51
|
Huang T, Sun L, Kang D, Poongavanam V, Liu X, Zhan P, Menéndez-Arias L. Search, Identification, and Design of Effective Antiviral Drugs Against Pandemic Human Coronaviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:219-260. [PMID: 34258743 DOI: 10.1007/978-981-16-0267-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Recent coronavirus outbreaks of SARS-CoV-1 (2002-2003), MERS-CoV (since 2012), and SARS-CoV-2 (since the end of 2019) are examples of how viruses can damage health care and generate havoc all over the world. Coronavirus can spread quickly from person to person causing high morbidity and mortality. Unfortunately, the antiviral armamentarium is insufficient to fight these infections. In this chapter, we provide a detailed summary of the current situation in the development of drugs directed against pandemic human coronaviruses. Apart from the recently licensed remdesivir, other antiviral agents discussed in this review include molecules targeting viral components (e.g., RNA polymerase inhibitors, entry inhibitors, or protease inhibitors), compounds interfering with virus-host interactions, and drugs identified in large screening assays, effective against coronavirus replication, but with an uncertain mechanism of action.
Collapse
Affiliation(s)
- Tianguang Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | | | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
52
|
Amor S, Fernández Blanco L, Baker D. Innate immunity during SARS-CoV-2: evasion strategies and activation trigger hypoxia and vascular damage. Clin Exp Immunol 2020; 202:193-209. [PMID: 32978971 PMCID: PMC7537271 DOI: 10.1111/cei.13523] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022] Open
Abstract
Innate immune sensing of viral molecular patterns is essential for development of antiviral responses. Like many viruses, SARS-CoV-2 has evolved strategies to circumvent innate immune detection, including low cytosine-phosphate-guanosine (CpG) levels in the genome, glycosylation to shield essential elements including the receptor-binding domain, RNA shielding and generation of viral proteins that actively impede anti-viral interferon responses. Together these strategies allow widespread infection and increased viral load. Despite the efforts of immune subversion, SARS-CoV-2 infection activates innate immune pathways inducing a robust type I/III interferon response, production of proinflammatory cytokines and recruitment of neutrophils and myeloid cells. This may induce hyperinflammation or, alternatively, effectively recruit adaptive immune responses that help clear the infection and prevent reinfection. The dysregulation of the renin-angiotensin system due to down-regulation of angiotensin-converting enzyme 2, the receptor for SARS-CoV-2, together with the activation of type I/III interferon response, and inflammasome response converge to promote free radical production and oxidative stress. This exacerbates tissue damage in the respiratory system, but also leads to widespread activation of coagulation pathways leading to thrombosis. Here, we review the current knowledge of the role of the innate immune response following SARS-CoV-2 infection, much of which is based on the knowledge from SARS-CoV and other coronaviruses. Understanding how the virus subverts the initial immune response and how an aberrant innate immune response contributes to the respiratory and vascular damage in COVID-19 may help to explain factors that contribute to the variety of clinical manifestations and outcome of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- S. Amor
- Pathology DepartmentVUMC, Amsterdam UMCAmsterdamthe Netherlands
- Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonUK
| | | | - D. Baker
- Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonUK
| |
Collapse
|
53
|
Guan Q, Sadykov M, Mfarrej S, Hala S, Naeem R, Nugmanova R, Al-Omari A, Salih S, Al Mutair A, Carr MJ, Hall WW, Arold ST, Pain A. A genetic barcode of SARS-CoV-2 for monitoring global distribution of different clades during the COVID-19 pandemic. Int J Infect Dis 2020; 100:216-223. [PMID: 32841689 PMCID: PMC7443060 DOI: 10.1016/j.ijid.2020.08.052] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE The SARS-CoV-2 pathogen has established endemicity in humans. This necessitates the development of rapid genetic surveillance methodologies to serve as an adjunct with existing comprehensive, albeit though slower, genome sequencing-driven approaches. METHODS A total of 21,789 complete genomes were downloaded from GISAID on May 28, 2020 for analyses. We have defined the major clades and subclades of circulating SARS-CoV-2 genomes. A rapid sequencing-based genotyping protocol was developed and tested on SARS-CoV-2-positive RNA samples by next-generation sequencing. RESULTS We describe 11 major mutations which defined five major clades (G614, S84, V251, I378 and D392) of globally circulating viral populations. The clades can specifically identify using an 11-nucleotide genetic barcode. An analysis of amino acid variation in SARS-CoV-2 proteins provided evidence of substitution events in the viral proteins involved in both host entry and genome replication. CONCLUSION Globally circulating SARS-CoV-2 genomes could be classified into 5 major clades based on mutational profiles defined by an 11-nucleotide barcode. We have successfully developed a multiplexed sequencing-based, rapid genotyping protocol for high-throughput classification of major clade types of SARS-CoV-2 in clinical samples. This barcoding strategy will be required to monitor decreases in genetic diversity as treatment and vaccine approaches become widely available.
Collapse
Affiliation(s)
- Qingtian Guan
- King Abdullah University of Science and Technology (KAUST), Pathogen Genomics Laboratory, Biological and Environmental Science and Engineering (BESE), Thuwal-Jeddah, 23955-6900, Saudi Arabia
| | - Mukhtar Sadykov
- King Abdullah University of Science and Technology (KAUST), Pathogen Genomics Laboratory, Biological and Environmental Science and Engineering (BESE), Thuwal-Jeddah, 23955-6900, Saudi Arabia
| | - Sara Mfarrej
- King Abdullah University of Science and Technology (KAUST), Pathogen Genomics Laboratory, Biological and Environmental Science and Engineering (BESE), Thuwal-Jeddah, 23955-6900, Saudi Arabia
| | - Sharif Hala
- King Abdullah University of Science and Technology (KAUST), Pathogen Genomics Laboratory, Biological and Environmental Science and Engineering (BESE), Thuwal-Jeddah, 23955-6900, Saudi Arabia; Clinical Microbiology Department, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Raeece Naeem
- King Abdullah University of Science and Technology (KAUST), Pathogen Genomics Laboratory, Biological and Environmental Science and Engineering (BESE), Thuwal-Jeddah, 23955-6900, Saudi Arabia
| | - Raushan Nugmanova
- King Abdullah University of Science and Technology (KAUST), Pathogen Genomics Laboratory, Biological and Environmental Science and Engineering (BESE), Thuwal-Jeddah, 23955-6900, Saudi Arabia
| | - Awad Al-Omari
- School of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Dr.Suliman Al-Habib Medical Group, Riyadh, Saudi Arabia
| | - Samer Salih
- Dr.Suliman Al-Habib Medical Group, Riyadh, Saudi Arabia
| | | | - Michael J Carr
- National Virus Reference Laboratory (NVRL), School of Medicine, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland; Research Center for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20 W10 Kita-ku, Sapporo, 001-0020 Japan
| | - William W Hall
- National Virus Reference Laboratory (NVRL), School of Medicine, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland; Research Center for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20 W10 Kita-ku, Sapporo, 001-0020 Japan; Global Virus Network (GVN), 801 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal-Jeddah, 23955-6900, Saudi Arabia; Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, 34090 Montpellier, France
| | - Arnab Pain
- King Abdullah University of Science and Technology (KAUST), Pathogen Genomics Laboratory, Biological and Environmental Science and Engineering (BESE), Thuwal-Jeddah, 23955-6900, Saudi Arabia; Research Center for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20 W10 Kita-ku, Sapporo, 001-0020 Japan; Nuffield Division of Clinical Laboratory Sciences (NDCLS), The John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX3 9DU, United Kingdom.
| |
Collapse
|
54
|
Klimczak LJ, Randall TA, Saini N, Li JL, Gordenin DA. Similarity between mutation spectra in hypermutated genomes of rubella virus and in SARS-CoV-2 genomes accumulated during the COVID-19 pandemic. PLoS One 2020; 15:e0237689. [PMID: 33006981 PMCID: PMC7531822 DOI: 10.1371/journal.pone.0237689] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Genomes of tens of thousands of SARS-CoV2 isolates have been sequenced across the world and the total number of changes (predominantly single base substitutions) in these isolates exceeds ten thousand. We compared the mutational spectrum in the new SARS-CoV-2 mutation dataset with the previously published mutation spectrum in hypermutated genomes of rubella-another positive single stranded (ss) RNA virus. Each of the rubella virus isolates arose by accumulation of hundreds of mutations during propagation in a single subject, while SARS-CoV-2 mutation spectrum represents a collection events in multiple virus isolates from individuals across the world. We found a clear similarity between the spectra of single base substitutions in rubella and in SARS-CoV-2, with C to U as well as A to G and U to C being the most prominent in plus strand genomic RNA of each virus. Of those, U to C changes universally showed preference for loops versus stems in predicted RNA secondary structure. Similarly, to what was previously reported for rubella virus, C to U changes showed enrichment in the uCn motif, which suggested a subclass of APOBEC cytidine deaminase being a source of these substitutions. We also found enrichment of several other trinucleotide-centered mutation motifs only in SARS-CoV-2-likely indicative of a mutation process characteristic to this virus. Altogether, the results of this analysis suggest that the mutation mechanisms that lead to hypermutation of the rubella vaccine virus in a rare pathological condition may also operate in the background of the SARS-CoV-2 viruses currently propagating in the human population.
Collapse
Affiliation(s)
- Leszek J. Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina, United State of America
| | - Thomas A. Randall
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina, United State of America
| | - Natalie Saini
- Mechanisms of Genome Dynamics Group, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina, United State of America
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina, United State of America
| | - Dmitry A. Gordenin
- Mechanisms of Genome Dynamics Group, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina, United State of America
| |
Collapse
|
55
|
Mutlu O, Ugurel OM, Sariyer E, Ata O, Inci TG, Ugurel E, Kocer S, Turgut-Balik D. Targeting SARS-CoV-2 Nsp12/Nsp8 interaction interface with approved and investigational drugs: an in silico structure-based approach. J Biomol Struct Dyn 2020; 40:918-930. [PMID: 32933378 PMCID: PMC7544933 DOI: 10.1080/07391102.2020.1819882] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this study, the Nsp12–Nsp8 complex of SARS-CoV-2 was targeted with structure-based and computer-aided drug design approach because of its vital role in viral replication. Sequence analysis of RNA-dependent RNA polymerase (Nsp12) sequences from 30,366 different isolates were analysed for possible mutations. FDA-approved and investigational drugs were screened for interaction with both mutant and wild-type Nsp12–Nsp8 interfaces. Sequence analysis revealed that 70.42% of Nsp12 sequences showed conserved P323L mutation, located in the Nsp8 binding cleft. Compounds were screened for interface interaction, any with XP GScores lower than −7.0 kcal/mol were considered as possible interface inhibitors. RX-3117 (fluorocyclopentenyl cytosine) and Nebivolol had the highest binding affinities in both mutant and wild-type enzymes, therefore they were selected and resultant protein–ligand complexes were simulated for analysis of stability over 100 ns. Although the selected ligands had partial mobility in the binding cavity, they were not removed from the binding pocket after 100 ns. The ligand RX-3117 remained in the same position in the binding pocket of the mutant and wild-type enzyme after 100 ns MD simulation. However, the ligand Nebivolol folded and embedded in the binding pocket of mutant Nsp12 protein. Overall, FDA-approved and investigational drugs are able to bind to the Nsp12–Nsp8 interaction interface and prevent the formation of the Nsp12–Nsp8 complex. Interruption of viral replication by drugs proposed in this study should be further tested to pave the way for in vivo studies towards the treatment of COVID-19. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Ozal Mutlu
- Faculty of Arts and Sciences, Department of Biology, Marmara University, Istanbul, Turkey
| | - Osman Mutluhan Ugurel
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey.,School of Engineering and Natural Science, Department of Basic Science, Altinbas University, Istanbul, Turkey
| | - Emrah Sariyer
- Vocational School of Health Services, Medical Laboratory Techniques, Artvin Coruh University, Artvin, Turkey
| | - Oguz Ata
- School of Engineering and Natural Science, Department of Software Engineering, Altinbas University, Istanbul, Turkey
| | - Tugba Gul Inci
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Erennur Ugurel
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Sinem Kocer
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Dilek Turgut-Balik
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
56
|
Infectivity of SARS-CoV-2: there Is Something More than D614G? J Neuroimmune Pharmacol 2020; 15:574-577. [PMID: 32930936 PMCID: PMC7490321 DOI: 10.1007/s11481-020-09954-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 01/17/2023]
|
57
|
Jiang Y, Yin W, Xu HE. RNA-dependent RNA polymerase: Structure, mechanism, and drug discovery for COVID-19. Biochem Biophys Res Commun 2020; 538:47-53. [PMID: 32943188 PMCID: PMC7473028 DOI: 10.1016/j.bbrc.2020.08.116] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/18/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has rapidly become a global pandemic. Although great efforts have been made to develop effective therapeutic interventions, only the nucleotide analog remdesivir was approved for emergency use against COVID-19. Remdesivir targets the RNA-dependent RNA polymerase (RdRp), an essential enzyme for viral RNA replication and a promising drug target for COVID-19. Recently, several structures of RdRp in complex with substrate RNA and remdesivir were reported, providing insights into the mechanisms of RNA recognition by RdRp. These structures also reveal the mechanism of RdRp inhibition by nucleotide inhibitors and offer a molecular template for the development of RdRp-targeting drugs. This review discusses the recognition mechanism of RNA and nucleotide inhibitor by RdRp, and its implication in drug discovery.
Collapse
Affiliation(s)
- Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wanchao Yin
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
58
|
Klimczak LJ, Randall TA, Saini N, Li JL, Gordenin DA. Similarity between mutation spectra in hypermutated genomes of rubella virus and in SARS-CoV-2 genomes accumulated during the COVID-19 pandemic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.03.234005. [PMID: 32793907 PMCID: PMC7418721 DOI: 10.1101/2020.08.03.234005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Genomes of tens of thousands of SARS-CoV2 isolates have been sequenced across the world and the total number of changes (predominantly single base substitutions) in these isolates exceeds ten thousand. We compared the mutational spectrum in the new SARS-CoV-2 mutation dataset with the previously published mutation spectrum in hypermutated genomes of rubella - another positive single stranded (ss) RNA virus. Each of the rubella isolates arose by accumulation of hundreds of mutations during propagation in a single subject, while SARS-CoV-2 mutation spectrum represents a collection events in multiple virus isolates from individuals across the world. We found a clear similarity between the spectra of single base substitutions in rubella and in SARS-CoV-2, with C to U as well as A to G and U to C being the most prominent in plus strand genomic RNA of each virus. Of those, U to C changes universally showed preference for loops versus stems in predicted RNA secondary structure. Similarly, to what was previously reported for rubella, C to U changes showed enrichment in the uCn motif, which suggested a subclass of APOBEC cytidine deaminase being a source of these substitutions. We also found enrichment of several other trinucleotide-centered mutation motifs only in SARS-CoV-2 - likely indicative of a mutation process characteristic to this virus. Altogether, the results of this analysis suggest that the mutation mechanisms that lead to hypermutation of the rubella vaccine virus in a rare pathological condition may also operate in the background of the SARS-CoV-2 viruses currently propagating in the human population.
Collapse
|
59
|
Yu J. From Mutation Signature to Molecular Mechanism in the RNA World: A Case of SARS-CoV-2. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:627-639. [PMID: 32739507 PMCID: PMC7391168 DOI: 10.1016/j.gpb.2020.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Jun Yu
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
60
|
Nili A, Farbod A, Neishabouri A, Mozafarihashjin M, Tavakolpour S, Mahmoudi H. Remdesivir: A beacon of hope from Ebola virus disease to COVID-19. Rev Med Virol 2020; 30:1-13. [PMID: 33210457 DOI: 10.1002/rmv.2133] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022]
Abstract
Since the emergence of coronavirus disease 2019 (Covid-19), many studies have been performed to characterize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and find the optimum way to combat this virus. After suggestions and assessments of several therapeutic options, remdesivir (GS-5734), a direct-acting antiviral drug previously tested against Ebola virus disease, was found to be moderately effective and probably safe for inhibiting SARS-CoV-2 replication. Finally, on 1 May 2020, remdesivir (GS-5734) was granted emergency use authorization as an investigational drug for the treatment of Covid-19 by the Food and Drug Administration. However, without a doubt, there are challenging days ahead. Here, we provide a review of the latest findings (based on preprints, post-prints, and news releases in scientific websites) related to remdesivir efficacy and safety for the treatment of Covid-19, along with covering remdesivir history from bench-to-bedside, as well as an overview of its mechanism of action. In addition, active clinical trials, as well as challenging issues related to the future of remdesivir in Covid-19, are covered. Up to the date of writing this review (19 May 2020), there is one finished randomized clinical trial and two completed non-randomized studies, in addition to some ongoing studies, including three observational studies, two expanded access studies, and seven active clinical trials registered on the clinicaltrials.gov and isrctn.com websites. Based on these studies, it seems that remdesivir could be an effective and probably safe treatment option for Covid-19. However, more randomized controlled studies are required.
Collapse
Affiliation(s)
- Ali Nili
- Department of Dermatology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Farbod
- Department of Dermatology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Afarin Neishabouri
- Department of Dermatology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mozafarihashjin
- Department of Microbiology, Sinai Health System, Toronto, Ontario, Canada.,Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Soheil Tavakolpour
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Hamidreza Mahmoudi
- Department of Dermatology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
61
|
Ahmad M, Dwivedy A, Mariadasse R, Tiwari S, Kar D, Jeyakanthan J, Biswal BK. Prediction of Small Molecule Inhibitors Targeting the Severe Acute Respiratory Syndrome Coronavirus-2 RNA-dependent RNA Polymerase. ACS OMEGA 2020; 5:18356-18366. [PMID: 32743211 PMCID: PMC7391942 DOI: 10.1021/acsomega.0c02096] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/30/2020] [Indexed: 05/08/2023]
Abstract
The current COVID-19 outbreak warrants the design and development of novel anti-COVID therapeutics. Using a combination of bioinformatics and computational tools, we modelled the 3D structure of the RdRp (RNA-dependent RNA polymerase) of SARS-CoV2 (severe acute respiratory syndrome coronavirus-2) and predicted its probable GTP binding pocket in the active site. GTP is crucial for the formation of the initiation complex during RNA replication. This site was computationally targeted using a number of small molecule inhibitors of the hepatitis C RNA polymerase reported previously. Further optimizations suggested a lead molecule that may prove fruitful in the development of potent inhibitors against the RdRp of SARS-CoV2.
Collapse
Affiliation(s)
- Mohammed Ahmad
- National
Institute of Immunology, New Delhi 110067, India
| | | | - Richard Mariadasse
- Department
of Bioinformatics, Alagappa University, karaikudi 630004, Tamil Nadu, India
| | - Satish Tiwari
- National
Institute of Immunology, New Delhi 110067, India
| | - Deepsikha Kar
- National
Institute of Immunology, New Delhi 110067, India
| | - Jeyaraman Jeyakanthan
- Department
of Bioinformatics, Alagappa University, karaikudi 630004, Tamil Nadu, India
| | | |
Collapse
|
62
|
Zhao J, Zhai X, Zhou J. Snapshot of the evolution and mutation patterns of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32637950 DOI: 10.1101/2020.07.04.187435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic is the most important public health threat in recent history. Here we study how its causal agent, SARS-CoV-2, has diversified genetically since its first emergence in December 2019. We have created a pipeline combining both phylogenetic and structural analysis to identify possible human-adaptation related mutations in a data set consisting of 4,894 SARS-CoV-2 complete genome sequences. Although the phylogenetic diversity of SARS-CoV-2 is low, the whole genome phylogenetic tree can be divided into five clusters/clades based on the tree topology and clustering of specific mutations, but its branches exhibit low genetic distance and bootstrap support values. We also identified 11 residues that are high-frequency substitutions, with four of them currently showing some signal for potential positive selection. These fast-evolving sites are in the non-structural proteins nsp2, nsp5 (3CL-protease), nsp6, nsp12 (polymerase) and nsp13 (helicase), in accessory proteins (ORF3a, ORF8) and in the structural proteins N and S. Temporal and spatial analysis of these potentially adaptive mutations revealed that the incidence of some of these sites was declining after having reached an (often local) peak, whereas the frequency of other sites is continually increasing and now exhibit a worldwide distribution. Structural analysis revealed that the mutations are located on the surface of the proteins that modulate biochemical properties. We speculate that this improves binding to cellular proteins and hence represents fine-tuning of adaptation to human cells. Our study has implications for the design of biochemical and clinical experiments to assess whether important properties of SARS-CoV-2 have changed during the epidemic.
Collapse
|
63
|
Abstract
In the late autumn of 2019, a new potentially lethal human coronavirus designated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China. The pandemic spread of this zoonotic virus has created a global health emergency and an unprecedented socioeconomic crisis. The severity of coronavirus disease 2019 (COVID-19), the illness caused by SARS-CoV‑2, is highly variable. Most patients (~85%) develop no or mild symptoms, while others become seriously ill, some succumbing to disease-related complications. In this review, the SARS-CoV‑2 life cycle, its transmission and the clinical and immunological features of COVID-19 are described. In addition, an overview is presented of the virological assays for detecting ongoing SARS-CoV‑2 infections and the serological tests for SARS-CoV-2-specific antibody detection. Also discussed are the different approaches to developing a COVID-19 vaccine and the perspectives of treating COVID-19 with antiviral drugs, immunomodulatory agents and anticoagulants/antithrombotics. Finally, the cardiovascular manifestations of COVID-19 are briefly touched upon. While there is still much to learn about SARS-CoV‑2, the tremendous recent advances in biomedical technology and knowledge and the huge amount of research into COVID-19 raise the hope that a remedy for this disease will soon be found. COVID-19 will nonetheless have a lasting impact on human society.
Collapse
Affiliation(s)
- A A F de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands.
| |
Collapse
|
64
|
Astuti I, Ysrafil. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab Syndr 2020; 14:407-412. [PMID: 32335367 PMCID: PMC7165108 DOI: 10.1016/j.dsx.2020.04.020] [Citation(s) in RCA: 617] [Impact Index Per Article: 154.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM As a result of its rapid spread in various countries around the world, on March 11, 2020, WHO issued an announcement of the change in coronavirus disease 2019 status from epidemic to pandemic disease. The virus that causes this disease is indicated originating from animals traded in a live animal market in Wuhan, China. Severe Acute Respiratory Syndrome Coronavirus 2 can attack lung cells because there are many conserved receptor entries, namely Angiotensin Converting Enzyme-2. The presence of this virus in host cells will initiate various protective responses leading to pneumonia and Acute Respiratory Distress Syndrome. This review aimed to provide an overview related to this virus and examine the body's responses and possible therapies. METHOD We searched PubMed databases for Severe Acute Respiratory Syndrome Coronavirus-2, Middle East respiratory syndrome-related coronavirus and Severe Acute Respiratory Syndrome Coronavirus. Full texts were retrieved, analyzed and developed into an easy-to-understand review. RESULTS We provide a complete review related to structure, origin, and how the body responds to this virus infection and explain the possibility of an immune system over-reaction or cytokine storm. We also include an explanation of how this virus creates modes of avoidance to evade immune system attacks. We further explain the therapeutic approaches that can be taken in the treatment and prevention of this viral infection. CONCLUSION In summary, based on the structural and immune-evasion system of coronavirus, we suggest several approaches to treat the disease.
Collapse
Affiliation(s)
- Indwiani Astuti
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nurses, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Ysrafil
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nurses, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| |
Collapse
|
65
|
Abstract
The nucleotide analogue remdesivir is an investigational drug for the treatment of human coronavirus infection. Remdesivir is a phosphoramidate prodrug and is known to target viral RNA-dependent RNA polymerases. In this issue, Gordon et al. identify that remdesivir acts as a delayed RNA chain terminator for MERS-CoV polymerase complexes.
Collapse
Affiliation(s)
- Robert N Kirchdoerfer
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
66
|
Hillen HS, Kokic G, Farnung L, Dienemann C, Tegunov D, Cramer P. Structure of replicating SARS-CoV-2 polymerase. Nature 2020; 584:154-156. [PMID: 32438371 DOI: 10.1038/s41586-020-2368-8] [Citation(s) in RCA: 540] [Impact Index Per Article: 135.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/15/2020] [Indexed: 01/18/2023]
Abstract
The new coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses an RNA-dependent RNA polymerase (RdRp) for the replication of its genome and the transcription of its genes1-3. Here we present a cryo-electron microscopy structure of the SARS-CoV-2 RdRp in an active form that mimics the replicating enzyme. The structure comprises the viral proteins non-structural protein 12 (nsp12), nsp8 and nsp7, and more than two turns of RNA template-product duplex. The active-site cleft of nsp12 binds to the first turn of RNA and mediates RdRp activity with conserved residues. Two copies of nsp8 bind to opposite sides of the cleft and position the second turn of RNA. Long helical extensions in nsp8 protrude along exiting RNA, forming positively charged 'sliding poles'. These sliding poles can account for the known processivity of RdRp that is required for replicating the long genome of coronaviruses3. Our results enable a detailed analysis of the inhibitory mechanisms that underlie the antiviral activity of substances such as remdesivir, a drug for the treatment of coronavirus disease 2019 (COVID-19)4.
Collapse
Affiliation(s)
- Hauke S Hillen
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Goran Kokic
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Lucas Farnung
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dimitry Tegunov
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
67
|
Gordon CJ, Tchesnokov EP, Woolner E, Perry JK, Feng JY, Porter DP, Götte M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J Biol Chem 2020; 295:6785-6797. [PMID: 32284326 PMCID: PMC7242698 DOI: 10.1074/jbc.ra120.013679] [Citation(s) in RCA: 643] [Impact Index Per Article: 160.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Replication of SARS-CoV-2 depends on the viral RNA-dependent RNA polymerase (RdRp), which is the likely target of the investigational nucleotide analogue remdesivir (RDV). RDV shows broad-spectrum antiviral activity against RNA viruses, and previous studies with RdRps from Ebola virus and Middle East respiratory syndrome coronavirus (MERS-CoV) have revealed that delayed chain termination is RDV's plausible mechanism of action. Here, we expressed and purified active SARS-CoV-2 RdRp composed of the nonstructural proteins nsp8 and nsp12. Enzyme kinetics indicated that this RdRp efficiently incorporates the active triphosphate form of RDV (RDV-TP) into RNA. Incorporation of RDV-TP at position i caused termination of RNA synthesis at position i+3. We obtained almost identical results with SARS-CoV, MERS-CoV, and SARS-CoV-2 RdRps. A unique property of RDV-TP is its high selectivity over incorporation of its natural nucleotide counterpart ATP. In this regard, the triphosphate forms of 2′-C-methylated compounds, including sofosbuvir, approved for the management of hepatitis C virus infection, and the broad-acting antivirals favipiravir and ribavirin, exhibited significant deficits. Furthermore, we provide evidence for the target specificity of RDV, as RDV-TP was less efficiently incorporated by the distantly related Lassa virus RdRp, and termination of RNA synthesis was not observed. These results collectively provide a unifying, refined mechanism of RDV-mediated RNA synthesis inhibition in coronaviruses and define this nucleotide analogue as a direct-acting antiviral.
Collapse
Affiliation(s)
- Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Emma Woolner
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jason K Perry
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Joy Y Feng
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Danielle P Porter
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada .,Gilead Sciences, Inc., Foster City, California 94404
| |
Collapse
|
68
|
Evidence for Internal Initiation of RNA Synthesis by the Hepatitis C Virus RNA-Dependent RNA Polymerase NS5B In Cellulo. J Virol 2019; 93:JVI.00525-19. [PMID: 31315989 DOI: 10.1128/jvi.00525-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/07/2019] [Indexed: 12/11/2022] Open
Abstract
Initiation of RNA synthesis by the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) NS5B has been extensively studied in vitro and in cellulo Intracellular replication is thought to rely exclusively on terminal de novo initiation, as it conserves all genetic information of the genome. In vitro, however, additional modes of initiation have been observed. In this study, we aimed to clarify whether the intracellular environment allows for internal initiation of RNA replication by the HCV replicase. We used a dual luciferase replicon harboring a terminal and an internal copy of the viral genomic 5' untranslated region, which was anticipated to support noncanonical initiation. Indeed, a shorter RNA species was detected by Northern blotting with low frequency, depending on the length and sequence composition upstream of the internal initiation site. By introducing mutations at either site, we furthermore established that internal and terminal initiation shared identical sequence requirements. Importantly, lethal point mutations at the terminal site resulted exclusively in truncated replicons. In contrast, the same mutations at the internal site abrogated internal initiation, suggesting a competitive selection of initiation sites, rather than recombination or template-switching events. In conclusion, our data indicate that the HCV replicase is capable of internal initiation in its natural environment, although functional replication likely requires only terminal initiation. Since many other positive-strand RNA viruses generate subgenomic messenger RNAs during their replication cycle, we surmise that their capability for internal initiation is a common and conserved feature of viral RdRps.IMPORTANCE Many aspects of viral RNA replication of hepatitis C virus (HCV) are still poorly understood. The process of RNA synthesis is driven by the RNA-dependent RNA polymerase (RdRp) NS5B. Most mechanistic studies on NS5B so far were performed with in vitro systems using isolated recombinant polymerase. In this study, we present a replicon model, which allows the intracellular assessment of noncanonical modes of initiation by the full HCV replicase. Our results add to the understanding of the biochemical processes underlying initiation of RNA synthesis by NS5B by the discovery of internal initiation in cellulo Moreover, they validate observations made in vitro, showing that the viral polymerase acts very similarly in isolation and in complex with other viral and host proteins. Finally, these observations provide clues about the evolution of RdRps of positive-strand RNA viruses, which might contain the intrinsic ability to initiate internally.
Collapse
|
69
|
Ogando NS, Ferron F, Decroly E, Canard B, Posthuma CC, Snijder EJ. The Curious Case of the Nidovirus Exoribonuclease: Its Role in RNA Synthesis and Replication Fidelity. Front Microbiol 2019; 10:1813. [PMID: 31440227 PMCID: PMC6693484 DOI: 10.3389/fmicb.2019.01813] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022] Open
Abstract
Among RNA viruses, the order Nidovirales stands out for including viruses with the largest RNA genomes currently known. Nidoviruses employ a complex RNA-synthesizing machinery comprising a variety of non-structural proteins (nsps). One of the postulated drivers of the expansion of nidovirus genomes is the presence of a proofreading 3′-to-5′ exoribonuclease (ExoN) belonging to the DEDDh family. ExoN may enhance the fidelity of RNA synthesis by correcting nucleotide incorporation errors made by the RNA-dependent RNA polymerase. Here, we review our current understanding of ExoN evolution, structure, and function. Most experimental data are derived from studies of the ExoN domain of coronaviruses (CoVs), which were triggered by the bioinformatics-based identification of ExoN in the genome of severe acute respiratory syndrome coronavirus (SARS-CoV) and its relatives in 2003. Although convincing data supporting the proofreading hypothesis have been obtained, from biochemical assays and studies with CoV mutants lacking ExoN functionality, the features of ExoN from most other nidovirus families remain to be characterized. Remarkably, viable ExoN knockout mutants were obtained only for two CoVs, mouse hepatitis virus (MHV) and SARS-CoV, whose RNA synthesis and replication kinetics were mildly affected by the lack of ExoN function. In several other CoV species, ExoN inactivation was not tolerated, and knockout mutants could not be rescued when launched using a reverse genetics system. This suggests that ExoN is also critical for primary viral RNA synthesis, a property that poorly matches the profile of an enzyme that would merely boost long-term replication fidelity. In CoVs, ExoN resides in a bifunctional replicase subunit (nsp14) whose C-terminal part has (N7-guanine)-methyltransferase activity. The crystal structure of SARS-CoV nsp14 has shed light on the interplay between these two domains, and on nsp14’s interactions with nsp10, a co-factor that strongly enhances ExoN activity in vitro assays. Further elucidation of the structure-function relationships of ExoN and its interactions with other (viral and/or host) members of the CoV replication machinery will be key to understanding the enzyme’s role in viral RNA synthesis and pathogenesis, and may contribute to the design of new approaches to combat emerging nidoviruses.
Collapse
Affiliation(s)
- Natacha S Ogando
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Francois Ferron
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.,European Virus Bioinformatics Center, Jena, Germany
| | - Etienne Decroly
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Bruno Canard
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Clara C Posthuma
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Eric J Snijder
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
70
|
Le Vay K, Weise LI, Libicher K, Mascarenhas J, Mutschler H. Templated Self‐Replication in Biomimetic Systems. ACTA ACUST UNITED AC 2019; 3:e1800313. [DOI: 10.1002/adbi.201800313] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/06/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Kristian Le Vay
- Biomimetic SystemsMax Planck Institute of Biochemistry Martinsried Germany
| | - Laura Isabel Weise
- Biomimetic SystemsMax Planck Institute of Biochemistry Martinsried Germany
| | - Kai Libicher
- Biomimetic SystemsMax Planck Institute of Biochemistry Martinsried Germany
| | - Judita Mascarenhas
- Department of Systems and Synthetic MicrobiologyMax Planck Institute for Terrestrial Microbiology Marburg Germany
| | - Hannes Mutschler
- Biomimetic SystemsMax Planck Institute of Biochemistry Martinsried Germany
| |
Collapse
|
71
|
Mapping the Nonstructural Protein Interaction Network of Porcine Reproductive and Respiratory Syndrome Virus. J Virol 2018; 92:JVI.01112-18. [PMID: 30282705 DOI: 10.1128/jvi.01112-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive-stranded RNA virus belonging to the family Arteriviridae Synthesis of the viral RNA is directed by replication/transcription complexes (RTC) that are mainly composed of a network of PRRSV nonstructural proteins (nsps) and likely cellular proteins. Here, we mapped the interaction network among PRRSV nsps by using yeast two-hybrid screening in conjunction with coimmunoprecipitation (co-IP) and cotransfection assays. We identified a total of 24 novel interactions and found that the interactions were centered on open reading frame 1b (ORF1b)-encoded nsps that were mainly connected by the transmembrane proteins nsp2, nsp3, and nsp5. Interestingly, the interactions of the core enzymes nsp9 and nsp10 with transmembrane proteins did not occur in a straightforward manner, as they worked in the co-IP assay but were poorly capable of finding each other within intact mammalian cells. Further proof that they can interact within cells required the engineering of N-terminal truncations of both nsp9 and nsp10. However, despite the poor colocalization relationship in cotransfected cells, both nsp9 and nsp10 came together with membrane proteins (e.g., nsp2) at the viral replication and transcription complexes (RTC) in PRRSV-infected cells. Thus, our results indicate the existence of a complex interaction network among PRRSV nsps and raise the possibility that the recruitment of key replicase proteins to membrane-associated nsps may involve some regulatory mechanisms during infection.IMPORTANCE Synthesis of PRRSV RNAs within host cells depends on the efficient and correct assembly of RTC that takes places on modified intracellular membranes. As an important step toward dissecting this poorly understood event, we investigated the interaction network among PRRSV nsps. Our studies established a comprehensive interaction map for PRRSV nsps and revealed important players within the network. The results also highlight the likely existence of a regulated recruitment of the PRRSV core enzymes nsp9 and nsp10 to viral membrane nsps during PRRSV RTC assembly.
Collapse
|
72
|
Liu Y, Hu Y, Chai Y, Liu L, Song J, Zhou S, Su J, Zhou L, Ge X, Guo X, Han J, Yang H. Identification of Nonstructural Protein 8 as the N-Terminus of the RNA-Dependent RNA Polymerase of Porcine Reproductive and Respiratory Syndrome Virus. Virol Sin 2018; 33:429-439. [PMID: 30353315 PMCID: PMC6235764 DOI: 10.1007/s12250-018-0054-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/30/2018] [Indexed: 01/05/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a member within the family Arteriviridae of the order Nidovirales. Replication of this positive-stranded RNA virus within the host cell involves expression of viral replicase proteins encoded by two ORFs, namely ORF1a and ORF1b. In particular, translation of ORF1b depends on a -1-ribosomal frameshift strategy. Thus, nonstructural protein 9 (nsp9), the first protein within ORF1b that specifies the function of the viral RNA-dependent RNA polymerase, is expressed as the C-terminal extension of nsp8, a small nsp that is encoded by ORF1a. However, it has remained unclear whether the mature form of nsp9 in virus-infected cells still retains nsp8, addressing which is clearly critical to understand the biological function of nsp9. By taking advantage of specific antibodies to both nsp8 and nsp9, we report the following findings. (1) In infected cells, PRRSV nsp9 was identified as a major product with a size between 72 and 95 kDa (72-95 KDa form), which exhibited the similar mobility on the gel to the in vitro expressed nsp8-9ORF1b, but not the ORF1b-coded portion (nsp9ORF1b). (2) The antibodies to nsp8, but not to nsp7 or nsp10, could detect a major product that had the similar mobility to the 72-95 KDa form of nsp9. Moreover, nsp9 could be co-immunoprecipitated by antibodies to nsp8, and vice versa. (3) Neither nsp4 nor nsp2 PLP2 was able to cleave nsp8-nsp9 in vitro. Together, our studies provide experimental evidence to suggest that nsp8 is an N-terminal extension of nsp9. Our findings here paves way for further charactering the biological function of PRRSV nsp9.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Yunhao Hu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Yue Chai
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Liping Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Jiangwei Song
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Shaochuan Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Jia Su
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China.
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
73
|
Vanmechelen B, Vergote V, Laenen L, Koundouno FR, Bore JA, Wada J, Kuhn JH, Carroll MW, Maes P. Expanding the Arterivirus Host Spectrum: Olivier's Shrew Virus 1, A Novel Arterivirus Discovered in African Giant Shrews. Sci Rep 2018; 8:11171. [PMID: 30042503 PMCID: PMC6057926 DOI: 10.1038/s41598-018-29560-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/11/2018] [Indexed: 12/14/2022] Open
Abstract
The family Arteriviridae harbors a rapidly expanding group of viruses known to infect a divergent group of mammals, including horses, pigs, possums, primates, and rodents. Hosts infected with arteriviruses present with a wide variety of (sub) clinical symptoms, depending on the virus causing the infection and the host being infected. In this study, we determined the complete genome sequences of three variants of a previously unknown virus found in Olivier's shrews (Crocidura olivieri guineensis) sampled in Guinea. On the nucleotide level, the three genomes of this new virus, named Olivier's shrew virus 1 (OSV-1), are 88-89% similar. The genome organization of OSV-1 is characteristic of all known arteriviruses, yet phylogenetic analysis groups OSV-1 separately from all currently established arterivirus lineages. Therefore, we postulate that OSV-1 represents a member of a novel arterivirus genus. The virus described here represents the first discovery of an arterivirus in members of the order Eulipotyphla, thereby greatly expanding the known host spectrum of arteriviruses.
Collapse
Affiliation(s)
- Bert Vanmechelen
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Clinical Virology, Rega Institute for Medical Research, Herestraat 49-Box 1040, BE3000, Leuven, Belgium
| | - Valentijn Vergote
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Clinical Virology, Rega Institute for Medical Research, Herestraat 49-Box 1040, BE3000, Leuven, Belgium
| | - Lies Laenen
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Clinical Virology, Rega Institute for Medical Research, Herestraat 49-Box 1040, BE3000, Leuven, Belgium
| | | | | | - Jiro Wada
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, B-8200 Research Plaza, Fort Detrick, Frederick, Maryland, 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, B-8200 Research Plaza, Fort Detrick, Frederick, Maryland, 21702, USA
| | - Miles W Carroll
- Research & Development Institute, National Infections Service, Public Health England, Porton Down, Salisbury, United Kingdom
| | - Piet Maes
- KU Leuven, Department of Microbiology and Immunology, Laboratory of Clinical Virology, Rega Institute for Medical Research, Herestraat 49-Box 1040, BE3000, Leuven, Belgium.
| |
Collapse
|
74
|
Purification of Highly Active Alphavirus Replication Complexes Demonstrates Altered Fractionation of Multiple Cellular Membranes. J Virol 2018; 92:JVI.01852-17. [PMID: 29367248 DOI: 10.1128/jvi.01852-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/17/2018] [Indexed: 01/26/2023] Open
Abstract
Positive-strand RNA viruses replicate their genomes in membrane-associated structures; alphaviruses and many other groups induce membrane invaginations called spherules. Here, we established a protocol to purify these membranous replication complexes (RCs) from cells infected with Semliki Forest virus (SFV). We isolated SFV spherules located on the plasma membrane and further purified them using two consecutive density gradients. This revealed that SFV infection strongly modifies cellular membranes. We removed soluble proteins, the Golgi membranes, and most of the mitochondria, but plasma membrane, endoplasmic reticulum (ER), and late endosome markers were retained in the membrane fraction that contained viral RNA synthesizing activity, replicase proteins, and minus- and plus-strand RNA. Electron microscopy revealed that the purified membranes displayed spherule-like structures with a narrow neck. This membrane enrichment was specific to viral replication, as such a distribution of membrane markers was only observed after infection. Besides the plasma membrane, SFV infection remodeled the ER, and the cofractionation of the RC-carrying plasma membrane and ER suggests that SFV recruits ER proteins or membrane to the site of replication. The purified RCs were highly active in synthesizing both genomic and subgenomic RNA. Detergent solubilization destroyed the replication activity, demonstrating that the membrane association of the complex is essential. Most of the newly made RNA was in double-stranded replicative molecules, but the purified complexes also produced single-stranded RNA as well as released newly made RNA. This indicates that the purification established here maintained the functionality of RCs and thus enables further structural and functional studies of active RCs.IMPORTANCE Similar to all positive-strand RNA viruses, the arthropod-borne alphaviruses induce membranous genome factories, but little is known about the arrangement of viral replicase proteins and the presence of host proteins in these replication complexes. To improve our knowledge of alphavirus RNA-synthesizing complexes, we isolated and purified them from infected mammalian cells. Detection of viral RNA and in vitro replication assays revealed that these complexes are abundant and highly active when located on the plasma membrane. After multiple purification steps, they remain functional in synthesizing and releasing viral RNA. Besides the plasma membrane, markers for the endoplasmic reticulum and late endosomes were enriched with the replication complexes, demonstrating that alphavirus infection modified cellular membranes beyond inducing replication spherules on the plasma membrane. We have developed here a gentle purification method to obtain large quantities of highly active replication complexes, and similar methods can be applied to other positive-strand RNA viruses.
Collapse
|
75
|
Two Residues in NSP9 Contribute to the Enhanced Replication and Pathogenicity of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus. J Virol 2018; 92:JVI.02209-17. [PMID: 29321316 DOI: 10.1128/jvi.02209-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022] Open
Abstract
Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) possesses greater replicative capacity and pathogenicity than classical PRRSV. However, the factors that lead to enhanced replication and pathogenicity remain unclear. In our study, an alignment of all available full-length sequences of North American-type PRRSVs (n = 204) revealed two consistent amino acid mutations that differed between HP-PRRSV and classical PRRSV and were located at positions 519 and 544 in nonstructural protein 9. Next, a series of mutant viruses with either single or double amino acid replacements were generated from HP-PRRSV HuN4 and classical PRRSV CH-1a infectious cDNA clones. Deletion of either of the amino acids led to a complete loss of virus viability. In both Marc-145 and porcine alveolar macrophages, the replicative efficiencies of mutant viruses based on HuN4 were reduced compared to the parent, whereas the replication level of CH-1a-derived mutant viruses was increased. Plaque growth assays showed clear differences between mutant and parental viruses. In infected piglets, the pathogenicity of HuN4-derived mutant viruses, assessed through clinical symptoms, viral load in sera, histopathology examination, and thymus atrophy, was reduced. Our results indicate that the amino acids at positions 519 and 544 in NSP9 are involved in the replication efficiency of HP-PRRSV and contribute to enhanced pathogenicity. This study is the first to identify specific amino acids involved in PRRSV replication or pathogenicity. These findings will contribute to understanding the molecular mechanisms of PRRSV replication and pathogenicity, leading to better therapeutic and prognostic options to combat the virus.IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS), caused by porcine reproductive and respiratory syndrome virus (PRRSV), is a significant threat to the global pig industry. Highly pathogenic PRRSV (HP-PRRSV) first emerged in China in 2006 and has subsequently spread across Asia, causing considerable damage to local economies. HP-PRRSV strains possess a greater replication capacity and higher pathogenicity than classical PRRSV strains, although the mechanisms that underlie these characteristics are unclear. In the present study, we identified two mutations in HP-PRRSV strains that distinguish them from classical PRRSV strains. Further experiments that swapped the two mutations in an HP-PRRSV strain and a classical PRRSV strain demonstrated that they are involved in the replication efficiency of the virus and its virulence. Our findings have important implications for understanding the molecular mechanisms of PRRSV replication and pathogenicity and also provide new avenues of research for the study of other viruses.
Collapse
|
76
|
Abstract
Reproduction of RNA viruses is typically error-prone due to the infidelity of their replicative machinery and the usual lack of proofreading mechanisms. The error rates may be close to those that kill the virus. Consequently, populations of RNA viruses are represented by heterogeneous sets of genomes with various levels of fitness. This is especially consequential when viruses encounter various bottlenecks and new infections are initiated by a single or few deviating genomes. Nevertheless, RNA viruses are able to maintain their identity by conservation of major functional elements. This conservatism stems from genetic robustness or mutational tolerance, which is largely due to the functional degeneracy of many protein and RNA elements as well as to negative selection. Another relevant mechanism is the capacity to restore fitness after genetic damages, also based on replicative infidelity. Conversely, error-prone replication is a major tool that ensures viral evolvability. The potential for changes in debilitated genomes is much higher in small populations, because in the absence of stronger competitors low-fit genomes have a choice of various trajectories to wander along fitness landscapes. Thus, low-fit populations are inherently unstable, and it may be said that to run ahead it is useful to stumble. In this report, focusing on picornaviruses and also considering data from other RNA viruses, we review the biological relevance and mechanisms of various alterations of viral RNA genomes as well as pathways and mechanisms of rehabilitation after loss of fitness. The relationships among mutational robustness, resilience, and evolvability of viral RNA genomes are discussed.
Collapse
|
77
|
Jordan PC, Stevens SK, Deval J. Nucleosides for the treatment of respiratory RNA virus infections. Antivir Chem Chemother 2018; 26:2040206618764483. [PMID: 29562753 PMCID: PMC5890544 DOI: 10.1177/2040206618764483] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/07/2018] [Indexed: 12/20/2022] Open
Abstract
Influenza virus, respiratory syncytial virus, human metapneumovirus, parainfluenza virus, coronaviruses, and rhinoviruses are among the most common viruses causing mild seasonal colds. These RNA viruses can also cause lower respiratory tract infections leading to bronchiolitis and pneumonia. Young children, the elderly, and patients with compromised cardiac, pulmonary, or immune systems are at greatest risk for serious disease associated with these RNA virus respiratory infections. In addition, swine and avian influenza viruses, together with severe acute respiratory syndrome-associated and Middle Eastern respiratory syndrome coronaviruses, represent significant pandemic threats to the general population. In this review, we describe the current medical need resulting from respiratory infections caused by RNA viruses, which justifies drug discovery efforts to identify new therapeutic agents. The RNA polymerase of respiratory viruses represents an attractive target for nucleoside and nucleotide analogs acting as inhibitors of RNA chain synthesis. Here, we present the molecular, biochemical, and structural fundamentals of the polymerase of the four major families of RNA respiratory viruses: Orthomyxoviridae, Pneumoviridae/Paramyxoviridae, Coronaviridae, and Picornaviridae. We summarize past and current efforts to develop nucleoside and nucleotide analogs as antiviral agents against respiratory virus infections. This includes molecules with very broad antiviral spectrum such as ribavirin and T-705 (favipiravir), and others targeting more specifically one or a few virus families. Recent advances in our understanding of the structure(s) and function(s) of respiratory virus polymerases will likely support the discovery and development of novel nucleoside analogs.
Collapse
Affiliation(s)
- Paul C Jordan
- Alios BioPharma, Inc., a Janssen Pharmaceutical Company of Johnson & Johnson, South San Francisco, USA
| | - Sarah K Stevens
- Alios BioPharma, Inc., a Janssen Pharmaceutical Company of Johnson & Johnson, South San Francisco, USA
| | - Jerome Deval
- Alios BioPharma, Inc., a Janssen Pharmaceutical Company of Johnson & Johnson, South San Francisco, USA
| |
Collapse
|
78
|
Myeloablation-associated deletion of ORF4 in a human coronavirus 229E infection. NPJ Genom Med 2017; 2:30. [PMID: 29263840 PMCID: PMC5677986 DOI: 10.1038/s41525-017-0033-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/28/2017] [Accepted: 09/06/2017] [Indexed: 12/18/2022] Open
Abstract
We describe metagenomic next-generation sequencing (mNGS) of a human coronavirus 229E from a patient with AML and persistent upper respiratory symptoms, who underwent hematopoietic cell transplantation (HCT). mNGS revealed a 548-nucleotide deletion, which comprised the near entirety of the ORF4 gene, and no minor allele variants were detected to suggest a mixed infection. As part of her pre-HCT conditioning regimen, the patient received myeloablative treatment with cyclophosphamide and 12 Gy total body irradiation. Iterative sequencing and RT-PCR confirmation of four respiratory samples over the 4-week peritransplant period revealed that the pre-conditioning strain contained an intact ORF4 gene, while the deletion strain appeared just after conditioning and persisted over a 2.5-week period. This sequence represents one of the largest genomic deletions detected in a human RNA virus and describes large-scale viral mutation associated with myeloablation for HCT.
Collapse
|
79
|
Ogimi C, Greninger AL, Waghmare AA, Kuypers JM, Shean RC, Xie H, Leisenring WM, Stevens-Ayers TL, Jerome KR, Englund JA, Boeckh M. Prolonged Shedding of Human Coronavirus in Hematopoietic Cell Transplant Recipients: Risk Factors and Viral Genome Evolution. J Infect Dis 2017; 216:203-209. [PMID: 28838146 PMCID: PMC5853311 DOI: 10.1093/infdis/jix264] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
Background Recent data suggest that human coronavirus (HCoV) pneumonia is associated with significant mortality in hematopoietic cell transplant (HCT) recipients. Investigation of risk factors for prolonged shedding and intrahost genome evolution may provide critical information for development of novel therapeutics. Methods We retrospectively reviewed HCT recipients with HCoV detected in nasal samples by polymerase chain reaction (PCR). HCoV strains were identified using strain-specific PCR. Shedding duration was defined as time between first positive and first negative sample. Logistic regression analyses were performed to evaluate factors for prolonged shedding (≥21 days). Metagenomic next-generation sequencing (mNGS) was conducted when ≥4 samples with cycle threshold values of <28 were available. Results Seventeen of 44 patients had prolonged shedding. Among 31 available samples, 35% were OC43, 32% were NL63, 19% were HKU1, and 13% were 229E; median shedding duration was similar between strains (P = .79). Bivariable logistic regression analyses suggested that high viral load, receipt of high-dose steroids, and myeloablative conditioning were associated with prolonged shedding. mNGS among 5 subjects showed single-nucleotide polymorphisms from OC43 and NL63 starting 1 month following onset of shedding. Conclusions High viral load, high-dose steroids, and myeloablative conditioning were associated with prolonged shedding of HCoV in HCT recipients. Genome changes were consistent with the expected molecular clock of HCoV.
Collapse
Affiliation(s)
- Chikara Ogimi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center.,Department of Pediatrics, University of Washington.,Pediatric Infectious Diseases Division, Seattle Children's Hospital
| | - Alexander L Greninger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center.,Department of Laboratory Medicine, University of Washington
| | - Alpana A Waghmare
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center.,Department of Pediatrics, University of Washington.,Pediatric Infectious Diseases Division, Seattle Children's Hospital
| | - Jane M Kuypers
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center.,Department of Laboratory Medicine, University of Washington
| | - Ryan C Shean
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center.,Department of Laboratory Medicine, University of Washington
| | - Hu Xie
- Clinical Research Division, Fred Hutchinson Cancer Research Center
| | - Wendy M Leisenring
- Clinical Research Division, Fred Hutchinson Cancer Research Center.,Biostatistics
| | | | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center.,Department of Laboratory Medicine, University of Washington
| | - Janet A Englund
- Department of Pediatrics, University of Washington.,Pediatric Infectious Diseases Division, Seattle Children's Hospital
| | - Michael Boeckh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center.,Clinical Research Division, Fred Hutchinson Cancer Research Center.,Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
80
|
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Raul Andino
- Department of Microbiology and Immunology, University of California at San Francisco, MBGH S572E, Box 2280, 600 16th Street, San Francisco, CA 94158, USA.
| |
Collapse
|
81
|
Gunawardene CD, Donaldson LW, White KA. Tombusvirus polymerase: Structure and function. Virus Res 2017; 234:74-86. [PMID: 28111194 DOI: 10.1016/j.virusres.2017.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/30/2016] [Accepted: 01/13/2017] [Indexed: 12/25/2022]
Abstract
Tombusviruses are small icosahedral viruses that possess plus-sense RNA genomes ∼4.8kb in length. The type member of the genus, tomato bushy stunt virus (TBSV), encodes a 92kDa (p92) RNA-dependent RNA polymerase (RdRp) that is responsible for viral genome replication and subgenomic (sg) mRNA transcription. Several functionally relevant regions in p92 have been identified and characterized, including transmembrane domains, RNA-binding segments, membrane targeting signals, and oligomerization domains. Moreover, conserved tombusvirus-specific motifs in the C-proximal region of the RdRp have been shown to modulate viral genome replication, sg mRNA transcription, and trans-replication of subviral replicons. Interestingly, p92 is initially non-functional, and requires an accessory viral protein, p33, as well as viral RNA, host proteins, and intracellular membranes to become active. These and other host factors, through a well-orchestrated process guided by the viral replication proteins, mediate the assembly of membrane-associated virus replicase complexes (VRCs). Here, we describe what is currently known about the structure and function of the tombusvirus RdRp and how it utilizes host components to build VRCs that synthesize viral RNAs.
Collapse
Affiliation(s)
| | - Logan W Donaldson
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada.
| |
Collapse
|