Singh P, Yadav M, Srivastava SK, Tripathi S, Ranjan R, Dhar P, Verma AK, Chaudhary S, Parmar AS. 3D printable, injectable amyloid-based composite hydrogel of bovine serum albumin and aloe vera for rapid diabetic wound healing. J Mater Chem B 2023; 11:8142-8158. [PMID: 37431285 DOI: 10.1039/d3tb01151h] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Protein-based biomaterials, particularly amyloids, have sparked considerable scientific interest in recent years due to their exceptional mechanical strength, excellent biocompatibility and bioactivity. In this work, we have synthesized a novel amyloid-based composite hydrogel consisting of bovine serum albumin (BSA) and aloe vera (AV) gel to utilize the medicinal properties of the AV gel and circumvent its mechanical frangibility. The synthesized composite hydrogel demonstrated an excellent porous structure, self-fluorescence, non-toxicity, and controlled rheological properties. Moreover, this hydrogel possesses inherent antioxidant and antibacterial properties, which accelerate the rapid healing of wounds. The in vitro wound healing capabilities of the synthesized composite hydrogel were evaluated using 3T3 fibroblast cells. Moreover, the efficacy of the hydrogel in accelerating chronic wound healing via collagen crosslinking was investigated through in vivo experiments using a diabetic mouse skin model. The findings indicate that the composite hydrogel, when applied, promotes wound healing by inducing collagen deposition and upregulating the expression of vascular endothelial growth factor (VEGF) and its receptors. We also demonstrate the feasibility of the 3D printing of the BSA-AV hydrogel, which can be tailored to treat various types of wound. The 3D printed hydrogel exhibits excellent shape fidelity and mechanical properties that can be utilized for personalized treatment and rapid chronic wound healing. Taken together, the BSA-AV hydrogel has great potential as a bio-ink in tissue engineering as a dermal substitute for customizable skin regeneration.
Collapse
Affiliation(s)
- Kaustubh Naik
- Biophysics and Nanotechnology Laboratory, Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Priyanka Singh
- Nanobiotech Lab, Kirorimal College, University of Delhi, 110007, Delhi, India.
| | - Monika Yadav
- Nanobiotech Lab, Kirorimal College, University of Delhi, 110007, Delhi, India.
| | - Saurabh Kr Srivastava
- Biophysics and Nanotechnology Laboratory, Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Shikha Tripathi
- Biophysics and Nanotechnology Laboratory, Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
| | - Rahul Ranjan
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Prodyut Dhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Anita Kamra Verma
- Nanobiotech Lab, Kirorimal College, University of Delhi, 110007, Delhi, India.
| | - Shilpi Chaudhary
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University), Chandigarh, 160012, India.
| | - Avanish Singh Parmar
- Biophysics and Nanotechnology Laboratory, Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India.
- Centre for Biomaterials and Tissue Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
58
|
Sun YT, Zhao C, Zhu YL, Guan JL, Zhang LL, Wei L, Sun ZY, Huang YN. The design of highly conductive and stretchable polymer conductors with low-load nanoparticles. SOFT MATTER 2023; 19:6176-6182. [PMID: 37551147 DOI: 10.1039/d3sm00669g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Highly conductive and stretchable polymer conductors fabricated from conductive fillers and stretchable polymers are urgently needed in flexible electronics, implants, soft robotics, etc. However, polymer conductors encounter the conductivity-stretchability dilemma, in which high-load fillers needed for high conductivity always result in the stiffness of materials. Herein, we propose a new design of highly conductive and stretchable polymer conductors with low-load nanoparticles (NPs). The design is achieved by the self-assembly of surface-modified NPs to efficiently form robust conductive pathways. We employ computer simulations to elucidate the self-assembly of the NPs in the polymer matrices under equilibrium and tensile states. The conductive pathways retain 100% percolation probability even though the loading of the NPs is lowered to ∼2% volume. When the tensile strain reaches 400%, the percolation probability of the ∼2% NP system is still greater than 25%. The theoretical prediction suggests a way for advancing flexible conductive materials.
Collapse
Affiliation(s)
- Yu-Ting Sun
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining, Xinjiang 835000, China.
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Can Zhao
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining, Xinjiang 835000, China.
| | - You-Liang Zhu
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining, Xinjiang 835000, China.
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jun-Lei Guan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Li-Li Zhang
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining, Xinjiang 835000, China.
| | - Lai Wei
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining, Xinjiang 835000, China.
| | - Zhao-Yan Sun
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining, Xinjiang 835000, China.
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yi-Neng Huang
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining, Xinjiang 835000, China.
- School of Physics, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
59
|
Ullah R, Shah LA, Khan M, Ara L. Guar gum reinforced conductive hydrogel for strain sensing and electronic devices. Int J Biol Macromol 2023; 246:125666. [PMID: 37406904 DOI: 10.1016/j.ijbiomac.2023.125666] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/29/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Hydrophobically associated conductive hydrogels got great attention due to their excellent properties like stretchability, energy dissipation mechanism, and strain sensor. But hydrophobically associated hydrogels have poor mechanical properties and time response to external stimuli. To enhance the mechanical properties and response to stimuli, Acrylamide- co-Butyl acrylate/Gum based conductive hydrogels were prepared. SDS works as a cross-linker and micelle-forming agent while NaCl makes hydrogel as conductive. The results show that our % strain sensing reached up to 400 %, and fracture stress and fracture strain reached to 0.5 MPa and 401 % respectively. Besides this, it's having an excellent response to continuous stretching and unstretching multiple cycles without any fracture up to 180 s and an excellent time response of 190 s. The conductivity of the hydrogel was 0.20 Sm-1. The hydrophobic hydrogels showed a clear and quick response to human motions like finger, wresting, writing, speaking, etc. Interestingly, our prepared hydrogels can detect the mood of the human face. Similarly, the hydrogels were found efficient in bridging the surface of electronic devices with human skin. This indicates that our prepared hydrogels can monitor human body motion and will replace the existing materials used in strain sensors in the near future.
Collapse
Affiliation(s)
- Rafi Ullah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Luqman Ali Shah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan.
| | - Mansoor Khan
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Latafat Ara
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| |
Collapse
|
60
|
Zhang R, Yang A, Yang Y, Zhu Y, Song Y, Li Y, Li J. Mussel-inspired cellulose nanofiber/poly(vinyl alcohol) hydrogels with robustness, self-adhesion and antimicrobial activity for strain sensors. Int J Biol Macromol 2023; 245:125469. [PMID: 37343611 DOI: 10.1016/j.ijbiomac.2023.125469] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Flexible strain sensors have attracted substantial attention given their application in human-computer interaction and personal health monitoring. Due to the inherent disadvantages of conventional hydrogels, the manufacture of hydrogel strain sensors with high tensile strength, excellent adhesion, self-healing and antimicrobial properties in vitro, and conductive stability is still a challenge. Herein, a conductive hydrogel consisting of polydopamine-coated cellulose nanofibers (CNF@PDA), carbon nanotubes (CNT), and polyvinyl alcohol (PVA) was developed. The CNTs in PVA/CNF@PDA/CNT hydrogels were uniformly dispersed in the presence of CNF@PDA by hydrogen bonding, resulting in a nearly threefold increase in conductivity (0.4 S/m) over hydrogels without PDA. The hydrogel exhibited satisfactory tensile properties (tensile stress up to 0.79 MPa), good fatigue resistance, self-recovery and excellent antimicrobial activity in vitro. It showed excellent adhesion, especially the adhesion strength of pigskin was increased to 27 kPa. In addition, the hydrogel was used as a strain sensor, exhibiting excellent strain sensitivity (strain coefficient = 2.29), fast response (150 ms), and great durability (over 1000 cycles). The fabricated strain sensors can detect both large and subtle human movements (e.g., wrist bending and vocalization) with stable and repeatable electrical signals, indicating potential applications in personal health monitoring.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - An Yang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Yutong Yang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Yachong Zhu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Yongming Song
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China.
| | - Yao Li
- Center for Composite Materials and Structure,Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China
| | - Jian Li
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| |
Collapse
|
61
|
Quazi MZ, Hwang J, Song Y, Park N. Hydrogel-Based Biosensors for Effective Therapeutics. Gels 2023; 9:545. [PMID: 37504424 PMCID: PMC10378974 DOI: 10.3390/gels9070545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Nanotechnology and polymer engineering are navigating toward new developments to control and overcome complex problems. In the last few decades, polymer engineering has received researchers' attention and similarly, polymeric network-engineered structures have been vastly studied. Prior to therapeutic application, early and rapid detection analyses are critical. Therefore, developing hydrogel-based sensors to manage the acute expression of diseases and malignancies to devise therapeutic approaches demands advanced nanoengineering. However, nano-therapeutics have emerged as an alternative approach to tackling strenuous diseases. Similarly, sensing applications for multiple kinds of analytes in water-based environments and other media are gaining wide interest. It has also been observed that these functional roles can be used as alternative approaches to the detection of a wide range of biomolecules and pathogenic proteins. Moreover, hydrogels have emerged as a three-dimensional (3D) polymeric network that consists of hydrophilic natural or synthetic polymers with multidimensional dynamics. The resemblance of hydrogels to tissue structure makes them more unique to study inquisitively. Preceding studies have shown a vast spectrum of synthetic and natural polymer applications in the field of biotechnology and molecular diagnostics. This review explores recent studies on synthetic and natural polymers engineered hydrogel-based biosensors and their applications in multipurpose diagnostics and therapeutics. We review the latest studies on hydrogel-engineered biosensors, exclusively DNA-based and DNA hydrogel-fabricated biosensors.
Collapse
Affiliation(s)
- Mohzibudin Z Quazi
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Gyeonggi-do, Republic of Korea
| | - Jimin Hwang
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Gyeonggi-do, Republic of Korea
| | - Youngseo Song
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Gyeonggi-do, Republic of Korea
| | - Nokyoung Park
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Gyeonggi-do, Republic of Korea
| |
Collapse
|
62
|
Zhang C, Kong J, Wu D, Guan Z, Ding B, Chen F. Wearable Sensor: An Emerging Data Collection Tool for Plant Phenotyping. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0051. [PMID: 37408737 PMCID: PMC10318905 DOI: 10.34133/plantphenomics.0051] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023]
Abstract
The advancement of plant phenomics by using optical imaging-based phenotyping techniques has markedly improved breeding and crop management. However, there remains a challenge in increasing the spatial resolution and accuracy due to their noncontact measurement mode. Wearable sensors, an emerging data collection tool, present a promising solution to address these challenges. By using a contact measurement mode, wearable sensors enable in-situ monitoring of plant phenotypes and their surrounding environments. Although a few pioneering works have been reported in monitoring plant growth and microclimate, the utilization of wearable sensors in plant phenotyping has yet reach its full potential. This review aims to systematically examine the progress of wearable sensors in monitoring plant phenotypes and the environment from an interdisciplinary perspective, including materials science, signal communication, manufacturing technology, and plant physiology. Additionally, this review discusses the challenges and future directions of wearable sensors in the field of plant phenotyping.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Engineering,
Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture,
Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Jingjing Kong
- College of Engineering,
Nanjing Agricultural University, Nanjing 210095, China
| | - Daosheng Wu
- College of Engineering,
Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture,
Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Baoqing Ding
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture,
Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture,
Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| |
Collapse
|
63
|
Zhao Y, Liu W, Bai X, Huang W, Gu Y, Chen S, Lan J. Highly water dispersible collagen/polyaniline nanocomposites with strong adhesion for electrochromic films with enhanced cycling stability. Int J Biol Macromol 2023; 241:124657. [PMID: 37119893 DOI: 10.1016/j.ijbiomac.2023.124657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Electrochromic materials have attracted extensive attention recently due to their versatile applications in smart windows, displays, antiglare rearview mirrors, and so on. Herein we report a new electrochromic composite prepared from collagen and polyaniline (PANI) through a self-assembly assisted co-precipitation method. The introduction of hydrophilic collagen macromolecules into PANI nanoparticles makes the collagen/PANI (C/PANI) nanocomposite obtain excellent dispersibility in water, which provides good environmental-friendly solution processability. Furthermore, the C/PANI nanocomposite exhibits excellent film-forming properties and adhesion to the ITO glass matrix. The resulting electrochromic film of the C/PANI nanocomposite displays significantly improved cycling stability compared with the pure PANI film after 500 coloring-bleaching cycles. On the other hand, the composite films also exhibit yellow, green and blue polychromatic properties at different applied voltages and high average transmittance at the bleaching state. The C/PANI electrochromic material illustrates scaling potential for the application of electrochromic devices.
Collapse
Affiliation(s)
- Yinghui Zhao
- Functional Polymer Materials Laboratory, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Wentao Liu
- Functional Polymer Materials Laboratory, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xue Bai
- Functional Polymer Materials Laboratory, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Wenhuan Huang
- Chunliang Oil Production Plant of Shengli Oilfield, Sinopec, BinZhou City 256504, Shandong, China
| | - Yingchun Gu
- Functional Polymer Materials Laboratory, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Sheng Chen
- Functional Polymer Materials Laboratory, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianwu Lan
- Functional Polymer Materials Laboratory, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
64
|
Peng L, Su Y, Yang X, Sui G. A liquid metal/carbon nanotubes complex enabling ultra-fast polymerization of super-robust, stretchable adhesive hydrogels for highly sensitive sensor. J Colloid Interface Sci 2023; 638:313-323. [PMID: 36746050 DOI: 10.1016/j.jcis.2023.01.128] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/03/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
Carbon nanotubes (CNTs) usually served as conductive and reinforcing nanofillers for making nanocomposites have never been reported to play a role in accelerating fabrication of hydrogels. Herein, we report an important discovery that by involving CNTs and liquid metal (LM) to form a complex (LM@CNTs), multifunctional hydrogels are rapidly prepared from vinyl monomers without heating or adding any initiators and crosslinkers. Study results demonstrate that LM@CNTs not only performs as both initiator and crosslinker for synthesizing hydrogels, but also dramatically reduces the polymerization duration from 3 days to minute levels, compared with that of only LM involved in hydrogel fabrication. Specifically, the complex initiates (<60 s) and crosslinks (<8min) monomers to form the high-performance hydrogels, which significantly reduces energy consumptions. The resulting polyacrylic acid (PAA) hydrogel possesses super stretchability (∼1200 %), high tensile strength (0.96 MPa), outstanding strain sensitivity (Gauge factor = 15.40 at 300-500 % strain), and excellent adhesion to various substrate surfaces. Additionally, the injectable molding performance will benefit the mass production of the hydrogels, which exhibits great potential for applications of wearable flexible sensors. This study provides an environmentally friendly, rapid polymerization, and energy-saving strategy by effectively applying nano-fillers for viable fabrication and application of multifunctional hydrogels.
Collapse
Affiliation(s)
- Lin Peng
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yaotian Su
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Gang Sui
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
65
|
Flynn CD, Chang D, Mahmud A, Yousefi H, Das J, Riordan KT, Sargent EH, Kelley SO. Biomolecular sensors for advanced physiological monitoring. NATURE REVIEWS BIOENGINEERING 2023; 1:1-16. [PMID: 37359771 PMCID: PMC10173248 DOI: 10.1038/s44222-023-00067-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 06/28/2023]
Abstract
Body-based biomolecular sensing systems, including wearable, implantable and consumable sensors allow comprehensive health-related monitoring. Glucose sensors have long dominated wearable bioanalysis applications owing to their robust continuous detection of glucose, which has not yet been achieved for other biomarkers. However, access to diverse biological fluids and the development of reagentless sensing approaches may enable the design of body-based sensing systems for various analytes. Importantly, enhancing the selectivity and sensitivity of biomolecular sensors is essential for biomarker detection in complex physiological conditions. In this Review, we discuss approaches for the signal amplification of biomolecular sensors, including techniques to overcome Debye and mass transport limitations, and selectivity improvement, such as the integration of artificial affinity recognition elements. We highlight reagentless sensing approaches that can enable sequential real-time measurements, for example, the implementation of thin-film transistors in wearable devices. In addition to sensor construction, careful consideration of physical, psychological and security concerns related to body-based sensor integration is required to ensure that the transition from the laboratory to the human body is as seamless as possible.
Collapse
Affiliation(s)
- Connor D. Flynn
- Department of Chemistry, Faculty of Arts & Science, University of Toronto, Toronto, ON Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Dingran Chang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON Canada
| | - Alam Mahmud
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON Canada
| | - Hanie Yousefi
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
| | - Jagotamoy Das
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Kimberly T. Riordan
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
| | - Edward H. Sargent
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON Canada
- Department of Electrical and Computer Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
| | - Shana O. Kelley
- Department of Chemistry, Faculty of Arts & Science, University of Toronto, Toronto, ON Canada
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL USA
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON Canada
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Evanston, IL USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL USA
- Chan Zuckerberg Biohub Chicago, Chicago, IL USA
| |
Collapse
|
66
|
Gong T, Li ZN, Liang H, Li Y, Tang X, Chen F, Hu Q, Wang H. High-Sensitivity Wearable Sensor Based On a MXene Nanochannel Self-Adhesive Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19349-19361. [PMID: 37036936 DOI: 10.1021/acsami.3c01748] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
To address the shortcomings of traditional filler-based wearable hydrogels, a new type of nanochannel hydrogel sensor is fabricated in this work through a combination of the unique structure of electrospun fiber textile and the properties of a double network hydrogel. Unlike the traditional Ti3C2Tx MXene-based hydrogels, the continuously distributed Ti3C2Tx MXene in the nanochannels of the hydrogel forms a tightly interconnected structure similar to the neuron network. As a result, they have more free space to flip and perform micromovements, which allows one to significantly increase the electrical conductivity and sensitivity of the hydrogel. According to the findings, the Ti3C2Tx MXene nanochannel hydrogel has excellent mechanical properties as well as self-adhesion and antifreezing characteristics. The hydrogel sensor successfully detects different human motions and physiological signals (e.g., low pulse signals) with high stability and sensitivity. Therefore, the proposed Ti3C2Tx MXene-based hydrogel with a unique structure and properties is very promising in the field of flexible wearable devices.
Collapse
Affiliation(s)
- Tao Gong
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Zo Ngyang Li
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Huanyi Liang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Youming Li
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xia Tang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Fengyue Chen
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Qinghua Hu
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - HongQing Wang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
67
|
Zhan W, Zhang Q, Zhang C, Yang Z, Peng N, Jiang Z, Liu M, Zhang X. Carboxymethylcellulose reinforced, double-network hydrogel-based strain sensor with superior sensing stability for long-term monitoring. Int J Biol Macromol 2023; 241:124536. [PMID: 37085065 DOI: 10.1016/j.ijbiomac.2023.124536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Hydrogel-based strain sensors have garnered significant attention for their potential for human health monitoring. However, its practical application has been hindered by water loss, freezing, and structural impairment during long-term motion monitoring. Here, a strain sensor based on double-network (DN) hydrogel of polyacrylamide (PAAm)/carboxymethylcellulose (CMC) was developed in a ternary solvent system of lithium chloride (LiCl)/ethylene glycol (EG)/H2O through a facile one-pot radical polymerization strategy. The incorporation of EG effectively mitigated the hydration of lithium salts by generating stable ion clusters with Li+ and stronger hydrogen bonds within the polymer matrix. The sensor demonstrated excellent mechanical properties, including a stretchability of 1858 %, toughness of 1.80 MJ/m3, and recoverability of 102 %. Furthermore, the LiCl/EG/H2O ternary system resulted in high conductivity, excellent anti-freezing performance, and superior sensing stability. In addition, the sensor exhibited remarkable sensitivity, enabling the monitoring of human movements ranging from subtle to significant deformations, including throat motion and bending of the elbow, wrist, finger, and lower limb. This study presents a viable approach for constructing hydrogel-based strain sensors with exceptional sensing stability for long-term tracking of human motions.
Collapse
Affiliation(s)
- Wang Zhan
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China
| | - Qi Zhang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China
| | - Cuiling Zhang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China
| | - Zihao Yang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China
| | - Niancai Peng
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 7100049, Shaanxi, PR China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 7100049, Shaanxi, PR China
| | - Ming Liu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 7100049, Shaanxi, PR China.
| | - Xiaohui Zhang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, PR China.
| |
Collapse
|
68
|
Li J, Ding Q, Wang H, Wu Z, Gui X, Li C, Hu N, Tao K, Wu J. Engineering Smart Composite Hydrogels for Wearable Disease Monitoring. NANO-MICRO LETTERS 2023; 15:105. [PMID: 37060483 PMCID: PMC10105367 DOI: 10.1007/s40820-023-01079-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/16/2023] [Indexed: 05/31/2023]
Abstract
Growing health awareness triggers the public's concern about health problems. People want a timely and comprehensive picture of their condition without frequent trips to the hospital for costly and cumbersome general check-ups. The wearable technique provides a continuous measurement method for health monitoring by tracking a person's physiological data and analyzing it locally or remotely. During the health monitoring process, different kinds of sensors convert physiological signals into electrical or optical signals that can be recorded and transmitted, consequently playing a crucial role in wearable techniques. Wearable application scenarios usually require sensors to possess excellent flexibility and stretchability. Thus, designing flexible and stretchable sensors with reliable performance is the key to wearable technology. Smart composite hydrogels, which have tunable electrical properties, mechanical properties, biocompatibility, and multi-stimulus sensitivity, are one of the best sensitive materials for wearable health monitoring. This review summarizes the common synthetic and performance optimization strategies of smart composite hydrogels and focuses on the current application of smart composite hydrogels in the field of wearable health monitoring.
Collapse
Affiliation(s)
- Jianye Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chunwei Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ning Hu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China.
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
69
|
Hu L, Chee PL, Sugiarto S, Yu Y, Shi C, Yan R, Yao Z, Shi X, Zhi J, Kai D, Yu HD, Huang W. Hydrogel-Based Flexible Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205326. [PMID: 36037508 DOI: 10.1002/adma.202205326] [Citation(s) in RCA: 100] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Flexible electronics is an emerging field of research involving multiple disciplines, which include but not limited to physics, chemistry, materials science, electronic engineering, and biology. However, the broad applications of flexible electronics are still restricted due to several limitations, including high Young's modulus, poor biocompatibility, and poor responsiveness. Innovative materials aiming for overcoming these drawbacks and boost its practical application is highly desirable. Hydrogel is a class of 3D crosslinked hydrated polymer networks, and its exceptional material properties render it as a promising candidate for the next generation of flexible electronics. Here, the latest methods of synthesizing advanced functional hydrogels and the state-of-art applications of hydrogel-based flexible electronics in various fields are reviewed. More importantly, the correlation between properties of the hydrogel and device performance is discussed here, to have better understanding of the development of flexible electronics by using environmentally responsive hydrogels. Last, perspectives on the current challenges and future directions in the development of hydrogel-based multifunctional flexible electronics are provided.
Collapse
Affiliation(s)
- Lixuan Hu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Pei Lin Chee
- Institute of Materials Research and Engineering (IMRE), A∗STAR, 2 Fusionopolis Way, Innovis, No. 08-03, Singapore, 138634, Singapore
| | - Sigit Sugiarto
- Institute of Materials Research and Engineering (IMRE), A∗STAR, 2 Fusionopolis Way, Innovis, No. 08-03, Singapore, 138634, Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering (IMRE), A∗STAR, 2 Fusionopolis Way, Innovis, No. 08-03, Singapore, 138634, Singapore
| | - Chuanqian Shi
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092, P. R. China
| | - Ren Yan
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Zhuoqi Yao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Xuewen Shi
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Jiacai Zhi
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), A∗STAR, 2 Fusionopolis Way, Innovis, No. 08-03, Singapore, 138634, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), A∗STAR, 2 Fusionopolis Way, Innovis, No. 08-03, Singapore, 138634, Singapore
| | - Hai-Dong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| |
Collapse
|
70
|
Fu C, Shen L, Liu L, Tao P, Zhu L, Zeng Z, Ren T, Wang G. Hydrogel with Robust Adhesion in Various Liquid Environments by Electrostatic-Induced Hydrophilic and Hydrophobic Polymer Chains Migration and Rearrangement. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211237. [PMID: 36662770 DOI: 10.1002/adma.202211237] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Hydrogels with wet adhesion are promising interfacial adhesive materials; however, their adhesion in water, oil, or organic solvents remains a major challenge. To address this, a pressure-sensitive P(AAm-co-C18 )/PTA-Fe hydrogel is fabricated, which exhibits robust adhesion to various substrates in both aqueous solutions and oil environments. It is demonstrated that the key to wet adhesion under liquid conditions is the removal of the interfacial liquid, which can be achieved through rational molecular composition regulation. By complexing with hydrophilic polymer networks, phosphotungstic acid (PTA) is introduced into the hydrogel network as a physical cross-linker and anchor point to improve the cohesion strength and drive the migration of polymer chains. The migration and rearrangement of hydrophilic and hydrophobic polymer chains on the hydrogel surface are induced by the electrostatic interactions of Fe3+ , which create a surface with interfacial water- and oil-removing properties. By co-regulating the hydrophilic and hydrophobic polymer chains, the P(AAm-co-C18 )/PTA-Fe hydrogel is able to act as a pressure-sensitive adhesive under water and oils with adhesion strength of 92.6 and 90.0 kPa, respectively. It is anticipated that this regulation strategy for polymer chains will promote the development of wet adhesion hydrogels, which can have a wide range of applications.
Collapse
Affiliation(s)
- Chao Fu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Thin Film and Microfabrication Technology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Luli Shen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Luqi Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ping Tao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Lijing Zhu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Zhixiang Zeng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Tianhui Ren
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Thin Film and Microfabrication Technology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Gang Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
71
|
Zhou Y, Zhang L, Lin X, Lu J, Huang Z, Sun P, Zhang Y, Xu X, Li Q, Liu H. Dual-network polyvinyl alcohol/polyacrylamide/xanthan gum ionic conductive hydrogels for flexible electronic devices. Int J Biol Macromol 2023; 233:123573. [PMID: 36754269 DOI: 10.1016/j.ijbiomac.2023.123573] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Ionic conductive hydrogels (ICHs) have received widespread attention as an ideal candidate for flexible electronic devices. However, conventional ICHs failed in widespread applications due to their inability to simultaneously possess high toughness, high ionic conductivity, and anti-freezing properties. Here, polyvinyl alcohol (PVA) and polyacrylamide (PAAm) were first dissolved in the zinc chloride solution, in which zinc ions (Zn2+) act as ionic cross-linkers and conducting ions, followed by the introduction of xanthan gum (XG) with a unique structure of trisaccharide side chains into the PVA/PAAm semi-interpenetrating network to prepare a dual-network ICHs (refers as PPXZ). Enabled by the synergistic effect of intermolecular chemical covalent cross-linking and physical cross-linking, PPXZ hydrogels exhibit significantly improved mechanical properties without sacrificing electrical conductivity. Furthermore, PPXZ hydrogels are successfully applied to flexible electronic devices, such as strain sensors and zinc ion hybrid supercapacitors, exhibiting satisfactory sensing sensitivity and cycling stability at a wide temperature range, respectively. Even at a high current density (10 A g-1), the capacity of the supercapacitor retains 88.24 % after 10,000 cycles. This strategy provides new insight for ICHs in wide temperature-applied flexible electronic devices.
Collapse
Affiliation(s)
- Yiyang Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Lei Zhang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing 210042, Jiangsu Province, China
| | - Xiangyu Lin
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing 210042, Jiangsu Province, China
| | - Jie Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Zhen Huang
- College of Chemical Engineering, Nanjing Forestry University, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210037, Jiangsu Province, China
| | - Penghao Sun
- College of Chemical Engineering, Nanjing Forestry University, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210037, Jiangsu Province, China
| | - Yibing Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Xu Xu
- College of Chemical Engineering, Nanjing Forestry University, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210037, Jiangsu Province, China
| | - Qingtao Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China.
| | - He Liu
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Nanjing 210042, Jiangsu Province, China.
| |
Collapse
|
72
|
Luo Y, Abidian MR, Ahn JH, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, Chen J, Chen P, Cheng W, Cheng X, Choi SJ, Chortos A, Dagdeviren C, Dauskardt RH, Di CA, Dickey MD, Duan X, Facchetti A, Fan Z, Fang Y, Feng J, Feng X, Gao H, Gao W, Gong X, Guo CF, Guo X, Hartel MC, He Z, Ho JS, Hu Y, Huang Q, Huang Y, Huo F, Hussain MM, Javey A, Jeong U, Jiang C, Jiang X, Kang J, Karnaushenko D, Khademhosseini A, Kim DH, Kim ID, Kireev D, Kong L, Lee C, Lee NE, Lee PS, Lee TW, Li F, Li J, Liang C, Lim CT, Lin Y, Lipomi DJ, Liu J, Liu K, Liu N, Liu R, Liu Y, Liu Y, Liu Z, Liu Z, Loh XJ, Lu N, Lv Z, Magdassi S, Malliaras GG, Matsuhisa N, Nathan A, Niu S, Pan J, Pang C, Pei Q, Peng H, Qi D, Ren H, Rogers JA, Rowe A, Schmidt OG, Sekitani T, Seo DG, Shen G, Sheng X, Shi Q, Someya T, Song Y, Stavrinidou E, Su M, Sun X, Takei K, Tao XM, Tee BCK, Thean AVY, Trung TQ, Wan C, Wang H, Wang J, Wang M, Wang S, Wang T, Wang ZL, Weiss PS, Wen H, Xu S, Xu T, Yan H, Yan X, Yang H, Yang L, Yang S, Yin L, Yu C, Yu G, Yu J, Yu SH, Yu X, Zamburg E, Zhang H, Zhang X, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhao S, Zhao X, Zheng Y, Zheng YQ, Zheng Z, Zhou T, Zhu B, Zhu M, Zhu R, Zhu Y, Zhu Y, Zou G, Chen X. Technology Roadmap for Flexible Sensors. ACS NANO 2023; 17:5211-5295. [PMID: 36892156 PMCID: PMC11223676 DOI: 10.1021/acsnano.2c12606] [Citation(s) in RCA: 226] [Impact Index Per Article: 226.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
Collapse
Affiliation(s)
- Yifei Luo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Mohammad Reza Abidian
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77024, United States
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Anne M Andrews
- Department of Chemistry and Biochemistry, California NanoSystems Institute, and Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Markus Antonietti
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Campus Norrköping, Linköping University, 83 Linköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability (WISE) and Wallenberg Wood Science Center (WWSC), SE-100 44 Stockholm, Sweden
| | - Christopher A Berkey
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Christopher John Bettinger
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Wenlong Cheng
- Nanobionics Group, Department of Chemical and Biological Engineering, Monash University, Clayton, Australia, 3800
- Monash Institute of Medical Engineering, Monash University, Clayton, Australia3800
| | - Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Alex Chortos
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Reinhold H Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yin Fang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Xue Feng
- Laboratory of Flexible Electronics Technology, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Xiwen Gong
- Department of Chemical Engineering, Department of Materials Science and Engineering, Department of Electrical Engineering and Computer Science, Applied Physics Program, and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojun Guo
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Martin C Hartel
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zihan He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - John S Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Youfan Hu
- School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yu Huang
- Department of Materials Science and Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Muhammad M Hussain
- mmh Labs, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Engineering (POSTECH), Pohang, Gyeong-buk 37673, Korea
| | - Chen Jiang
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Jiheong Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daniil Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
| | | | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dmitry Kireev
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Lingxuan Kong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Nae-Eung Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Seoul National University, Soft Foundry, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Fengyu Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jinxing Li
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Neuroscience Program, BioMolecular Science Program, and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48823, United States
| | - Cuiyuan Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 119276, Singapore
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Darren J Lipomi
- Department of Nano and Chemical Engineering, University of California, San Diego, La Jolla, California 92093-0448, United States
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Ren Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Yuxin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, N.1 Institute for Health, Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 119077, Singapore
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhiyuan Liu
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China 518055
| | - Zhuangjian Liu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, Department of Electrical and Computer Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhisheng Lv
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Shlomo Magdassi
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge CB3 0FA, Cambridge United Kingdom
| | - Naoji Matsuhisa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Arokia Nathan
- Darwin College, University of Cambridge, Cambridge CB3 9EU, United Kingdom
| | - Simiao Niu
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Changhyun Pang
- School of Chemical Engineering and Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Qibing Pei
- Department of Materials Science and Engineering, Department of Mechanical and Aerospace Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Dianpeng Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huaying Ren
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, United States
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Departments of Electrical and Computer Engineering and Chemistry, and Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
| | - Aaron Rowe
- Becton, Dickinson and Company, 1268 N. Lakeview Avenue, Anaheim, California 92807, United States
- Ready, Set, Food! 15821 Ventura Blvd #450, Encino, California 91436, United States
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz 09107, Germany
- Nanophysics, Faculty of Physics, TU Dresden, Dresden 01062, Germany
| | - Tsuyoshi Sekitani
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan 5670047
| | - Dae-Gyo Seo
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrkoping, Sweden
| | - Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Kuniharu Takei
- Department of Physics and Electronics, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Xiao-Ming Tao
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, Hong Kong Polytechnic University, Hong Kong, China
| | - Benjamin C K Tee
- Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- iHealthtech, National University of Singapore, Singapore 119276, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Tran Quang Trung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Changjin Wan
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Huiliang Wang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, California 92093, United States
| | - Ming Wang
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chip and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- the Shanghai Qi Zhi Institute, 41th Floor, AI Tower, No.701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Paul S Weiss
- California NanoSystems Institute, Department of Chemistry and Biochemistry, Department of Bioengineering, and Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hanqi Wen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, China 314000
| | - Sheng Xu
- Department of Nanoengineering, Department of Electrical and Computer Engineering, Materials Science and Engineering Program, and Department of Bioengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, China, 300072
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, #03-09 EA, Singapore 117575, Singapore
| | - Shuaijian Yang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, and Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Cunjiang Yu
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, Department of Material Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Evgeny Zamburg
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Haixia Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Xiaosheng Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics; Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Siyuan Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Yuanjin Zheng
- Center for Integrated Circuits and Systems, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu-Qing Zheng
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, Faculty of Science, Research Institute for Intelligent Wearable Systems, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Tao Zhou
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Huck Institutes of the Life Sciences, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Ming Zhu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Rong Zhu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, Department of Materials Science and Engineering, and Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Guijin Zou
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xiaodong Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
73
|
Zhao Z, Hu YP, Liu KY, Yu W, Li GX, Meng CZ, Guo SJ. Recent Development of Self-Powered Tactile Sensors Based on Ionic Hydrogels. Gels 2023; 9:gels9030257. [PMID: 36975706 PMCID: PMC10048595 DOI: 10.3390/gels9030257] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Hydrogels are three-dimensional polymer networks with excellent flexibility. In recent years, ionic hydrogels have attracted extensive attention in the development of tactile sensors owing to their unique properties, such as ionic conductivity and mechanical properties. These features enable ionic hydrogel-based tactile sensors with exceptional performance in detecting human body movement and identifying external stimuli. Currently, there is a pressing demand for the development of self-powered tactile sensors that integrate ionic conductors and portable power sources into a single device for practical applications. In this paper, we introduce the basic properties of ionic hydrogels and highlight their application in self-powered sensors working in triboelectric, piezoionic, ionic diode, battery, and thermoelectric modes. We also summarize the current difficulty and prospect the future development of ionic hydrogel self-powered sensors.
Collapse
Affiliation(s)
- Zhen Zhao
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yong-Peng Hu
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Kai-Yang Liu
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Wei Yu
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Guo-Xian Li
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Chui-Zhou Meng
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shi-Jie Guo
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
74
|
Liu X, Bai Y, Zhao X, Chen J, Chen X, Yang W. Conductive and self-healing hydrogel for flexible electrochemiluminescence sensor. Mikrochim Acta 2023; 190:123. [PMID: 36892601 DOI: 10.1007/s00604-023-05706-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/10/2023]
Abstract
A flexible electrochemiluminescence (ECL) hydrogel sensor exhibiting good self-healing was constructed. A transparent self-healing oxidized sodium alginate/hydrazide polyethylene glycol (OSA/PEG-DH) hydrogel was prepared by crosslinking dynamic covalent acylhydrazone bond. The introduction of 4-amino-DL-phenylalanine, a catalyst with good biocompatibility, allows rapid gelation and self-healing of hydrogel under mild conditions. Using the hydrogel as the sensing substrate, the ionic liquid (IL) 2-hydroxy-N,N,N-trimethylethanaminium chloride and the luminescent reagent N-(aminobutyl)-N-(ethylisoluminol) (ABEI) were simultaneously immobilized in the OSA/PEG-DH hydrogel to obtain the ABEI/IL/OSA/PEG-DH hydrogel. The ABEI/IL/OSA/PEG-DH hydrogel can be directly used as a semi-solid electrolyte for constructing a flexible ECL hydrogel sensor for the detection of H2O2, which acted as a coreactant of ABEI. The prepared flexible ECL sensor showed good self-healing performance, can restore ECL signal intensity within 20 min after physical damage, and showed high accuracy in the analysis of complex serum samples. This research shed new light on the development of flexible ECL sensor for bioanalytical applications.
Collapse
Affiliation(s)
- Xuejiao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yang Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiaoxiao Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jun Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xu Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Wensheng Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
75
|
Zhou L, Li Y, Xiao J, Chen SW, Tu Q, Yuan MS, Wang J. Liquid Metal-Doped Conductive Hydrogel for Construction of Multifunctional Sensors. Anal Chem 2023; 95:3811-3820. [PMID: 36747339 DOI: 10.1021/acs.analchem.2c05118] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interest in wearable and stretchable multifunctional sensors has grown rapidly in recent years. The sensing elements must accurately detect external stimuli to expand their applicability as sensors. However, the sensor's self-healing and adhesion to a target object have been major challenges in developing such practical and versatile devices. In this study, we prepared a hydrogel (LM-SA-PAA) composed of liquid metal (LM), sodium alginate (SA), and poly(acrylic acid) (PAA) with ultrastretchable, excellent self-healing, self-adhesive, and high-sensitivity sensing capabilities that enable the conformal contact between the sensor and skin even during dynamic movements. The excellent self-healing performance of the hydrogel stems from its double cross-linked networks, including physical and chemical cross-linked networks. The physical cross-link formed by the ionic interaction between the carboxyl groups of PAA and gallium ions provide the hydrogel with reversible autonomous repair properties, whereas the covalent bond provides the hydrogel with a stable and strong chemical network. Alginate forms a microgel shell around LM nanoparticles via the coordination of its carboxyl groups with Ga ions. In addition to offering exceptional colloidal stability, the alginate shell has sufficient polar groups, ensuring that the hydrogel adheres to diverse substrates. Based on the efficient electrical pathway provided by the LM, the hydrogel exhibited strain sensitivity and enabled the detection of various human motions and electrocardiographic monitoring. The preparation method is simple and versatile and can be used for the low-cost fabrication of multifunctional sensors, which have broad application prospects in human-machine interface compatibility and medical monitoring.
Collapse
Affiliation(s)
- Lingtong Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Yuanchang Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Jingcheng Xiao
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Shu-Wei Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Qin Tu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Mao-Sen Yuan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Jinyi Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|
76
|
Flexible electroactive membranes for the electrochemical detection of dopamine. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
77
|
Long Q, Zhang Y, Zhang Q, Xu K, Cao L. Application of poly (dimethyl diallyl ammonium chloride) −reinforced multifunctional poly (vinyl alcohol)/ polyaniline hydrogels as flexible sensor materials. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
78
|
Zhu T, Ni Y, Biesold GM, Cheng Y, Ge M, Li H, Huang J, Lin Z, Lai Y. Recent advances in conductive hydrogels: classifications, properties, and applications. Chem Soc Rev 2023; 52:473-509. [PMID: 36484322 DOI: 10.1039/d2cs00173j] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogel-based conductive materials for smart wearable devices have attracted increasing attention due to their excellent flexibility, versatility, and outstanding biocompatibility. This review presents the recent advances in multifunctional conductive hydrogels for electronic devices. First, conductive hydrogels with different components are discussed, including pure single network hydrogels based on conductive polymers, single network hydrogels with additional conductive additives (i.e., nanoparticles, nanowires, and nanosheets), double network hydrogels based on conductive polymers, and double network hydrogels with additional conductive additives. Second, conductive hydrogels with a variety of functionalities, including self-healing, super toughness, self-growing, adhesive, anti-swelling, antibacterial, structural color, hydrophobic, anti-freezing, shape memory and external stimulus responsiveness are introduced in detail. Third, the applications of hydrogels in flexible devices are illustrated (i.e., strain sensors, supercapacitors, touch panels, triboelectric nanogenerator, bioelectronic devices, and robot). Next, the current challenges facing hydrogels are summarized. Finally, an imaginative but reasonable outlook is given, which aims to drive further development in the future.
Collapse
Affiliation(s)
- Tianxue Zhu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Yimeng Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yan Cheng
- Zhejiang Engineering Research Center for Tissue Repair Materials, Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang 325000, P. R. China
| | - Mingzheng Ge
- School of Textile and Clothing, Nantong University, Nantong 226019, P. R. China
| | - Huaqiong Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang 325000, P. R. China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China. .,Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China. .,Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| |
Collapse
|
79
|
Zeng W, Deng L, Yang G. Self-Healable Elastomeric Network with Dynamic Disulfide, Imine, and Hydrogen Bonds for Flexible Strain Sensor. Chemistry 2023; 29:e202203478. [PMID: 36694013 DOI: 10.1002/chem.202203478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/08/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Self-healable and stretchable elastomeric material is essential for the development of flexible electronics devices to ensure their stable performance. In this study, a strain sensor (PIH2 T1 -tri/CNT-3) composed of self-repairable crosslinked elastomer substrate (PIH2 T1 -tri, containing multiple reversible repairing sites such as disulfide, imine, and hydrogen bonds) and conductive layer (carbon nanotube, CNT) was prepared. The PIH2 T1 -tri elastomer had excellent self-healing ability (healing efficiency=91 %). It exhibited good mechanical integrity in terms of elongation at break (672 %), tensile strength (1.41 MPa). The Young's modulus (0.39 MPa) was close to that of human skin. The PIH2 T1 -tri/CNT-3 sensor also demonstrated an effective self-healing function for electrical conduction and sensing property. Meanwhile, it had high sensitivity (gauge factor (GF)=24.1), short response time (120 ms), and long-term durability (4000 cycles). This study offers a novel self-healable elastomer platform with carbon based conductive components to develop flexible strain sensors towards high performance soft electronics.
Collapse
Affiliation(s)
- Wangyi Zeng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.,National Engineering Research Centre of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Longjiang Deng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.,National Engineering Research Centre of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Guang Yang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.,National Engineering Research Centre of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| |
Collapse
|
80
|
Kaur B, Kumar S, Kaushik BK. Novel Wearable Optical Sensors for Vital Health Monitoring Systems-A Review. BIOSENSORS 2023; 13:bios13020181. [PMID: 36831947 PMCID: PMC9954035 DOI: 10.3390/bios13020181] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 05/09/2023]
Abstract
Wearable sensors are pioneering devices to monitor health issues that allow the constant monitoring of physical and biological parameters. The immunity towards electromagnetic interference, miniaturization, detection of nano-volumes, integration with fiber, high sensitivity, low cost, usable in harsh environments and corrosion-resistant have made optical wearable sensor an emerging sensing technology in the recent year. This review presents the progress made in the development of novel wearable optical sensors for vital health monitoring systems. The details of different substrates, sensing platforms, and biofluids used for the detection of target molecules are discussed in detail. Wearable technologies could increase the quality of health monitoring systems at a nominal cost and enable continuous and early disease diagnosis. Various optical sensing principles, including surface-enhanced Raman scattering, colorimetric, fluorescence, plasmonic, photoplethysmography, and interferometric-based sensors, are discussed in detail for health monitoring applications. The performance of optical wearable sensors utilizing two-dimensional materials is also discussed. Future challenges associated with the development of optical wearable sensors for point-of-care applications and clinical diagnosis have been thoroughly discussed.
Collapse
Affiliation(s)
- Baljinder Kaur
- Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
- Correspondence: (S.K.); (B.K.K.)
| | - Brajesh Kumar Kaushik
- Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Correspondence: (S.K.); (B.K.K.)
| |
Collapse
|
81
|
Zhong L, Dong Z, Liu Y, Chen C, Xu Z. Construction of strong and tough carboxymethyl cellulose-based oriented hydrogels by phase separation. Int J Biol Macromol 2023; 225:79-89. [PMID: 36460246 DOI: 10.1016/j.ijbiomac.2022.11.284] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/04/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Anisotropic hydrogels have attracted extensive attention because they are similar to natural hydrogel-like materials and exhibit superiority and new functions that isotropic hydrogels cannot. Here, we fabricated strong and tough carboxymethyl cellulose-based conductive hydrogels with oriented hierarchical structures through pre-stretching, solvent displacement induced phase separation, and subsequent ionic crosslinking immobilization. Solvent displacement made the pre-stretched carboxymethyl cellulose-based polymer network more dense and linear, while the toughness of the hydrogel was further improved under the effect of phase separation. Strong and tough hydrogels were prepared by combining pre-stretching and phase separation; the variation range (tensile strength of 2.24-6.19 MPa and toughness of 19.41-22.92 MJ/m3) can be adjusted by the stretching ratio. Compared with traditional carboxymethyl cellulose-based hydrogels, the tensile strength and toughness were increased by 49 times and 15 times, respectively. In addition, the hydrogels had good underwater stability, ion cross-linking made the hydrogels have good conductivity, and the directional stratification structure gave the hydrogels conductive anisotropy. These characteristics give hydrogel sensors broad application prospects in flexible wearable devices, anisotropic sensors, and intelligent underwater devices.
Collapse
Affiliation(s)
- Li Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoji Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuanquan Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chuchu Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhaoyang Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
82
|
Zhou X, Cao W. Flexible and Stretchable Carbon-Based Sensors and Actuators for Soft Robots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:316. [PMID: 36678069 PMCID: PMC9864711 DOI: 10.3390/nano13020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
In recent years, the emergence of low-dimensional carbon-based materials, such as carbon dots, carbon nanotubes, and graphene, together with the advances in materials science, have greatly enriched the variety of flexible and stretchable electronic devices. Compared with conventional rigid devices, these soft robotic sensors and actuators exhibit remarkable advantages in terms of their biocompatibility, portability, power efficiency, and wearability, thus creating myriad possibilities of novel wearable and implantable tactile sensors, as well as micro-/nano-soft actuation systems. Interestingly, not only are carbon-based materials ideal constituents for photodetectors, gas, thermal, triboelectric sensors due to their geometry and extraordinary sensitivity to various external stimuli, but they also provide significantly more precise manipulation of the actuators than conventional centimeter-scale pneumatic and hydraulic robotic actuators, at a molecular level. In this review, we summarize recent progress on state-of-the-art flexible and stretchable carbon-based sensors and actuators that have creatively added to the development of biomedicine, nanoscience, materials science, as well as soft robotics. In the end, we propose the future potential of carbon-based materials for biomedical and soft robotic applications.
Collapse
Affiliation(s)
- Xinyi Zhou
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenhan Cao
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai 201210, China
| |
Collapse
|
83
|
Liu H, Feng Y, Che S, Guan L, Yang X, Zhao Y, Fang L, Zvyagin AV, Lin Q. An Electroconductive Hydrogel Scaffold with Injectability and Biodegradability to Manipulate Neural Stem Cells for Enhancing Spinal Cord Injury Repair. Biomacromolecules 2023; 24:86-97. [PMID: 36512504 DOI: 10.1021/acs.biomac.2c00920] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) generally leads to long-term functional deficits and is difficult to repair spontaneously. Many biological scaffold materials and stem cell treatment strategies have been explored, but very little research focused on the method of combining exogenous neural stem cells (NSCs) with a biodegradable conductive hydrogel scaffold. Here, a NSC loaded conductive hydrogel scaffold (named ICH/NSCs) was assembled by amino-modified gelatin (NH2-Gelatin) and aniline tetramer grafted oxidized hyaluronic acid (AT-OHA). Desirably, the well-conducting ICH/NSCs can be simply injected into the target site of SCI for establishing a good electrical signal pathway of cells, and the proper degradation cycle facilitates new nerve growth. In vitro experiments indicated that the inherent electroactive microenvironment of the hydrogel could better manipulate the differentiation of NSCs into neurons and inhibit the formation of glial cells and scars. Collectively, the ICH/NSC scaffold has successfully stimulated the recovery of SCI and may provide a promising treatment strategy for SCI repair.
Collapse
Affiliation(s)
- Hou Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yubin Feng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Songtian Che
- Department of Ocular Fundus Disease, The Second Hospital of Jilin University, Changchun 130022, P. R. China
| | - Lin Guan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xinting Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yue Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Linan Fang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130000, P. R. China
| | - Andrei V Zvyagin
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia.,Institute of Biology and Biomedicine, Lobachevsky Nizhny Novgorod State University, Nizhny Novgorod 603105, Russia
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
84
|
Zhang Y, Hu Y, Jiang N, Yetisen AK. Wearable artificial intelligence biosensor networks. Biosens Bioelectron 2023; 219:114825. [PMID: 36306563 DOI: 10.1016/j.bios.2022.114825] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
Abstract
The demand for high-quality healthcare and well-being services is remarkably increasing due to the ageing global population and modern lifestyles. Recently, the integration of wearables and artificial intelligence (AI) has attracted extensive academic and technological attention for its powerful high-dimensional data processing of wearable biosensing networks. This work reviews the recent developments in AI-assisted wearable biosensing devices in disease diagnostics and fatigue monitoring demonstrating the trend towards personalised medicine with highly efficient, cost-effective, and accurate point-of-care diagnosis by finding hidden patterns in biosensing data and detecting abnormalities. The reliability of adaptive learning and synthetic data and data privacy still need further investigation to realise personalised medicine in the next decade. Due to the worldwide popularity of smartphones, they have been utilised for sensor readout, wireless data transfer, data processing and storage, result display, and cloud server communication leading to the development of smartphone-based biosensing systems. The recent advances have demonstrated a promising future for the healthcare system because of the increasing data processing power, transfer efficiency and storage capacity and diversifying functionalities.
Collapse
Affiliation(s)
- Yihan Zhang
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China; Jinfeng Laboratory, Chongqing, 401329, China.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| |
Collapse
|
85
|
Han F, Xie X, Wang T, Cao C, Li J, Sun T, Liu H, Geng S, Wei Z, Li J, Xu F. Wearable Hydrogel-Based Epidermal Sensor with Thermal Compatibility and Long Term Stability for Smart Colorimetric Multi-Signals Monitoring. Adv Healthc Mater 2023; 12:e2201730. [PMID: 36259562 DOI: 10.1002/adhm.202201730] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/06/2022] [Indexed: 01/26/2023]
Abstract
Hydrogel-based wearable epidermal sensors (HWESs) have attracted widespread attention in health monitoring, especially considering their colorimetric readout capability. However, it remains challenging for HWESs to work at extreme temperatures with long term stability due to the existence of water. Herein, a wearable transparent epidermal sensor with thermal compatibility and long term stability for smart colorimetric multi-signals monitoring is developed, based on an anti-freezing and anti-drying hydrogel with high transparency (over 90% transmittance), high stretchability (up to 1500%) and desirable adhesiveness to various kinds of substrates. The hydrogel consists of polyacrylic acid, polyacrylamide, and tannic acid-coated cellulose nanocrystals in glycerin/water binary solvents. When glycerin readily forms strong hydrogen bonds with water, the hydrogel exhibits outstanding thermal compatibility. Furthermore, the hydrogel maintains excellent adhesion, stretchability, and transparency after long term storage (45 days) or at subzero temperatures (-20 °C). For smart colorimetric multi-signals monitoring, the freestanding smart colorimetric HWESs are utilized for simultaneously monitoring the pH, T and light, where colorimetric signals can be read and stored by artificial intelligence strategies in a real time manner. In summary, the developed wearable transparent epidermal sensor holds great potential for monitoring multi-signals with visible readouts in long term health monitoring.
Collapse
Affiliation(s)
- Fei Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xueyong Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tiansong Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chaoyu Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Juju Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tianying Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jing Li
- Department of Burns and Plastic Surgery, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
86
|
Li Z, LeBlanc J, Kumar H, Zhang H, Yang W, He X, Lu Q, Van Humbeck J, Kim K, Hu J. Super-Anti-Freezing, Tough and Adhesive Titanium Carbide and L-Ornithine-Enhanced Hydrogels. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2023. [DOI: 10.1016/j.jobab.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
87
|
Dong X, Ge Y, Li K, Li X, Liu Y, Xu D, Wang S, Gu X. A high-pressure resistant ternary network hydrogel based flexible strain sensor with a uniaxially oriented porous structure toward gait detection. SOFT MATTER 2022; 18:9231-9241. [PMID: 36427226 DOI: 10.1039/d2sm01286c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Gait abnormalities have been widely investigated in the diagnosis and treatment of neurodegenerative diseases. However, it is still a great challenge to achieve a comfortable, convenient, sensitive and high-pressure resistant flexible gait detection sensor for real-time health monitoring. In this work, a polyaniline (PANI)@(polyacrylic acid (PAA)-polyvinyl alcohol (PVA)) (PANI@(PVA-PAA)) ternary network hydrogel with a uniaxially oriented porous featured structure was successfully prepared using a simple freeze-thaw method and in situ polymerization. The PANI@(PVA-PAA) hydrogel shows excellent compressive mechanical properties (423.44 kPa), favorable conductivity (2.02 S m-1) and remarkable durability (500 loading-unloading cycle), and can sensitively detect the effect of pressure with a fast response time (200 ms). The PANI@(PVA-PAA) hydrogel assembled into a flexible sensor can effectively identify the movement state of the shoulder, knee and even the sole of the plantar for gait detection. The uniaxially oriented porous structure enables the hydrogel-based sensor to have a high rate of change in the longitudinal direction and can effectively distinguish various gaits. The construction of a hydrogen bond between PANI and the PVA-PAA hydrogel ensures the uniform distribution of PANI in the hydrogel to form a ternary network structure, which improves the pressure resistance and conductivity of the PANI@(PVA-PAA) hydrogel. Thus, PANI@(PVA-PAA) hydrogel flexible sensor for gait detection can not only effectively monitor some serious diseases but also detect some unscientific exercise in people's daily life.
Collapse
Affiliation(s)
- Xin Dong
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, China.
| | - Yaqing Ge
- College of Medicine and Nursing, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, China.
| | - Keyi Li
- College of Chemistry and Chemical Engineering, Shandong University of Technology, China
| | - Xinyi Li
- College of Medicine and Nursing, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, China.
| | - Yong Liu
- College of Medicine and Nursing, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, China.
| | - Dongyu Xu
- College of Civil Engineering and Architecture, Linyi University, China
| | - Shoude Wang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, China.
| | - Xiangling Gu
- College of Medicine and Nursing, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, China.
| |
Collapse
|
88
|
Jiang Z, Shi X, Qiao F, Sun J, Hu Q. Multistimuli-Responsive PNIPAM-Based Double Cross-Linked Conductive Hydrogel with Self-Recovery Ability for Ionic Skin and Smart Sensor. Biomacromolecules 2022; 23:5239-5252. [PMID: 36354756 DOI: 10.1021/acs.biomac.2c01058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Multistimuli-responsive conductive hydrogels have been appealing candidates for multifunctional ionic skin. However, the fabrication of the multistimuli-responsive conductive hydrogels with satisfactory mechanical property to meet the practical applications is still a great challenge. In this study, a novel poly(N-isopropylacrylamide-co-sodium acrylate)/alginate/hectorite clay Laponite XLS (PNIPAM-SA/ALG/XLS) double cross-linked hydrogel with excellent mechanical property, self-recovery ability, temperature/pH-responsive ability, and strain/temperature-sensitive conductivity was fabricated. The PNSAX hydrogel possessed a moderate tensile strength of 290 kPa at a large elongation rate of 1120% and an excellent compression strength of 2.72 MPa at 90%. The hydrogel also possessed excellent mechanical repeatability and self-recovery ability. Thus, the hydrogel could withstand repetitive deformations for long time periods. Additionally, the hydrogel could change its transparency and volume once at a temperature of 44 °C and change its volume at different pHs. Thus, the visual temperature/pH-responsive ability allowed the hydrogel to qualitatively harvest environmental information. Moreover, the hydrogel possessed an excellent conductivity of 0.43 S/m, and the hydrogel could transform large/subtle deformation and temperature information into electrical signal change. Thus, the ultrafast strain/temperature-sensitive conductivity allowed the hydrogel to quantitatively detect large/small-scale human motions as well as environmental temperature. A cytotoxicity test confirmed the good cytocompatibility. Taken together, the hydrogel was suitable for human motion detecting and environmental information harvesting for long time periods. Therefore, the hydrogel has a great application potential as a multifunctional ionic skin and smart sensor.
Collapse
Affiliation(s)
- Zhiqi Jiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Xuanyu Shi
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Fenghui Qiao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Jingzhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou310027, China
| |
Collapse
|
89
|
A Low-modulus, Adhesive, and Highly Transparent Hydrogel for Multi-use Flexible Wearable Sensors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
90
|
Zhang Y, Wang Y, Guan Y, Zhang Y. Peptide-enhanced tough, resilient and adhesive eutectogels for highly reliable strain/pressure sensing under extreme conditions. Nat Commun 2022; 13:6671. [PMID: 36335147 PMCID: PMC9637226 DOI: 10.1038/s41467-022-34522-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/27/2022] [Indexed: 11/08/2022] Open
Abstract
Natural gels and biomimetic hydrogel materials have been able to achieve outstanding integrated mechanical properties due to the gain of natural biological structures. However, nearly every natural biological structure relies on water as solvents or carriers, which limits the possibility in extreme conditions, such as sub-zero temperatures and long-term application. Here, peptide-enhanced eutectic gels were synthesized by introducing α-helical "molecular spring" structure into deep eutectic solvent. The gel takes full advantage of the α-helical structure, achieving high tensile/compression, good resilience, superior fracture toughness, excellent fatigue resistance and strong adhesion, while it also inherits the benefits of the deep eutectic solvent and solves the problems of solvent volatilization and freezing. This enables unprecedentedly long and stable sensing of human motion or mechanical movement. The electrical signal shows almost no drift even after 10,000 deformations for 29 hours or in the -20 °C to 80 °C temperature range.
Collapse
Affiliation(s)
- Yan Zhang
- grid.216938.70000 0000 9878 7032Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 P. R. China
| | - Yafei Wang
- grid.216938.70000 0000 9878 7032Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 P. R. China
| | - Ying Guan
- grid.216938.70000 0000 9878 7032Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 P. R. China
| | - Yongjun Zhang
- grid.410561.70000 0001 0169 5113School of Chemistry, Tiangong University, Tianjin, 300387 P. R. China
| |
Collapse
|
91
|
Li X, Cao L, Chen LP. Multifunctional ionic conductive hydrogels based on gelatin and 2-acrylamido-2-methylpropane sulfonic acid as strain sensors. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
92
|
Huang H, Feng Y, Yang X, Shen Y. Natural gum-based electronic ink with water-proofing self-healing and easy-cleaning properties for directly on-skin electronics. Biosens Bioelectron 2022; 214:114547. [PMID: 35820252 DOI: 10.1016/j.bios.2022.114547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/16/2022] [Accepted: 07/04/2022] [Indexed: 11/02/2022]
Abstract
On-skin electronic systems, which can facilitate noninvasive continuous acquisition of low-artifact physiological signals, are a promising technique for future wearable devices in healthcare. Inspired by the nature of Arabic gum (AG), we developed a costless, easy-to-prepare, easy-to-use, and environment-friendly electronic ink (E-ink) that can be used to construct multiform on-skin electronic systems through simple painting or stamping. In addition to its competitive electrical properties, the E-ink has the following advantages: waterproof (0.5 m/s water flushing for 10 s), self-healing (1.5 mm wide wound), and easy-cleaning (can be easily removed using cotton ball with 5% surfactant), making it environmentally tolerant and highly reliable for practical use. We demonstrated that our E-ink can act as electric wires for epidermal circuits, sensors to handle a variety of physiological data measurements. This research provides an effective strategy for direct integration of electronics and skin, which can accelerate the realization of the next generation of imperceptible, scalable, cost-effective and customized wearable devices.
Collapse
Affiliation(s)
- Han Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Feng
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiong Yang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yajing Shen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.
| |
Collapse
|
93
|
Ru M, Hai AM, Wang L, Yan S, Zhang Q. Recent progress in silk-based biosensors. Int J Biol Macromol 2022; 224:422-436. [DOI: 10.1016/j.ijbiomac.2022.10.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
94
|
Nanoparticle–Hydrogel Based Sensors: Synthesis and Applications. Catalysts 2022. [DOI: 10.3390/catal12101096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hydrogels are hydrophilic three-dimensional (3D) porous polymer networks that can easily stabilize various nanoparticles. Loading noble metal nanoparticles into a 3D network of hydrogels can enhance the synergy of the components. It can also be modified to prepare intelligent materials that can recognize external stimuli. The combination of noble metal nanoparticles and hydrogels to produce modified or new composite materials has attracted considerable attention as to the use of these materials in sensors. However, there is limited review literature on nanoparticle–hydrogel-based sensors. This paper presents the detailed strategies of synthesis and design of the composites, and the latest applications of nanoparticle–hydrogel materials in the sensing field. Finally, the current challenges and future development directions of nanoparticle–hydrogel-based sensors are proposed.
Collapse
|
95
|
Yang J, Liu Z, Li K, Hao J, Guo Y, Guo M, Li Z, Liu S, Yin H, Shi X, Qin G, Sun G, Zhu L, Chen Q. Tough Adhesive, Antifreezing, and Antidrying Natural Globulin-Based Organohydrogels for Strain Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39299-39310. [PMID: 35972900 DOI: 10.1021/acsami.2c07213] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogels are often used to fabricate strain sensors; however, they also suffer from freezing at low temperatures and become dry during long-time storage. Encapsulation of hydrogels with elastomers is one of the methods to solve these problems although the adhesion between hydrogels and elastomers is usually low. In this work, using bovine serum protein (BSA) as the natural globulin model and glycerol/H2O as the mixture solvent, BSA/polyacrylamide organohydrogels (BSA/PAAm OHGs) were prepared by a facile photopolymerization approach. At the optimal condition, BSA/PAAm OHG demonstrated not only high toughness but also tough adhesion properties, which could strongly adhere to various substrates, such as glass, metals, rigid polymeric materials (even poly(tetrafluoroethylene), i.e., PTFE), and soft elastomers. Moreover, BSA/PAAm OHG was flexible and showed tough adhesion at -20 °C. The toughening mechanism and the adhesive mechanism were proposed. On being encapsulated by poly(dimethylsiloxane) (PDMS), it illustrated good antidrying performance. After introducing a conductive filler, the encapsulated BSA/PAAm OHG could be used as a strain sensor to detect human motions. This work provides a better understanding of the adhesive mechanism of natural protein-based organohydrogels.
Collapse
Affiliation(s)
- Jia Yang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhuangzhuang Liu
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Ke Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Jiajia Hao
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Yaxin Guo
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Mingxin Guo
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhipeng Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuzheng Liu
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Haiyan Yin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 352001, China
| | - Xinlei Shi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 352001, China
| | - Gang Qin
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Gengzhi Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Lin Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Qiang Chen
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 352001, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| |
Collapse
|
96
|
Shi S, Liang J, Qu C, Chen S, Sheng B. Ramie Fabric Treated with Carboxymethylcellulose and Laser Engraved for Strain and Humidity Sensing. MICROMACHINES 2022; 13:1309. [PMID: 36014231 PMCID: PMC9414723 DOI: 10.3390/mi13081309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 05/08/2023]
Abstract
Wearable fabric sensors have attracted enormous attention due to their huge potential in human health and activity monitoring, human-machine interaction and the Internet of Things (IoT). Among natural fabrics, bast fabric has the advantage of high strength, good resilience and excellent permeability. Laser engraving, as a high throughput, patternable and mask-free method, was demonstrated to fabricate fabric sensors. In this work, we developed a simplified, cost-effective and environmentally friendly method for engraving ramie fabric (a kind of bast fabric) directly by laser under an ambient atmosphere to prepare strain and humidity sensors. We used carboxymethylcellulose (CMC) to pretreat ramie fabric before laser engraving and gained laser-carbonized ramie fabrics (LCRF) with high conductivity (65 Ω sq-1) and good permeability. The strain and humidity sensors had high sensitivity and good flexibility, which can be used for human health and activity monitoring.
Collapse
Affiliation(s)
- Shangxuan Shi
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Jiao Liang
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Chenkai Qu
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Shangbi Chen
- Shanghai Aerospace Control Technology Institute, Shanghai 200233, China
| | - Bin Sheng
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| |
Collapse
|
97
|
Yang P, Xiang S, Li R, Ruan H, Chen D, Zhou Z, Huang X, Liu Z. Highly Stretchable and Sensitive Flexible Strain Sensor Based on Fe NWs/Graphene/PEDOT:PSS with a Porous Structure. Int J Mol Sci 2022; 23:8895. [PMID: 36012160 PMCID: PMC9408232 DOI: 10.3390/ijms23168895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
With the rapid development of wearable smart electronic products, high-performance wearable flexible strain sensors are urgently needed. In this paper, a flexible strain sensor device with Fe NWs/Graphene/PEDOT:PSS material added under a porous structure was designed and prepared. The effects of adding different sensing materials and a different number of dips with PEDOT:PSS on the device performance were investigated. The experiments show that the flexible strain sensor obtained by using Fe NWs, graphene, and PEDOT:PSS composite is dipped in polyurethane foam once and vacuum dried in turn with a local linearity of 98.8%, and the device was stable up to 3500 times at 80% strain. The high linearity and good stability are based on the three-dimensional network structure of polyurethane foam, combined with the excellent electrical conductivity of Fe NWs, the bridging and passivation effects of graphene, and the stabilization effect of PEDOT:PSS, which force the graphene-coated Fe NWs to adhere to the porous skeleton under the action of PEDOT:PSS to form a stable three-dimensional conductive network. Flexible strain sensor devices can be applied to smart robots and other fields and show broad application prospects in intelligent wearable devices.
Collapse
Affiliation(s)
- Ping’an Yang
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Sha Xiang
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Rui Li
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Haibo Ruan
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Dachao Chen
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Zhihao Zhou
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xin Huang
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Zhongbang Liu
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
98
|
Wang Y, Sun B, Wei H, Li Y, Hu F, Du X, Chen J. Investigating immunosensor for determination of depression marker-Apo-A4 based on patterning AuNPs and N-Gr nanomaterials onto ITO-PET flexible electrodes with amplifying signal. Anal Chim Acta 2022; 1224:340217. [DOI: 10.1016/j.aca.2022.340217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022]
|
99
|
Nishat ZS, Hossain T, Islam MN, Phan HP, Wahab MA, Moni MA, Salomon C, Amin MA, Sina AAI, Hossain MSA, Kaneti YV, Yamauchi Y, Masud MK. Hydrogel Nanoarchitectonics: An Evolving Paradigm for Ultrasensitive Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107571. [PMID: 35620959 DOI: 10.1002/smll.202107571] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/02/2022] [Indexed: 06/15/2023]
Abstract
The integration of nanoarchitectonics and hydrogel into conventional biosensing platforms offers the opportunities to design physically and chemically controlled and optimized soft structures with superior biocompatibility, better immobilization of biomolecules, and specific and sensitive biosensor design. The physical and chemical properties of 3D hydrogel structures can be modified by integrating with nanostructures. Such modifications can enhance their responsiveness to mechanical, optical, thermal, magnetic, and electric stimuli, which in turn can enhance the practicality of biosensors in clinical settings. This review describes the synthesis and kinetics of gel networks and exploitation of nanostructure-integrated hydrogels in biosensing. With an emphasis on different integration strategies of hydrogel with nanostructures, this review highlights the importance of hydrogel nanostructures as one of the most favorable candidates for developing ultrasensitive biosensors. Moreover, hydrogel nanoarchitectonics are also portrayed as a promising candidate for fabricating next-generation robust biosensors.
Collapse
Affiliation(s)
- Zakia Sultana Nishat
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Tanvir Hossain
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Md Nazmul Islam
- School of Health and Life Sciences, Teesside University, Tees Valley, Middlesbrough, TS1 3BA, UK
| | - Hoang-Phuong Phan
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
| | - Md A Wahab
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mohammad Ali Moni
- School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital Faculty of Medicine, The University of Queensland, Herston, Brisbane City, QLD, 4029, Australia
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, 8320000, Chile
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P. O. Box 11099, Taif, 21944, Saudi Arabia
| | - Abu Ali Ibn Sina
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard University, Boston, MA, 02115, USA
| | - Md Shahriar A Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yusuf Valentino Kaneti
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD, 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
| | - Mostafa Kamal Masud
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
100
|
Im H, Heo E, Song DH, Park J, Park H, Kang K, Chang JB. Fabrication of heterogeneous chemical patterns on stretchable hydrogels using single-photon lithography. SOFT MATTER 2022; 18:4402-4413. [PMID: 35635476 DOI: 10.1039/d2sm00253a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Curved hydrogel surfaces bearing chemical patterns are highly desirable in various applications, including artificial blood vessels, wearable electronics, and soft robotics. However, previous studies on the fabrication of chemical patterns on hydrogels employed two-photon lithography, which is still not widely accessible to most laboratories. This work demonstrates a new patterning technique for fabricating curved hydrogels with chemical patterns on their surfaces without two-photon microscopy. In this work, we show that exposing hydrogels in fluorophore solutions to single photons via confocal microscopy enables the patterning of fluorophores on hydrogels. By applying this technique to highly stretchable hydrogels, we demonstrate three applications: (1) improving pattern resolution by fabricating patterns on stretched hydrogels and then returning the hydrogels to their initial, unstretched length; (2) modifying the local stretchability of hydrogels at a microscale resolution; and (3) fabricating perfusable microchannels with chemical patterns by winding chemically patterned hydrogels around a template, embedding the hydrogels in a second hydrogel, and then removing the template. The patterning method demonstrated in this work may facilitate a better mimicking of the physicochemical properties of organs in tissue engineering and may be used to make hydrogel robots with specific chemical functionalities.
Collapse
Affiliation(s)
- Haeseong Im
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Eunseok Heo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Dae-Hyeon Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Jeongwon Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Hyeonbin Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Kibum Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Jae-Byum Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|