51
|
Vila JCC, Jones ML, Patel M, Bell T, Rosindell J. Uncovering the rules of microbial community invasions. Nat Ecol Evol 2019; 3:1162-1171. [PMID: 31358951 DOI: 10.1038/s41559-019-0952-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/24/2019] [Indexed: 12/30/2022]
Abstract
Understanding the ecological and evolutionary processes determining the outcome of biological invasions has been the subject of decades of research with most work focusing on macro-organisms. In the context of microbes, invasions remain poorly understood despite being increasingly recognized as important. To shed light on the factors affecting the success of microbial community invasions, we perform simulations using an individual-based nearly neutral model that combines ecological and evolutionary processes. Our simulations qualitatively recreate many empirical patterns and lead to a description of five general rules of invasion: (1) larger communities evolve better invaders and better defenders; (2) where invader and resident fitness difference is large, invasion success is essentially deterministic; (3) propagule pressure contributes to invasion success, if and only if, invaders and residents are competitively similar; (4) increasing the diversity of invaders has a similar effect to increasing the number of invaders; and (5) more diverse communities more successfully resist invasion.
Collapse
Affiliation(s)
- Jean C C Vila
- Silwood Park Campus, Department of Life Sciences, Imperial College London, Ascot, UK. .,Microbial Sciences Institute, West Campus, Yale University, West Haven, CT, USA. .,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| | - Matt L Jones
- Silwood Park Campus, Department of Life Sciences, Imperial College London, Ascot, UK
| | - Matishalin Patel
- Silwood Park Campus, Department of Life Sciences, Imperial College London, Ascot, UK.,Department of Zoology, University of Oxford, Oxford, UK
| | - Tom Bell
- Silwood Park Campus, Department of Life Sciences, Imperial College London, Ascot, UK
| | - James Rosindell
- Silwood Park Campus, Department of Life Sciences, Imperial College London, Ascot, UK
| |
Collapse
|
52
|
Lajoie G, Kembel SW. Making the Most of Trait-Based Approaches for Microbial Ecology. Trends Microbiol 2019; 27:814-823. [PMID: 31296406 DOI: 10.1016/j.tim.2019.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022]
Abstract
There is an increasing interest in applying trait-based approaches to microbial ecology, but the question of how and why to do it is still lagging behind. By anchoring our discussion of these questions in a framework derived from epistemology, we broaden the scope of trait-based approaches to microbial ecology from one oriented mostly around explanation towards one inclusive of the predictive and integrative potential of these approaches. We use case studies from macro-organismal ecology to concretely show how these goals for knowledge development can be fulfilled and propose clear directions, adapted to the biological reality of microbes, to make the most of recent advancements in the measurement of microbial phenotypes and traits.
Collapse
Affiliation(s)
- Geneviève Lajoie
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montréal, Canada, H2X 1Y4.
| | - Steven W Kembel
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montréal, Canada, H2X 1Y4
| |
Collapse
|
53
|
Zengler K, Hofmockel K, Baliga NS, Behie SW, Bernstein HC, Brown JB, Dinneny JR, Floge SA, Forry SP, Hess M, Jackson SA, Jansson C, Lindemann SR, Pett-Ridge J, Maranas C, Venturelli OS, Wallenstein MD, Shank EA, Northen TR. EcoFABs: advancing microbiome science through standardized fabricated ecosystems. Nat Methods 2019; 16:567-571. [PMID: 31227812 PMCID: PMC6733021 DOI: 10.1038/s41592-019-0465-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microbiomes play critical roles in ecosystems and human health, yet in most cases scientists lack standardized and reproducible model microbial communities. The development of fabricated microbial ecosystems, which we term EcoFABs, will provide such model systems for microbiome studies.
Collapse
Affiliation(s)
- Karsten Zengler
- Department of Pediatrics, University of California, San Diego, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, CA, USA
| | - Kirsten Hofmockel
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA, USA
- Departments of Microbiology and Biology, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Scott W Behie
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Hans C Bernstein
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- The Norwegian College of Fishery Science and Arctic Centre for Sustainable Energy, UiT-The Arctic University of Norway, Tromsø, Norway
| | - James B Brown
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Centre for Computational Biology, School of Biosciences, University of Birmingham, Birmingham, UK
- Statistics Department, University of California, Berkeley, Berkeley, CA, USA
- Preminon, LLC, Antioch, CA, USA
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Sheri A Floge
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | - Samuel P Forry
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Matthias Hess
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Scott A Jackson
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Christer Jansson
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Stephen R Lindemann
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Costas Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | | | - Matthew D Wallenstein
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Elizabeth A Shank
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- DOE Joint Genome Institute, Walnut Creek, CA, USA.
| |
Collapse
|
54
|
Tan ZQ, Leow HY, Lee DCW, Karisnan K, Song AAL, Mai CW, Yap WS, Lim SHE, Lai KS. Co-Culture Systems for the Production of Secondary Metabolites: Current and Future Prospects. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1874070701913010018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microorganisms are the great sources of Natural Products (NPs); these are imperative to their survival apart from conferring competitiveness amongst each other within their environmental niches. Primary and secondary metabolites are the two major classes of NPs that help in cell development, where antimicrobial activity is closely linked with secondary metabolites. To capitalize on the effects of secondary metabolites, co-culture methods have been often used to develop an artificial microbial community that promotes the action of these metabolites. Different analytical techniques will subsequently be employed based on the metabolite specificity and sensitivity to further enhance the metabolite induction. Liquid Chromatography-Mass Spectrometry (LC-MS) and Gas Chromatography (GC)-MS are commonly used for metabolite separation while Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS) have been used as tools to elucidate the structure of compounds. This review intends to discuss current systems in use for co-culture in addition to its advantages, with discourse into the investigation of specific techniques in use for the detailed study of secondary metabolites. Further advancements and focus on co-culture technologies are required to fully realize the massive potential in synthetic biological systems.
Collapse
|
55
|
Coculturing Bacteria Leads to Reduced Phenotypic Heterogeneities. Appl Environ Microbiol 2019; 85:AEM.02814-18. [PMID: 30796063 DOI: 10.1128/aem.02814-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/11/2019] [Indexed: 01/12/2023] Open
Abstract
Isogenic bacterial populations are known to exhibit phenotypic heterogeneity at the single-cell level. Because of difficulties in assessing the phenotypic heterogeneity of a single taxon in a mixed community, the importance of this deeper level of organization remains relatively unknown for natural communities. In this study, we have used membrane-based microcosms that allow the probing of the phenotypic heterogeneity of a single taxon while interacting with a synthetic or natural community. Individual taxa were studied under axenic conditions, as members of a coculture with physical separation, and as a mixed culture. Phenotypic heterogeneity was assessed through both flow cytometry and Raman spectroscopy. Using this setup, we investigated the effect of microbial interactions on the individual phenotypic heterogeneities of two interacting drinking water isolates. Through flow cytometry we have demonstrated that interactions between these bacteria lead to a reduction of their individual phenotypic diversities and that this adjustment is conditional on the bacterial taxon. Single-cell Raman spectroscopy confirmed a taxon-dependent phenotypic shift due to the interaction. In conclusion, our data suggest that bacterial interactions may be a general driver of phenotypic heterogeneity in mixed microbial populations.IMPORTANCE Laboratory studies have shown the impact of phenotypic heterogeneity on the survival and functionality of isogenic populations. Because phenotypic heterogeneity plays an important role in pathogenicity and virulence, antibiotic resistance, biotechnological applications, and ecosystem properties, it is crucial to understand its influencing factors. An unanswered question is whether bacteria in mixed communities influence the phenotypic heterogeneity of their community partners. We found that coculturing bacteria leads to a reduction in their individual phenotypic heterogeneities, which led us to the hypothesis that the individual phenotypic diversity of a taxon is dependent on the community composition.
Collapse
|
56
|
Scheidweiler D, Peter H, Pramateftaki P, de Anna P, Battin TJ. Unraveling the biophysical underpinnings to the success of multispecies biofilms in porous environments. ISME JOURNAL 2019; 13:1700-1710. [PMID: 30833685 PMCID: PMC6776110 DOI: 10.1038/s41396-019-0381-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 02/07/2019] [Accepted: 02/17/2019] [Indexed: 11/23/2022]
Abstract
Biofilms regulate critical processes in porous ecosystems. However, the biophysical underpinnings of the ecological success of these biofilms are poorly understood. Combining experiments with fluidic devices, sequencing and modeling, we reveal that architectural plasticity enhances space exploitation by multispecies biofilms in porous environments. Biofilms consistently differentiated into an annular base biofilm coating the grains and into streamers protruding from the grains into the pore space. Although different flow-related processes governed the differentiation of these architectures, both BB and streamers were composed of similar bacterial assemblages. This is evidence for architectural plasticity. Architectural plasticity allowed for complementary use of the space provided by the grain–pore complexes, which increased biofilm carrying capacity at the larger scale of the porous system. This increase comes potentially at the cost of a tradeoff. Contrasting time scales of oxygen replenishment and consumption, we show that streamers locally inhibit the growth of the BB downstream from the grains. Our study provides first insights into the biophysical underpinnings to the success of multispecies biofilms in porous environments.
Collapse
Affiliation(s)
- David Scheidweiler
- Stream Biofilm and Ecosystem Research Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Hannes Peter
- Stream Biofilm and Ecosystem Research Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Paraskevi Pramateftaki
- Stream Biofilm and Ecosystem Research Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Pietro de Anna
- Institute of Earth Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Tom J Battin
- Stream Biofilm and Ecosystem Research Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
57
|
Kia SH, Jurkechova M, Glynou K, Piepenbring M, Maciá-Vicente JG. The effects of fungal root endophytes on plant growth are stable along gradients of abiotic habitat conditions. FEMS Microbiol Ecol 2019; 94:4654843. [PMID: 29186430 DOI: 10.1093/femsec/fix162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022] Open
Abstract
Plant symbioses with fungal root endophytes span a continuum from mutualistic to parasitic outcomes, and are highly variable depending on the genotype of each symbiont. The abiotic context in which interactions occur also seems to influence the outcome of plant-endophyte symbioses, but we lack understanding of its relative importance. We aimed to assess if changes in abiotic variables determine the effects of fungal root endophytes on plant growth. We used in vitro co-cultivation assays to test the impact of a selection of endophytic strains from diverse lineages on the growth of Arabidopsis thaliana, Microthlaspi erraticum and Hordeum vulgare along gradients of nutrient availability, light intensity or substrate pH. Most fungi showed a negative but weak effect on plant growth, whereas only a few had persistent detrimental effects across plants and conditions. Changes in abiotic factors affected plant growth but had little influence on their response to fungal inoculation. Of the factors tested, variation in nutrient availability resulted in the most variable plant-endophyte interactions, although changes were feeble and strain-specific. Our findings suggest that the effects of root endophytes on plant growth are robust to changes in the abiotic environment when these encompass the tolerance range of either symbiont.
Collapse
Affiliation(s)
- Sevda Haghi Kia
- Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.,Integrative Fungal Research Cluster (IPF), Frankfurt am Main, Germany
| | - Miroslava Jurkechova
- Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Kyriaki Glynou
- Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.,Integrative Fungal Research Cluster (IPF), Frankfurt am Main, Germany
| | - Meike Piepenbring
- Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.,Integrative Fungal Research Cluster (IPF), Frankfurt am Main, Germany
| | - Jose G Maciá-Vicente
- Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.,Integrative Fungal Research Cluster (IPF), Frankfurt am Main, Germany
| |
Collapse
|
58
|
Ul-Hasan S, Bowers RM, Figueroa-Montiel A, Licea-Navarro AF, Beman JM, Woyke T, Nobile CJ. Community ecology across bacteria, archaea and microbial eukaryotes in the sediment and seawater of coastal Puerto Nuevo, Baja California. PLoS One 2019; 14:e0212355. [PMID: 30763377 PMCID: PMC6375613 DOI: 10.1371/journal.pone.0212355] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/31/2019] [Indexed: 11/19/2022] Open
Abstract
Microbial communities control numerous biogeochemical processes critical for ecosystem function and health. Most analyses of coastal microbial communities focus on the characterization of bacteria present in either sediment or seawater, with fewer studies characterizing both sediment and seawater together at a given site, and even fewer studies including information about non-bacterial microbial communities. As a result, knowledge about the ecological patterns of microbial biodiversity across domains and habitats in coastal communities is limited-despite the fact that archaea, bacteria, and microbial eukaryotes are present and known to interact in coastal habitats. To better understand microbial biodiversity patterns in coastal ecosystems, we characterized sediment and seawater microbial communities for three sites along the coastline of Puerto Nuevo, Baja California, Mexico using both 16S and 18S rRNA gene amplicon sequencing. We found that sediment hosted approximately 500-fold more operational taxonomic units (OTUs) for bacteria, archaea, and microbial eukaryotes than seawater (p < 0.001). Distinct phyla were found in sediment versus seawater samples. Of the top ten most abundant classes, Cytophagia (bacterial) and Chromadorea (eukaryal) were specific to the sediment environment, whereas Cyanobacteria and Bacteroidia (bacterial) and Chlorophyceae (eukaryal) were specific to the seawater environment. A total of 47 unique genera were observed to comprise the core taxa community across environment types and sites. No archaeal taxa were observed as part of either the abundant or core taxa. No significant differences were observed for sediment community composition across domains or between sites. For seawater, the bacterial and archaeal community composition was statistically different for the Major Outlet site (p < 0.05), the site closest to a residential area, and the eukaryal community composition was statistically different between all sites (p < 0.05). Our findings highlight the distinct patterns and spatial heterogeneity in microbial communities of a coastal region in Baja California, Mexico.
Collapse
Affiliation(s)
- Sabah Ul-Hasan
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, United States of America
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, United States of America
| | - Robert M. Bowers
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States of America
| | - Andrea Figueroa-Montiel
- Department of Biomedical Innovation, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | - Alexei F. Licea-Navarro
- Department of Biomedical Innovation, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | - J. Michael Beman
- Department of Life and Environmental Sciences, School of Natural Sciences, University of California Merced, Merced, CA, United States of America
| | - Tanja Woyke
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, United States of America
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States of America
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, United States of America
| |
Collapse
|
59
|
Frequency of disturbance alters diversity, function, and underlying assembly mechanisms of complex bacterial communities. NPJ Biofilms Microbiomes 2019; 5:8. [PMID: 30774969 PMCID: PMC6370796 DOI: 10.1038/s41522-019-0079-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 12/11/2018] [Indexed: 01/10/2023] Open
Abstract
Disturbance is known to affect the ecosystem structure, but predicting its outcomes remains elusive. Similarly, community diversity is believed to relate to ecosystem functions, yet the underlying mechanisms are poorly understood. Here, we tested the effect of disturbance on the structure, assembly, and ecosystem function of complex microbial communities within an engineered system. We carried out a microcosm experiment where activated sludge bioreactors operated in daily cycles were subjected to eight different frequency levels of augmentation with a toxic pollutant, from never (undisturbed) to every day (press-disturbed), for 35 days. Microbial communities were assessed by combining distance-based methods, general linear multivariate models, α-diversity indices, and null model analyses on metagenomics and 16S rRNA gene amplicon data. A stronger temporal decrease in α-diversity at the extreme, undisturbed and press-disturbed, ends of the disturbance range led to a hump-backed pattern, with the highest diversity found at intermediate levels of disturbance. Undisturbed and press-disturbed levels displayed the highest community and functional similarity across replicates, suggesting deterministic processes were dominating. The opposite was observed amongst intermediately disturbed levels, indicating stronger stochastic assembly mechanisms. Trade-offs were observed in the ecosystem function between organic carbon removal and both nitrification and biomass productivity, as well as between diversity and these functions. Hence, not every ecosystem function was favoured by higher community diversity. Our results show that the assessment of changes in diversity, along with the underlying stochastic–deterministic assembly processes, is essential to understanding the impact of disturbance in complex microbial communities. Complex microbial communities and ecosystems are highly sensitive to disturbance, which can affect community diversity and structure, but to date the impact of disturbance remains difficult to predict. Here, Stefan Wuertz and colleagues from the Nanyang Technological University in Singapore show how different disturbance frequencies affect microbial population dynamics. Analyses of microbial communities in sludge bioreactors exposed to a toxic pollutant at different rates revealed that populations at the extremes (not exposed and most exposed) showed the lowest α-diversity, whereas populations exposed at intermediate levels were most diverse. Notably, ecosystem function trade-offs were observed between organic carbon removal and nitrification and biomass productivity, with diversity also affecting these functions. These observations highlight the importance of evaluating diversity when determining the effects of disturbance on microbial communities.
Collapse
|
60
|
Lupatini M, Suleiman AKA, Jacques RJS, Lemos LN, Pylro VS, Van Veen JA, Kuramae EE, Roesch LFW. Moisture Is More Important than Temperature for Assembly of Both Potentially Active and Whole Prokaryotic Communities in Subtropical Grassland. MICROBIAL ECOLOGY 2019; 77:460-470. [PMID: 30607437 DOI: 10.1007/s00248-018-1310-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Moisture and temperature play important roles in the assembly and functioning of prokaryotic communities in soil. However, how moisture and temperature regulate the function of niche- versus neutral-based processes during the assembly of these communities has not been examined considering both the total microbial community and the sole active portion with potential for growth in native subtropical grassland. We set up a well-controlled microcosm-based experiment to investigate the individual and combined effects of moisture and temperature on soil prokaryotic communities by simulating subtropical seasons in grassland. The prokaryotic populations with potential for growth and the total prokaryotic community were assessed by 16S rRNA transcript and 16S rRNA gene analyses, respectively. Moisture was the major factor influencing community diversity and structure, with a considerable effect of this factor on the total community. The prokaryotic populations with potential for growth and the total communities were influenced by the same assembly rules, with the niche-based mechanism being more influential in communities under dry condition. Our results provide new information regarding moisture and temperature in microbial communities of soil and elucidate how coexisting prokaryotic populations, under different physiological statuses, are shaped in native subtropical grassland soil.
Collapse
Affiliation(s)
- Manoeli Lupatini
- Departamento de Solos, Programa de Pós-graduação em Ciência do Solo, Universidade Federal de Santa Maria, Roraima, 1000, Santa Maria, 97105-900, Brazil
| | - Afnan K A Suleiman
- Departamento de Solos, Programa de Pós-graduação em Ciência do Solo, Universidade Federal de Santa Maria, Roraima, 1000, Santa Maria, 97105-900, Brazil
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Rodrigo J S Jacques
- Departamento de Solos, Programa de Pós-graduação em Ciência do Solo, Universidade Federal de Santa Maria, Roraima, 1000, Santa Maria, 97105-900, Brazil
| | - Leandro N Lemos
- Laboratório de Biologia Molecular e Celular, Centro de Energia Nuclear na Agricultura CENA, Universidade de São Paulo USP, Piracicaba, SP, Brazil
| | - Victor S Pylro
- Department of Biology, Federal University of Lavras - UFLA, Lavras, Minas Gerais, Brazil
| | - Johannes A Van Veen
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Eiko E Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Luiz F W Roesch
- Centro Interdisciplinar de Pesquisas em Biotecnologia - CIP-Biotec, Universidade Federal do Pampa, Campus São Gabriel, Avenida Antonio Trilha, 1847, São Gabriel, 97300-000, Brazil.
| |
Collapse
|
61
|
Stibor H, Stockenreiter M, Nejstgaard JC, Ptacnik R, Sommer U. Trophic switches in pelagic systems. CURRENT OPINION IN SYSTEMS BIOLOGY 2019; 13:108-114. [PMID: 32984659 PMCID: PMC7493431 DOI: 10.1016/j.coisb.2018.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ecological studies need experimentation to test concepts and to disentangle causality in community dynamics. While simple models have given substantial insights into population and community dynamics, recent ecological concepts become increasingly complex. The globally important pelagic food web dynamics are well suited to test complex ecological concepts. For instance, trophic switches of individual organisms within pelagic food webs can elongate food webs or shift the balance between autotroph and heterotroph carbon fluxes. Here, we summarize results from mesocosm experiments demonstrating how environmental drivers result in trophic switches of marine phytoplankton and zooplankton communities. Such mesocosm experiments are useful to develop and test complex ecological concepts going beyond trophic level-based analyses, including diversity, individual behavior, and environmental stochasticity.
Collapse
Affiliation(s)
- Herwig Stibor
- Department Biology II, Experimental Aquatic Ecology, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Maria Stockenreiter
- Department Biology II, Experimental Aquatic Ecology, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Jens Christian Nejstgaard
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhtute 2, D-16775, Stechlin, Germany
| | - Robert Ptacnik
- WasserCluster Lunz – Biologische Station GmbH, Seehof 4, 3293, Lunz Am See, Austria
| | - Ulrich Sommer
- Helmholtz Centre for Ocean Research (GEOMAR), Düsternbrooker Weg 20, 24105, Kiel, Germany
| |
Collapse
|
62
|
O'Malley MA, Parke EC. Microbes, mathematics, and models. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2018; 72:1-10. [PMID: 30497583 DOI: 10.1016/j.shpsa.2018.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 01/22/2018] [Accepted: 07/12/2018] [Indexed: 06/09/2023]
Abstract
Microbial model systems have a long history of fruitful use in fields that include evolution and ecology. In order to develop further insight into modelling practice, we examine how the competitive exclusion and coexistence of competing species have been modelled mathematically and materially over the course of a long research history. In particular, we investigate how microbial models of these dynamics interact with mathematical or computational models of the same phenomena. Our cases illuminate the ways in which microbial systems and equations work as models, and what happens when they generate inconsistent findings about shared targets. We reveal an iterative strategy of comparative modelling in different media, and suggest reasons why microbial models have a special degree of epistemic tractability in multimodel inquiry.
Collapse
Affiliation(s)
- Maureen A O'Malley
- University of Bordeaux, France; University of Sydney, HPS, Carslaw Building, NSW, 2006, Australia.
| | - Emily C Parke
- University of Auckland, Philosophy, School of Humanities, Room 538, Level 5, 14A Symonds St, Auckland, 1010, New Zealand.
| |
Collapse
|
63
|
Jacob S, Laurent E, Haegeman B, Bertrand R, Prunier JG, Legrand D, Cote J, Chaine AS, Loreau M, Clobert J, Schtickzelle N. Habitat choice meets thermal specialization: Competition with specialists may drive suboptimal habitat preferences in generalists. Proc Natl Acad Sci U S A 2018; 115:11988-11993. [PMID: 30397109 PMCID: PMC6255147 DOI: 10.1073/pnas.1805574115] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Limited dispersal is classically considered as a prerequisite for ecological specialization to evolve, such that generalists are expected to show greater dispersal propensity compared with specialists. However, when individuals choose habitats that maximize their performance instead of dispersing randomly, theory predicts dispersal with habitat choice to evolve in specialists, while generalists should disperse more randomly. We tested whether habitat choice is associated with thermal niche specialization using microcosms of the ciliate Tetrahymena thermophila, a species that performs active dispersal. We found that thermal specialists preferred optimal habitats as predicted by theory, a link that should make specialists more likely to track suitable conditions under environmental changes than expected under the random dispersal assumption. Surprisingly, generalists also performed habitat choice but with a preference for suboptimal habitats. Since this result challenges current theory, we developed a metapopulation model to understand under which circumstances such a preference for suboptimal habitats should evolve. We showed that competition between generalists and specialists may favor a preference for niche margins in generalists under environmental variability. Our results demonstrate that the behavioral dimension of dispersal-here, habitat choice-fundamentally alters our predictions of how dispersal evolve with niche specialization, making dispersal behaviors crucial for ecological forecasting facing environmental changes.
Collapse
Affiliation(s)
- Staffan Jacob
- Earth and Life Institute, Biodiversity Research Centre, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
- Station d'Ecologie Théorique et Expérimentale (UMR5321), CNRS, Université Paul Sabatier, F-09200 Moulis, France
| | - Estelle Laurent
- Earth and Life Institute, Biodiversity Research Centre, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Bart Haegeman
- Station d'Ecologie Théorique et Expérimentale (UMR5321), CNRS, Université Paul Sabatier, F-09200 Moulis, France
- Centre for Biodiversity Theory and Modelling, Station d'Ecologie Théorique et Expérimentale (UMR5321), CNRS, Université Paul Sabatier, F-09200 Moulis, France
| | - Romain Bertrand
- Station d'Ecologie Théorique et Expérimentale (UMR5321), CNRS, Université Paul Sabatier, F-09200 Moulis, France
- Centre for Biodiversity Theory and Modelling, Station d'Ecologie Théorique et Expérimentale (UMR5321), CNRS, Université Paul Sabatier, F-09200 Moulis, France
| | - Jérôme G Prunier
- Station d'Ecologie Théorique et Expérimentale (UMR5321), CNRS, Université Paul Sabatier, F-09200 Moulis, France
| | - Delphine Legrand
- Station d'Ecologie Théorique et Expérimentale (UMR5321), CNRS, Université Paul Sabatier, F-09200 Moulis, France
| | - Julien Cote
- Laboratoire Evolution and Diversité Biologique (UMR5174), CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Alexis S Chaine
- Station d'Ecologie Théorique et Expérimentale (UMR5321), CNRS, Université Paul Sabatier, F-09200 Moulis, France
- Toulouse School of Economics, Institute for Advanced Studies in Toulouse, 31015 Toulouse, France
| | - Michel Loreau
- Station d'Ecologie Théorique et Expérimentale (UMR5321), CNRS, Université Paul Sabatier, F-09200 Moulis, France
- Centre for Biodiversity Theory and Modelling, Station d'Ecologie Théorique et Expérimentale (UMR5321), CNRS, Université Paul Sabatier, F-09200 Moulis, France
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale (UMR5321), CNRS, Université Paul Sabatier, F-09200 Moulis, France
| | - Nicolas Schtickzelle
- Earth and Life Institute, Biodiversity Research Centre, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
64
|
Shade A, Dunn RR, Blowes SA, Keil P, Bohannan BJ, Herrmann M, Küsel K, Lennon JT, Sanders NJ, Storch D, Chase J. Macroecology to Unite All Life, Large and Small. Trends Ecol Evol 2018; 33:731-744. [DOI: 10.1016/j.tree.2018.08.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/29/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022]
|
65
|
Desharnais RA, Reuman DC, Costantino RF, Cohen JE. Temporal scale of environmental correlations affects ecological synchrony. Ecol Lett 2018; 21:1800-1811. [PMID: 30230159 DOI: 10.1111/ele.13155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/04/2018] [Accepted: 08/16/2018] [Indexed: 02/01/2023]
Abstract
Population densities of a species measured in different locations are often correlated over time, a phenomenon referred to as synchrony. Synchrony results from dispersal of individuals among locations and spatially correlated environmental variation, among other causes. Synchrony is often measured by a correlation coefficient. However, synchrony can vary with timescale. We demonstrate theoretically and experimentally that the timescale-specificity of environmental correlation affects the overall magnitude and timescale-specificity of synchrony, and that these effects are modified by population dispersal. Our laboratory experiments linked populations of flour beetles by changes in habitat size and dispersal. Linear filter theory, applied to a metapopulation model for the experimental system, predicted the observed timescale-specific effects. The timescales at which environmental covariation occurs can affect the population dynamics of species in fragmented habitats.
Collapse
Affiliation(s)
- Robert A Desharnais
- Department of Biological Sciences, California State University at Los Angeles, Los Angeles, CA, 90032, USA.,Control and Dynamical Systems, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Daniel C Reuman
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA.,Kansas Biological Survey, University of Kansas, Lawrence, KS, 66047, USA
| | - Robert F Costantino
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Joel E Cohen
- Laboratory of Populations, Rockefeller University, New York, NY, 10065, USA.,Earth Institute and Department of Statistics, Columbia University, New York, NY, 10027, USA.,Department of Statistics, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
66
|
Abstract
Models are universal in science, both as theoretical formulations of reality and as model systems, representatives of other organisms. A recent paper on how scientists view the world divides our work into the mind, the lab, and the field and suggests that models must not be conflated with reality. But in practice, these distinctions are blurred. For example, are flour beetles a model system for other insects when their natural habitat is the same as the way they live in the lab? In addition, models can become restrictive when they are viewed as archetypes, making us overgeneralize about the world and ignoring meaningful variation. The study of sexual conflict in insects illustrates some of the pitfalls of relying on Drosophila as a model system for sexual selection. Microbes can be used as models for populations and communities and are essential parts of larger biological systems. Finally, some models are not meant to replicate the world but are worlds unto themselves in which diverse possibilities can be directly observed.
Collapse
|
67
|
Ng EL, Huerta Lwanga E, Eldridge SM, Johnston P, Hu HW, Geissen V, Chen D. An overview of microplastic and nanoplastic pollution in agroecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:1377-1388. [PMID: 30857101 DOI: 10.1016/j.scitotenv.2018.01.341] [Citation(s) in RCA: 570] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 05/20/2023]
Abstract
Microplastics and nanoplastics are emerging pollutants of global importance. They are small enough to be ingested by a wide range of organisms and at nano-scale, they may cross some biological barriers. However, our understanding of their ecological impact on the terrestrial environment is limited. Plastic particle loading in agroecosystems could be high due to inputs of some recycled organic waste and plastic film mulching, so it is vital that we develop a greater understanding of any potentially harmful or adverse impacts of these pollutants to agroecosystems. In this article, we discuss the sources of plastic particles in agroecosystems, the mechanisms, constraints and dynamic behaviour of plastic during aging on land, and explore the responses of soil organisms and plants at different levels of biological organisation to plastic particles of micro and nano-scale. Based on limited evidence at this point and understanding that the lack of evidence of ecological impact from microplastic and nanoplastic in agroecosystems does not equate to the evidence of absence, we propose considerations for addressing the gaps in knowledge so that we can adequately safeguard world food supply.
Collapse
Affiliation(s)
- Ee-Ling Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia.
| | - Esperanza Huerta Lwanga
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 4, 6708PB Wageningen, The Netherlands; Agroecologia, El Colegio de la Frontera Sur, Unidad Campeche Av Polígono s/n, Cd. Industrial, Lerma, Campeche, Mexico
| | - Simon M Eldridge
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| | | | - Hang-Wei Hu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 4, 6708PB Wageningen, The Netherlands
| | - Deli Chen
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
68
|
Ortiz-Álvarez R, Fierer N, de Los Ríos A, Casamayor EO, Barberán A. Consistent changes in the taxonomic structure and functional attributes of bacterial communities during primary succession. THE ISME JOURNAL 2018. [PMID: 29463893 DOI: 10.1038/s41396-018-0076-] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ecologists have long studied primary succession, the changes that occur in biological communities after initial colonization of an environment. Most of this work has focused on succession in plant communities, laying the conceptual foundation for much of what we currently know about community assembly patterns over time. Because of their prevalence and importance in ecosystems, an increasing number of studies have focused on microbial community dynamics during succession. Here, we conducted a meta-analysis of bacterial primary succession patterns across a range of distinct habitats, including the infant gut, plant surfaces, soil chronosequences, and aquatic environments, to determine whether consistent changes in bacterial diversity, community composition, and functional traits are evident over the course of succession. Although these distinct habitats harbor unique bacterial communities, we were able to identify patterns in community assembly that were shared across habitat types. We found an increase in taxonomic and functional diversity with time while the taxonomic composition and functional profiles of communities became less variable (lower beta diversity) in late successional stages. In addition, we found consistent decreases in the rRNA operon copy number and in the high-efficient phosphate assimilation process (Pst system) suggesting that reductions in resource availability during succession select for taxa adapted to low-resource conditions. Together, these results highlight that, like many plant communities, microbial communities also exhibit predictable patterns during primary succession.
Collapse
Affiliation(s)
- Rüdiger Ortiz-Álvarez
- Integrative Freshwater Ecology Group, Centre for Advanced Studies of Blanes (CEAB), Spanish Research Council (CSIC), Blanes, Catalonia, 17300, Spain.
| | - Noah Fierer
- Department of Ecology & Evolutionary Biology, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, 80309, USA
| | - Asunción de Los Ríos
- Microbial Ecology and Geomicrobiology Group, Museo Nacional de Ciencias Naturales, Spanish Research Council (CSIC), Madrid, 28006, Spain
| | - Emilio O Casamayor
- Integrative Freshwater Ecology Group, Centre for Advanced Studies of Blanes (CEAB), Spanish Research Council (CSIC), Blanes, Catalonia, 17300, Spain
| | - Albert Barberán
- Department of Soil, Water, and Environmental Science, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
69
|
Bauer M, Frey E. Multiple scales in metapopulations of public goods producers. Phys Rev E 2018; 97:042307. [PMID: 29758643 DOI: 10.1103/physreve.97.042307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Indexed: 06/08/2023]
Abstract
Multiple scales in metapopulations can give rise to paradoxical behavior: in a conceptual model for a public goods game, the species associated with a fitness cost due to the public good production can be stabilized in the well-mixed limit due to the mere existence of these scales. The scales in this model involve a length scale corresponding to separate patches, coupled by mobility, and separate time scales for reproduction and interaction with a local environment. Contrary to the well-mixed high mobility limit, we find that for low mobilities, the interaction rate progressively stabilizes this species due to stochastic effects, and that the formation of spatial patterns is not crucial for this stabilization.
Collapse
Affiliation(s)
- Marianne Bauer
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Theresienstr. 37, Department of Physics, Ludwig-Maximilians-Universität München, D-80333 Munich, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Theresienstr. 37, Department of Physics, Ludwig-Maximilians-Universität München, D-80333 Munich, Germany
| |
Collapse
|
70
|
Using Cultivated Microbial Communities To Dissect Microbiome Assembly: Challenges, Limitations, and the Path Ahead. mSystems 2018; 3:mSystems00161-17. [PMID: 29629414 PMCID: PMC5881021 DOI: 10.1128/msystems.00161-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
As troves of microbiome sequencing data provide improved resolution of patterns of microbial diversity, new approaches are needed to understand what controls these patterns. Many microbial ecologists are using cultivated model microbial communities to address this challenge. As troves of microbiome sequencing data provide improved resolution of patterns of microbial diversity, new approaches are needed to understand what controls these patterns. Many microbial ecologists are using cultivated model microbial communities to address this challenge. These systems provide opportunities to identify drivers of microbiome assembly, but key challenges and limitations need to be carefully considered in their development, implementation, and interpretation. How well do model microbial communities mimic in vitro communities in terms of taxonomic diversity, trophic levels, intraspecific diversity, and the abiotic environment? What are the best ways to manipulate and measure inputs and outputs in model community experiments? In this perspective, I briefly address some of these challenges on the basis of our experience developing fermented food model communities. Future work integrating genetic and molecular approaches with cultivated model microbial communities will allow microbial ecology to develop a more mechanistic understanding of microbiome diversity.
Collapse
|
71
|
Abstract
Continuous cultures in chemostats have proven their value in microbiology, microbial ecology, systems biology and bioprocess engineering, among others. In these systems, microbial growth and ecosystem performance can be quantified under stable and defined environmental conditions. This is essential when linking microbial diversity to ecosystem function. Here, a new system to test this link in anaerobic, methanogenic microbial communities is introduced. Rigorously replicated experiments or a suitable experimental design typically require operating several chemostats in parallel. However, this is labor intensive, especially when measuring biogas production. Commercial solutions for multiplying reactors performing continuous anaerobic digestion exist but are expensive and use comparably large reactor volumes, requiring the preparation of substantial amounts of media. Here, a flexible system of Lab-scale Automated and Multiplexed Anaerobic Chemostat system (LAMACs) with a working volume of 200 mL is introduced. Sterile feeding, biomass wasting and pressure monitoring are automated. One module containing six reactors fits the typical dimensions of a lab bench. Thanks to automation, time required for reactor operation and maintenance are reduced compared to traditional lab-scale systems. Several modules can be used together, and so far the parallel operation of 30 reactors was demonstrated. The chemostats are autoclavable. Parameters like reactor volume, flow rates and operating temperature can be freely set. The robustness of the system was tested in a two-month long experiment in which three inocula in four replicates, i.e., twelve continuous digesters were monitored. Statistically significant differences in the biogas production between inocula were observed. In anaerobic digestion, biogas production and consequently pressure development in a closed environment is a proxy for ecosystem performance. The precision of the pressure measurement is thus crucial. The measured maximum and minimum rates of gas production could be determined at the same precision. The LAMACs is a tool that enables us to put in practice the often-demanded need for replication and rigorous testing in microbial ecology as well as bioprocess engineering.
Collapse
|
72
|
Consistent changes in the taxonomic structure and functional attributes of bacterial communities during primary succession. ISME JOURNAL 2018; 12:1658-1667. [PMID: 29463893 DOI: 10.1038/s41396-018-0076-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/11/2018] [Accepted: 01/13/2018] [Indexed: 11/09/2022]
Abstract
Ecologists have long studied primary succession, the changes that occur in biological communities after initial colonization of an environment. Most of this work has focused on succession in plant communities, laying the conceptual foundation for much of what we currently know about community assembly patterns over time. Because of their prevalence and importance in ecosystems, an increasing number of studies have focused on microbial community dynamics during succession. Here, we conducted a meta-analysis of bacterial primary succession patterns across a range of distinct habitats, including the infant gut, plant surfaces, soil chronosequences, and aquatic environments, to determine whether consistent changes in bacterial diversity, community composition, and functional traits are evident over the course of succession. Although these distinct habitats harbor unique bacterial communities, we were able to identify patterns in community assembly that were shared across habitat types. We found an increase in taxonomic and functional diversity with time while the taxonomic composition and functional profiles of communities became less variable (lower beta diversity) in late successional stages. In addition, we found consistent decreases in the rRNA operon copy number and in the high-efficient phosphate assimilation process (Pst system) suggesting that reductions in resource availability during succession select for taxa adapted to low-resource conditions. Together, these results highlight that, like many plant communities, microbial communities also exhibit predictable patterns during primary succession.
Collapse
|
73
|
Krichen E, Harmand J, Torrijos M, Godon J, Bernet N, Rapaport A. High biomass density promotes density-dependent microbial growth rate. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2017.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
74
|
Garuglieri E, Meroni E, Cattò C, Villa F, Cappitelli F, Erba D. Effects of Sub-lethal Concentrations of Silver Nanoparticles on a Simulated Intestinal Prokaryotic-Eukaryotic Interface. Front Microbiol 2018; 8:2698. [PMID: 29379489 PMCID: PMC5775227 DOI: 10.3389/fmicb.2017.02698] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/26/2017] [Indexed: 01/23/2023] Open
Abstract
Nanotechnology applications are expected to bring a range of benefits to the food sector, aiming to provide better quality and conservation. In this research, the physiological response of both an Escherichia coli mono-species biofilm and Caco-2 intestinal cells to sub-lethal concentrations of silver nanoparticles (AgNPs) has been investigated. In order to simulate the anaerobic and aerobic compartments required for bacteria and intestinal cells growth, a simplified semi-batch model based on a transwell permeable support was developed. Interaction between the two compartments was obtained by exposing Caco-2 intestinal cells to the metabolites secreted by E. coli biofilm after its exposure to AgNPs. To the best of the authors’ knowledge, this study is the first to investigate the effect of AgNPs on Caco-2 cells that takes into consideration previous AgNP-intestinal biofilm interactions, and at concentrations mimicking real human exposure. Our data show that 1 μg/mL AgNPs in anaerobic conditions (i) promote biofilm formation up to 2.3 ± 0.3 fold in the first 72 h of treatment; (ii) increase reactive oxygen species (ROS) production to 84 ± 21% and change the physiological status of microbial cells after 96 h of treatment; (iii) seriously affect a 72-h old established biofilm, increasing the level of oxidative stress to 86 ± 21%. Moreover, the results indicate that oxygen renders the biofilm more adequate to counteract AgNP effects. Comet assays on Caco-2 cells demonstrated a protective role of biofilm against the genotoxic effect of 1 μg/mL AgNPs on intestinal epithelial cells.
Collapse
Affiliation(s)
- Elisa Garuglieri
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Erika Meroni
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Cristina Cattò
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Federica Villa
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Francesca Cappitelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Daniela Erba
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
75
|
Free A, McDonald MA, Pagaling E. Diversity-Function Relationships in Natural, Applied, and Engineered Microbial Ecosystems. ADVANCES IN APPLIED MICROBIOLOGY 2018; 105:131-189. [PMID: 30342721 DOI: 10.1016/bs.aambs.2018.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The connection between ecosystem function and taxonomic diversity has been of interest and relevance to macroecologists for decades. After many years of lagging behind due to the difficulty of assigning both taxonomy and function to poorly distinguishable microscopic cells, microbial ecology now has access to a suite of powerful molecular tools which allow its practitioners to generate data relating to diversity and function of a microbial community on an unprecedented scale. Instead, the problem facing today's microbial ecologists is coupling the ease of generation of these datasets with the formulation and testing of workable hypotheses relating the diversity and function of environmental, host-associated, and engineered microbial communities. Here, we review the current state of knowledge regarding the links between taxonomic alpha- and beta-diversity and ecosystem function, comparing our knowledge in this area to that obtained by macroecologists who use more traditional techniques. We consider the methodologies that can be applied to study these properties and how successful they are at linking function to diversity, using examples from the study of model microbial ecosystems, methanogenic bioreactors (anaerobic digesters), and host-associated microbiota. Finally, we assess ways in which our newly acquired understanding might be used to manipulate diversity in ecosystems of interest in order to improve function for the benefit of us or the environment in general through the provision of ecosystem services.
Collapse
Affiliation(s)
- Andrew Free
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Michael A McDonald
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Eulyn Pagaling
- The James Hutton Institute, Craigiebuckler, Aberdeen, United Kingdom
| |
Collapse
|
76
|
Neill C, Cotner S, Wisenden B. Solar‐powered flow‐through system for aquatic field studies. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Connor Neill
- Itasca Biological Field Station and LaboratoriesCollege of Biological SciencesUniversity of Minnesota Lake Itasca MN USA
| | - Sehoya Cotner
- Itasca Biological Field Station and LaboratoriesCollege of Biological SciencesUniversity of Minnesota Lake Itasca MN USA
| | - Brian Wisenden
- Itasca Biological Field Station and LaboratoriesCollege of Biological SciencesUniversity of Minnesota Lake Itasca MN USA
| |
Collapse
|
77
|
A Synthetic Community System for Probing Microbial Interactions Driven by Exometabolites. mSystems 2017; 2:mSystems00129-17. [PMID: 29152587 PMCID: PMC5686522 DOI: 10.1128/msystems.00129-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/24/2017] [Indexed: 11/25/2022] Open
Abstract
Understanding microbial interactions is a fundamental objective in microbiology and ecology. The synthetic community system described here can set into motion a range of research to investigate how the diversity of a microbiome and interactions among its members impact its function, where function can be measured as exometabolites. The system allows for community exometabolite profiling to be coupled with genome mining, transcript analysis, and measurements of member productivity and population size. It can also facilitate discovery of natural products that are only produced within microbial consortia. Thus, this synthetic community system has utility to address fundamental questions about a diversity of possible microbial interactions that occur in both natural and engineered ecosystems. Though most microorganisms live within a community, we have modest knowledge about microbial interactions and their implications for community properties and ecosystem functions. To advance understanding of microbial interactions, we describe a straightforward synthetic community system that can be used to interrogate exometabolite interactions among microorganisms. The filter plate system (also known as the Transwell system) physically separates microbial populations, but allows for chemical interactions via a shared medium reservoir. Exometabolites, including small molecules, extracellular enzymes, and antibiotics, are assayed from the reservoir using sensitive mass spectrometry. Community member outcomes, such as growth, productivity, and gene regulation, can be determined using flow cytometry, biomass measurements, and transcript analyses, respectively. The synthetic community design allows for determination of the consequences of microbiome diversity for emergent community properties and for functional changes over time or after perturbation. Because it is versatile, scalable, and accessible, this synthetic community system has the potential to practically advance knowledge of microbial interactions that occur within both natural and artificial communities. IMPORTANCE Understanding microbial interactions is a fundamental objective in microbiology and ecology. The synthetic community system described here can set into motion a range of research to investigate how the diversity of a microbiome and interactions among its members impact its function, where function can be measured as exometabolites. The system allows for community exometabolite profiling to be coupled with genome mining, transcript analysis, and measurements of member productivity and population size. It can also facilitate discovery of natural products that are only produced within microbial consortia. Thus, this synthetic community system has utility to address fundamental questions about a diversity of possible microbial interactions that occur in both natural and engineered ecosystems. Author Video: An author video summary of this article is available.
Collapse
|
78
|
Dattner I, Miller E, Petrenko M, Kadouri DE, Jurkevitch E, Huppert A. Modelling and parameter inference of predator-prey dynamics in heterogeneous environments using the direct integral approach. J R Soc Interface 2017; 14:rsif.2016.0525. [PMID: 28053112 DOI: 10.1098/rsif.2016.0525] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/28/2016] [Indexed: 11/12/2022] Open
Abstract
Most bacterial habitats are topographically complex in the micro scale. Important examples include the gastrointestinal and tracheal tracts, and the soil. Although there are myriad theoretical studies that explore the role of spatial structures on antagonistic interactions (predation, competition) among animals, there are many fewer experimental studies that have explored, validated and quantified their predictions. In this study, we experimentally monitored the temporal dynamic of the predatory bacterium Bdellovibrio bacteriovorus, and its prey, the bacterium Burkholderia stabilis in a structured habitat consisting of sand under various regimes of wetness. We constructed a dynamic model, and estimated its parameters by further developing the direct integral method, a novel estimation procedure that exploits the separability of the states and parameters in the model. We also verified that one of our parameter estimates was consistent with its known, directly measured value from the literature. The ability of the model to fit the data combined with realistic parameter estimates indicate that bacterial predation in the sand can be described by a relatively simple model, and stress the importance of prey refuge on predation dynamics in heterogeneous environments.
Collapse
Affiliation(s)
- Itai Dattner
- Department of Statistics, University of Haifa, 199 Abba Khoushy Avenue, Mount Carmel, Haifa 3498838, Israel
| | - Ezer Miller
- Bio-statistical Unit, The Gertner Institute for Epidemiology and Health Policy Research, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Margarita Petrenko
- Department of Agroecology and Plant Health, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Edouard Jurkevitch
- Department of Agroecology and Plant Health, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amit Huppert
- Bio-statistical Unit, The Gertner Institute for Epidemiology and Health Policy Research, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel.,Department of Epidemiology and Preventive Medicine at the School of Public Health, the Sackler Faculty of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
79
|
Zhang X, Johnston ER, Barberán A, Ren Y, Lü X, Han X. Decreased plant productivity resulting from plant group removal experiment constrains soil microbial functional diversity. GLOBAL CHANGE BIOLOGY 2017; 23:4318-4332. [PMID: 28585356 DOI: 10.1111/gcb.13783] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Anthropogenic environmental changes are accelerating the rate of biodiversity loss on Earth. Plant diversity loss is predicted to reduce soil microbial diversity primarily due to the decreased variety of carbon/energy resources. However, this intuitive hypothesis is supported by sparse empirical evidence, and most underlying mechanisms remain underexplored or obscure altogether. We constructed four diversity gradients (0-3) in a five-year plant functional group removal experiment in a steppe ecosystem in Inner Mongolia, China, and quantified microbial taxonomic and functional diversity with shotgun metagenome sequencing. The treatments had little effect on microbial taxonomic diversity, but were found to decrease functional gene diversity. However, the observed decrease in functional gene diversity was more attributable to a loss in plant productivity, rather than to the loss of any individual plant functional group per se. Reduced productivity limited fresh plant resources supplied to microorganisms, and thus, intensified the pressure of ecological filtering, favoring genes responsible for energy production/conversion, material transport/metabolism and amino acid recycling, and accordingly disfavored many genes with other functions. Furthermore, microbial respiration was correlated with the variation in functional composition but not taxonomic composition. Overall, the amount of carbon/energy resources driving microbial gene diversity was identified to be the critical linkage between above- and belowground communities, contrary to the traditional framework of linking plant clade/taxonomic diversity to microbial taxonomic diversity.
Collapse
Affiliation(s)
- Ximei Zhang
- Key Laboratory of Dryland Agriculture, MOA, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Eric R Johnston
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Albert Barberán
- Department of Soil, Water, and Environmental Science, University of Arizona, Tucson, AZ, USA
| | - Yi Ren
- Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd, Shanghai, China
| | - Xiaotao Lü
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xingguo Han
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
80
|
Environmental Selection, Dispersal, and Organism Interactions Shape Community Assembly in High-Throughput Enrichment Culturing. Appl Environ Microbiol 2017; 83:AEM.01253-17. [PMID: 28778896 DOI: 10.1128/aem.01253-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022] Open
Abstract
A central goal of microbial ecology is to identify and quantify the forces that lead to observed population distributions and dynamics. However, these forces, which include environmental selection, dispersal, and organism interactions, are often difficult to assess in natural environments. Here, we present a method that links microbial community structures with selective and stochastic forces through highly replicated subsampling and enrichment of a single environmental inoculum. Specifically, groundwater from a well-studied natural aquifer was serially diluted and inoculated into nearly 1,000 aerobic and anaerobic nitrate-reducing cultures, and the final community structures were evaluated with 16S rRNA gene amplicon sequencing. We analyzed the frequency and abundance of individual operational taxonomic units (OTUs) to understand how probabilistic immigration, relative fitness differences, environmental factors, and organismal interactions contributed to divergent distributions of community structures. We further used a most probable number (MPN) method to estimate the natural condition-dependent cultivable abundance of each of the nearly 400 OTU cultivated in our study and infer the relative fitness of each. Additionally, we infer condition-specific organism interactions and discuss how this high-replicate culturing approach is essential in dissecting the interplay between overlapping ecological forces and taxon-specific attributes that underpin microbial community assembly.IMPORTANCE Through highly replicated culturing, in which inocula are subsampled from a single environmental sample, we empirically determine how selective forces, interspecific interactions, relative fitness, and probabilistic dispersal shape bacterial communities. These methods offer a novel approach to untangle not only interspecific interactions but also taxon-specific fitness differences that manifest across different cultivation conditions and lead to the selection and enrichment of specific organisms. Additionally, we provide a method for estimating the number of cultivable units of each OTU in the original sample through the MPN approach.
Collapse
|
81
|
Nelson PG, May G. Coevolution between Mutualists and Parasites in Symbiotic Communities May Lead to the Evolution of Lower Virulence. Am Nat 2017; 190:803-817. [PMID: 29166166 DOI: 10.1086/694334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Most eukaryotes harbor a diverse community of parasitic, mutualistic, and commensal microbial symbionts. Although the diversity of these microbial symbiotic communities has recently drawn considerable attention, theory regarding the evolution of interactions among symbionts and with the host is still in its nascent stages. Here we evaluate the role of interactions among coinfecting symbionts in the evolution of symbiont virulence toward the host. To do so, we place the virulence-transmission trade-off into a community context and model the evolution of symbiont trophic modes along the continuum from parasitism (virulence) to mutualism (negative virulence). We establish a framework for studying multiple infections of a host by the same symbiont species and coinfection by multiple species, using a concept of shared costs, wherein the negative consequences of virulence (or harm) toward the host are shared among symbionts. Our results show that mutualism can be maintained under infection by multiple symbionts when shared costs are sufficiently low, while greater virulence and parasitism toward the host are more likely when shared costs are high. Last, for coinfection by more than one species, we show that if the presence of a mutualist ameliorates some of the costs of pathogen virulence, then the symbiotic community may more often evolve to a more commensal state and maintain mutualisms.
Collapse
|
82
|
Modeling Microbial Communities: A Call for Collaboration between Experimentalists and Theorists. Processes (Basel) 2017. [DOI: 10.3390/pr5040053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
With our growing understanding of the impact of microbial communities, understanding how such communities function has become a priority. The influence of microbial communities is widespread. Human-associated microbiota impacts health, environmental microbes determine ecosystem sustainability, and microbe-driven industrial processes are expanding. This broad range of applications has led to a wide range of approaches to analyze and describe microbial communities. In particular, theoretical work based on mathematical modeling has been a steady source of inspiration for explaining and predicting microbial community processes. Here, we survey some of the modeling approaches used in different contexts. We promote classifying different approaches using a unified platform, and encourage cataloging the findings in a database. We believe that the synergy emerging from a coherent collection facilitates a better understanding of important processes that determine microbial community functions. We emphasize the importance of close collaboration between theoreticians and experimentalists in formulating, classifying, and improving models of microbial communities.
Collapse
|
83
|
Medina D, Walke JB, Gajewski Z, Becker MH, Swartwout MC, Belden LK. Culture Media and Individual Hosts Affect the Recovery of Culturable Bacterial Diversity from Amphibian Skin. Front Microbiol 2017; 8:1574. [PMID: 28883811 PMCID: PMC5573730 DOI: 10.3389/fmicb.2017.01574] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/03/2017] [Indexed: 01/28/2023] Open
Abstract
One current challenge in microbial ecology is elucidating the functional roles of the large diversity of free-living and host-associated bacteria identified by culture-independent molecular methods. Importantly, the characterization of this immense bacterial diversity will likely require merging data from culture-independent approaches with work on bacterial isolates in culture. Amphibian skin bacterial communities have become a recent focus of work in host-associated microbial systems due to the potential role of these skin bacteria in host defense against the pathogenic fungus Batrachochytrium dendrobatidis (Bd), which is associated with global amphibian population declines and extinctions. As there is evidence that some skin bacteria may inhibit growth of Bd and prevent infection in some cases, there is interest in using these bacteria as probiotic therapy for conservation of at-risk amphibians. In this study, we used skin swabs from American toads (Anaxyrus americanus) to: (1) assess the diversity and community structure of culturable amphibian skin bacteria grown on high and low nutrient culture media, (2) determine which culture media recover the highest proportion of the total skin bacterial community of individual toads relative to culture-independent data, and (3) assess whether the plated communities from the distinct media types vary in their ability to inhibit Bd growth in in-vitro assays. Overall, we found that culture media with low nutrient concentrations facilitated the growth of more diverse bacterial taxa and grew distinct communities relative to media with higher nutrient concentrations. Use of low nutrient media also resulted in culturing proportionally more of the bacterial diversity on individual toads relative to the overall community defined using culture-independent methods. However, while there were differences in diversity among media types, the variation among individual hosts was greater than variation among media types, suggesting that swabbing more individuals in a population is the best way to maximize culture collections, regardless of media type. Lastly, the function of the plated communities against Bd did not vary across culture media type or between high and low nutrient media. These results inform current efforts for developing a probiotic-based approach for amphibian conservation and help to ensure that culture collections are capturing the majority of the important diversity in these systems.
Collapse
Affiliation(s)
- Daniel Medina
- Department of Biological Sciences, Virginia TechBlacksburg, VA, United States
| | - Jenifer B Walke
- Department of Biological Sciences, Virginia TechBlacksburg, VA, United States
| | - Zachary Gajewski
- Department of Biological Sciences, Virginia TechBlacksburg, VA, United States
| | - Matthew H Becker
- Department of Biological Sciences, Virginia TechBlacksburg, VA, United States
| | | | - Lisa K Belden
- Department of Biological Sciences, Virginia TechBlacksburg, VA, United States
| |
Collapse
|
84
|
Ekholm A, Roslin T, Pulkkinen P, Tack AJM. Dispersal, host genotype and environment shape the spatial dynamics of a parasite in the wild. Ecology 2017; 98:2574-2584. [DOI: 10.1002/ecy.1949] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/06/2017] [Accepted: 07/10/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Adam Ekholm
- Department of Ecology; Swedish University of Agricultural Sciences; Box 7044 Uppsala SE-750 07 Sweden
| | - Tomas Roslin
- Department of Ecology; Swedish University of Agricultural Sciences; Box 7044 Uppsala SE-750 07 Sweden
- Department of Agricultural Sciences; University of Helsinki; PO Box 27, Latokartanonkaari 5 Helsinki FI-00014 Finland
| | - Pertti Pulkkinen
- Haapastensyrjä Unit; Natural Resources Institute Finland; Haapastensyrjäntie 34 Läyliäinen FI-12600 Finland
| | - Ayco J. M. Tack
- Department of Ecology, Environment and Plant Sciences; Stockholm University; Svante Arrhenius väg 20A Stockholm Sweden
| |
Collapse
|
85
|
Pagaling E, Vassileva K, Mills CG, Bush T, Blythe RA, Schwarz-Linek J, Strathdee F, Allen RJ, Free A. Assembly of microbial communities in replicate nutrient-cycling model ecosystems follows divergent trajectories, leading to alternate stable states. Environ Microbiol 2017; 19:3374-3386. [PMID: 28677203 DOI: 10.1111/1462-2920.13849] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/23/2022]
Abstract
We studied in detail the reproducibility of community development in replicate nutrient-cycling microbial microcosms that were set up identically and allowed to develop under the same environmental conditions. Multiple replicate closed microcosms were constructed using pond sediment and water, enriched with cellulose and sulphate, and allowed to develop over several months under constant environmental conditions, after which their microbial communities were characterized using 16S rRNA gene sequencing. Our results show that initially similar microbial communities can follow alternative - yet stable - trajectories, diverging in time in a system size-dependent manner. The divergence between replicate communities increased in time and decreased with larger system size. In particular, notable differences emerged in the heterotrophic degrader communities in our microcosms; one group of steady state communities was enriched with Firmicutes, while the other was enriched with Bacteroidetes. The communities dominated by these two phyla also contained distinct populations of sulphate-reducing bacteria. This biomodality in community composition appeared to arise during recovery from a low-diversity state that followed initial cellulose degradation and sulphate reduction.
Collapse
Affiliation(s)
- Eulyn Pagaling
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Kristin Vassileva
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Catherine G Mills
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Timothy Bush
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Richard A Blythe
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | | | - Fiona Strathdee
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rosalind J Allen
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Andrew Free
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
86
|
Aizenberg-Gershtein Y, Izhaki I, Halpern M. From Microhabitat of Floral Nectar Up to Biogeographic Scale: Novel Insights on Neutral and Niche Bacterial Assemblies. MICROBIAL ECOLOGY 2017; 74:128-139. [PMID: 28108759 DOI: 10.1007/s00248-017-0935-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/06/2017] [Indexed: 12/16/2023]
Abstract
Microbial model systems are very useful in addressing macro-ecological questions. Two major theories exist to date, to explain the community structure of organisms: (1) the dispersal (neutral) assembly theory which predicts that community similarity decreases with increasing geographic distance, independent of any environmental variables, and (2) the niche assembly theory which predicts that the communities' compositions are more homogeneous among sites characterized by similar environmental conditions. Our study system offered a unique opportunity to investigate the relative role of environmental conditions and spatial factors in shaping community composition. We explored the bacterial community composition (BCC) of Nicotiana glauca floral nectar using the Illumina MiSeq technique at three spatial scales (plants, site, and region) and two taxonomic levels. Floral nectar samples were collected from 69 N. glauca plants at 11 different sites along a 200-km transect in Israel, along three biogeographic regions. A distance decay of BCC was found among all plants throughout Israel, but such pattern was not found among either sites or biogeographical regions. The BCC was also governed by environmental conditions in all examined scales (from the plant up to the biogeographical region). We also found that taxonomic resolution (89 and 97% sequence identity for clustering operational taxonomic units) affected the results of these BCC analyses. Hence, our study revealed that the BCC in N. glauca floral nectar is shaped by both the environmental conditions and the distance between plants, depending on the sampling scale under examination as well as by taxonomic resolution.
Collapse
Affiliation(s)
- Yana Aizenberg-Gershtein
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa, Israel
| | - Ido Izhaki
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa, Israel
| | - Malka Halpern
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa, Israel.
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon, Israel.
| |
Collapse
|
87
|
Diversity begets diversity in competition for space. Nat Ecol Evol 2017; 1:156. [DOI: 10.1038/s41559-017-0156] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/04/2017] [Indexed: 11/09/2022]
|
88
|
Pennekamp F, Griffiths JI, Fronhofer EA, Garnier A, Seymour M, Altermatt F, Petchey OL. Dynamic species classification of microorganisms across time, abiotic and biotic environments-A sliding window approach. PLoS One 2017; 12:e0176682. [PMID: 28472193 PMCID: PMC5417602 DOI: 10.1371/journal.pone.0176682] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/14/2017] [Indexed: 11/18/2022] Open
Abstract
The development of video-based monitoring methods allows for rapid, dynamic and accurate monitoring of individuals or communities, compared to slower traditional methods, with far reaching ecological and evolutionary applications. Large amounts of data are generated using video-based methods, which can be effectively processed using machine learning (ML) algorithms into meaningful ecological information. ML uses user defined classes (e.g. species), derived from a subset (i.e. training data) of video-observed quantitative features (e.g. phenotypic variation), to infer classes in subsequent observations. However, phenotypic variation often changes due to environmental conditions, which may lead to poor classification, if environmentally induced variation in phenotypes is not accounted for. Here we describe a framework for classifying species under changing environmental conditions based on the random forest classification. A sliding window approach was developed that restricts temporal and environmentally conditions to improve the classification. We tested our approach by applying the classification framework to experimental data. The experiment used a set of six ciliate species to monitor changes in community structure and behavior over hundreds of generations, in dozens of species combinations and across a temperature gradient. Differences in biotic and abiotic conditions caused simplistic classification approaches to be unsuccessful. In contrast, the sliding window approach allowed classification to be highly successful, as phenotypic differences driven by environmental change, could be captured by the classifier. Importantly, classification using the random forest algorithm showed comparable success when validated against traditional, slower, manual identification. Our framework allows for reliable classification in dynamic environments, and may help to improve strategies for long-term monitoring of species in changing environments. Our classification pipeline can be applied in fields assessing species community dynamics, such as eco-toxicology, ecology and evolutionary ecology.
Collapse
Affiliation(s)
- Frank Pennekamp
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- * E-mail:
| | - Jason I. Griffiths
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Emanuel A. Fronhofer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Aurélie Garnier
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Mathew Seymour
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Deiniol Road, Gwynedd LL57 2UW, United Kingdom
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Owen L. Petchey
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
89
|
Killeen J, Gougat-Barbera C, Krenek S, Kaltz O. Evolutionary rescue and local adaptation under different rates of temperature increase: a combined analysis of changes in phenotype expression and genotype frequency in Paramecium microcosms. Mol Ecol 2017; 26:1734-1746. [PMID: 28222239 DOI: 10.1111/mec.14068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/03/2017] [Accepted: 02/09/2017] [Indexed: 12/30/2022]
Abstract
Evolutionary rescue (ER) occurs when populations, which have declined due to rapid environmental change, recover through genetic adaptation. The success of this process and the evolutionary trajectory of the population strongly depend on the rate of environmental change. Here we investigated how different rates of temperature increase (from 23 to 32 °C) affect population persistence and evolutionary change in experimental microcosms of the protozoan Paramecium caudatum. Consistent with theory on ER, we found that those populations experiencing the slowest rate of temperature increase were the least likely to become extinct and tended to be the best adapted to the new temperature environment. All high-temperature populations were more tolerant to severe heat stress (35, 37 °C), indicating a common mechanism of heat protection. High-temperature populations also had superior growth rates at optimum temperatures, leading to the absence of a pattern of local adaptation to control (23 °C) and high-temperature (32 °C) environments. However, high-temperature populations had reduced growth at low temperatures (5-9 °C), causing a shift in the temperature niche. In part, the observed evolutionary change can be explained by selection from standing variation. Using mitochondrial markers, we found complete divergence between control and high-temperature populations in the frequencies of six initial founder genotypes. Our results confirm basic predictions of ER and illustrate how adaptation to an extreme local environment can produce positive as well as negative correlated responses to selection over the entire range of the ecological niche.
Collapse
Affiliation(s)
- Joshua Killeen
- Institut des Sciences de l'Evolution Montpellier, UMR5554, Université de Montpellier, CC065, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Claire Gougat-Barbera
- Institut des Sciences de l'Evolution Montpellier, UMR5554, Université de Montpellier, CC065, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Sascha Krenek
- Institute of Hydrobiology, Technische Universität Dresden, 01062, Dresden, Germany
| | - Oliver Kaltz
- Institut des Sciences de l'Evolution Montpellier, UMR5554, Université de Montpellier, CC065, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| |
Collapse
|
90
|
Budinich M, Bourdon J, Larhlimi A, Eveillard D. A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems. PLoS One 2017; 12:e0171744. [PMID: 28187207 PMCID: PMC5302800 DOI: 10.1371/journal.pone.0171744] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/25/2017] [Indexed: 12/20/2022] Open
Abstract
Interplay within microbial communities impacts ecosystems on several scales, and elucidation of the consequent effects is a difficult task in ecology. In particular, the integration of genome-scale data within quantitative models of microbial ecosystems remains elusive. This study advocates the use of constraint-based modeling to build predictive models from recent high-resolution -omics datasets. Following recent studies that have demonstrated the accuracy of constraint-based models (CBMs) for simulating single-strain metabolic networks, we sought to study microbial ecosystems as a combination of single-strain metabolic networks that exchange nutrients. This study presents two multi-objective extensions of CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA) and multi-objective flux variability analysis (MO-FVA). Both methods were applied to a hot spring mat model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as well as thermodynamically favorable relative abundances at community level, were emphasized. We expect this approach to be used for integrating genomic information in microbial ecosystems. Following models will provide insights about behaviors (including diversity) that take place at the ecosystem scale.
Collapse
Affiliation(s)
- Marko Budinich
- Computational Biology group, LINA UMR 6241 CNRS, EMN, Université de Nantes, Nantes, France
| | - Jérémie Bourdon
- Computational Biology group, LINA UMR 6241 CNRS, EMN, Université de Nantes, Nantes, France
| | - Abdelhalim Larhlimi
- Computational Biology group, LINA UMR 6241 CNRS, EMN, Université de Nantes, Nantes, France
| | - Damien Eveillard
- Computational Biology group, LINA UMR 6241 CNRS, EMN, Université de Nantes, Nantes, France
| |
Collapse
|
91
|
Friedman J, Gore J. Ecological systems biology: The dynamics of interacting populations. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2016.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
92
|
Tao Y, Dai T, Huang B, Wen D. The impact of wastewater treatment effluent on microbial biomasses and diversities in coastal sediment microcosms of Hangzhou Bay. MARINE POLLUTION BULLETIN 2017; 114:355-363. [PMID: 27707472 DOI: 10.1016/j.marpolbul.2016.09.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/18/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
Disposal of wastewater treatment plant (WWTP) effluent into sea, a typical anthropogenic disturbance, may influence many environmental factors and change the coastal microbial community structure. In this study, by setting up coastal sediment microcosms perturbed by WWTP effluent, the changes of microbial community structure under different degree of disturbances were investigated. Quantitative PCR (qPCR) and terminal restriction fragment length polymorphism (T-RFLP) were used to analyzed the biomass and biodiversity. High throughput sequencing analysis was used to identify the classification of the microorganisms. Our study suggested that low ratio of WWTP effluent may stimulate dominant species, which increase the biomass but decrease the biodiversity; while high ratio of WWTP effluent may depress all species, which decrease the biomass but increase the biodiversity. In other words, the impact was dose-dependent. The changes of microbial community structure may provide a metric for water environmental assessment and pollution control.
Collapse
Affiliation(s)
- Yile Tao
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China
| | - Tianjiao Dai
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China
| | - Bei Huang
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan 316021, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing 100871, China.
| |
Collapse
|
93
|
Wang J, Pan F, Soininen J, Heino J, Shen J. Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments. Nat Commun 2016; 7:13960. [PMID: 28000677 PMCID: PMC5187590 DOI: 10.1038/ncomms13960] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/16/2016] [Indexed: 02/06/2023] Open
Abstract
Climate effects and human impacts, that is, nutrient enrichment, simultaneously drive spatial biodiversity patterns. However, there is little consensus about their independent effects on biodiversity. Here we manipulate nutrient enrichment in aquatic microcosms in subtropical and subarctic regions (China and Norway, respectively) to show clear segregation of bacterial species along temperature gradients, and decreasing alpha and gamma diversity toward higher nutrients. The temperature dependence of species richness is greatest at extreme nutrient levels, whereas the nutrient dependence of species richness is strongest at intermediate temperatures. For species turnover rates, temperature effects are strongest at intermediate and two extreme ends of nutrient gradients in subtropical and subarctic regions, respectively. Species turnover rates caused by nutrients do not increase toward higher temperatures. These findings illustrate direct effects of temperature and nutrients on biodiversity, and indirect effects via primary productivity, thus providing insights into how nutrient enrichment could alter biodiversity under future climate scenarios.
Collapse
Affiliation(s)
- Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academic of Sciences, Nanjing 210008, China
- Department of Geosciences and Geography, University of Helsinki, Helsinki FIN-00014, Finland
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing 210023, China
| | - Janne Soininen
- Department of Geosciences and Geography, University of Helsinki, Helsinki FIN-00014, Finland
| | - Jani Heino
- Finnish Environment Institute, Natural Environment Centre, Biodiversity, Oulu FI-90014, Finland
| | - Ji Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academic of Sciences, Nanjing 210008, China
| |
Collapse
|
94
|
Cao Y, Ryser MD, Payne S, Li B, Rao CV, You L. Collective Space-Sensing Coordinates Pattern Scaling in Engineered Bacteria. Cell 2016; 165:620-30. [PMID: 27104979 DOI: 10.1016/j.cell.2016.03.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/11/2015] [Accepted: 03/01/2016] [Indexed: 01/12/2023]
Abstract
Scale invariance refers to the maintenance of a constant ratio of developing organ size to body size. Although common, its underlying mechanisms remain poorly understood. Here, we examined scaling in engineered Escherichia coli that can form self-organized core-ring patterns in colonies. We found that the ring width exhibits perfect scale invariance to the colony size. Our analysis revealed a collective space-sensing mechanism, which entails sequential actions of an integral feedback loop and an incoherent feedforward loop. The integral feedback is implemented by the accumulation of a diffusive chemical produced by a colony. This accumulation, combined with nutrient consumption, sets the timing for ring initiation. The incoherent feedforward is implemented by the opposing effects of the domain size on the rate and duration of ring maturation. This mechanism emphasizes a role of timing control in achieving robust pattern scaling and provides a new perspective in examining the phenomenon in natural systems.
Collapse
Affiliation(s)
- Yangxiaolu Cao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Marc D Ryser
- Department of Mathematics, Duke University, Durham, NC 27708, USA
| | - Stephen Payne
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Bochong Li
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Christopher V Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana Champaign, IL 61801, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Duke Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
95
|
Lind PA, Farr AD, Rainey PB. Evolutionary convergence in experimental Pseudomonas populations. ISME JOURNAL 2016; 11:589-600. [PMID: 27911438 DOI: 10.1038/ismej.2016.157] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/05/2016] [Accepted: 09/28/2016] [Indexed: 11/09/2022]
Abstract
Model microbial systems provide opportunity to understand the genetic bases of ecological traits, their evolution, regulation and fitness contributions. Experimental populations of Pseudomonas fluorescens rapidly diverge in spatially structured microcosms producing a range of surface-colonising forms. Despite divergent molecular routes, wrinkly spreader (WS) niche specialist types overproduce a cellulosic polymer allowing mat formation at the air-liquid interface and access to oxygen. Given the range of ways by which cells can form mats, such phenotypic parallelism is unexpected. We deleted the cellulose-encoding genes from the ancestral genotype and asked whether this mutant could converge on an alternate phenotypic solution. Two new traits were discovered. The first involved an exopolysaccharide encoded by pgaABCD that functions as cell-cell glue similar to cellulose. The second involved an activator of an amidase (nlpD) that when defective causes cell chaining. Both types form mats, but were less fit in competition with cellulose-based WS types. Surprisingly, diguanylate cyclases linked to cellulose overexpression underpinned evolution of poly-beta-1,6-N-acetyl-d-glucosamine (PGA)-based mats. This prompted genetic analyses of the relationships between the diguanylate cyclases WspR, AwsR and MwsR, and both cellulose and PGA. Our results suggest that c-di-GMP regulatory networks may have been shaped by evolution to accommodate loss and gain of exopolysaccharide modules facilitating adaptation to new environments.
Collapse
Affiliation(s)
- Peter A Lind
- New Zealand Institute for Advanced Study and Allan Wilson Centre for Molecular Ecology and Evolution, Massey University at Albany, Auckland, New Zealand.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Andrew D Farr
- New Zealand Institute for Advanced Study and Allan Wilson Centre for Molecular Ecology and Evolution, Massey University at Albany, Auckland, New Zealand
| | - Paul B Rainey
- New Zealand Institute for Advanced Study and Allan Wilson Centre for Molecular Ecology and Evolution, Massey University at Albany, Auckland, New Zealand.,Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris-Tech), PSL Research University, Paris, France
| |
Collapse
|
96
|
O'Malley MA. The ecological virus. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2016; 59:71-79. [PMID: 26972871 DOI: 10.1016/j.shpsc.2016.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
Ecology is usually described as the study of organisms interacting with one another and their environments. From this view of ecology, viruses - not usually considered to be organisms - would merely be part of the environment. Since the late 1980s, however, a growing stream of micrographic, experimental, molecular, and model-based (theoretical) research has been investigating how and why viruses should be understood as ecological actors of the most important sort. Viruses, especially phage, have been revealed as participants in the planet's most crucial food webs, even though viruses technically consume nothing (they do not metabolize by themselves). Even more impressively, viruses have been identified as regulators of planetary biogeochemistry, in which they control cycles such as carbon, nitrogen and phosphorus - cycles on which all life depends. Although much biogeochemical research black-boxes the entities filling functional roles, it is useful to focus a little more closely to understand how viruses can be held responsible for the global processes of life. This paper will give a brief overview of the history of virus ecology and tease out the implications of large-scale ecological modelling with viruses. This analysis suggests that viruses should be conceptualized as ecological actors that are at least comparable and possibly equal to organismal actors. Ecological agency can therefore be distinguished from standard interpretations of biological agency.
Collapse
|
97
|
Top predators affect the composition of naive protist communities, but only in their early-successional stage. Oecologia 2016; 180:519-28. [PMID: 26501772 DOI: 10.1007/s00442-015-3476-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 10/04/2015] [Indexed: 11/27/2022]
Abstract
Introduced top predators have the potential to disrupt community dynamics when prey species are naive to predation. The impact of introduced predators may also vary depending on the stage of community development. Early-succession communities are likely to have small-bodied and fast-growing species, but are not necessarily good at defending against predators. In contrast, late-succession communities are typically composed of larger-bodied species that are more predator resistant relative to small-bodied species. Yet, these aspects are greatly neglected in invasion studies. We therefore tested the effect of top predator presence on early- and late-succession communities that were either naive or non-naive to top predators. We used the aquatic community held within the leaves of Sarracenia purpurea. In North America, communities have experienced the S. purpurea top predator and are therefore non-naive. In Europe, this predator is not present and its niche has not been filled, making these communities top-predator naive. We collected early- and late-succession communities from two non-naive and two naive sites, which are climatically similar. We then conducted a common-garden experiment, with and without the presence of the top predator, in which we recorded changes in community composition, body size spectra, bacterial density, and respiration. We found that the top predator had no statistical effect on global measures of community structure and functioning. However, it significantly altered protist composition, but only in naive, early-succession communities, highlighting that the state of community development is important for understanding the impact of invasion.
Collapse
|
98
|
Hofmann R, Grösbacher M, Griebler C. Mini Sediment Columns and Two-Dimensional Sediment Flow-Through Microcosms: Versatile Experimental Systems for Studying Biodegradation of Organic Contaminants in Groundwater Ecosystems. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/8623_2016_210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
99
|
Abstract
There are not only many links between microbiological and philosophical topics, but good educational reasons for microbiologists to explore the philosophical issues in their fields. I examine three broad issues of classification, causality and model systems, showing how these philosophical dimensions have practical implications. I conclude with a discussion of the educational benefits for recognising the philosophy in microbiology.
Collapse
Affiliation(s)
- Maureen A O'Malley
- UMR5164, University of Bordeaux, 146 Rue Leo Saignat, Bordeaux 33076, France
| |
Collapse
|
100
|
Holding ML, Drabeck DH, Jansa SA, Gibbs HL. Venom Resistance as a Model for Understanding the Molecular Basis of Complex Coevolutionary Adaptations. Integr Comp Biol 2016; 56:1032-1043. [PMID: 27444525 DOI: 10.1093/icb/icw082] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
SynopsisVenom and venom resistance are molecular phenotypes widely considered to have diversified through coevolution between predators and prey. However, while evolutionary and functional studies on venom have been extensive, little is known about the molecular basis, variation, and complexity of venom resistance. We review known mechanisms of venom resistance and relate these mechanisms to their predicted impact on coevolutionary dynamics with venomous enemies. We then describe two conceptual approaches which can be used to examine venom/resistance systems. At the intraspecific level, tests of local adaptation in venom and resistance phenotypes can identify the functional mechanisms governing the outcomes of coevolution. At deeper evolutionary timescales, the combination of phylogenetically informed analyses of protein evolution coupled with studies of protein function promise to elucidate the mode and tempo of evolutionary change on potentially coevolving genes. We highlight case studies that use each approach to extend our knowledge of these systems as well as address larger questions about coevolutionary dynamics. We argue that resistance and venom are phenotypic traits which hold exceptional promise for investigating the mechanisms, dynamics, and outcomes of coevolution at the molecular level. Furthermore, extending the understanding of single gene-for-gene interactions to the whole resistance and venom phenotypes may provide a model system for examining the molecular and evolutionary dynamics of complex multi-gene interactions.
Collapse
Affiliation(s)
- Matthew L Holding
- *Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA.,*Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Danielle H Drabeck
- *Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA.,Department of Ecology, Evolution, and Behavior, University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108, USA.,J. F. Bell Museum of Natural History, University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108, USA
| | - Sharon A Jansa
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108, USA.,J. F. Bell Museum of Natural History, University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108, USA
| | - H Lisle Gibbs
- *Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA.,Ohio Biodiversity Conservation Partnership, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|