51
|
Reza AMMT, Yuan YG. microRNAs Mediated Regulation of the Ribosomal Proteins and its Consequences on the Global Translation of Proteins. Cells 2021; 10:110. [PMID: 33435549 PMCID: PMC7827472 DOI: 10.3390/cells10010110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
Ribosomal proteins (RPs) are mostly derived from the energy-consuming enzyme families such as ATP-dependent RNA helicases, AAA-ATPases, GTPases and kinases, and are important structural components of the ribosome, which is a supramolecular ribonucleoprotein complex, composed of Ribosomal RNA (rRNA) and RPs, coordinates the translation and synthesis of proteins with the help of transfer RNA (tRNA) and other factors. Not all RPs are indispensable; in other words, the ribosome could be functional and could continue the translation of proteins instead of lacking in some of the RPs. However, the lack of many RPs could result in severe defects in the biogenesis of ribosomes, which could directly influence the overall translation processes and global expression of the proteins leading to the emergence of different diseases including cancer. While microRNAs (miRNAs) are small non-coding RNAs and one of the potent regulators of the post-transcriptional gene expression, miRNAs regulate gene expression by targeting the 3' untranslated region and/or coding region of the messenger RNAs (mRNAs), and by interacting with the 5' untranslated region, and eventually finetune the expression of approximately one-third of all mammalian genes. Herein, we highlighted the significance of miRNAs mediated regulation of RPs coding mRNAs in the global protein translation.
Collapse
Affiliation(s)
- Abu Musa Md Talimur Reza
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Yu-Guo Yuan
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
52
|
Kyritsis KA, Ouzounis CA, Angelis L, Vizirianakis I. Sequence variation, common tissue expression patterns and learning models: a genome-wide survey of vertebrate ribosomal proteins. NAR Genom Bioinform 2020; 2:lqaa088. [PMID: 33575632 PMCID: PMC7671327 DOI: 10.1093/nargab/lqaa088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Ribosomal genes produce the constituents of the ribosome, one of the most conserved subcellular structures of all cells, from bacteria to eukaryotes, including animals. There are notions that some protein-coding ribosomal genes vary in their roles across species, particularly vertebrates, through the involvement of some in a number of genetic diseases. Based on extensive sequence comparisons and systematic curation, we establish a reference set for ribosomal proteins (RPs) in eleven vertebrate species and quantify their sequence conservation levels. Moreover, we correlate their coordinated gene expression patterns within up to 33 tissues and assess the exceptional role of paralogs in tissue specificity. Importantly, our analysis supported by the development and use of machine learning models strongly proposes that the variation in the observed tissue-specific gene expression of RPs is rather species-related and not due to tissue-based evolutionary processes. The data obtained suggest that RPs exhibit a complex relationship between their structure and function that broadly maintains a consistent expression landscape across tissues, while most of the variation arises from species idiosyncrasies. The latter may be due to evolutionary change and adaptation, rather than functional constraints at the tissue level throughout the vertebrate lineage.
Collapse
Affiliation(s)
- Konstantinos A Kyritsis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessalonica, Greece
- Biological Computation & Process Laboratory, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, GR-57001 Thessalonica, Greece
| | - Christos A Ouzounis
- Biological Computation & Process Laboratory, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, GR-57001 Thessalonica, Greece
- Department of Informatics, Aristotle University of Thessaloniki, GR-54124 Thessalonica, Greece
| | - Lefteris Angelis
- Department of Informatics, Aristotle University of Thessaloniki, GR-54124 Thessalonica, Greece
| | - Ioannis S Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessalonica, Greece
- FunPATH (Functional Proteomics and Systems Biology Research Group at AUTH) Research Group, KEDEK—Aristotle University of Thessaloniki, Balkan Center, GR-57001 Thessalonica, Greece
- Department of Life and Health Sciences, University of Nicosia, CY-1700 Nicosia, Cyprus
| |
Collapse
|
53
|
Han XR, Sasaki N, Jackson SC, Wang P, Li Z, Smith MD, Xie L, Chen X, Zhang Y, Marzluff WF, Xiong Y. CRL4 DCAF1/VprBP E3 ubiquitin ligase controls ribosome biogenesis, cell proliferation, and development. SCIENCE ADVANCES 2020; 6:eabd6078. [PMID: 33355139 PMCID: PMC11206221 DOI: 10.1126/sciadv.abd6078] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Evolutionarily conserved DCAF1 is a major substrate receptor for the DDB1-CUL4-ROC1 E3 ubiquitin ligase (CRL4) and controls cell proliferation and development. The molecular basis for these functions is unclear. We show here that DCAF1 loss in multiple tissues and organs selectively eliminates proliferating cells and causes perinatal lethality, thymic atrophy, and bone marrow defect. Inducible DCAF1 loss eliminates proliferating, but not quiescent, T cells and MEFs. We identify the ribosome assembly factor PWP1 as a substrate of the CRL4DCAF1 ligase. DCAF1 loss results in PWP1 accumulation, impairing rRNA processing and ribosome biogenesis. Knockdown or overexpression of PWP1 can rescue defects or cause similar defects as DCAF1 loss, respectively, in ribosome biogenesis. DCAF1 loss increases free RPL11, resulting in L11-MDM2 association and p53 activation. Cumulatively, these results reveal a critical function for DCAF1 in ribosome biogenesis and define a molecular basis of DCAF1 function in cell proliferation and development.
Collapse
Affiliation(s)
- Xiao-Ran Han
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Naoya Sasaki
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah C Jackson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pu Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhijun Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew D Smith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ling Xie
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xian Chen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yanping Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William F Marzluff
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Xiong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
54
|
Babaylova ES, Kolobova AV, Gopanenko AV, Tupikin AE, Kabilov MR, Malygin AA, Karpova GG. The human ribosomal protein eL29 binds in vivo to the cognate mRNA by interacting with its coding sequence, as revealed from in-cell cross-linking data. Biochimie 2020; 177:68-77. [DOI: 10.1016/j.biochi.2020.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 01/21/2023]
|
55
|
Johnson AG, Flynn RA, Lapointe CP, Ooi YS, Zhao ML, Richards CM, Qiao W, Yamada SB, Couthouis J, Gitler AD, Carette JE, Puglisi JD. A memory of eS25 loss drives resistance phenotypes. Nucleic Acids Res 2020; 48:7279-7297. [PMID: 32463448 PMCID: PMC7367175 DOI: 10.1093/nar/gkaa444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/11/2020] [Accepted: 05/24/2020] [Indexed: 12/26/2022] Open
Abstract
In order to maintain cellular protein homeostasis, ribosomes are safeguarded against dysregulation by myriad processes. Remarkably, many cell types can withstand genetic lesions of certain ribosomal protein genes, some of which are linked to diverse cellular phenotypes and human disease. Yet the direct and indirect consequences from these lesions are poorly understood. To address this knowledge gap, we studied in vitro and cellular consequences that follow genetic knockout of the ribosomal proteins RPS25 or RACK1 in a human cell line, as both proteins are implicated in direct translational control. Prompted by the unexpected detection of an off-target ribosome alteration in the RPS25 knockout, we closely interrogated cellular phenotypes. We found that multiple RPS25 knockout clones display viral- and toxin-resistance phenotypes that cannot be rescued by functional cDNA expression, suggesting that RPS25 loss elicits a cell state transition. We characterized this state and found that it underlies pleiotropic phenotypes and has a common rewiring of gene expression. Rescuing RPS25 expression by genomic locus repair failed to correct for the phenotypic and expression hysteresis. Our findings illustrate how the elasticity of cells to a ribosome perturbation can drive specific phenotypic outcomes that are indirectly linked to translation and suggests caution in the interpretation of ribosomal protein gene mutation data.
Collapse
Affiliation(s)
- Alex G Johnson
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA.,Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Ryan A Flynn
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Yaw Shin Ooi
- Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA
| | - Michael L Zhao
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Wenjie Qiao
- Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA
| | - Shizuka B Yamada
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Julien Couthouis
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jan E Carette
- Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
56
|
Li H, Zhang H, Huang G, Dou Z, Xie Y, Si J, Di C. Heavy ion radiation-induced DNA damage mediates apoptosis via the Rpl27a-Rpl5-MDM2-p53/E2F1 signaling pathway in mouse spermatogonia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110831. [PMID: 32535367 DOI: 10.1016/j.ecoenv.2020.110831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
The risk of exposure to ionizing radiation (IR) environments has increased with the development of nuclear technology. IR exposure induces excessive apoptosis of the spermatogonia, which leads to male infertility. Spermatogonia apoptosis may be involved in ribosomal stress triggered by DNA damage following exposure to IR because ribosomal proteins (RPs) directly interact with mouse double minute 2 homolog (MDM2) to induce apoptosis. This study aimed to use comparative proteomics and transcriptomics approach to screen the differential RPs and ribosomal mRNAs in mouse testes following high linear energy transfer (LET) carbon ion radiation (CIR). The expression of ribosomal large subunit protein 27a (Rpl27a) decreased at both protein and mRNA levels in the spermatogonia in vivo. After 6 h of CIR, the immunofluorescence signal of 8-oxo-dG and phosphorylated ataxia-telangiectasia-mutated protein (ATM)/histone H2Ax increased, but that of Rpl27a decreased in the spermatogonia of p53 wild-type and knockout mouse testes. Moreover, the nucleolin was scattered throughout the nucleoplasm after CIR. These results suggested that CIR-induced DNA damage might trigger ribosomal stress, and the reduction in the expression of Rpl27a was associated with DNA damage in the spermatogonia. Similarly, in vitro, the immunofluorescence signal of 8-oxo-dG increased in the GC-1 cells after CIR. Moreover, the expression of Rpl27a was regulated by DNA damage because the co-transfection of ATM and Rpl27a or inhibition of ATM-treated CIR could restore the expression of Rpl27a. Furthermore, the reduction in the expression of Rpl27a led to weakened binding of E2F transcription factor 1 (E2F1) and p53 to MDM2, causing p53 activation and E2F1 degradation in p53 wild-type and knockdown GC-1 cells. This study proposed that heavy ion radiation-induced DNA damage mediated spermatogonia apoptosis via the Rpl27a-Rpl5-MDM2-p53/E2F1 signaling pathway. The results provided the underlying molecular mechanisms of spermatogonia apoptosis following exposure to high LET radiation.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Hong Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China.
| | - Guomin Huang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhihui Dou
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yi Xie
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jing Si
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Cuixia Di
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
57
|
Oyarbide U, Shah AN, Amaya-Mejia W, Snyderman M, Kell MJ, Allende DS, Calo E, Topczewski J, Corey SJ. Loss of Sbds in zebrafish leads to neutropenia and pancreas and liver atrophy. JCI Insight 2020; 5:134309. [PMID: 32759502 PMCID: PMC7526460 DOI: 10.1172/jci.insight.134309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 07/29/2020] [Indexed: 01/29/2023] Open
Abstract
Shwachman-Diamond syndrome (SDS) is characterized by exocrine pancreatic insufficiency, neutropenia, and skeletal abnormalities. Biallelic mutations in SBDS, which encodes a ribosome maturation factor, are found in 90% of SDS cases. Sbds–/– mice are embryonic lethal. Using CRISPR/Cas9 editing, we created sbds-deficient zebrafish strains. Sbds protein levels progressively decreased and became undetectable at 10 days postfertilization (dpf). Polysome analysis revealed decreased 80S ribosomes. Homozygous mutant fish developed normally until 15 dpf. Mutant fish subsequently had stunted growth and showed signs of atrophy in pancreas, liver, and intestine. In addition, neutropenia occurred by 5 dpf. Upregulation of tp53 mRNA did not occur until 10 dpf, and inhibition of proliferation correlated with death by 21 dpf. Transcriptome analysis showed tp53 activation through upregulation of genes involved in cell cycle arrest, cdkn1a and ccng1, and apoptosis, puma and mdm2. However, elimination of Tp53 function did not prevent lethality. Because of growth retardation and atrophy of intestinal epithelia, we studied the effects of starvation on WT fish. Starved WT fish showed intestinal atrophy, zymogen granule loss, and tp53 upregulation — similar to the mutant phenotype. In addition, there was reduction in neutral lipid storage and ribosomal protein amount, similar to the mutant phenotype. Thus, loss of Sbds in zebrafish phenocopies much of the human disease and is associated with growth arrest and tissue atrophy, particularly of the gastrointestinal system, at the larval stage. A variety of stress responses, some associated with Tp53, contribute to pathophysiology of SDS. Loss of ribosome maturation factor sbds in the zebrafish phenocopies human Shwachman-Diamond syndrome and is associated with p53 activation, but lethality cannot be rescued by p53 mutation.
Collapse
Affiliation(s)
- Usua Oyarbide
- Departments of Pediatrics, Immunology, and Human and Molecular Genetics, Children's Hospital of Richmond and Massey Cancer Center at Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Pediatrics, Stanley Manne Children's Research Institute, Northwestern University School of Medicine, Chicago, Illinois, USA.,Departments of Pediatrics, Cancer Biology, and Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, Ohio, USA
| | - Arish N Shah
- Department of Biology and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Wilmer Amaya-Mejia
- Departments of Pediatrics, Immunology, and Human and Molecular Genetics, Children's Hospital of Richmond and Massey Cancer Center at Virginia Commonwealth University, Richmond, Virginia, USA
| | - Matthew Snyderman
- Departments of Pediatrics, Cancer Biology, and Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, Ohio, USA
| | - Margaret J Kell
- Department of Pediatrics, Stanley Manne Children's Research Institute, Northwestern University School of Medicine, Chicago, Illinois, USA
| | | | - Eliezer Calo
- Department of Biology and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jacek Topczewski
- Department of Pediatrics, Stanley Manne Children's Research Institute, Northwestern University School of Medicine, Chicago, Illinois, USA.,Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Seth J Corey
- Departments of Pediatrics, Immunology, and Human and Molecular Genetics, Children's Hospital of Richmond and Massey Cancer Center at Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Pediatrics, Stanley Manne Children's Research Institute, Northwestern University School of Medicine, Chicago, Illinois, USA.,Departments of Pediatrics, Cancer Biology, and Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
58
|
Kaiser RWJ, Erber J, Höpker K, Fabretti F, Müller RU. AATF/Che-1-An RNA Binding Protein at the Nexus of DNA Damage Response and Ribosome Biogenesis. Front Oncol 2020; 10:919. [PMID: 32587828 PMCID: PMC7298124 DOI: 10.3389/fonc.2020.00919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/11/2020] [Indexed: 01/14/2023] Open
Abstract
The DNA damage response (DDR) is a complex signaling network that is activated upon genotoxic stress. It determines cellular fate by either activating cell cycle arrest or initiating apoptosis and thereby ensures genomic stability. The Apoptosis Antagonizing Transcription Factor (AATF/Che-1), an RNA polymerase II-interacting transcription factor and known downstream target of major DDR kinases, affects DDR signaling by inhibiting p53-mediated transcription of pro-apoptotic genes and promoting cell cycle arrest through various pathways instead. Specifically, AATF was shown to inhibit p53 expression at the transcriptional level and repress its pro-apoptotic activity by direct binding to p53 protein and transactivation of anti-apoptotic genes. Solid and hematological tumors of various organs exploit this function by overexpressing AATF. Both copy number gains and high expression levels of AATF were associated with worse prognosis or relapse of malignant tumors. Recently, a number of studies have enabled insights into the molecular mechanisms by which AATF affects both DDR and proliferation. AATF was found to directly localize to sites of DNA damage upon laser ablation and interact with DNA repair proteins. In addition, depletion of AATF resulted in increased DNA damage and decrease of both proliferative activity and genotoxic tolerance. Interestingly, considering the role of ribosomal stress in the regulation of p53, more recent work established AATF as ribosomal RNA binding protein and enabled insights into its role as an important factor for rRNA processing and ribosome biogenesis. This Mini Review summarizes recent findings on AATF and its important role in the DDR, malignancy, and ribosome biogenesis.
Collapse
Affiliation(s)
- Rainer W J Kaiser
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig-Maximilian-University Munich, Munich, Germany.,Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Johanna Erber
- Department I of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Department of Medicine II, School of Medicine, Technical University of Munich, University Hospital Rechts der Isar, Munich, Germany
| | - Katja Höpker
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Francesca Fabretti
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
59
|
Destefanis F, Manara V, Bellosta P. Myc as a Regulator of Ribosome Biogenesis and Cell Competition: A Link to Cancer. Int J Mol Sci 2020; 21:ijms21114037. [PMID: 32516899 PMCID: PMC7312820 DOI: 10.3390/ijms21114037] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
The biogenesis of ribosomes is a finely regulated multistep process linked to cell proliferation and growth-processes which require a high rate of protein synthesis. One of the master regulators of ribosome biogenesis is Myc, a well-known proto-oncogene that has an important role in ribosomal function and in the regulation of protein synthesis. The relationship between Myc and the ribosomes was first highlighted in Drosophila, where Myc's role in controlling Pol-I, II and III was evidenced by both microarrays data, and by the ability of Myc to control growth (mass), and cellular and animal size. Moreover, Myc can induce cell competition, a physiological mechanism through which cells with greater fitness grow better and thereby prevail over less competitive cells, which are actively eliminated by apoptosis. Myc-induced cell competition was shown to regulate both vertebrate development and tumor promotion; however, how these functions are linked to Myc's control of ribosome biogenesis, protein synthesis and growth is not clear yet. In this review, we will discuss the major pathways that link Myc to ribosomal biogenesis, also in light of its function in cell competition, and how these mechanisms may reflect its role in favoring tumor promotion.
Collapse
Affiliation(s)
- Francesca Destefanis
- Department of Cellular, Computational and Integrative Biology (CiBio), University of Trento, 38123 Trento, Italy; (F.D.); (V.M.)
| | - Valeria Manara
- Department of Cellular, Computational and Integrative Biology (CiBio), University of Trento, 38123 Trento, Italy; (F.D.); (V.M.)
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CiBio), University of Trento, 38123 Trento, Italy; (F.D.); (V.M.)
- Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
- Correspondence: ; Tel.: +39-0461-283070
| |
Collapse
|
60
|
Managing Hyperosmotic Stress through Phase Separation. Trends Biochem Sci 2020; 45:721-723. [PMID: 32446814 DOI: 10.1016/j.tibs.2020.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 11/22/2022]
Abstract
In a recent study, Yasuda et al. show how liquid-liquid phase separation (LLPS) under hyperosmotic stress conditions allows cells to react to ubiquitinated proteins and to assemble nuclear, liquid compartments that recruit proteasomes and result in aggregate clearance.
Collapse
|
61
|
Muhammad I, Rahman N, Nayab GE, Niaz S, Shah M, Afridi SG, Khan H, Daglia M, Capanoglu E. The Molecular Docking of Flavonoids Isolated from Daucus carota as a Dual Inhibitor of MDM2 and MDMX. Recent Pat Anticancer Drug Discov 2020; 15:154-164. [PMID: 32101134 DOI: 10.2174/1574892815666200226112506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cancer is characterized by overexpression of p53 associated proteins, which down-regulate P53 signaling pathway. In cancer therapy, p53 activity can be restored by inhibiting the interaction of MDMX (2N0W) and MDM2 (4JGR) proteins with P53 protein. OBJECTIVE In the current, study in silico approaches were adapted to use a natural product as a source of cancer therapy. METHODS In the current study in silico approaches were adapted to use a natural product as a source of cancer therapy. For in silico studies, Chemdraw and Molecular Operating Environment were used for structure drawing and molecular docking, respectively. Flavonoids isolated from D. carota were docked with cancerous proteins. RESULT Based on the docking score analysis, we found that compound 7 was the potent inhibitor of both cancerous proteins and can be used as a potent molecule for inhibition of 2N0W and 4JGR interaction with p53. CONCLUSION Thus the compound 7 can be used for the revival of p53 signaling pathway function however, intensive in vitro and in vivo experiments are required to prove the in silico analysis.
Collapse
Affiliation(s)
- Ijaz Muhammad
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Noor Rahman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Gul E Nayab
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Sadaf Niaz
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan-66000, Pakistan
| | - Sahib G Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
62
|
Yasuda S, Tsuchiya H, Kaiho A, Guo Q, Ikeuchi K, Endo A, Arai N, Ohtake F, Murata S, Inada T, Baumeister W, Fernández-Busnadiego R, Tanaka K, Saeki Y. Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature 2020; 578:296-300. [DOI: 10.1038/s41586-020-1982-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/09/2019] [Indexed: 12/30/2022]
|
63
|
WDR74 modulates melanoma tumorigenesis and metastasis through the RPL5-MDM2-p53 pathway. Oncogene 2020; 39:2741-2755. [PMID: 32005977 DOI: 10.1038/s41388-020-1179-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/06/2020] [Accepted: 01/21/2020] [Indexed: 11/08/2022]
Abstract
The key molecules and underlying mechanisms of melanoma metastasis remain poorly understood. Using isobaric tag for relative and absolute quantitation (iTRAQ) proteomic screening, probing of patients' samples, functional verification, and mechanistic validation, we identified the important role of the WD repeat-containing protein 74 (WDR74) in melanoma progression and metastasis. Through gain- and loss-of-function approaches, WDR74 was found to promote cell proliferation, apoptosis resistance, and aggressive behavior in vitro. Moreover, WDR74 contributed to melanoma growth and metastasis in vivo. Mechanistically, WDR74 modulates RPL5 protein levels and consequently regulates MDM2 and insulates the ubiquitination degradation of p53 by MDM2. Our study is the first to reveal the oncogenic role of WDR74 in melanoma progression and the regulatory effect of WDR74 on the RPL5-MDM2-p53 pathway. Collectively, WDR74 can serve as a candidate target for the prevention and treatment of melanoma in the clinic.
Collapse
|
64
|
Karakostis K, Fåhraeus R. Shaping the regulation of the p53 mRNA tumour suppressor: the co-evolution of genetic signatures. BMC Cancer 2019; 19:915. [PMID: 31519161 PMCID: PMC6743176 DOI: 10.1186/s12885-019-6118-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Structured RNA regulatory motifs exist from the prebiotic stages of the RNA world to the more complex eukaryotic systems. In cases where a functional RNA structure is within the coding sequence a selective pressure drives a parallel co-evolution of the RNA structure and the encoded peptide domain. The p53-MDM2 axis, describing the interactions between the p53 tumor suppressor and the MDM2 E3 ubiquitin ligase, serves as particularly useful model revealing how secondary RNA structures have co-evolved along with corresponding interacting protein motifs, thus having an impact on protein - RNA and protein - protein interactions; and how such structures developed signal-dependent regulation in mammalian systems. The p53(BOX-I) RNA sequence binds the C-terminus of MDM2 and controls p53 synthesis while the encoded peptide domain binds MDM2 and controls p53 degradation. The BOX-I peptide domain is also located within p53 transcription activation domain. The folding of the p53 mRNA structure has evolved from temperature-regulated in pre-vertebrates to an ATM kinase signal-dependent pathway in mammalian cells. The protein - protein interaction evolved in vertebrates and became regulated by the same signaling pathway. At the same time the protein - RNA and protein - protein interactions evolved, the p53 trans-activation domain progressed to become integrated into a range of cellular pathways. We discuss how a single synonymous mutation in the BOX-1, the p53(L22 L), observed in a chronic lymphocyte leukaemia patient, prevents the activation of p53 following DNA damage. The concepts analysed and discussed in this review may serve as a conceptual mechanistic paradigm of the co-evolution and function of molecules having roles in cellular regulation, or the aetiology of genetic diseases and how synonymous mutations can affect the encoded protein.
Collapse
Affiliation(s)
| | - Robin Fåhraeus
- Université Paris 7, INSERM UMR 1131, 27 Rue Juliette Dodu, 75010 Paris, France
- Department of Medical Biosciences, Umea University, SE-90185 Umea, Sweden
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| |
Collapse
|
65
|
Aguida B, Bouceba T, Créchet JB, Hounguè H, Capo-Chichi C, Nakayama JI, Baouz S, Pelczar H, Woisard A, Jourdan N, Hountondji C. In Vitro Analysis of Protein:Protein Interactions in the Human Cancer-Pertinent rp.eL42-p53-Mdm2 Pathway. Open Biochem J 2019. [DOI: 10.2174/1874091x01913010064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction:
We have recently demonstrated that the eukaryote-specific large subunit ribosomal protein
(rp) eL42 assists catalysis of peptide bond formation at the peptidyl transferase center of 80S
ribosomes in eukaryotic cells. Recently, several ribosomal proteins were shown to have extraribosomal
functions independent of protein biosynthesis. Such functions include regulation of
apoptosis, cell cycle arrest, cell proliferation, neoplastic transformation, cell migration and
invasion, and tumorigenesis through both Mdm2-p53-dependent and p53-independent
mechanisms. Our objective is to demonstrate that overexpression of eL42 in tumor may
incapacitate cell anti-tumor mechanism through interaction with the tumor suppressor protein
p53 and its partner Mdm2.
Methods:
Co-immunoprecipitation technique and the binding assays on Biacore were used to
probe interactions between recombinant eL42, p53 and Mdm2 proteins in a so-called rp-p53-Mdm2 axis.
Results:
We demonstrate that the ribosomal protein eL42, the tumor suppressor protein p53 and the ubiquitin E3 ligase Mdm2 interact with each other in a ternary rp.eL42:p53:Mdm2 complex. Precisely, the interaction between eL42 and p53 is characterized by a strong binding affinity (KD value in the nanomolar range) that is likely to trigger the sequestration of p53 and the inhibition of its tumor suppressor activity. Furthermore, the p53:Mdm2 and eL42:Mdm2 complexes exhibit comparable binding affinities in the micromolar range compatible with Mdm2 being the enzyme which ubiquitinates both the p53 and eL42 substrates. Interestingly, pyridoxal 5'-phosphate (PLP), one of the active forms of vitamin B6, binds to eL42 and significantly inhibits the interaction between eL42 and p53, in accordance with the observation that vitamin B6 is associated with reduced risk of cancer.
Conclusion:
Our study emphasized one more major mechanism of p53 downregulation involving its sequestration by eL42 upon the overexpression of this ribosomal protein. The mechanism described in the present report complemented the well-known p53 downregulation triggered by proteasomal degradation mediated through its ubiquitination by Mdm2.
Collapse
|
66
|
Kaiser RWJ, Ignarski M, Van Nostrand EL, Frese CK, Jain M, Cukoski S, Heinen H, Schaechter M, Seufert L, Bunte K, Frommolt P, Keller P, Helm M, Bohl K, Höhne M, Schermer B, Benzing T, Höpker K, Dieterich C, Yeo GW, Müller RU, Fabretti F. A protein-RNA interaction atlas of the ribosome biogenesis factor AATF. Sci Rep 2019; 9:11071. [PMID: 31363146 PMCID: PMC6667500 DOI: 10.1038/s41598-019-47552-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/19/2019] [Indexed: 01/08/2023] Open
Abstract
AATF is a central regulator of the cellular outcome upon p53 activation, a finding that has primarily been attributed to its function as a transcription factor. Recent data showed that AATF is essential for ribosome biogenesis and plays a role in rRNA maturation. AATF has been implicated to fulfil this role through direct interaction with rRNA and was identified in several RNA-interactome capture experiments. Here, we provide a first comprehensive analysis of the RNA bound by AATF using CLIP-sequencing. Interestingly, this approach shows predominant binding of the 45S pre-ribosomal RNA precursor molecules. Furthermore, AATF binds to mRNAs encoding for ribosome biogenesis factors as well as snoRNAs. These findings are complemented by an in-depth analysis of the protein interactome of AATF containing a large set of proteins known to play a role in rRNA maturation with an emphasis on the protein-RNA-complexes known to be required for the generation of the small ribosomal subunit (SSU). In line with this finding, the binding sites of AATF within the 45S rRNA precursor localize in close proximity to the SSU cleavage sites. Consequently, our multilayer analysis of the protein-RNA interactome of AATF reveals this protein to be an important hub for protein and RNA interactions involved in ribosome biogenesis.
Collapse
Affiliation(s)
- Rainer W J Kaiser
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Michael Ignarski
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Christian K Frese
- Proteomics Core Facility, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Manaswita Jain
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
| | - Sadrija Cukoski
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
| | - Heide Heinen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
| | - Melanie Schaechter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
| | - Lisa Seufert
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Konstantin Bunte
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
- Bioinformatics Core Facility, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Peter Frommolt
- Bioinformatics Core Facility, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Patrick Keller
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Katrin Bohl
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, 50931, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, 50931, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, 50931, Cologne, Germany
| | - Katja Höpker
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Christoph Dieterich
- German Center for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology and Department of Internal Medicine III, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.
- Systems Biology of Ageing Cologne, University of Cologne, 50931, Cologne, Germany.
| | - Francesca Fabretti
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937, Cologne, Germany
| |
Collapse
|
67
|
Albert B, Kos-Braun IC, Henras AK, Dez C, Rueda MP, Zhang X, Gadal O, Kos M, Shore D. A ribosome assembly stress response regulates transcription to maintain proteome homeostasis. eLife 2019; 8:45002. [PMID: 31124783 PMCID: PMC6579557 DOI: 10.7554/elife.45002] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
Ribosome biogenesis is a complex and energy-demanding process requiring tight coordination of ribosomal RNA (rRNA) and ribosomal protein (RP) production. Given the extremely high level of RP synthesis in rapidly growing cells, alteration of any step in the ribosome assembly process may impact growth by leading to proteotoxic stress. Although the transcription factor Hsf1 has emerged as a central regulator of proteostasis, how its activity is coordinated with ribosome biogenesis is unknown. Here, we show that arrest of ribosome biogenesis in the budding yeast Saccharomyces cerevisiae triggers rapid activation of a highly specific stress pathway that coordinately upregulates Hsf1 target genes and downregulates RP genes. Activation of Hsf1 target genes requires neo-synthesis of RPs, which accumulate in an insoluble fraction and presumably titrate a negative regulator of Hsf1, the Hsp70 chaperone. RP aggregation is also coincident with that of the RP gene activator Ifh1, a transcription factor that is rapidly released from RP gene promoters. Our data support a model in which the levels of newly synthetized RPs, imported into the nucleus but not yet assembled into ribosomes, work to continuously balance Hsf1 and Ifh1 activity, thus guarding against proteotoxic stress during ribosome assembly. When yeast cells are growing at top speed, they can make 2,000 new ribosomes every minute. These enormous molecular assemblies are the protein-making machines of the cell. Building new ribosomes is one of the most energy-demanding parts of cell growth and, if the process goes wrong, the results can be catastrophic. The proteins that make up the ribosomes themselves are sticky. Left unattended, they start to form toxic clumps inside the compartment that houses most of the cell’s DNA, the nucleus. A protein called Heat shock factor 1, or Hsf1 for short, plays an important role in the cell's quality control systems. It helps to manage sticky proteins by switching on genes that break down protein clumps and prevent new clumps from forming. Hsf1 levels start to rise whenever cells are struggling to keep up with protein production. If it is half-finished ribosomes that are causing the problem, cells can stop making ribosome proteins. The protein in charge of this in yeast is Ifh1. It is a transcription factor that sits at the front of the genes for ribosome proteins, switching them on. When yeast cells get stressed, Ifh1 drops away from the genes within minutes, switching them off again. Yet how this happens, and how it links to Hsf1, is a mystery. To start to provide some answers, Albert et al. disrupted the production of ribosomes in yeast cells and examined the consequences. This revealed a new rescue response, that they named the “ribosome assembly stress response”. Both Hsf1 and Ifh1 are sensitive to the build-up of unfinished ribosomes in the nucleus. As expected, Hsf1 activated when ribosome proteins started to build up, and switched on the genes needed to manage the protein clumps. The effect on Isfh1, however, was unexpected. When the unassembled ribosome proteins started to build up, it was the clumps themselves that pulled the Ifh1 proteins off the genes. The unassembled ribosomes proteins seemed to be stopping their own production. Low levels of clumped ribosome proteins in the nuclei of unstressed cells also helped to keep Hsf1 active and pull Ifh1 off the ribosome genes. It is possible that this provides continual protection against a toxic protein build-up. These findings are not only important for understanding yeast cells; cancer cells also need to produce ribosomes at a very high rate to sustain their rapid growth. They too might be prone to stresses that interrupt their ribosome assembly. As such, understanding more about this process could one day lead to new therapies to target cancer cells.
Collapse
Affiliation(s)
- Benjamin Albert
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | | | - Anthony K Henras
- Centre de Biologie Intégrative, Université Paul Sabatier, Toulouse, France
| | - Christophe Dez
- Centre de Biologie Intégrative, Université Paul Sabatier, Toulouse, France
| | - Maria Paula Rueda
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Xu Zhang
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Olivier Gadal
- Centre de Biologie Intégrative, Université Paul Sabatier, Toulouse, France
| | - Martin Kos
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - David Shore
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| |
Collapse
|
68
|
Anti-cancer effects of polyphenols via targeting p53 signaling pathway: updates and future directions. Biotechnol Adv 2019; 38:107385. [PMID: 31004736 DOI: 10.1016/j.biotechadv.2019.04.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 02/06/2023]
Abstract
The anticancer effects of polyphenols are ascribed to several signaling pathways including the tumor suppressor gene tumor protein 53 (p53). Expression of endogenous p53 is silent in various types of cancers. A number of polyphenols from a wide variety of dietary sources could upregulate p53 expression in several cancer cell lines through distinct mechanisms of action. The aim of this review is to focus the significance of p53 signaling pathways and to provide molecular intuitions of dietary polyphenols in chemoprevention by monitoring p53 expression that have a prominent role in tumor suppression.
Collapse
|
69
|
Penzo M, Montanaro L, Treré D, Derenzini M. The Ribosome Biogenesis-Cancer Connection. Cells 2019; 8:cells8010055. [PMID: 30650663 PMCID: PMC6356843 DOI: 10.3390/cells8010055] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 01/05/2023] Open
Abstract
Multifaceted relations link ribosome biogenesis to cancer. Ribosome biogenesis takes place in the nucleolus. Clarifying the mechanisms involved in this nucleolar function and its relationship with cell proliferation: (1) allowed the understanding of the reasons for the nucleolar changes in cancer cells and their exploitation in tumor pathology, (2) defined the importance of the inhibition of ribosome biogenesis in cancer chemotherapy and (3) focused the attention on alterations of ribosome biogenesis in the pathogenesis of cancer. This review summarizes the research milestones regarding these relevant relationships between ribosome biogenesis and cancer. The structure and function of the nucleolus will also be briefly described.
Collapse
Affiliation(s)
- Marianna Penzo
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy.
- Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy.
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy.
- Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy.
| | - Davide Treré
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy.
| | | |
Collapse
|
70
|
Wang M, Bokros M, Theodoridis PR, Lee S. Nucleolar Sequestration: Remodeling Nucleoli Into Amyloid Bodies. Front Genet 2019; 10:1179. [PMID: 31824572 PMCID: PMC6881480 DOI: 10.3389/fgene.2019.01179] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/24/2019] [Indexed: 01/14/2023] Open
Abstract
This year marks the 20th anniversary of the discovery that the nucleolus can temporarily immobilize proteins, a process known as nucleolar sequestration. This review reflects on the progress made to understand the physiological roles of nucleolar sequestration and the mechanisms involved in the immobilization of proteins. We discuss how protein immobilization can occur through a highly choreographed amyloidogenic program that converts the nucleolus into a large fibrous organelle with amyloid-like characteristics called the amyloid body (A-body). We propose a working model of A-body biogenesis that includes a role for low-complexity ribosomal intergenic spacer RNA (rIGSRNA) and a discrete peptide sequence, the amyloid-converting motif (ACM), found in many proteins that undergo immobilization. Amyloid bodies provide a unique model to study the multistep assembly of a membraneless compartment and may provide alternative insights into the pathological amyloidogenesis involved in neurological disorders.
Collapse
Affiliation(s)
- Miling Wang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Michael Bokros
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Phaedra Rebecca Theodoridis
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Stephen Lee
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Urology, Miller School of Medicine, University of Miami, FL, United States
- *Correspondence: Stephen Lee,
| |
Collapse
|
71
|
Ribosome biogenesis: An emerging druggable pathway for cancer therapeutics. Biochem Pharmacol 2018; 159:74-81. [PMID: 30468711 DOI: 10.1016/j.bcp.2018.11.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/16/2018] [Indexed: 01/05/2023]
Abstract
Ribosomes are nanomachines essential for protein production in all living cells. Ribosome synthesis increases in cancer cells to cope with a rise in protein synthesis and sustain unrestricted growth. This increase in ribosome biogenesis is reflected by severe morphological alterations of the nucleolus, the cell compartment where the initial steps of ribosome biogenesis take place. Ribosome biogenesis has recently emerged as an effective target in cancer therapy, and several compounds that inhibit ribosome production or function, killing preferentially cancer cells, have entered clinical trials. Recent research indicates that cells express heterogeneous populations of ribosomes and that the composition of ribosomes may play a key role in tumorigenesis, exposing novel therapeutic opportunities. Here, we review recent data demonstrating that ribosome biogenesis is a promising druggable pathway in cancer therapy, and discuss future research perspectives.
Collapse
|
72
|
EBNA1: Oncogenic Activity, Immune Evasion and Biochemical Functions Provide Targets for Novel Therapeutic Strategies against Epstein-Barr Virus- Associated Cancers. Cancers (Basel) 2018; 10:cancers10040109. [PMID: 29642420 PMCID: PMC5923364 DOI: 10.3390/cancers10040109] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
The presence of the Epstein-Barr virus (EBV)-encoded nuclear antigen-1 (EBNA1) protein in all EBV-carrying tumours constitutes a marker that distinguishes the virus-associated cancer cells from normal cells and thereby offers opportunities for targeted therapeutic intervention. EBNA1 is essential for viral genome maintenance and also for controlling viral gene expression and without EBNA1, the virus cannot persist. EBNA1 itself has been linked to cell transformation but the underlying mechanism of its oncogenic activity has been unclear. However, recent data are starting to shed light on its growth-promoting pathways, suggesting that targeting EBNA1 can have a direct growth suppressing effect. In order to carry out its tasks, EBNA1 interacts with cellular factors and these interactions are potential therapeutic targets, where the aim would be to cripple the virus and thereby rid the tumour cells of any oncogenic activity related to the virus. Another strategy to target EBNA1 is to interfere with its expression. Controlling the rate of EBNA1 synthesis is critical for the virus to maintain a sufficient level to support viral functions, while at the same time, restricting expression is equally important to prevent the immune system from detecting and destroying EBNA1-positive cells. To achieve this balance EBNA1 has evolved a unique repeat sequence of glycines and alanines that controls its own rate of mRNA translation. As the underlying molecular mechanisms for how this repeat suppresses its own rate of synthesis in cis are starting to be better understood, new therapeutic strategies are emerging that aim to modulate the translation of the EBNA1 mRNA. If translation is induced, it could increase the amount of EBNA1-derived antigenic peptides that are presented to the major histocompatibility (MHC) class I pathway and thus, make EBV-carrying cancers better targets for the immune system. If translation is further suppressed, this would provide another means to cripple the virus.
Collapse
|
73
|
Gelgor A, Gam Ze Letova C, Yegorov Y, Kalt I, Sarid R. Nucleolar stress enhances lytic reactivation of the Kaposi's sarcoma-associated herpesvirus. Oncotarget 2018; 9:13822-13833. [PMID: 29568397 PMCID: PMC5862618 DOI: 10.18632/oncotarget.24497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 02/01/2018] [Indexed: 02/07/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumorigenic virus exhibiting two forms of infection, latent and lytic. Latent infection is abortive and allows the virus to establish lifelong infection, while lytic infection is productive, and is needed for virus dissemination within the host and between hosts. Latent infection may reactivate and switch towards the lytic cycle. This switch is a critical step in the maintenance of long-term infection and for the development of KSHV-related neoplasms. In this study, we examined the effect of nucleolar stress, manifested by failure in ribosome biogenesis or function and often coupled with p53 activation, on lytic reactivation of KSHV. To this end, we induced nucleolar stress by treatment with Actinomycin D, CX-5461 or BMH-21. Treatment with these compounds alone did not induce the lytic cycle. However, enhancement of the lytic cycle by these compounds was evident when combined with expression of the viral protein K-Rta. Further experiments employing combined treatments with Nutlin-3, knock-down of p53 and isogenic p53+/+ and p53-/- cells indicated that the enhancement of lytic reactivation by nucleolar stress does not depend on p53. Thus, our study identifies nucleolar stress as a novel regulator of KSHV infection, which synergizes with K-Rta expression to increase lytic reactivation. This suggests that certain therapeutic interventions, which induce nucleolar stress, may affect the outcome of KSHV infection.
Collapse
Affiliation(s)
- Anastasia Gelgor
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Chen Gam Ze Letova
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Yana Yegorov
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Inna Kalt
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Ronit Sarid
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| |
Collapse
|
74
|
Jiang P, Hou Z, Bolin JM, Thomson JA, Stewart R. RNA-Seq of Human Neural Progenitor Cells Exposed to Lead (Pb) Reveals Transcriptome Dynamics, Splicing Alterations and Disease Risk Associations. Toxicol Sci 2017; 159:251-265. [PMID: 28903495 PMCID: PMC6372217 DOI: 10.1093/toxsci/kfx129] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lead (Pb) is a well-known toxicant, especially for the developing nervous system, albeit the mechanism is largely unknown. In this study, we use time series RNA-seq to conduct a genome-wide survey of the transcriptome response of human embryonic stem cell-derived neural progenitor cells to lead treatment. Using a dynamic time warping algorithm coupled with statistical tests, we find that lead can either accelerate or decelerate the expression of specific genes during the time series. We further show that lead disrupts a neuron- and brain-specific splicing factor NOVA1 regulated splicing network. Using lead induced transcriptome change signatures, we predict several known and novel disease risks under lead exposure. The findings in this study will allow a better understanding of the mechanism of lead toxicity, facilitate the development of diagnostic biomarkers and treatment for lead exposure, and comprise a highly valuable resource for environmental toxicology. Our study also demonstrates that a human (embryonic stem) cell-derived system can be used for studying the mechanism of toxicants, which can be useful for drug or compound toxicity screens and safety assessment.
Collapse
Affiliation(s)
- Peng Jiang
- Regenerative Biology Laboratory, Morgridge Institute for Research, Madison, Wisconsin 53707
| | - Zhonggang Hou
- Regenerative Biology Laboratory, Morgridge Institute for Research, Madison, Wisconsin 53707
| | - Jennifer M. Bolin
- Regenerative Biology Laboratory, Morgridge Institute for Research, Madison, Wisconsin 53707
| | - James A. Thomson
- Regenerative Biology Laboratory, Morgridge Institute for Research, Madison, Wisconsin 53707
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, California 93106
| | - Ron Stewart
- Regenerative Biology Laboratory, Morgridge Institute for Research, Madison, Wisconsin 53707
| |
Collapse
|