51
|
Saab S, Buteau B, Leclère L, Bron AM, Creuzot-Garcher CP, Bretillon L, Acar N. Involvement of plasmalogens in post-natal retinal vascular development. PLoS One 2014; 9:e101076. [PMID: 24963632 PMCID: PMC4071069 DOI: 10.1371/journal.pone.0101076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/03/2014] [Indexed: 01/05/2023] Open
Abstract
Objective Proper development of retinal blood vessels is essential to ensure sufficient oxygen and nutrient supplies to the retina. It was shown that polyunsaturated fatty acids (PUFAs) could modulate factors involved in tissue vascularization. A congenital deficiency in ether-phospholipids, also termed “plasmalogens”, was shown to lead to abnormal ocular vascularization. Because plasmalogens are considered to be reservoirs of PUFAs, we wished to improve our understanding of the mechanisms by which plasmalogens regulate retinal vascular development and whether the release of PUFAs by calcium-independent phospholipase A2 (iPLA2) could be involved. Methods and Results By characterizing the cellular and molecular steps of retinal vascular development in a mouse model of plasmalogen deficiency, we demonstrated that plasmalogens modulate angiogenic processes during the early phases of retinal vascularization. They influence glial activity and primary astrocyte template formation, endothelial cell proliferation and retinal vessel outgrowth, and impact the expression of the genes involved in angiogenesis in the retina. These early defects led to a disorganized and dysfunctional retinal vascular network at adult age. By comparing these data to those obtained on a mouse model of retinal iPLA2 inhibition, we suggest that these processes may be mediated by PUFAs released from plasmalogens and further signalling through the angiopoietin/tie pathways. Conclusions These data suggest that plasmalogens play a crucial role in retinal vascularization processes.
Collapse
Affiliation(s)
- Sarah Saab
- CNRS, UMR6265 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- INRA, UMR1324 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Université de Bourgogne, UMR Centre des Sciences du Goût et de l’Alimentation, Dijon, France
| | - Bénédicte Buteau
- CNRS, UMR6265 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- INRA, UMR1324 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Université de Bourgogne, UMR Centre des Sciences du Goût et de l’Alimentation, Dijon, France
| | - Laurent Leclère
- CNRS, UMR6265 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- INRA, UMR1324 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Université de Bourgogne, UMR Centre des Sciences du Goût et de l’Alimentation, Dijon, France
| | - Alain M. Bron
- CNRS, UMR6265 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- INRA, UMR1324 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Université de Bourgogne, UMR Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Department of Ophthalmology, University Hospital, Dijon, France
| | - Catherine P. Creuzot-Garcher
- CNRS, UMR6265 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- INRA, UMR1324 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Université de Bourgogne, UMR Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Department of Ophthalmology, University Hospital, Dijon, France
| | - Lionel Bretillon
- CNRS, UMR6265 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- INRA, UMR1324 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Université de Bourgogne, UMR Centre des Sciences du Goût et de l’Alimentation, Dijon, France
| | - Niyazi Acar
- CNRS, UMR6265 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- INRA, UMR1324 Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Université de Bourgogne, UMR Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- * E-mail:
| |
Collapse
|
52
|
Garcia Garrido M, Beck SC, Mühlfriedel R, Julien S, Schraermeyer U, Seeliger MW. Towards a quantitative OCT image analysis. PLoS One 2014; 9:e100080. [PMID: 24927180 PMCID: PMC4057353 DOI: 10.1371/journal.pone.0100080] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/21/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Optical coherence tomography (OCT) is an invaluable diagnostic tool for the detection and follow-up of retinal pathology in patients and experimental disease models. However, as morphological structures and layering in health as well as their alterations in disease are complex, segmentation procedures have not yet reached a satisfactory level of performance. Therefore, raw images and qualitative data are commonly used in clinical and scientific reports. Here, we assess the value of OCT reflectivity profiles as a basis for a quantitative characterization of the retinal status in a cross-species comparative study. METHODS Spectral-Domain Optical Coherence Tomography (OCT), confocal Scanning-Laser Ophthalmoscopy (SLO), and Fluorescein Angiography (FA) were performed in mice (Mus musculus), gerbils (Gerbillus perpadillus), and cynomolgus monkeys (Macaca fascicularis) using the Heidelberg Engineering Spectralis system, and additional SLOs and FAs were obtained with the HRA I (same manufacturer). Reflectivity profiles were extracted from 8-bit greyscale OCT images using the ImageJ software package (http://rsb.info.nih.gov/ij/). RESULTS Reflectivity profiles obtained from OCT scans of all three animal species correlated well with ex vivo histomorphometric data. Each of the retinal layers showed a typical pattern that varied in relative size and degree of reflectivity across species. In general, plexiform layers showed a higher level of reflectivity than nuclear layers. A comparison of reflectivity profiles from specialized retinal regions (e.g. visual streak in gerbils, fovea in non-human primates) with respective regions of human retina revealed multiple similarities. In a model of Retinitis Pigmentosa (RP), the value of reflectivity profiles for the follow-up of therapeutic interventions was demonstrated. CONCLUSIONS OCT reflectivity profiles provide a detailed, quantitative description of retinal layers and structures including specialized retinal regions. Our results highlight the potential of this approach in the long-term follow-up of therapeutic strategies.
Collapse
Affiliation(s)
- Marina Garcia Garrido
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Tuebingen, Germany
- * E-mail:
| | - Susanne C. Beck
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Tuebingen, Germany
| | - Regine Mühlfriedel
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Tuebingen, Germany
| | - Sylvie Julien
- Section of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Tuebingen, Germany
| | - Ulrich Schraermeyer
- Section of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Tuebingen, Germany
| | - Mathias W. Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Tuebingen, Germany
| |
Collapse
|
53
|
Kozak I. Retinal imaging using adaptive optics technology. Saudi J Ophthalmol 2014; 28:117-22. [PMID: 24843304 DOI: 10.1016/j.sjopt.2014.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/14/2014] [Accepted: 02/16/2014] [Indexed: 11/26/2022] Open
Abstract
Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of wave front distortions. Retinal imaging using AO aims to compensate for higher order aberrations originating from the cornea and the lens by using deformable mirror. The main application of AO retinal imaging has been to assess photoreceptor cell density, spacing, and mosaic regularity in normal and diseased eyes. Apart from photoreceptors, the retinal pigment epithelium, retinal nerve fiber layer, retinal vessel wall and lamina cribrosa can also be visualized with AO technology. Recent interest in AO technology in eye research has resulted in growing number of reports and publications utilizing this technology in both animals and humans. With the availability of first commercially available instruments we are making transformation of AO technology from a research tool to diagnostic instrument. The current challenges include imaging eyes with less than perfect optical media, formation of normative databases for acquired images such as cone mosaics, and the cost of the technology. The opportunities for AO will include more detailed diagnosis with description of some new findings in retinal diseases and glaucoma as well as expansion of AO into clinical trials which has already started.
Collapse
Affiliation(s)
- Igor Kozak
- King Khaled Eye Specialist Hospital, Vitreoretinal Division, P.O. Box 7191, Riyadh 11462, Saudi Arabia
| |
Collapse
|
54
|
Pellissier LP, Lundvig DMS, Tanimoto N, Klooster J, Vos RM, Richard F, Sothilingam V, Garcia Garrido M, Le Bivic A, Seeliger MW, Wijnholds J. CRB2 acts as a modifying factor of CRB1-related retinal dystrophies in mice. Hum Mol Genet 2014; 23:3759-71. [PMID: 24565864 DOI: 10.1093/hmg/ddu089] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in the CRB1 gene lead to retinal dystrophies ranging from Leber congenital amaurosis (LCA) to early-onset retinitis pigmentosa (RP), due to developmental defects or loss of adhesion between photoreceptors and Müller glia cells, respectively. Whereas over 150 mutations have been found, no clear genotype-phenotype correlation has been established. Mouse Crb1 knockout retinas show a mild phenotype limited to the inferior quadrant, whereas Crb2 knockout retinas display a severe degeneration throughout the retina mimicking the phenotype observed in RP patients associated with CRB1 mutations. Crb1Crb2 double mutant retinas have severe developmental defects similar to the phenotype observed in LCA patients associated with CRB1 mutations. Therefore, CRB2 is a candidate modifying gene of human CRB1-related retinal dystrophy. In this study, we studied the cellular localization of CRB1 and CRB2 in human retina and tested the influence of the Crb2 gene allele on Crb1-retinal dystrophies in mice. We found that in contrast to mice, in the human retina CRB1 protein was expressed at the subapical region in photoreceptors and Müller glia cells, and CRB2 only in Müller glia cells. Genetic ablation of one allele of Crb2 in heterozygote Crb1(+/-) retinas induced a mild retinal phenotype, but in homozygote Crb1 knockout mice lead to an early and severe phenotype limited to the entire inferior retina. Our data provide mechanistic insight for CRB1-related LCA and RP.
Collapse
Affiliation(s)
| | | | - Naoyuki Tanimoto
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen D-72076, Germany and
| | - Jan Klooster
- Department of Retinal Signal Processing, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam 1105 BA, The Netherlands
| | | | - Fabrice Richard
- Aix-Marseille Université, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), Case 907, Marseille, Cedex 09 13288, France
| | - Vithiyanjali Sothilingam
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen D-72076, Germany and
| | - Marina Garcia Garrido
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen D-72076, Germany and
| | - André Le Bivic
- Aix-Marseille Université, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), Case 907, Marseille, Cedex 09 13288, France
| | - Mathias W Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen D-72076, Germany and
| | | |
Collapse
|
55
|
Kumar S, Berriochoa Z, Jones AD, Fu Y. Detecting abnormalities in choroidal vasculature in a mouse model of age-related macular degeneration by time-course indocyanine green angiography. J Vis Exp 2014:e51061. [PMID: 24637497 DOI: 10.3791/51061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Indocyanine Green Angiography (or ICGA) is a technique performed by ophthalmologists to diagnose abnormalities of the choroidal and retinal vasculature of various eye diseases such as age-related macular degeneration (AMD). ICGA is especially useful to image the posterior choroidal vasculature of the eye due to its capability of penetrating through the pigmented layer with its infrared spectrum. ICGA time course can be divided into early, middle, and late phases. The three phases provide valuable information on the pathology of eye problems. Although time-course ICGA by intravenous (IV) injection is widely used in the clinic for the diagnosis and management of choroid problems, ICGA by intraperitoneal injection (IP) is commonly used in animal research. Here we demonstrated the technique to obtain high-resolution ICGA time-course images in mice by tail-vein injection and confocal scanning laser ophthalmoscopy. We used this technique to image the choroidal lesions in a mouse model of age-related macular degeneration. Although it is much easier to introduce ICG to the mouse vasculature by IP, our data indicate that it is difficult to obtain reproducible ICGA time course images by IP-ICGA. In contrast, ICGA via tail vein injection provides high quality ICGA time-course images comparable to human studies. In addition, we showed that ICGA performed on albino mice gives clearer pictures of choroidal vessels than that performed on pigmented mice. We suggest that time-course IV-ICGA should become a standard practice in AMD research based on animal models.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Ophthalmology & Visual Sciences, University of Utah Health Sciences Center
| | - Zachary Berriochoa
- Department of Ophthalmology & Visual Sciences, University of Utah Health Sciences Center
| | - Alex D Jones
- Department of Ophthalmology & Visual Sciences, University of Utah Health Sciences Center
| | - Yingbin Fu
- Department of Ophthalmology & Visual Sciences, University of Utah Health Sciences Center; Department of Neurobiology & Anatomy, University of Utah Health Sciences Center;
| |
Collapse
|
56
|
Ribeiro RM, Oregon A, Diniz B, Fernandes RB, Koss MJ, Charafeddin W, Hu Y, Thomas P, Thomas BB, Maia M, Chader GJ, Hinton DR, Humayun MS. In vivo detection of hESC-RPE cells via confocal near-infrared fundus reflectance. Ophthalmic Surg Lasers Imaging Retina 2014; 44:380-4. [PMID: 23883533 DOI: 10.3928/23258160-20130715-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 04/19/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE To investigate whether the confocal near-infrared reflectance (NIR) imaging modality could detect the in vivo presence of retinal pigment epithelium cells derived from embryonic human stem cells (hESC-RPE) implanted into the subretinal space of the Royal College of Surgeons (RCS) rat. MATERIALS AND METHODS Monthly NIR images were obtained from RCS rats implanted with either hESC-RPE seeded on a parylene membrane (n = 14) or parylene membrane without cells (n = 14). Two independent, masked investigators graded the images. Histology and immunohistochemistry were performed at different time points (150, 210, and 270 postnatal days of age). RESULTS NIR images revealed that an average of 20.53% of the parylene membrane area was covered by hESC-RPE. RPE-65 and TRA-1-85 confirmed the presence of human-specific RPE cells in those animals. No areas corresponding to cells were found in the group implanted with membrane only. Intergrader agreement was high (r = 0.89-0.92). CONCLUSION The NIR mode was suitable to detect the presence of hESC-RPE seeded on a membrane and implanted into the subretinal space of the RCS rat.
Collapse
Affiliation(s)
- Ramiro M Ribeiro
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Alves CH, Pellissier LP, Vos RM, Garcia Garrido M, Sothilingam V, Seide C, Beck SC, Klooster J, Furukawa T, Flannery JG, Verhaagen J, Seeliger MW, Wijnholds J. Targeted ablation of Crb2 in photoreceptor cells induces retinitis pigmentosa. Hum Mol Genet 2014; 23:3384-401. [PMID: 24493795 DOI: 10.1093/hmg/ddu048] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In humans, the Crumbs homolog-1 (CRB1) gene is mutated in autosomal recessive Leber congenital amaurosis and early-onset retinitis pigmentosa. In mammals, the Crumbs family is composed of: CRB1, CRB2, CRB3A and CRB3B. Recently, we showed that removal of mouse Crb2 from retinal progenitor cells, and consequent removal from Müller glial and photoreceptor cells, results in severe and progressive retinal degeneration with concomitant loss of retinal function that mimics retinitis pigmentosa due to mutations in the CRB1 gene. Here, we studied the effects of cell-type-specific loss of CRB2 from the developing mouse retina using targeted conditional deletion of Crb2 in photoreceptors or Müller cells. We analyzed the consequences of targeted loss of CRB2 in the adult mouse retina using adeno-associated viral vectors encoding Cre recombinase and short hairpin RNA against Crb2. In vivo retinal imaging by means of optical coherence tomography on retinas lacking CRB2 in photoreceptors showed progressive thinning of the photoreceptor layer and cellular mislocalization. Electroretinogram recordings under scotopic conditions showed severe attenuation of the a-wave, confirming the degeneration of photoreceptors. Retinas lacking CRB2 in developing photoreceptors showed early onset of abnormal lamination, whereas retinas lacking CRB2 in developing Müller cells showed late onset retinal disorganization. Our data suggest that in the developing retina, CRB2 has redundant functions in Müller glial cells, while CRB2 has essential functions in photoreceptors. Our data suggest that short-term loss of CRB2 in adult mouse photoreceptors, but not in Müller glial cells, causes sporadic loss of adhesion between photoreceptors and Müller cells.
Collapse
Affiliation(s)
| | | | | | - Marina Garcia Garrido
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen D-72076, Germany
| | - Vithiyanjali Sothilingam
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen D-72076, Germany
| | - Christina Seide
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen D-72076, Germany
| | - Susanne C Beck
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen D-72076, Germany
| | | | - Takahisa Furukawa
- Institute for Protein Research & CREST-JST, Osaka University, Osaka, Japan Department of Developmental Biology, Osaka Bioscience Institute, Suita, Osaka, Japan and
| | - John G Flannery
- Department of Molecular and Cellular Biology and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Joost Verhaagen
- Department of Neuroregeneration, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Mathias W Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen D-72076, Germany
| | | |
Collapse
|
58
|
Pellissier LP, Alves CH, Quinn PM, Vos RM, Tanimoto N, Lundvig DMS, Dudok JJ, Hooibrink B, Richard F, Beck SC, Huber G, Sothilingam V, Garcia Garrido M, Le Bivic A, Seeliger MW, Wijnholds J. Targeted ablation of CRB1 and CRB2 in retinal progenitor cells mimics Leber congenital amaurosis. PLoS Genet 2013; 9:e1003976. [PMID: 24339791 PMCID: PMC3854796 DOI: 10.1371/journal.pgen.1003976] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/09/2013] [Indexed: 01/22/2023] Open
Abstract
Development in the central nervous system is highly dependent on the regulation of the switch from progenitor cell proliferation to differentiation, but the molecular and cellular events controlling this process remain poorly understood. Here, we report that ablation of Crb1 and Crb2 genes results in severe impairment of retinal function, abnormal lamination and thickening of the retina mimicking human Leber congenital amaurosis due to loss of CRB1 function. We show that the levels of CRB1 and CRB2 proteins are crucial for mouse retinal development, as they restrain the proliferation of retinal progenitor cells. The lack of these apical proteins results in altered cell cycle progression and increased number of mitotic cells leading to an increased number of late-born cell types such as rod photoreceptors, bipolar and Müller glia cells in postmitotic retinas. Loss of CRB1 and CRB2 in the retina results in dysregulation of target genes for the Notch1 and YAP/Hippo signaling pathways and increased levels of P120-catenin. Loss of CRB1 and CRB2 result in altered progenitor cell cycle distribution with a decrease in number of late progenitors in G1 and an increase in S and G2/M phase. These findings suggest that CRB1 and CRB2 suppress late progenitor pool expansion by regulating multiple proliferative signaling pathways.
Collapse
Affiliation(s)
- Lucie P. Pellissier
- Department of Neuromedical Genetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Celso Henrique Alves
- Department of Neuromedical Genetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Peter M. Quinn
- Department of Neuromedical Genetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Rogier M. Vos
- Department of Neuromedical Genetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Naoyuki Tanimoto
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ditte M. S. Lundvig
- Department of Neuromedical Genetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Jacobus J. Dudok
- Department of Neuromedical Genetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Berend Hooibrink
- Department of Cell Biology and Histology, Amsterdam Medisch Centrum, Amsterdam, The Netherlands
| | - Fabrice Richard
- Aix-Marseille University, Developmental Biology Institute of Marseille Luminy (IBDML) and CNRS, UMR 6216, Marseille, France
| | - Susanne C. Beck
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Gesine Huber
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Vithiyanjali Sothilingam
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Marina Garcia Garrido
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - André Le Bivic
- Aix-Marseille University, Developmental Biology Institute of Marseille Luminy (IBDML) and CNRS, UMR 6216, Marseille, France
| | - Mathias W. Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jan Wijnholds
- Department of Neuromedical Genetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
59
|
Lozano DC, Twa MD. Development of a rat schematic eye from in vivo biometry and the correction of lateral magnification in SD-OCT imaging. Invest Ophthalmol Vis Sci 2013; 54:6446-55. [PMID: 23989191 DOI: 10.1167/iovs.13-12575] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Optical magnification in optical coherence tomography (OCT) depends on ocular biometric parameters (e.g., axial length). Biometric differences between eyes will influence scan location. A schematic model eye was developed to compensate for lateral magnification in OCT images of the healthy rat. METHODS Spectral-domain optical coherence tomography images were acquired in 19 eyes of 19 brown Norway rats. Images were scaled using the OCT instrument's built-in scaling function and by calculating the micron per degree from schematic model eyes developed from in vivo biometry (immersion A-scan and videokeratometry). Mean total retinal thickness was measured 500 μm away from the optic nerve head and optic nerve head diameter was measured. Corneal curvature, lens thickness, and axial length were modified to calculate their effects on OCT scan location and total retinal thickness. RESULTS Mean total retinal thickness increased by 21 μm and the SD doubles when images were scaled with the Built-in scaling (222 ± 13 μm) compared with scaling with individual biometric parameters (201 ± 6 μm). Optic nerve head diameter was three times larger when images were scaled with the Built-in scaling (925 ± 97 μm) than the individual biometric parameters (300 ± 27 μm). Assuming no other change in biometric parameters, total retinal thickness would decrease by 37 μm for every millimeter increase in anterior chamber depth due to changes in ocular lateral magnification and associated change in scan location. CONCLUSIONS Scaling SD-OCT images with schematic model eyes derived from individual biometric data is important. This approach produces estimates of retinal thickness and optic nerve head size that are in good agreement with previously reported measurements.
Collapse
Affiliation(s)
- Diana C Lozano
- University of Houston College of Optometry, Houston, Texas
| | | |
Collapse
|
60
|
Dudok JJ, Sanz AS, Lundvig DMS, Sothilingam V, Garrido MG, Klooster J, Seeliger MW, Wijnholds J. MPP3 regulates levels of PALS1 and adhesion between photoreceptors and Müller cells. Glia 2013; 61:1629-44. [DOI: 10.1002/glia.22545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Jacobus J. Dudok
- Department of Neuromedical Genetics; Netherlands Institute for Neuroscience; Royal Netherlands Academy of Arts and Sciences; 1105; BA Amsterdam; The Netherlands
| | - Alicia Sanz Sanz
- Department of Neuromedical Genetics; Netherlands Institute for Neuroscience; Royal Netherlands Academy of Arts and Sciences; 1105; BA Amsterdam; The Netherlands
| | - Ditte M. S. Lundvig
- Department of Neuromedical Genetics; Netherlands Institute for Neuroscience; Royal Netherlands Academy of Arts and Sciences; 1105; BA Amsterdam; The Netherlands
| | - Vithiyanjali Sothilingam
- Division of Ocular Neurodegeneration; Institute for Ophthalmic Research, Eberhard Karls University of Tübingen; 72076; Tübingen; Germany
| | - Marina Garcia Garrido
- Division of Ocular Neurodegeneration; Institute for Ophthalmic Research, Eberhard Karls University of Tübingen; 72076; Tübingen; Germany
| | - Jan Klooster
- Department of Retinal Signal Processing; Netherlands Institute for Neuroscience; Royal Netherlands Academy of Arts and Sciences; 1105; BA Amsterdam; The Netherlands
| | - Mathias W. Seeliger
- Division of Ocular Neurodegeneration; Institute for Ophthalmic Research, Eberhard Karls University of Tübingen; 72076; Tübingen; Germany
| | - Jan Wijnholds
- Department of Neuromedical Genetics; Netherlands Institute for Neuroscience; Royal Netherlands Academy of Arts and Sciences; 1105; BA Amsterdam; The Netherlands
| |
Collapse
|
61
|
Song W, Wei Q, Feng L, Sarthy V, Jiao S, Liu X, Zhang HF. Multimodal photoacoustic ophthalmoscopy in mouse. JOURNAL OF BIOPHOTONICS 2013; 6:505-512. [PMID: 22649053 PMCID: PMC3986594 DOI: 10.1002/jbio.201200061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 04/29/2012] [Accepted: 05/01/2012] [Indexed: 05/04/2023]
Abstract
Photoacoustic ophthalmoscopy (PAOM) is a novel imaging technology that measures optical absorption in the retina. The capability of PAOM can be further enhanced if it could image mouse eyes, because mouse models are widely used for various retinal diseases. The challenges in achieving high-quality imaging of mouse retina, however, come from the much smaller eyeball size. Here, we report an optimized imaging system, which integrates PAOM, spectral-domain optical coherence tomography (SD-OCT), and autofluorescence-scanning laser ophthalmoscopy (AF-SLO), for mouse eyes. Its multimodal capability was demonstrated by imaging transgenic Nrl-GFP mice that express green fluorescent protein (GFP) in photoreceptors. SD-OCT provided guidance of optical alignment for PAOM and AF-SLO, and complementary contrast with high depth-resolution retinal cross sections. PAOM visualized the retinal vasculature and retinal pigment epithelium melanin, and AF-SLO measured GFP-expressing in retinal photoreceptors. The in vivo imaging results were verified by histology and confocal microscopy.
Collapse
Affiliation(s)
- Wei Song
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston IL 60208, USA
- Department of Physics, Harbin Institute of Technology, 92 West Da-Zhi Street Nangang District, Harbin, Heilongjiang, P.R. China 150080
| | - Qing Wei
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston IL 60208, USA
| | - Liang Feng
- Department of Ophthalmology, Northwestern University, 645 North Michigan Ave., Chicago IL 60611, USA
| | - Vijay Sarthy
- Department of Ophthalmology, Northwestern University, 645 North Michigan Ave., Chicago IL 60611, USA
| | - Shuliang Jiao
- Department of Ophthalmology, University of Southern California, 1450 San Pablo Street, Los Angeles CA 90033, USA
| | - Xiaorong Liu
- Department of Ophthalmology, Northwestern University, 645 North Michigan Ave., Chicago IL 60611, USA
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston IL 60208, USA
- Department of Ophthalmology, Northwestern University, 645 North Michigan Ave., Chicago IL 60611, USA
- Corresponding author: H.F. Zhang:
| |
Collapse
|
62
|
Abstract
The development of in vivo retinal fundus imaging in mice has opened a new research horizon, not only in ophthalmic research. The ability to monitor the dynamics of vascular and cellular changes in pathological conditions, such as neovascularization or degeneration, longitudinally without the need to sacrifice the mouse, permits longer observation periods in the same animal. With the application of the high-resolution confocal scanning laser ophthalmoscopy in experimental mouse models, access to a large spectrum of imaging modalities in vivo is provided.
Collapse
|
63
|
Abstract
Optical coherence tomography (OCT) is an invaluable technique to perform noninvasive retinal imaging in small animal models such as mice. It provides virtual cross sections that correlate well with histomorphometric data with the advantage that multiple iterative measurements can be acquired in time line analyses to detect dynamic changes and reduce the amount of animals needed per study.
Collapse
|
64
|
Weinl C, Riehle H, Park D, Stritt C, Beck S, Huber G, Wolburg H, Olson EN, Seeliger MW, Adams RH, Nordheim A. Endothelial SRF/MRTF ablation causes vascular disease phenotypes in murine retinae. J Clin Invest 2013; 123:2193-206. [PMID: 23563308 DOI: 10.1172/jci64201] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 02/07/2013] [Indexed: 11/17/2022] Open
Abstract
Retinal vessel homeostasis ensures normal ocular functions. Consequently, retinal hypovascularization and neovascularization, causing a lack and an excess of vessels, respectively, are hallmarks of human retinal pathology. We provide evidence that EC-specific genetic ablation of either the transcription factor SRF or its cofactors MRTF-A and MRTF-B, but not the SRF cofactors ELK1 or ELK4, cause retinal hypovascularization in the postnatal mouse eye. Inducible, EC-specific deficiency of SRF or MRTF-A/MRTF-B during postnatal angiogenesis impaired endothelial tip cell filopodia protrusion, resulting in incomplete formation of the retinal primary vascular plexus, absence of the deep plexi, and persistence of hyaloid vessels. All of these features are typical of human hypovascularization-related vitreoretinopathies, such as familial exudative vitreoretinopathies including Norrie disease. In contrast, conditional EC deletion of Srf in adult murine vessels elicited intraretinal neovascularization that was reminiscent of the age-related human pathologies retinal angiomatous proliferation and macular telangiectasia. These results indicate that angiogenic homeostasis is ensured by differential stage-specific functions of SRF target gene products in the developing versus the mature retinal vasculature and suggest that the actin-directed MRTF-SRF signaling axis could serve as a therapeutic target in the treatment of human vascular retinal diseases.
Collapse
Affiliation(s)
- Christine Weinl
- Department for Molecular Biology, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Liu JJ, Grulkowski I, Kraus MF, Potsaid B, Lu CD, Baumann B, Duker JS, Hornegger J, Fujimoto JG. In vivo imaging of the rodent eye with swept source/Fourier domain OCT. BIOMEDICAL OPTICS EXPRESS 2013; 4:351-63. [PMID: 23412778 PMCID: PMC3567721 DOI: 10.1364/boe.4.000351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/14/2013] [Accepted: 01/18/2013] [Indexed: 05/23/2023]
Abstract
Swept source/Fourier domain OCT is demonstrated for in vivo imaging of the rodent eye. Using commercial swept laser technology, we developed a prototype OCT imaging system for small animal ocular imaging operating in the 1050 nm wavelength range at an axial scan rate of 100 kHz with ~6 µm axial resolution. The high imaging speed enables volumetric imaging with high axial scan densities, measuring high flow velocities in vessels, and repeated volumetric imaging over time. The 1050 nm wavelength light provides increased penetration into tissue compared to standard commercial OCT systems at 850 nm. The long imaging range enables multiple operating modes for imaging the retina, posterior eye, as well as anterior eye and full eye length. A registration algorithm using orthogonally scanned OCT volumetric data sets which can correct motion on a per A-scan basis is applied to compensate motion and merge motion corrected volumetric data for enhanced OCT image quality. Ultrahigh speed swept source OCT is a promising technique for imaging the rodent eye, proving comprehensive information on the cornea, anterior segment, lens, vitreous, posterior segment, retina and choroid.
Collapse
Affiliation(s)
- Jonathan J. Liu
- Department of Electrical Engineering and Computer Science, and
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA,
USA
| | - Ireneusz Grulkowski
- Department of Electrical Engineering and Computer Science, and
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA,
USA
| | - Martin F. Kraus
- Department of Electrical Engineering and Computer Science, and
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA,
USA
- Pattern Recognition Lab, and School of Advanced Optical Technologies,
University Erlangen-Nuremberg, Erlangen, Germany
| | - Benjamin Potsaid
- Department of Electrical Engineering and Computer Science, and
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA,
USA
- Advanced Imaging Group, Thorlabs, Inc., Newton, NJ,
USA
| | - Chen D. Lu
- Department of Electrical Engineering and Computer Science, and
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA,
USA
| | - Bernhard Baumann
- Department of Electrical Engineering and Computer Science, and
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA,
USA
- New England Eye Center and Tufts Medical Center, Tufts University,
Boston, MA, USA
| | - Jay S. Duker
- New England Eye Center and Tufts Medical Center, Tufts University,
Boston, MA, USA
| | - Joachim Hornegger
- Pattern Recognition Lab, and School of Advanced Optical Technologies,
University Erlangen-Nuremberg, Erlangen, Germany
| | - James G. Fujimoto
- Department of Electrical Engineering and Computer Science, and
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA,
USA
| |
Collapse
|
66
|
Successful subretinal delivery and monitoring of MicroBeads in mice. PLoS One 2013; 8:e55173. [PMID: 23383096 PMCID: PMC3557268 DOI: 10.1371/journal.pone.0055173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/19/2012] [Indexed: 11/19/2022] Open
Abstract
Background To monitor viability of implanted genetically engineered and microencapsulated human stem cells (MicroBeads) in the mouse eye, and to study the impact of the beads and/or xenogenic cells on retinal integrity. Methodology/Principal Findings MicroBeads were implanted into the subretinal space of SV126 wild type mice using an ab externo approach. Viability of microencapsulated cells was monitored by noninvasive retinal imaging (Spectralis™ HRA+OCT). Retinal integrity was also assessed with retinal imaging and upon the end of the study by light and electron microscopy. The implanted GFP-marked cells encapsulated in subretinal MicroBeads remained viable over a period of up to 4 months. Retinal integrity and viability appeared unaltered apart from the focal damage due to the surgical implantation, GFAP upregulation, and opsin mistargeting in the immediate surrounding tissue. Conclusions/Significance The accessibility for routine surgery and its immune privileged state make the eye an ideal target for release system implants for therapeutic substances, including neurotrophic and anti-angiogenic compounds or protein based biosimilars. Microencapsulated human stem cells (MicroBeads) promise to overcome limitations inherent with single factor release systems, as they are able to produce physiologic combinations of bioactive compounds.
Collapse
|
67
|
Ait-Hmyed O, Felder-Schmittbuhl MP, Garcia-Garrido M, Beck S, Seide C, Sothilingam V, Tanimoto N, Seeliger M, Bennis M, Hicks D. Mice lacking Period 1 and Period 2 circadian clock genes exhibit blue cone photoreceptor defects. Eur J Neurosci 2013; 37:1048-60. [PMID: 23351077 DOI: 10.1111/ejn.12103] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 11/08/2012] [Accepted: 11/19/2012] [Indexed: 12/13/2022]
Abstract
Many aspects of retinal physiology are modulated by circadian clocks, but it is unclear whether clock malfunction impinges directly on photoreceptor survival, differentiation or function. Eyes from wild-type (WT) and Period1 (Per1) and Period2 (Per2) mutant mice (Per1(Brdm1) Per2(Brdm1) ) were examined for structural (histology, in vivo imaging), phenotypical (RNA expression, immunohistochemistry) and functional characteristics. Transcriptional levels of selected cone genes [red/green opsin (Opn1mw), blue cone opsin (Opn1sw) and cone arrestin (Arr3)] and one circadian clock gene (RORb) were quantified by real-time polymerase chain reaction. Although there were no changes in general retinal histology or visual responses (electroretinograms) between WT and Per1(Brdm1) Per2(Brdm1) mice, compared with age-matched controls, Per1(Brdm1) Per2(Brdm1) mice showed scattered retinal deformations by fundus inspection. Also, mRNA expression levels and immunostaining of blue cone opsin were significantly reduced in mutant mice. Especially, there was an alteration in the dorsal-ventral patterning of blue cones. Decreased blue cone opsin immunoreactivity was present by early postnatal stages, and remained throughout maturation. General photoreceptor differentiation was retarded in young mutant mice. In conclusion, deletion of both Per1 and Per2 clock genes leads to multiple discrete changes in retina, notably patchy tissue disorganization, reductions in cone opsin mRNA and protein levels, and altered distribution. These data represent the first direct link between Per1 and Per2 clock genes, and cone photoreceptor differentiation and function.
Collapse
Affiliation(s)
- Ouafa Ait-Hmyed
- Department of Neurobiology of Rhythms, CNRS UPR 3212, Institut des Neurosciences Cellulaires et Intégratives, 5 rue Blaise Pascal, 67084, Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Perivascular mural cells of the mouse choroid demonstrate morphological diversity that is correlated to vasoregulatory function. PLoS One 2013; 8:e53386. [PMID: 23308209 PMCID: PMC3537675 DOI: 10.1371/journal.pone.0053386] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 11/27/2012] [Indexed: 01/17/2023] Open
Abstract
Objective Perivascular mural cells of the choroid have been implicated in physiological functioning as well as in retinal disease pathogenesis. However details regarding their form and function are not well understood. We aim to characterize choroidal mural cells in the adult mouse choroid in terms of their distribution and morphology, and correlate these to their contractile behavior. Methods Sclerochoroidal flat-mounted explants were prepared from albino transgenic mice in which the α-smooth muscle actin (α-SMA) promoter drives the expression of green fluorescent protein (GFP). α-SMA-expressing smooth muscle cells and pericytes in the living choroid were thereby rendered fluorescent and imaged with confocal microscopy and live-cell imaging in situ. Results Choroidal perivascular mural cells demonstrate significant diversity in terms of their distribution and morphology at different levels of the vasculature. They range from densely-packed circumferentially-oriented cells that provide complete vascular coverage in primary arteries to widely-spaced stellate-shaped cells that are distributed sparsely over terminal arterioles. Mural cells at each level are immunopositive for contractile proteins α-SMA and desmin and demonstrate vasoconstrictory contractile movements in response to endothelin-1 and the calcium ionophore, A23187, and vasodilation in response to the calcium chelator, BAPTA. The prominence of vasoregulatory contractile responses varies with mural cell morphology and density, and is greater in vessels with dense coverage of mural cells with circumferential cellular morphologies. In the choriocapillaris, pericytes demonstrate a sparse, horizontal distribution and are selectively distributed only to the scleral surface of the choriocapillaris. Conclusions Diversity and regional specialization of perivascular mural cells may subserve varying requirements for vasoregulation in the choroid. The model of the α-SMA-GFP transgenic albino mouse provides a useful and intact system for the morphological and functional study of choroidal mural cells.
Collapse
|
69
|
Abstract
Over 200 hereditary diseases have been identified and reported in the cat, several of which affect the eye, with homology to human hereditary disease. Compared with traditional murine models, the cat demonstrates more features in common with humans, including many anatomic and physiologic similarities, longer life span, increased size, and a genetically more heterogeneous background. The development of genomic resources in the cat has facilitated mapping and further characterization of feline models. During recent years, the wealth of knowledge in feline ophthalmology and neurophysiology has been extended to include new diseases of significant interest for comparative ophthalmology. This makes the cat an extremely valuable animal species to utilize for further research into disease processes affecting both cats and humans. This is especially true in the advancement and study of new treatment regimens and for extended therapeutic trials. Groups of feline eye diseases reviewed in the following are lysosomal storage disorders, congenital glaucoma, and neuroretinal degenerations. Each has important implications for human ophthalmic research.
Collapse
Affiliation(s)
- Kristina Narfström
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri 65201;
| | | | | |
Collapse
|
70
|
Long-term in vivo imaging of fibrillar tau in the retina of P301S transgenic mice. PLoS One 2012; 7:e53547. [PMID: 23300938 PMCID: PMC3534024 DOI: 10.1371/journal.pone.0053547] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/28/2012] [Indexed: 01/09/2023] Open
Abstract
Tauopathies are widespread neurodegenerative disorders characterised by the intracellular accumulation of hyperphosphorylated tau. Especially in Alzheimer's disease, pathological alterations in the retina are discussed as potential biomarkers to improve early diagnosis of the disease. Using mice expressing human mutant P301S tau, we demonstrate for the first time a straightforward optical approach for the in vivo detection of fibrillar tau in the retina. Longitudinal examinations of individual animals revealed the fate of single cells containing fibrillar tau and the progression of tau pathology over several months. This technique is most suitable to monitor therapeutic interventions aimed at reducing the accumulation of fibrillar tau. In order to evaluate if this approach can be translated to human diagnosis, we tried to detect fibrillar protein aggregates in the post-mortem retinas of patients that had suffered from Alzheimer's disease or Progressive Supranuclear Palsy. Even though we could detect hyperphosphorylated tau, we did not observe any fibrillar tau or Aß aggregates. In contradiction to previous studies, our observations do not support the notion that Aβ or tau in the retina are of diagnostic value in Alzheimer's disease.
Collapse
|
71
|
Kador PF, Zhang P, Makita J, Zhang Z, Guo C, Randazzo J, Kawada H, Haider N, Blessing K. Novel diabetic mouse models as tools for investigating diabetic retinopathy. PLoS One 2012; 7:e49422. [PMID: 23251343 PMCID: PMC3520987 DOI: 10.1371/journal.pone.0049422] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 10/07/2012] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Mouse models possessing green fluorescent protein (GFP) and/or human aldose reductase (hAR) in vascular tissues have been established and crossed with naturally diabetic Akita mice to produce new diabetic mouse models. RESEARCH DESIGN AND METHODS Colonies of transgenic C57BL mice expressing GFP (SMAA-GFP), hAR (SMAA-hAR) or both (SMAA-GFP-hAR) in vascular tissues expressing smooth muscle actin were established and crossbred with C57BL/6-Ins2(Akita)/J (AK) mice to produce naturally diabetic offspring AK-SMAA-GFP and AK-SMAA-GFP-hAR. Aldose reductase inhibitor AL1576 (ARI) was administered in chow. Retinal and lenticular sorbitol levels were determined by HPLC. Retinal functions were evaluated by electroretinography (ERGs). Growth factor and signaling changes were determined by Western Blots using commercially available antibodies. Retinal vasculatures were isolated from the neural retina by enzymatic digestion. Flat mounts were stained with PAS-hematoxylin and analyzed. RESULTS Akita transgenics developed DM by 8 weeks of age with blood glucose levels higher in males than females. Sorbitol levels were higher in neural retinas of AK-SMAA-GFP-hAR compared to AK-SMAA-GFP mice. AK-SMAA-GFP-hAR mice also had higher VEGF levels and reduced ERG scotopic b-wave function, both of which were normalized by AL1576. AK-SMAA-GFP-hAR mice showed induction of the retinal growth factors bFGF, IGF-1, and TGFβ, as well as signaling changes in P-Akt, P-SAPK/JNK and P-44/42 MAPK that were also reduced by ARI treatment. Quantitative analysis of flat mounts in 18 week AK-SMAA-GFP-hAR mice revealed increased loss of nuclei/capillary length and a significant increase in the percentage of acellular capillaries present which was not seen in AK-SMAA-GFP-hAR treated with ARI. CONCLUSIONS/SIGNIFICANCE These new mouse models of early onset diabetes may be valuable tools for assessing both the role of hyperglycemia and AR in the development of retinal lesions associated with diabetic retinopathy.
Collapse
Affiliation(s)
- Peter F Kador
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Hilgen G, Huebner AK, Tanimoto N, Sothilingam V, Seide C, Garrido MG, Schmidt KF, Seeliger MW, Löwel S, Weiler R, Hübner CA, Dedek K. Lack of the sodium-driven chloride bicarbonate exchanger NCBE impairs visual function in the mouse retina. PLoS One 2012; 7:e46155. [PMID: 23056253 PMCID: PMC3467262 DOI: 10.1371/journal.pone.0046155] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/27/2012] [Indexed: 11/22/2022] Open
Abstract
Regulation of ion and pH homeostasis is essential for normal neuronal function. The sodium-driven chloride bicarbonate exchanger NCBE (Slc4a10), a member of the SLC4 family of bicarbonate transporters, uses the transmembrane gradient of sodium to drive cellular net uptake of bicarbonate and to extrude chloride, thereby modulating both intracellular pH (pH(i)) and chloride concentration ([Cl(-)](i)) in neurons. Here we show that NCBE is strongly expressed in the retina. As GABA(A) receptors conduct both chloride and bicarbonate, we hypothesized that NCBE may be relevant for GABAergic transmission in the retina. Importantly, we found a differential expression of NCBE in bipolar cells: whereas NCBE was expressed on ON and OFF bipolar cell axon terminals, it only localized to dendrites of OFF bipolar cells. On these compartments, NCBE colocalized with the main neuronal chloride extruder KCC2, which renders GABA hyperpolarizing. NCBE was also expressed in starburst amacrine cells, but was absent from neurons known to depolarize in response to GABA, like horizontal cells. Mice lacking NCBE showed decreased visual acuity and contrast sensitivity in behavioral experiments and smaller b-wave amplitudes and longer latencies in electroretinograms. Ganglion cells from NCBE-deficient mice also showed altered temporal response properties. In summary, our data suggest that NCBE may serve to maintain intracellular chloride and bicarbonate concentration in retinal neurons. Consequently, lack of NCBE in the retina may result in changes in pH(i) regulation and chloride-dependent inhibition, leading to altered signal transmission and impaired visual function.
Collapse
Affiliation(s)
- Gerrit Hilgen
- Department of Neurobiology, University Oldenburg, Oldenburg, Germany
| | - Antje K. Huebner
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Naoyuki Tanimoto
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Vithiyanjali Sothilingam
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Christina Seide
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Marina Garcia Garrido
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Karl-Friedrich Schmidt
- Institut für Allgemeine Zoologie und Tierphysiologie, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Mathias W. Seeliger
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Siegrid Löwel
- Institut für Allgemeine Zoologie und Tierphysiologie, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Reto Weiler
- Department of Neurobiology, University Oldenburg, Oldenburg, Germany
| | | | - Karin Dedek
- Department of Neurobiology, University Oldenburg, Oldenburg, Germany
| |
Collapse
|
73
|
Alves CH, Sanz AS, Park B, Pellissier LP, Tanimoto N, Beck SC, Huber G, Murtaza M, Richard F, Sridevi Gurubaran I, Garcia Garrido M, Levelt CN, Rashbass P, Le Bivic A, Seeliger MW, Wijnholds J. Loss of CRB2 in the mouse retina mimics human retinitis pigmentosa due to mutations in the CRB1 gene. Hum Mol Genet 2012; 22:35-50. [PMID: 23001562 DOI: 10.1093/hmg/dds398] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In humans, the Crumbs homolog-1 (CRB1) gene is mutated in progressive types of autosomal recessive retinitis pigmentosa and Leber congenital amaurosis. However, there is no clear genotype-phenotype correlation for CRB1 mutations, which suggests that other components of the CRB complex may influence the severity of retinal disease. Therefore, to understand the physiological role of the Crumbs complex proteins, we generated and analysed conditional knockout mice lacking CRB2 in the developing retina. Progressive disorganization was detected during late retinal development. Progressive thinning of the photoreceptor layer and sites of cellular mislocalization was detected throughout the CRB2-deficient retina by confocal scanning laser ophthalmoscopy and spectral domain optical coherence tomography. Under scotopic conditions using electroretinography, the attenuation of the a-wave was relatively stronger than that of the b-wave, suggesting progressive degeneration of photoreceptors in adult animals. Histological analysis of newborn mice showed abnormal lamination of immature rod photoreceptors and disruption of adherens junctions between photoreceptors, Müller glia and progenitor cells. The number of late-born progenitor cells, rod photoreceptors and Müller glia cells was increased, concomitant with programmed cell death of rod photoreceptors. The data suggest an essential role for CRB2 in proper lamination of the photoreceptor layer and suppression of proliferation of late-born retinal progenitor cells.
Collapse
Affiliation(s)
- Celso Henrique Alves
- Department of Neuromedical Genetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Secondi R, Kong J, Blonska AM, Staurenghi G, Sparrow JR. Fundus autofluorescence findings in a mouse model of retinal detachment. Invest Ophthalmol Vis Sci 2012; 53:5190-7. [PMID: 22786896 DOI: 10.1167/iovs.12-9672] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Fundus autofluorescence (fundus AF) changes were monitored in a mouse model of retinal detachment (RD). METHODS RD was induced by transscleral injection of hyaluronic acid (Healon) or sterile balanced salt solution (BSS) into the subretinal space of 4-5-day-old albino Abca4 null mutant and Abca4 wild-type mice. Images acquired by confocal scanning laser ophthalmoscopy (Spectralis HRA) were correlated with spectral domain optical coherence tomography (SD-OCT), infrared reflectance (IR), fluorescence spectroscopy, and histologic analysis. Results. In the area of detached retina, multiple hyperreflective spots in IR images corresponded to punctate areas of intense autofluorescence visible in fundus AF mode. The puncta exhibited changes in fluorescence intensity with time. SD-OCT disclosed undulations of the neural retina and hyperreflectivity of the photoreceptor layer that likely corresponded to histologically visible photoreceptor cell rosettes. Fluorescence emission spectra generated using flat-mounted retina, and 488 and 561 nm excitation, were similar to that of RPE lipofuscin. With increased excitation wavelength, the emission maximum shifted towards longer wavelengths, a characteristic typical of fundus autofluorescence. CONCLUSIONS In detached retinas, hyper-autofluorescent spots appeared to originate from photoreceptor outer segments that were arranged within retinal folds and rosettes. Consistent with this interpretation is the finding that the autofluorescence was spectroscopically similar to the bisretinoids that constitute RPE lipofuscin. Under the conditions of a RD, abnormal autofluorescence may arise from excessive production of bisretinoid by impaired photoreceptor cells.
Collapse
Affiliation(s)
- Roberta Secondi
- Department of Ophthalmology, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
75
|
Koch S, Sothilingam V, Garcia Garrido M, Tanimoto N, Becirovic E, Koch F, Seide C, Beck SC, Seeliger MW, Biel M, Mühlfriedel R, Michalakis S. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. Hum Mol Genet 2012; 21:4486-96. [PMID: 22802073 DOI: 10.1093/hmg/dds290] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of genetically heterogeneous, severe retinal diseases commonly leading to legal blindness. Mutations in the CNGB1a subunit of the rod cyclic nucleotide-gated (CNG) channel have been found to cause RP in patients. Here, we demonstrate the efficacy of gene therapy as a potential treatment for RP by means of recombinant adeno-associated viral (AAV) vectors in the CNGB1 knockout (CNGB1(-/-)) mouse model. To enable efficient packaging and rod-specific expression of the relatively large CNGB1a cDNA (~4 kb), we used an AAV expression cassette with a short rod-specific promoter and short regulatory elements. After injection of therapeutic AAVs into the subretinal space of 2-week-old CNGB1(-/-) mice, we assessed the restoration of the visual system by analyzing (i) CNG channel expression and localization, (ii) retinal function and morphology and (iii) vision-guided behavior. We found that the treatment not only led to expression of full-length CNGB1a, but also restored normal levels of the previously degraded CNGA1 subunit of the rod CNG channel. Both proteins co-localized in rod outer segments and formed regular CNG channel complexes within the treated area of the CNGB1(-/-) retina, leading to significant morphological preservation and a delay of retinal degeneration. In the electroretinographic analysis, we also observed restoration of rod-driven light responses. Finally, treated CNGB1(-/-) mice performed significantly better than untreated mice in a rod-dependent vision-guided behavior test. In summary, this work provides a proof-of-concept for the treatment of rod channelopathy-associated RP by AAV-mediated gene replacement.
Collapse
Affiliation(s)
- Susanne Koch
- Center for Integrated Protein Science Munich, Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Zhour A, Bolz S, Grimm C, Willmann G, Schatz A, Weber BHF, Zrenner E, Fischer MD. In vivo imaging reveals novel aspects of retinal disease progression in Rs1h−/Y mice but no therapeutic effect of carbonic anhydrase inhibition. Vet Ophthalmol 2012; 15 Suppl 2:123-33. [DOI: 10.1111/j.1463-5224.2012.01039.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
77
|
Hübener J, Casadei N, Teismann P, Seeliger MW, Björkqvist M, von Hörsten S, Riess O, Nguyen HP. Automated behavioral phenotyping reveals presymptomatic alterations in a SCA3 genetrap mouse model. J Genet Genomics 2012; 39:287-99. [PMID: 22749017 DOI: 10.1016/j.jgg.2012.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/18/2012] [Accepted: 04/23/2012] [Indexed: 01/18/2023]
Abstract
Characterization of disease models of neurodegenerative disorders requires a systematic and comprehensive phenotyping in a highly standardized manner. Therefore, automated high-resolution behavior test systems such as the homecage based LabMaster system are of particular interest. We demonstrate the power of the automated LabMaster system by discovering previously unrecognized features of a recently characterized atxn3 mutant mouse model. This model provided neurological symptoms including gait ataxia, tremor, weight loss and premature death at the age of 12 months usually detectable just 2 weeks before the mice died. Moreover, using the LabMaster system we were able to detect hypoactivity in presymptomatic mutant mice in the dark as well as light phase. Additionally, we analyzed inflammation, immunological and hematological parameters, which indicated a reduced immune defense in phenotypic mice. Here we demonstrate that a detailed characterization even of organ systems that are usually not affected in SCA3 is important for further studies of pathogenesis and required for the preclinical therapeutic studies.
Collapse
Affiliation(s)
- Jeannette Hübener
- Department of Medical Genetics, University of Tübingen, Tübingen 72076, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Kur J, Newman EA, Chan-Ling T. Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res 2012; 31:377-406. [PMID: 22580107 DOI: 10.1016/j.preteyeres.2012.04.004] [Citation(s) in RCA: 452] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/17/2012] [Accepted: 04/22/2012] [Indexed: 02/06/2023]
Abstract
We review the cellular and physiological mechanisms responsible for the regulation of blood flow in the retina and choroid in health and disease. Due to the intrinsic light sensitivity of the retina and the direct visual accessibility of fundus blood vessels, the eye offers unique opportunities for the non-invasive investigation of mechanisms of blood flow regulation. The ability of the retinal vasculature to regulate its blood flow is contrasted with the far more restricted ability of the choroidal circulation to regulate its blood flow by virtue of the absence of glial cells, the markedly reduced pericyte ensheathment of the choroidal vasculature, and the lack of intermediate filaments in choroidal pericytes. We review the cellular and molecular components of the neurovascular unit in the retina and choroid, techniques for monitoring retinal and choroidal blood flow, responses of the retinal and choroidal circulation to light stimulation, the role of capillaries, astrocytes and pericytes in regulating blood flow, putative signaling mechanisms mediating neurovascular coupling in the retina, and changes that occur in the retinal and choroidal circulation during diabetic retinopathy, age-related macular degeneration, glaucoma, and Alzheimer's disease. We close by discussing issues that remain to be explored.
Collapse
Affiliation(s)
- Joanna Kur
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
79
|
Slezak M, Grosche A, Niemiec A, Tanimoto N, Pannicke T, Münch T, Crocker B, Isope P, Härtig W, Beck S, Huber G, Ferracci G, Perraut M, Reber M, Miehe M, Demais V, Lévêque C, Metzger D, Szklarczyk K, Przewlocki R, Seeliger M, Sage-Ciocca D, Hirrlinger J, Reichenbach A, Reibel S, Pfrieger F. Relevance of Exocytotic Glutamate Release from Retinal Glia. Neuron 2012; 74:504-16. [DOI: 10.1016/j.neuron.2012.03.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2012] [Indexed: 10/28/2022]
|
80
|
Gene therapy restores missing cone-mediated vision in the CNGA3-/- mouse model of achromatopsia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:183-9. [PMID: 22183332 DOI: 10.1007/978-1-4614-0631-0_25] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
81
|
Geng Y, Dubra A, Yin L, Merigan WH, Sharma R, Libby RT, Williams DR. Adaptive optics retinal imaging in the living mouse eye. BIOMEDICAL OPTICS EXPRESS 2012; 3:715-34. [PMID: 22574260 PMCID: PMC3345801 DOI: 10.1364/boe.3.000715] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 05/18/2023]
Abstract
Correction of the eye's monochromatic aberrations using adaptive optics (AO) can improve the resolution of in vivo mouse retinal images [Biss et al., Opt. Lett. 32(6), 659 (2007) and Alt et al., Proc. SPIE 7550, 755019 (2010)], but previous attempts have been limited by poor spot quality in the Shack-Hartmann wavefront sensor (SHWS). Recent advances in mouse eye wavefront sensing using an adjustable focus beacon with an annular beam profile have improved the wavefront sensor spot quality [Geng et al., Biomed. Opt. Express 2(4), 717 (2011)], and we have incorporated them into a fluorescence adaptive optics scanning laser ophthalmoscope (AOSLO). The performance of the instrument was tested on the living mouse eye, and images of multiple retinal structures, including the photoreceptor mosaic, nerve fiber bundles, fine capillaries and fluorescently labeled ganglion cells were obtained. The in vivo transverse and axial resolutions of the fluorescence channel of the AOSLO were estimated from the full width half maximum (FWHM) of the line and point spread functions (LSF and PSF), and were found to be better than 0.79 μm ± 0.03 μm (STD)(45% wider than the diffraction limit) and 10.8 μm ± 0.7 μm (STD)(two times the diffraction limit), respectively. The axial positional accuracy was estimated to be 0.36 μm. This resolution and positional accuracy has allowed us to classify many ganglion cell types, such as bistratified ganglion cells, in vivo.
Collapse
Affiliation(s)
- Ying Geng
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- The Institute of Optics, University of Rochester, Rochester, NY 14620, USA
| | - Alfredo Dubra
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
- Current address: Eye Institute, Medical College of Wisconsin, WI 53226, USA
| | - Lu Yin
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - William H. Merigan
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| | - Robin Sharma
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- The Institute of Optics, University of Rochester, Rochester, NY 14620, USA
| | - Richard T. Libby
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| | - David R. Williams
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- The Institute of Optics, University of Rochester, Rochester, NY 14620, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
82
|
Charbel Issa P, Singh MS, Lipinski DM, Chong NV, Delori FC, Barnard AR, MacLaren RE. Optimization of in vivo confocal autofluorescence imaging of the ocular fundus in mice and its application to models of human retinal degeneration. Invest Ophthalmol Vis Sci 2012; 53:1066-75. [PMID: 22169101 DOI: 10.1167/iovs.11-8767] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
PURPOSE To investigate the feasibility and to identify sources of experimental variability of quantitative and qualitative fundus autofluorescence (AF) assessment in mice. METHODS Blue (488 nm) and near-infrared (790 nm) fundus AF imaging was performed in various mouse strains and disease models (129S2, C57Bl/6, Abca4(-/-), C3H-Pde6b(rd1/rd1), Rho(-/-), and BALB/c mice) using a commercially available scanning laser ophthalmoscope. Gray-level analysis was used to explore factors influencing fundus AF measurements. RESULTS A contact lens avoided cataract development and resulted in consistent fundus AF recordings. Fundus illumination and magnification were sensitive to changes of the camera position. Standardized adjustment of the recorded confocal plane and consideration of the pupil area allowed reproducible recording of fundus AF from the retinal pigment epithelium with an intersession coefficient of repeatability of ±22%. Photopigment bleaching occurred during the first 1.5 seconds of exposure to 488 nm blue light (∼10 mW/cm(2)), resulting in an increase of fundus AF. In addition, there was a slight decrease in fundus AF during prolonged blue light exposure. Fundus AF at 488 nm was low in animals with an absence of a normal visual cycle, and high in BALB/c and Abca4(-/-) mice. Degenerative alterations in Pde6b(rd1/rd1) and Rho(-/-) were reminiscent of findings in human retinal disease. CONCLUSIONS Investigation of retinal phenotypes in mice is possible in vivo using standardized fundus AF imaging. Correlation with postmortem analysis is likely to lead to further understanding of human disease phenotypes and of retinal degenerations in general. Fundus AF imaging may be useful as an outcome measure in preclinical trials, such as for monitoring effects aimed at lowering lipofuscin accumulation in the retinal pigment epithelium.
Collapse
Affiliation(s)
- Peter Charbel Issa
- Nuffield Laboratory of Ophthalmology and Oxford Eye Hospital Biomedical Research Centre, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
83
|
PALS1 is essential for retinal pigment epithelium structure and neural retina stratification. J Neurosci 2012; 31:17230-41. [PMID: 22114289 DOI: 10.1523/jneurosci.4430-11.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The membrane-associated palmitoylated protein 5 (MPP5 or PALS1) is thought to organize intracellular PALS1-CRB-MUPP1 protein scaffolds in the retina that are involved in maintenance of photoreceptor-Müller glia cell adhesion. In humans, the Crumbs homolog 1 (CRB1) gene is mutated in progressive types of autosomal recessive retinitis pigmentosa and Leber congenital amaurosis. However, there is no clear genotype-phenotype correlation for CRB1 mutations, which suggests that other components of the CRB complex may influence the severity of retinal disease. Therefore, to understand the physiological role of the Crumbs complex proteins, especially PALS1, we generated and analyzed conditional knockdown mice for Pals1. Small irregularly shaped spots were detected throughout the PALS1 deficient retina by confocal scanning laser ophthalmoscopy and spectral domain optical coherence tomography. The electroretinography a- and b-wave was severely attenuated in the aged mutant retinas, suggesting progressive degeneration of photoreceptors. The histological analysis showed abnormal retinal pigment epithelium structure, ectopic photoreceptor nuclei in the subretinal space, an irregular outer limiting membrane, half rosettes of photoreceptors in the outer plexiform layer, and a thinner photoreceptor synaptic layer suggesting improper photoreceptor cell layering during retinal development. The PALS1 deficient retinas showed reduced levels of Crumbs complex proteins adjacent to adherens junctions, upregulation of glial fibrillary acidic protein indicative of gliosis, and persisting programmed cell death after retinal maturation. The phenotype suggests important functions of PALS1 in the retinal pigment epithelium in addition to the neural retina.
Collapse
|
84
|
Fischer MD, Huber G, Paquet-Durand F, Humphries P, Redmond TM, Grimm C, Seeliger MW. In vivo assessment of rodent retinal structure using spectral domain optical coherence tomography. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:489-94. [PMID: 22183368 DOI: 10.1007/978-1-4614-0631-0_61] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M Dominik Fischer
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Schleichstrasse 12-16, Tuebingen, 72076, Germany.
| | | | | | | | | | | | | |
Collapse
|
85
|
Ebrahem Q, Qi JH, Sugimoto M, Ali M, Sears JE, Cutler A, Khokha R, Vasanji A, Anand-Apte B. Increased neovascularization in mice lacking tissue inhibitor of metalloproteinases-3. Invest Ophthalmol Vis Sci 2011; 52:6117-23. [PMID: 21282576 DOI: 10.1167/iovs.10-5899] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a matrix-bound inhibitor of matrix metalloproteinases (MMPs). The authors have previously determined a novel function of TIMP-3 to inhibit vascular endothelial growth factor (VEGF)-mediated angiogenesis. Here, the authors examined the in vivo angiogenic phenotype of ocular vessels in mice deficient in TIMP-3. METHODS VEGF-mediated corneal neovascularization and laser-induced choroidal neovascularization (CNV) were examined in TIMP-3-null mice. The effects of the absence of TIMP-3 on the phosphorylation status of the VEGF-receptor-2 (VEGFR-2) and the downstream signaling pathways were evaluated biochemically. In addition, the activation state of MMPs in the retina of TIMP-3-deficient mice was examined by in situ zymography. RESULTS The results of these studies determine an accentuation of pathologic VEGF-mediated angiogenesis in the cornea and laser-induced CNV in mice lacking TIMP-3. In the absence of the MMP inhibitor, pathophysiological changes were observed in the choroidal vasculature concomitantly with an increase in gelatinolytic activity. These results suggest that an imbalance of extracellular matrix homeostasis, together with a loss of an angiogenesis inhibitor, can prime vascular beds to be more responsive to an angiogenic stimulus. CONCLUSIONS In light of the recent studies suggesting that genetic variants near TIMP-3 influence susceptibility to age-related macular degeneration, these results imply that TIMP-3 may regulate the development of the choroidal vasculature and is a likely contributor to increased susceptibility to choroidal neovascularization.
Collapse
Affiliation(s)
- Quteba Ebrahem
- Department of Ophthalmology, Cole Eye Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Williams DR. Imaging single cells in the living retina. Vision Res 2011; 51:1379-96. [PMID: 21596053 DOI: 10.1016/j.visres.2011.05.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/29/2011] [Accepted: 05/01/2011] [Indexed: 12/31/2022]
Abstract
A quarter century ago, we were limited to a macroscopic view of the retina inside the living eye. Since then, new imaging technologies, including confocal scanning laser ophthalmoscopy, optical coherence tomography, and adaptive optics fundus imaging, transformed the eye into a microscope in which individual cells can now be resolved noninvasively. These technologies have enabled a wide range of studies of the retina that were previously impossible.
Collapse
Affiliation(s)
- David R Williams
- Center for Visual Science, William G. Allyn Professor of Medical Optics, University of Rochester, Rochester, NY 14627-0270, United States.
| |
Collapse
|
87
|
The domestic cat as a large animal model for characterization of disease and therapeutic intervention in hereditary retinal blindness. J Ophthalmol 2011; 2011:906943. [PMID: 21584261 PMCID: PMC3090773 DOI: 10.1155/2011/906943] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/04/2010] [Accepted: 01/24/2011] [Indexed: 01/09/2023] Open
Abstract
Large mammals, including canids and felids, are affected by spontaneously occurring hereditary retinal diseases with similarities to those of humans. The large mammal models may be used for thorough clinical characterization of disease processes, understanding the effects of specific mutations, elucidation of disease mechanisms, and for development of therapeutic intervention. Two well-characterized feline models are addressed in this paper. The first model is the autosomal recessive, slowly progressive, late-onset, rod-cone degenerative disease caused by a mutation in the CEP290 gene. The second model addressed in this paper is the autosomal dominant early onset rod cone dysplasia, putatively caused by the mutation found in the CRX gene. Therapeutic trials have been performed mainly in the former type including stem cell therapy, retinal transplantation, and development of ocular prosthetics. Domestic cats, having large human-like eyes with comparable spontaneous retinal diseases, are also considered useful for gene replacement therapy, thus functioning as effective model systems for further research.
Collapse
|
88
|
Geng Y, Schery LA, Sharma R, Dubra A, Ahmad K, Libby RT, Williams DR. Optical properties of the mouse eye. BIOMEDICAL OPTICS EXPRESS 2011; 2:717-38. [PMID: 21483598 PMCID: PMC3072116 DOI: 10.1364/boe.2.000717] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 05/18/2023]
Abstract
The Shack-Hartmann wavefront sensor (SHWS) spots upon which ocular aberration measurements depend have poor quality in mice due to light reflected from multiple retinal layers. We have designed and implemented a SHWS that can favor light from a specific retinal layer and measured monochromatic aberrations in 20 eyes from 10 anesthetized C57BL/6J mice. Using this instrument, we show that mice are myopic, not hyperopic as is frequently reported. We have also measured longitudinal chromatic aberration (LCA) of the mouse eye and found that it follows predictions of the water-filled schematic mouse eye. Results indicate that the optical quality of the mouse eye assessed by measurement of its aberrations is remarkably good, better for retinal imaging than the human eye. The dilated mouse eye has a much larger numerical aperture (NA) than that of the dilated human eye (0.5 NA vs. 0.2 NA), but it has a similar amount of root mean square (RMS) higher order aberrations compared to the dilated human eye. These measurements predict that adaptive optics based on this method of wavefront sensing will provide improvements in retinal image quality and potentially two times higher lateral resolution than that in the human eye.
Collapse
Affiliation(s)
- Ying Geng
- Center for Visual Science, University of Rochester, Rochester,
NY, 14627, USA
- The Institute of Optics, University of Rochester, Rochester, NY,
14620, USA
| | - Lee Anne Schery
- Center for Visual Science, University of Rochester, Rochester,
NY, 14627, USA
| | - Robin Sharma
- Center for Visual Science, University of Rochester, Rochester,
NY, 14627, USA
- The Institute of Optics, University of Rochester, Rochester, NY,
14620, USA
| | - Alfredo Dubra
- Center for Visual Science, University of Rochester, Rochester,
NY, 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY,
14642, USA
| | - Kamran Ahmad
- Center for Visual Science, University of Rochester, Rochester,
NY, 14627, USA
| | - Richard T. Libby
- Center for Visual Science, University of Rochester, Rochester,
NY, 14627, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY,
14642, USA
| | - David R. Williams
- Center for Visual Science, University of Rochester, Rochester,
NY, 14627, USA
- The Institute of Optics, University of Rochester, Rochester, NY,
14620, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY,
14642, USA
| |
Collapse
|
89
|
Chavali VRM, Khan NW, Cukras CA, Bartsch DU, Jablonski MM, Ayyagari R. A CTRP5 gene S163R mutation knock-in mouse model for late-onset retinal degeneration. Hum Mol Genet 2011; 20:2000-14. [PMID: 21349921 DOI: 10.1093/hmg/ddr080] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Late-onset retinal macular degeneration (L-ORD) is an autosomal dominant inherited disorder caused by a single missense mutation (S163R) in the CTRP5/C1QTNF5 protein. Early phenotypic features of L-ORD include: dark adaptation abnormalities, nyctalopia, and drusen deposits in the peripheral macular region. Apart from posterior segment abnormalities, these patients also develop abnormally long anterior lens zonules. In the sixth decade of life the rod and cone function declines, accompanied by electroretinogram (ERG) abnormalities. Some patients also develop choroidal neovascularization and glaucoma. In order to understand the disease pathology and mechanisms involved in retinal dystrophy, we generated a knock-in (Ctrp5(+/-)) mouse model carrying the disease-associated mutation in the mouse Ctrp5/C1QTNF5 gene. These mice develop slower rod-b wave recovery consistent with early dark adaptation abnormalities, accumulation of hyperautofluorescence spots, retinal pigment epithelium abnormalities, drusen, Bruch's membrane abnormalities, loss of photoreceptors, and retinal vascular leakage. The Ctrp5(+/-) mice, which have most of the pathological features of age-related macular degeneration, are unique and may serve as a valuable model both to understand the molecular pathology of late-onset retinal degeneration and to evaluate therapies.
Collapse
|
90
|
Lange C, Caprara C, Tanimoto N, Beck S, Huber G, Samardzija M, Seeliger M, Grimm C. Retina-specific activation of a sustained hypoxia-like response leads to severe retinal degeneration and loss of vision. Neurobiol Dis 2011; 41:119-30. [DOI: 10.1016/j.nbd.2010.08.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/17/2010] [Accepted: 08/25/2010] [Indexed: 10/19/2022] Open
|
91
|
Wei Q, Liu T, Jiao S, Zhang HF. Image chorioretinal vasculature in albino rats using photoacoustic ophthalmoscopy. JOURNAL OF MODERN OPTICS 2011; 58:1997-2001. [PMID: 24744503 PMCID: PMC3987921 DOI: 10.1080/09500340.2011.601331] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We imaged the microvascular network in both the retina and the choroid in an albino rat eye using photoacoustic ophthalmoscopy guided by optical coherence tomography. Relying on optical absorption and ultrasonic detection, photoacoustic ophthalmoscopy can image both retinal and choroidal vessel networks with high contrast.
Collapse
Affiliation(s)
- Qing Wei
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208
| | - Tan Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208
| | - Shuliang Jiao
- Department of Ophthalmology, University of Southern California, Los Angeles, California 90033
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
92
|
Paquet-Durand F, Beck S, Michalakis S, Goldmann T, Huber G, Mühlfriedel R, Trifunović D, Fischer MD, Fahl E, Duetsch G, Becirovic E, Wolfrum U, van Veen T, Biel M, Tanimoto N, Seeliger MW. A key role for cyclic nucleotide gated (CNG) channels in cGMP-related retinitis pigmentosa. Hum Mol Genet 2010; 20:941-7. [PMID: 21149284 DOI: 10.1093/hmg/ddq539] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rd1 natural mutant is one of the first and probably the most commonly studied mouse model for retinitis pigmentosa (RP), a severe and frequently blinding human retinal degeneration. In several decades of research, the link between the increase in photoreceptor cGMP levels and the extremely rapid cell death gave rise to a number of hypotheses. Here, we provide clear evidence that the presence of cyclic nucleotide gated (CNG) channels in the outer segment membrane is the key to rod photoreceptor loss. In Cngb1(-/-) × rd1 double mutants devoid of regular CNG channels, cGMP levels are still pathologically high, but rod photoreceptor viability and outer segment morphology are greatly improved. Importantly, cone photoreceptors, the basis for high-resolution daylight and colour vision, survived and remained functional for extended periods of time. These findings strongly support the hypothesis of deleterious calcium (Ca(2+))-influx as the cause of rapid rod cell death and highlight the importance of CNG channels in this process. Furthermore, our findings suggest that targeting rod CNG channels, rather than general Ca(2+)-channel blockade, is a most promising symptomatic approach to treat otherwise incurable forms of cGMP-related RP.
Collapse
Affiliation(s)
- François Paquet-Durand
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Alfano G, Conte I, Caramico T, Avellino R, Arnò B, Pizzo MT, Tanimoto N, Beck SC, Huber G, Dollé P, Seeliger MW, Banfi S. Vax2 regulates retinoic acid distribution and cone opsin expression in the vertebrate eye. Development 2010; 138:261-71. [PMID: 21148184 DOI: 10.1242/dev.051037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vax2 is an eye-specific homeobox gene, the inactivation of which in mouse leads to alterations in the establishment of a proper dorsoventral eye axis during embryonic development. To dissect the molecular pathways in which Vax2 is involved, we performed a transcriptome analysis of Vax2(-/-) mice throughout the main stages of eye development. We found that some of the enzymes involved in retinoic acid (RA) metabolism in the eye show significant variations of their expression levels in mutant mice. In particular, we detected an expansion of the expression domains of the RA-catabolizing enzymes Cyp26a1 and Cyp26c1, and a downregulation of the RA-synthesizing enzyme Raldh3. These changes determine a significant expansion of the RA-free zone towards the ventral part of the eye. At postnatal stages of eye development, Vax2 inactivation led to alterations of the regional expression of the cone photoreceptor genes Opn1sw (S-Opsin) and Opn1mw (M-Opsin), which were significantly rescued after RA administration. We confirmed the above described alterations of gene expression in the Oryzias latipes (medaka fish) model system using both Vax2 gain- and loss-of-function assays. Finally, a detailed morphological and functional analysis of the adult retina in mutant mice revealed that Vax2 is necessary for intraretinal pathfinding of retinal ganglion cells in mammals. These data demonstrate for the first time that Vax2 is both necessary and sufficient for the control of intraretinal RA metabolism, which in turn contributes to the appropriate expression of cone opsins in the vertebrate eye.
Collapse
Affiliation(s)
- Giovanna Alfano
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Funduscopy in adult zebrafish and its application to isolate mutant strains with ocular defects. PLoS One 2010; 5:e15427. [PMID: 21079775 PMCID: PMC2974646 DOI: 10.1371/journal.pone.0015427] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 09/21/2010] [Indexed: 11/19/2022] Open
Abstract
Funduscopy is one of the most commonly used diagnostic tools in the ophthalmic practice, allowing for a ready assessment of pathological changes in the retinal vasculature and the outer retina. This non-invasive technique has so far been rarely used in animal model for ophthalmic diseases, albeit its potential as a screening assay in genetic screens. The zebrafish (Danio rerio) is well suited for such genetic screens for ocular alterations. Therefore we developed funduscopy in adult zebrafish and employed it as a screening tool to find alterations in the anterior segment and the fundus of the eye of genetically modified adult animals. A stereomicroscope with coaxial reflected light illumination was used to obtain fundus color images of the zebrafish. In order to find lens and retinal alterations, a pilot screen of 299 families of the F3 generation of ENU-treated adult zebrafish was carried out. Images of the fundus of the eye and the anterior segment can be rapidly obtained and be used to identify alterations in genetically modified animals. A number of putative mutants with cataracts, defects in the cornea, eye pigmentation, ocular vessels and retina were identified. This easily implemented method can also be used to obtain fundus images from rodent retinas. In summary, we present funduscopy as a valuable tool to analyse ocular abnormalities in adult zebrafish and other small animal models. A proof of principle screen identified a number of putative mutants, making funduscopy based screens in zebrafish feasible.
Collapse
|
95
|
Huber G, Heynen S, Imsand C, vom Hagen F, Muehlfriedel R, Tanimoto N, Feng Y, Hammes HP, Grimm C, Peichl L, Seeliger MW, Beck SC. Novel rodent models for macular research. PLoS One 2010; 5:e13403. [PMID: 20976212 PMCID: PMC2955520 DOI: 10.1371/journal.pone.0013403] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/21/2010] [Indexed: 11/18/2022] Open
Abstract
Background Many disabling human retinal disorders involve the central retina, particularly the macula. However, the commonly used rodent models in research, mouse and rat, do not possess a macula. The purpose of this study was to identify small laboratory rodents with a significant central region as potential new models for macular research. Methodology/Principal Findings Gerbillus perpallidus, Meriones unguiculatus and Phodopus campbelli, laboratory rodents less commonly used in retinal research, were subjected to confocal scanning laser ophthalmoscopy (cSLO), fluorescein and indocyanine green angiography, and spectral-domain optical coherence tomography (SD-OCT) using standard equipment (Heidelberg Engineering HRA1 and Spectralis™) adapted to small rodent eyes. The existence of a visual streak-like pattern was assessed on the basis of vascular topography, retinal thickness, and the topography of retinal ganglion cells and cone photoreceptors. All three species examined showed evidence of a significant horizontal streak-like specialization. cSLO angiography and retinal wholemounts revealed that superficial retinal blood vessels typically ramify and narrow into a sparse capillary net at the border of the respective area located dorsal to the optic nerve. Similar to the macular region, there was an absence of larger blood vessels in the streak region. Furthermore, the thickness of the photoreceptor layer and the population density of neurons in the ganglion cell layer were markedly increased in the visual streak region. Conclusions/Significance The retinal specializations of Gerbillus perpallidus, Meriones unguiculatus and Phodopus campbelli resemble features of the primate macula. Hence, the rodents reported here may serve to study aspects of macular development and diseases like age-related macular degeneration and diabetic macular edema, and the preclinical assessment of therapeutic strategies.
Collapse
Affiliation(s)
- Gesine Huber
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Severin Heynen
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland
| | - Coni Imsand
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland
| | - Franziska vom Hagen
- 5th Medical Department, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Regine Muehlfriedel
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Naoyuki Tanimoto
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Yuxi Feng
- 5th Medical Department, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christian Grimm
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Zurich, Switzerland
| | - Leo Peichl
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Mathias W. Seeliger
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Susanne C. Beck
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
- * E-mail:
| |
Collapse
|
96
|
Aartsen WM, van Cleef KWR, Pellissier LP, Hoek RM, Vos RM, Blits B, Ehlert EME, Balaggan KS, Ali RR, Verhaagen J, Wijnholds J. GFAP-driven GFP expression in activated mouse Müller glial cells aligning retinal blood vessels following intravitreal injection of AAV2/6 vectors. PLoS One 2010; 5:e12387. [PMID: 20808778 PMCID: PMC2927518 DOI: 10.1371/journal.pone.0012387] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 07/27/2010] [Indexed: 12/25/2022] Open
Abstract
Background Müller cell gliosis occurs in various retinal pathologies regardless of the underlying cellular defect. Because activated Müller glial cells span the entire retina and align areas of injury, they are ideal targets for therapeutic strategies, including gene therapy. Methodology/Principal Findings We used adeno-associated viral AAV2/6 vectors to transduce mouse retinas. The transduction pattern of AAV2/6 was investigated by studying expression of the green fluorescent protein (GFP) transgene using scanning-laser ophthalmoscopy and immuno-histochemistry. AAV2/6 vectors transduced mouse Müller glial cells aligning the retinal blood vessels. However, the transduction capacity was hindered by the inner limiting membrane (ILM) and besides Müller glial cells, several other inner retinal cell types were transduced. To obtain Müller glial cell-specific transgene expression, the cytomegalovirus (CMV) promoter was replaced by the glial fibrillary acidic protein (GFAP) promoter. Specificity and activation of the GFAP promoter was tested in a mouse model for retinal gliosis. Mice deficient for Crumbs homologue 1 (CRB1) develop gliosis after light exposure. Light exposure of Crb1−/− retinas transduced with AAV2/6-GFAP-GFP induced GFP expression restricted to activated Müller glial cells aligning retinal blood vessels. Conclusions/Significance Our experiments indicate that AAV2 vectors carrying the GFAP promoter are a promising tool for specific expression of transgenes in activated glial cells.
Collapse
Affiliation(s)
- Wendy M. Aartsen
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Koen W. R. van Cleef
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Lucie P. Pellissier
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Robert M. Hoek
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Rogier M. Vos
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Bas Blits
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Amsterdam Molecular Therapeutics, Amsterdam, The Netherlands
| | - Erich M. E. Ehlert
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Kamaljit S. Balaggan
- Division of Molecular Therapy, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Robin R. Ali
- Division of Molecular Therapy, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Jan Wijnholds
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
97
|
Restoration of cone vision in the CNGA3-/- mouse model of congenital complete lack of cone photoreceptor function. Mol Ther 2010; 18:2057-63. [PMID: 20628362 DOI: 10.1038/mt.2010.149] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Congenital absence of cone photoreceptor function is associated with strongly impaired daylight vision and loss of color discrimination in human achromatopsia. Here, we introduce viral gene replacement therapy as a potential treatment for this disease in the CNGA3(-/-) mouse model. We show that such therapy can restore cone-specific visual processing in the central nervous system even if cone photoreceptors had been nonfunctional from birth. The restoration of cone vision was assessed at different stages along the visual pathway. Treated CNGA3(-/-) mice were able to generate cone photoreceptor responses and to transfer these signals to bipolar cells. In support, we found morphologically that treated cones expressed regular cyclic nucleotide-gated (CNG) channel complexes and opsins in outer segments, which previously they did not. Moreover, expression of CNGA3 normalized cyclic guanosine monophosphate (cGMP) levels in cones, delayed cone cell death and reduced the inflammatory response of Müller glia cells that is typical of retinal degenerations. Furthermore, ganglion cells from treated, but not from untreated, CNGA3(-/-) mice displayed cone-driven, light-evoked, spiking activity, indicating that signals generated in the outer retina are transmitted to the brain. Finally, we demonstrate that this newly acquired sensory information was translated into cone-mediated, vision-guided behavior.
Collapse
|
98
|
Boudard DL, Tanimoto N, Huber G, Beck SC, Seeliger MW, Hicks D. Cone loss is delayed relative to rod loss during induced retinal degeneration in the diurnal cone-rich rodent Arvicanthis ansorgei. Neuroscience 2010; 169:1815-30. [PMID: 20600653 DOI: 10.1016/j.neuroscience.2010.06.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/01/2010] [Accepted: 06/15/2010] [Indexed: 12/27/2022]
Abstract
Cone photoreceptor breakdown underlies functional vision loss in many blinding diseases. Cone loss is often secondary to that of rods, but little experimental data are available on the relationship between the two populations. Because of its high cone numbers, we used the diurnal rodent Arvicanthis ansorgei to explore changes in rod and cone survival and function during chemically-induced retinal degeneration. Adult animals received intraperitoneal injections of N-methyl-N-nitrosourea (MNU), and changes in retinal fundus appearance, histology, phenotype, apoptosis (TUNEL staining) and functionality (scotopic and photopic electroretinography) were monitored as a function of post-treatment time and retinal topography. Relative to control animals injected with vehicle only, MNU-injected animals showed time-, region- and population-specific changes as measured by morphological and immunochemical criteria. Histological (gradual thinning of photoreceptor layer) and phenotypical (reduced immunostaining of rhodopsin and rod transducin, and mid wavelength cone opsin and cone arrestin) modifications were first observed in superior central retina at 11 days post-injection. These degenerative changes spread into the superior peripheral and inferior hemisphere during the following 10 days. Rod loss preceded that of cones as visualized by differential immunolabelling and presence of apoptotic cells in rod but not cone cells. By 3 months post-injection, degeneration of the photoreceptor layer was complete in the superior hemisphere, but only partial in the inferior hemisphere. Despite the persistence of cone photoreceptors, scotopic and photopic electroretinography performed at 90 days post-treatment showed that both rod and cone function were severely compromised. In conclusion, MNU-induced retinal degeneration in Arvicanthis follows a predictable spatial and temporal pattern allowing clear separation of rod- and cone-specific pathogenic mechanisms. Compared to other rodents in which MNU has been used, Arvicanthis ansorgei demonstrates pronounced resistance to photoreceptor cell loss.
Collapse
Affiliation(s)
- D L Boudard
- Department of Neurobiology of Rhythms, CNRS UPR 3212 Institute of Cellular and Integrative Neurosciences, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
99
|
Ho G, Kumar S, Ke Z, Chan HHN, Suhaimi NAM, Kng YL, Zhang Y, Zhuo L. Imidazolium salt (DBZIM) reduces gliosis in mice treated with neurotoxicant 2'-CH(3) -MPTP. CNS Neurosci Ther 2010; 17:148-57. [PMID: 20406246 DOI: 10.1111/j.1755-5949.2009.00131.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have recently identified a class of imidazolium salts (IMSs) with antioxidative property and can function as scavengers for radical oxygen species (ROS) [18]. Here, we investigate one of the IMSs, 1,3-bisbenzylimidazolium bromide (DBZIM), for its possible role in attenuating neurotoxicity and gliosis in the retina and the brain induced by a Parkinsonian neurtoxicant, methyl-4(2'-methylphenyl)-1,2,3,6-tetrahydropyridine (2'-CH(3) -MPTP), which is a free radical generating agent. In this study, we employ a molecular retinal imaging method, which we recently developed in a transgenic mouse model expressing green fluorescent protein (GFP) under the control of glial fibrillary acidic protein (GFAP) promoter [14], to assess the efficacy of DBZIM, since currently no in vitro system with a sufficient complexity is available for accurately assessing a compound's efficacy. The longitudinal imaging results showed DBZIM can effectively suppress the neurotoxicant-induced retinal gliosis. Immunohistochemistry performed on the postmodern mouse brain confirmed that DBZIM also reduced striatal gliosis, and concomitantly attenuated the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). These findings suggest that DBZIM could be a useful small molecular compound for studying neurotoxicity and neuroprotection in the retina and the brain.
Collapse
Affiliation(s)
- Gideon Ho
- Institute of Bioengineering and Nanotechnology, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Prilloff S, Fan J, Henrich-Noack P, Sabel BA. In vivoconfocal neuroimaging (ICON): non-invasive, functional imaging of the mammalian CNS with cellular resolution. Eur J Neurosci 2010; 31:521-8. [DOI: 10.1111/j.1460-9568.2010.07078.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|