51
|
Dichamp J, Barreau C, Guissard C, Carrière A, Martinez Y, Descombes X, Pénicaud L, Rouquette J, Casteilla L, Plouraboué F, Lorsignol A. 3D analysis of the whole subcutaneous adipose tissue reveals a complex spatial network of interconnected lobules with heterogeneous browning ability. Sci Rep 2019; 9:6684. [PMID: 31040317 PMCID: PMC6491608 DOI: 10.1038/s41598-019-43130-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 04/11/2019] [Indexed: 12/11/2022] Open
Abstract
Adipose tissue, as the main energy storage organ and through its endocrine activity, is interconnected with all physiological functions. It plays a fundamental role in energy homeostasis and in the development of metabolic disorders. Up to now, this tissue has been analysed as a pool of different cell types with very little attention paid to the organization and putative partitioning of cells. Considering the absence of a complete picture of the intimate architecture of this large soft tissue, we developed a method that combines tissue clearing, acquisition of autofluorescence or lectin signals by confocal microscopy, segmentation procedures based on contrast enhancement, and a new semi-automatic image analysis process, allowing accurate and quantitative characterization of the whole 3D fat pad organization. This approach revealed the unexpected anatomic complexity of the murine subcutaneous fat pad. Although the classical picture of adipose tissue corresponds to a superposition of simple and small ellipsoidal lobules of adipose cells separated by mesenchymal spans, our results show that segmented lobules display complex 3D poly-lobular shapes. Despite differences in shape and size, the number of these poly-lobular subunits is similar from one fat pad to another. Finally, investigation of the relationships of these subunits between each other revealed a never-described organization in two clusters with distinct molecular signatures and specific vascular and sympathetic nerve densities correlating with different browning abilities. This innovative procedure reveals that subcutaneous adipose tissue exhibits a subtle functional heterogeneity with partitioned areas, and opens new perspectives towards understanding its functioning and plasticity.
Collapse
Affiliation(s)
- Jules Dichamp
- IMFT, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Corinne Barreau
- STROMALab, Université de Toulouse, CNRS ERL 5311, EFS, INP-ENVT, Inserm U1031, UPS, Toulouse, France
| | - Christophe Guissard
- STROMALab, Université de Toulouse, CNRS ERL 5311, EFS, INP-ENVT, Inserm U1031, UPS, Toulouse, France
| | - Audrey Carrière
- STROMALab, Université de Toulouse, CNRS ERL 5311, EFS, INP-ENVT, Inserm U1031, UPS, Toulouse, France
| | | | | | - Luc Pénicaud
- STROMALab, Université de Toulouse, CNRS ERL 5311, EFS, INP-ENVT, Inserm U1031, UPS, Toulouse, France
| | | | - Louis Casteilla
- STROMALab, Université de Toulouse, CNRS ERL 5311, EFS, INP-ENVT, Inserm U1031, UPS, Toulouse, France
| | | | - Anne Lorsignol
- STROMALab, Université de Toulouse, CNRS ERL 5311, EFS, INP-ENVT, Inserm U1031, UPS, Toulouse, France.
| |
Collapse
|
52
|
Cox B, Laporte E, Vennekens A, Kobayashi H, Nys C, Van Zundert I, Uji-I H, Vercauteren Drubbel A, Beck B, Roose H, Boretto M, Vankelecom H. Organoids from pituitary as a novel research model toward pituitary stem cell exploration. J Endocrinol 2019; 240:287-308. [PMID: 30475227 DOI: 10.1530/joe-18-0462] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 11/23/2018] [Indexed: 12/18/2022]
Abstract
The pituitary is the master endocrine gland, harboring stem cells of which the phenotype and role remain poorly characterized. Here, we established organoids from mouse pituitary with the aim to generate a novel research model to study pituitary stem cell biology. The organoids originated from the pituitary cells expressing the stem cell marker SOX2 were long-term expandable, displayed a stemness phenotype during expansive culture and showed specific hormonal differentiation ability, although limited, after subrenal transplantation. Application of the protocol to transgenically injured pituitary harboring an activated stem cell population, resulted in more numerous organoids. Intriguingly, these organoids presented with a cystic morphology, whereas the organoids from undamaged gland were predominantly dense and appeared more limited in expandability. Transcriptomic analysis revealed distinct epithelial phenotypes and showed that cystic organoids more resembled the pituitary phenotype, at least to an immature state, and displayed in vitro differentiation, although yet moderate. Organoid characterization further exposed facets of regulatory pathways of the putative stem cells of the pituitary and advanced new injury-activated markers. Taken together, we established a novel organoid research model revealing new insights into the identity and regulation of the putative pituitary stem cells. This organoid model may eventually lead to an interesting tool to decipher pituitary stem cell biology in both healthy and diseased gland.
Collapse
Affiliation(s)
- Benoit Cox
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, KU Leuven (University of Leuven), Leuven, Belgium
| | - Emma Laporte
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, KU Leuven (University of Leuven), Leuven, Belgium
| | - Annelies Vennekens
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, KU Leuven (University of Leuven), Leuven, Belgium
| | - Hiroto Kobayashi
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, KU Leuven (University of Leuven), Leuven, Belgium
- Department of Anatomy and Structural Science, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Charlotte Nys
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, KU Leuven (University of Leuven), Leuven, Belgium
| | - Indra Van Zundert
- Department of Chemistry, Laboratory of Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium
| | - Hiroshi Uji-I
- Department of Chemistry, Laboratory of Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium
| | | | - Benjamin Beck
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Brussels, Belgium
- WELBIO, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Heleen Roose
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, KU Leuven (University of Leuven), Leuven, Belgium
| | - Matteo Boretto
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, KU Leuven (University of Leuven), Leuven, Belgium
| | - Hugo Vankelecom
- Department of Development and Regeneration, Cluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
53
|
Nussinovitch I. Ca2+ Channels in Anterior Pituitary Somatotrophs: A Therapeutic Perspective. Endocrinology 2018; 159:4043-4055. [PMID: 30395240 DOI: 10.1210/en.2018-00743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/26/2018] [Indexed: 01/18/2023]
Abstract
Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) plays a key role in GH secretion. In this review, we summarize the current state of knowledge regarding the physiology and molecular machinery of VGCCs in pituitary somatotrophs. We next discuss the possible involvement of Ca2+ channelopathies in pituitary disease and the potential use of Ca2+ channel blockers to treat pituitary disease. Various types of VGCCs exist in pituitary cells. However, because L-type Ca2+ channels (LTCCs) contribute the major component to Ca2+ influx in somatotrophs, lactotrophs, and corticotrophs, we focused on these channels. An increasing number of studies in recent years have linked genetic missense mutations in LTCCs to diseases of the human cardiovascular, nervous, and endocrine systems. These disease-associated genetic mutations occur at homologous functional positions (activation gates) in LTCCs. Thus, it is plausible that similar homologous missense mutations in pituitary LTCCs can cause abnormal hormone secretion and underlying pituitary disorders. The existence of LTCCs in pituitary cells opens questions about their sensitivity to dihydropyridines, a group of selective LTCC blockers. The dihydropyridine sensitivity of pituitary cells, as with any other excitable cell, depends primarily on two parameters: the pattern of their electrical activity and the dihydropyridine sensitivity of their LTCC isoforms. These two parameters are discussed in detail in relation to somatotrophs. These discussions are also relevant to lactotrophs and corticotrophs. High dihydropyridine sensitivity may facilitate their use as drugs to treat pituitary oversecretion disorders such as acromegaly, hyperprolactinemia, and Cushing disease.
Collapse
Affiliation(s)
- Itzhak Nussinovitch
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
54
|
Tan X, David A, Day J, Tang H, Dixon ER, Zhu H, Chen YC, Khaing Oo MK, Shikanov A, Fan X. Rapid Mouse Follicle Stimulating Hormone Quantification and Estrus Cycle Analysis Using an Automated Microfluidic Chemiluminescent ELISA System. ACS Sens 2018; 3:2327-2334. [PMID: 30335974 DOI: 10.1021/acssensors.8b00641] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Follicle stimulating hormone (FSH) plays a critical role in female reproductive development and homeostasis. The blood/serum concentration of FSH is an important marker for reporting multiple endocrinal functions. The standardized method for mouse FSH (mFSH) quantification based on radioimmunoassay (RIA) suffers from long assay time (∼2 days), relatively low sensitivity, larger sample volume (60 μL), and small dynamic range (2-60 ng/mL); thus, it is insufficient for monitoring fast developing events with relatively small mFSH fluctuations (e.g., estrous cycles of mammals). Here, we developed an automated microfluidic chemiluminescent ELISA device along with the disposal sensor array and the corresponding detection protocol for rapid and quantitative analysis of mFSH from mouse tail serum samples. With this technology, highly sensitive quantification of mFSH can be accomplished within 30 min using only 8 μL of the serum sample. It is further shown that our technique is able to generate results comparable to RIA but has a significantly improved dynamic range that covers 0.5-250 ng/mL. The performance of this technology was evaluated with blood samples collected from ovariectomized animals and animals with reimplanted ovarian tissues, which restored ovarian endocrine function and correlated with estrus cycle analysis study.
Collapse
Affiliation(s)
- Xiaotian Tan
- Department of Biomedical Engineering, University of Michigan 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Anu David
- Department of Biomedical Engineering, University of Michigan 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - James Day
- Department of Biomedical Engineering, University of Michigan 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Haoyue Tang
- Optofluidic Bioassay, LLC 600 South Wagner Street, Suite 131, Ann Arbor, Michigan 48103, United States
| | - Emily Rose Dixon
- Optofluidic Bioassay, LLC 600 South Wagner Street, Suite 131, Ann Arbor, Michigan 48103, United States
| | - Hongbo Zhu
- Department of Biomedical Engineering, University of Michigan 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Yu-Cheng Chen
- Department of Biomedical Engineering, University of Michigan 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Maung Kyaw Khaing Oo
- Optofluidic Bioassay, LLC 600 South Wagner Street, Suite 131, Ann Arbor, Michigan 48103, United States
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
55
|
Le Tissier P, Fiordelisio Coll T, Mollard P. The Processes of Anterior Pituitary Hormone Pulse Generation. Endocrinology 2018; 159:3524-3535. [PMID: 30020429 DOI: 10.1210/en.2018-00508] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022]
Abstract
More than 60 years ago, Geoffrey Harris described his "neurohumoral theory," in which the regulation of pituitary hormone secretion was a "simple" hierarchal relationship, with the hypothalamus as the controller. In models based on this theory, the electrical activity of hypothalamic neurons determines the release of hypophysiotropic hormones into the portal circulation, and the pituitary simply responds with secretion of a pulse of hormone into the bloodstream. The development of methodologies allowing the monitoring of the activities of members of the hypothalamic-vascular-pituitary unit is increasingly allowing dissection of the mechanisms generating hypothalamic and pituitary pulses. These have revealed that whereas hypothalamic input is required, its role as a driver of pulsatile pituitary hormone secretion varies between pituitary axes. The organization of pituitary cells has a key role in the modification of their response to hypophysiotropic factors that can lead to a memory of previous demand and enhanced function. Feedback can lead to oscillatory hormone output that is independent of pulses of hypophysiotropic factors and instead, results from the temporal relationship between pituitary output and target organ response. Thus, the mechanisms underlying the generation of pulses cannot be generalized, and the circularity of feedforward and feedback interactions must be considered to understand both normal physiological function and pathology. We describe some examples of the clinical implications of recognizing the importance of the pituitary and target organs in pulse generation and suggest avenues for future research in both the short and long term.
Collapse
Affiliation(s)
- Paul Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Tatiana Fiordelisio Coll
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, University of Montpellier, Montpellier, France
- Laboratorio de Neuroendocrinología Comparada, Departamento de Ecología y Recursos Naturales, Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City, Distrito Federal, México
| | - Patrice Mollard
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, University of Montpellier, Montpellier, France
| |
Collapse
|
56
|
Vitale ML, Pelletier RM. The anterior pituitary gap junctions: potential targets for toxicants. Reprod Toxicol 2018; 79:72-78. [PMID: 29906538 DOI: 10.1016/j.reprotox.2018.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 01/16/2023]
Abstract
The anterior pituitary regulates endocrine organs and physiological activities in the body. Environmental pollutants and drugs deleterious to the endocrine system may affect anterior pituitary activity through direct action on anterior pituitary cells. Within the gland, endocrine and folliculostellate cells are organized into and function as individual tridimensional networks, each network regulating its activity by coordinating the connected cells' responses to physiological or pathological cues. The gap junctions connecting endocrine cells and/or folliculostellate cells allow transmission of information among cells that is necessary for adequate network function. Toxicants may affect gap junctions as well as the physiology of the anterior pituitary. However, whether toxicants effects on anterior pituitary hormone secretion involve gap junctions is unknown. The folliculostellate cell gap junctions are sensitive to hormones, cytokines and growth factors. These cells may be an interesting experimental model for evaluating whether toxicants target anterior pituitary gap junctions.
Collapse
Affiliation(s)
- María Leiza Vitale
- Département de pathologie et biologie cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC Canada.
| | - R-Marc Pelletier
- Département de pathologie et biologie cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC Canada
| |
Collapse
|
57
|
Abstract
Endocrine organs secrete a variety of hormones involved in the regulation of a multitude of body functions. Although pancreatic islets were discovered at the turn of the 19th century, other endocrine glands remained commonly described as diffuse endocrine systems. Over the last two decades, development of new imaging techniques and genetically-modified animals with cell-specific fluorescent tags or specific hormone deficiencies have enabled in vivo imaging of endocrine organs and revealed intricate endocrine cell network structures and plasticity. Overall, these new tools have revolutionized our understanding of endocrine function. The overarching aim of this Review is to describe the current mechanistic understanding that has emerged from imaging studies of endocrine cell network structure/function relationships in animal models, with a particular emphasis on the pituitary gland and the endocrine pancreas.
Collapse
Affiliation(s)
- Patrice Mollard
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, F-34094, Montpellier, France
| | - Marie Schaeffer
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, F-34094, Montpellier, France.
| |
Collapse
|
58
|
Fletcher PA, Sherman A, Stojilkovic SS. Common and diverse elements of ion channels and receptors underlying electrical activity in endocrine pituitary cells. Mol Cell Endocrinol 2018; 463:23-36. [PMID: 28652171 PMCID: PMC5742314 DOI: 10.1016/j.mce.2017.06.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 12/30/2022]
Abstract
The pituitary gland contains six types of endocrine cells defined by hormones they secrete: corticotrophs, melanotrophs, gonadotrophs, thyrotrophs, somatotrophs, and lactotrophs. All these cell types are electrically excitable, and voltage-gated calcium influx is the major trigger for their hormone secretion. Along with hormone intracellular content, G-protein-coupled receptor and ion channel expression can also be considered as defining cell type identity. While many aspects of the developmental and activity dependent regulation of hormone and G-protein-coupled receptor expression have been elucidated, much less is known about the regulation of the ion channels needed for excitation-secretion coupling in these cells. We compare the spontaneous and receptor-controlled patterns of electrical signaling among endocrine pituitary cell types, including insights gained from mathematical modeling. We argue that a common set of ionic currents unites these cells, while differential expression of another subset of ionic currents could underlie cell type-specific patterns. We demonstrate these ideas using a generic mathematical model, showing that it reproduces many observed features of pituitary electrical signaling. Mapping these observations to the developmental lineage suggests possible modes of regulation that may give rise to mature pituitary cell types.
Collapse
Affiliation(s)
- Patrick A Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| |
Collapse
|
59
|
Shipston MJ. Control of anterior pituitary cell excitability by calcium-activated potassium channels. Mol Cell Endocrinol 2018; 463:37-48. [PMID: 28596131 DOI: 10.1016/j.mce.2017.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 01/01/2023]
Abstract
In anterior pituitary endocrine cells, large (BK), small (SK) and intermediate (IK) conductance calcium activated potassium channels are key determinants in shaping cellular excitability in a cell type- and context-specific manner. Indeed, these channels are targeted by multiple signaling pathways that stimulate or inhibit cellular excitability. BK channels can, paradoxically, both promote electrical bursting as well as terminate bursting and spiking dependent upon intrinsic BK channel properties and proximity to voltage gated calcium channels in somatotrophs, lactotrophs and corticotrophs. In contrast, SK channels are predominantly activated by calcium released from intracellular IP3-sensitive calcium stores and mediate membrane hyperpolarization in cells including gonadotrophs and corticotrophs. IK channels are predominantly expressed in corticotrophs where they limit membrane excitability. A major challenge for the future is to determine the cell-type specific molecular composition of calcium-activated potassium channels and how they control anterior pituitary hormone secretion as well as other calcium-dependent processes.
Collapse
Affiliation(s)
- Michael J Shipston
- Centre for Integrative Physiology, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, EH89XD, UK.
| |
Collapse
|
60
|
Zemková H, Stojilkovic SS. Neurotransmitter receptors as signaling platforms in anterior pituitary cells. Mol Cell Endocrinol 2018; 463:49-64. [PMID: 28684290 PMCID: PMC5752632 DOI: 10.1016/j.mce.2017.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 02/07/2023]
Abstract
The functions of anterior pituitary cells are controlled by two major groups of hypothalamic and intrapituitary ligands: one exclusively acts on G protein-coupled receptors and the other activates both G protein-coupled receptors and ligand-gated receptor channels. The second group of ligands operates as neurotransmitters in neuronal cells and their receptors are termed as neurotransmitter receptors. Most information about pituitary neurotransmitter receptors was obtained from secretory studies, RT-PCR analyses of mRNA expression and immunohistochemical and biochemical analyses, all of which were performed using a mixed population of pituitary cells. However, recent electrophysiological and imaging experiments have characterized γ-aminobutyric acid-, acetylcholine-, and ATP-activated receptors and channels in single pituitary cell types, expanding this picture and revealing surprising differences in their expression between subtypes of secretory cells and between native and immortalized pituitary cells. The main focus of this review is on the electrophysiological and pharmacological properties of these receptors and their roles in calcium signaling and calcium-controlled hormone secretion.
Collapse
Affiliation(s)
- Hana Zemková
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology, ASCR, Prague, Czech Republic.
| | - Stanko S Stojilkovic
- Sections on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| |
Collapse
|
61
|
Götz V, Qiao S, Beck A, Boehm U. Transient receptor potential (TRP) channel function in the reproductive axis. Cell Calcium 2017; 67:138-147. [DOI: 10.1016/j.ceca.2017.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
|
62
|
Lara-Velazquez M, Akinduro OO, Reimer R, Woodmansee WW, Quinones-Hinojosa A. Stem cell therapy and its potential role in pituitary disorders. Curr Opin Endocrinol Diabetes Obes 2017; 24:292-300. [PMID: 28520591 DOI: 10.1097/med.0000000000000346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW The pituitary gland is one of the key components of the endocrine system. Congenital or acquired alterations can mediate destruction of cells in the gland leading to hormonal dysfunction. Even though pharmacological treatment for pituitary disorders is available, exogenous hormone replacement is neither curative nor sustainable. Thus, alternative therapies to optimize management and improve quality of life are desired. RECENT FINDINGS An alternative modality to re-establish pituitary function is to promote endocrine cell regeneration through stem cells that can be obtained from the pituitary parenchyma or pluripotent cells. Stem cell therapy has been successfully applied to a plethora of other disorders, and is a promising alternative to hormonal supplementation for resumption of normal hormone homeostasis. SUMMARY In this review, we describe the common causes for pituitary deficiencies and the advances in cellular therapy to restore the physiological pituitary function.
Collapse
Affiliation(s)
- Montserrat Lara-Velazquez
- aDepartment of Neurological Surgery, Mayo Clinic, Florida bNational Autonomous University of Mexico, PECEM, Mexico cDepartment of Endocrinology, Mayo Clinic, Florida, USA
| | | | | | | | | |
Collapse
|
63
|
Le Tissier P, Campos P, Lafont C, Romanò N, Hodson DJ, Mollard P. An updated view of hypothalamic-vascular-pituitary unit function and plasticity. Nat Rev Endocrinol 2017; 13:257-267. [PMID: 27934864 DOI: 10.1038/nrendo.2016.193] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The discoveries of novel functional adaptations of the hypothalamus and anterior pituitary gland for physiological regulation have transformed our understanding of their interaction. The activity of a small proportion of hypothalamic neurons can control complex hormonal signalling, which is disconnected from a simple stimulus and the subsequent hormone secretion relationship and is dependent on physiological status. The interrelationship of the terminals of hypothalamic neurons and pituitary cells with the vasculature has an important role in determining the pattern of neurohormone exposure. Cells in the pituitary gland form networks with distinct organizational motifs that are related to the duration and pattern of output, and modifications of these networks occur in different physiological states, can persist after cessation of demand and result in enhanced function. Consequently, the hypothalamus and pituitary can no longer be considered as having a simple stratified relationship: with the vasculature they form a tripartite system, which must function in concert for appropriate hypothalamic regulation of physiological processes, such as reproduction. An improved understanding of the mechanisms underlying these regulatory features has implications for current and future therapies that correct defects in hypothalamic-pituitary axes. In addition, recapitulating proper network organization will be an important challenge for regenerative stem cell treatment.
Collapse
Affiliation(s)
- Paul Le Tissier
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - Pauline Campos
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, rue de la Cardonille, F-34000 Montpellier, France
- INSERM, U661, rue de la Cardonille, F-34000 Montpellier, France
- Université de Montpellier, rue de la Cardonille, UMR-5203, F-34000 Montpellier, France
| | - Chrystel Lafont
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, rue de la Cardonille, F-34000 Montpellier, France
- INSERM, U661, rue de la Cardonille, F-34000 Montpellier, France
- Université de Montpellier, rue de la Cardonille, UMR-5203, F-34000 Montpellier, France
| | - Nicola Romanò
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Edgbaston, B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TH, UK
| | - Patrice Mollard
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique Fonctionnelle, rue de la Cardonille, F-34000 Montpellier, France
- INSERM, U661, rue de la Cardonille, F-34000 Montpellier, France
- Université de Montpellier, rue de la Cardonille, UMR-5203, F-34000 Montpellier, France
| |
Collapse
|
64
|
Meda P. Gap junction proteins are key drivers of endocrine function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:124-140. [PMID: 28284720 DOI: 10.1016/j.bbamem.2017.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/07/2023]
Abstract
It has long been known that the main secretory cells of exocrine and endocrine glands are connected by gap junctions, made by a variety of connexin species that ensure their electrical and metabolic coupling. Experiments in culture systems and animal models have since provided increasing evidence that connexin signaling contributes to control the biosynthesis and release of secretory products, as well as to the life and death of secretory cells. More recently, genetic studies have further provided the first lines of evidence that connexins also control the function of human glands, which are central to the pathogenesis of major endocrine diseases. Here, we summarize the recent information gathered on connexin signaling in these systems, since the last reviews on the topic, with particular regard to the pancreatic beta cells which produce insulin, and the renal cells which produce renin. These cells are keys to the development of various forms of diabetes and hypertension, respectively, and combine to account for the exploding, worldwide prevalence of the metabolic syndrome. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Switzerland.
| |
Collapse
|
65
|
Fletcher PA, Zemkova H, Stojilkovic SS, Sherman A. Modeling the diversity of spontaneous and agonist-induced electrical activity in anterior pituitary corticotrophs. J Neurophysiol 2017; 117:2298-2311. [PMID: 28228586 DOI: 10.1152/jn.00948.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/08/2017] [Accepted: 02/21/2017] [Indexed: 01/10/2023] Open
Abstract
Pituitary corticotrophs fire action potentials spontaneously and in response to stimulation with corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP), and such electrical activity is critical for calcium signaling and calcium-dependent adrenocorticotropic hormone secretion. These cells typically fire tall, sharp action potentials when spontaneously active, but a variety of other spontaneous patterns have also been reported, including various modes of bursting. There is variability in reports of the fraction of corticotrophs that are electrically active, as well as their patterns of activity, and the sources of this variation are not well understood. The ionic mechanisms responsible for CRH- and AVP-triggered electrical activity in corticotrophs are also poorly characterized. We use electrophysiological measurements and mathematical modeling to investigate possible sources of variability in patterns of spontaneous and agonist-induced corticotroph electrical activity. In the model, variation in as few as two parameters can give rise to many of the types of patterns observed in electrophysiological recordings of corticotrophs. We compare the known mechanisms for CRH, AVP, and glucocorticoid actions and find that different ionic mechanisms can contribute in different but complementary ways to generate the complex time courses of CRH and AVP responses. In summary, our modeling suggests that corticotrophs have several mechanisms at their disposal to achieve their primary function of pacemaking depolarization and increased electrical activity in response to CRH and AVP.NEW & NOTEWORTHY We and others recently demonstrated that the electrical activity and calcium dynamics of corticotrophs are strikingly diverse, both spontaneously and in response to the agonists CRH and AVP. Here we demonstrate this diversity with electrophysiological measurements and use mathematical modeling to investigate its possible sources. We compare the known mechanisms of agonist-induced activity in the model, showing how the context of ionic conductances dictates the effects of agonists even when their target is fixed.
Collapse
Affiliation(s)
- Patrick A Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland;
| | - Hana Zemkova
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic; and.,Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
66
|
Multiple-scale neuroendocrine signals connect brain and pituitary hormone rhythms. Proc Natl Acad Sci U S A 2017; 114:2379-2382. [PMID: 28193889 DOI: 10.1073/pnas.1616864114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Small assemblies of hypothalamic "parvocellular" neurons release their neuroendocrine signals at the median eminence (ME) to control long-lasting pituitary hormone rhythms essential for homeostasis. How such rapid hypothalamic neurotransmission leads to slowly evolving hormonal signals remains unknown. Here, we show that the temporal organization of dopamine (DA) release events in freely behaving animals relies on a set of characteristic features that are adapted to the dynamic dopaminergic control of pituitary prolactin secretion, a key reproductive hormone. First, locally generated DA release signals are organized over more than four orders of magnitude (0.001 Hz-10 Hz). Second, these DA events are finely tuned within and between frequency domains as building blocks that recur over days to weeks. Third, an integration time window is detected across the ME and consists of high-frequency DA discharges that are coordinated within the minutes range. Thus, a hierarchical combination of time-scaled neuroendocrine signals displays local-global integration to connect brain-pituitary rhythms and pace hormone secretion.
Collapse
|
67
|
Edwards BS, Clay CM, Ellsworth BS, Navratil AM. Functional Role of Gonadotrope Plasticity and Network Organization. Front Endocrinol (Lausanne) 2017; 8:223. [PMID: 28936197 PMCID: PMC5595155 DOI: 10.3389/fendo.2017.00223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/16/2017] [Indexed: 11/18/2022] Open
Abstract
Gonadotrope cells of the anterior pituitary are characterized by their ability to mount a cyclical pattern of gonadotropin secretion to regulate gonadal function and fertility. Recent in vitro and in vivo evidence suggests that gonadotropes exhibit dramatic remodeling of the actin cytoskeleton following gonadotropin-releasing hormone (GnRH) exposure. GnRH engagement of actin is critical for gonadotrope function on multiple levels. First, GnRH-induced cell movements lead to spatial repositioning of the in vivo gonadotrope network toward vascular endothelium, presumably to access the bloodstream for effective hormone release. Interestingly, these plasticity changes can be modified depending on the physiological status of the organism. Additionally, GnRH-induced actin assembly appears to be fundamental to gonadotrope signaling at the level of extracellular signal-regulated kinase (ERK) activation, which is a well-known regulator of luteinizing hormone (LH) β-subunit synthesis. Last, GnRH-induced cell membrane projections are capable of concentrating LHβ-containing vesicles and disruption of the actin cytoskeleton reduces LH secretion. Taken together, gonadotrope network positioning and LH synthesis and secretion are linked to GnRH engagement of the actin cytoskeleton. In this review, we will cover the dynamics and organization of the in vivo gonadotrope cell network and the mechanisms of GnRH-induced actin-remodeling events important in ERK activation and subsequently hormone secretion.
Collapse
Affiliation(s)
- Brian S. Edwards
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Colin M. Clay
- Department of Biomedical Science, Colorado State University, Fort Collins, CO, United States
| | - Buffy S. Ellsworth
- Department of Physiology, Southern Illinois University Carbondale, Carbondale, IL, United States
| | - Amy M. Navratil
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
- *Correspondence: Amy M. Navratil,
| |
Collapse
|
68
|
Stallings CE, Kapali J, Ellsworth BS. Mouse Models of Gonadotrope Development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:1-48. [PMID: 27697200 DOI: 10.1016/bs.pmbts.2016.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pituitary gonadotrope is central to reproductive function. Gonadotropes develop in a systematic process dependent on signaling factors secreted from surrounding tissues and those produced within the pituitary gland itself. These signaling pathways are important for stimulating specific transcription factors that ultimately regulate the expression of genes and define gonadotrope identity. Proper gonadotrope development and ultimately gonadotrope function are essential for normal sexual maturation and fertility. Understanding the mechanisms governing differentiation programs of gonadotropes is important to improve treatment and molecular diagnoses for patients with gonadotrope abnormalities. Much of what is known about gonadotrope development has been elucidated from mouse models in which important factors contributing to gonadotrope development and function have been deleted, ectopically expressed, or modified. This chapter will focus on many of these mouse models and their contribution to our current understanding of gonadotrope development.
Collapse
Affiliation(s)
- C E Stallings
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States
| | - J Kapali
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States
| | - B S Ellsworth
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States.
| |
Collapse
|
69
|
Vaca AM, Guido CB, Sosa LDV, Nicola JP, Mukdsi J, Petiti JP, Torres AI. The expansion of adult stem/progenitor cells and their marker expression fluctuations are linked with pituitary plastic adaptation during gestation and lactancy. Am J Physiol Endocrinol Metab 2016; 311:E367-79. [PMID: 27302752 DOI: 10.1152/ajpendo.00077.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
Abstract
Extensive evidence has revealed variations in the number of hormone-producing cells in the pituitary gland, which occur under physiological conditions such as gestation and lactancy. It has been proposed that new hormone-producing cells differentiate from stem cells. However, exactly how and when this takes place is not clear. In this work, we used immunoelectron microscopy to identify adult pituitary stem/progenitor cells (SC/P) localized in the marginal zone (MZ), and additionally, we detected GFRa2-, Sox2-, and Sox9-positive cells in the adenoparenchyma (AP) by fluorescence microscopy. Then, we evaluated fluctuations of SC/P mRNA and protein level markers in MZ and AP during gestation and lactancy. An upregulation in stemness markers was shown at term of gestation (AT) in MZ, whereas there were more progenitor cell markers in the middle of gestation and active lactancy. Concerning committed cell markers, we detected a rise in AP at beginning of lactancy (d1L). We performed a BrdU uptake analysis in MZ and AP cells. The highest level of BrdU uptake was observed in MZ AT cells, whereas in AP this was detected in d1L, followed by a decrease in both the MZ and AP. Finally, we detected double immunostaining for BrdU-GFRa2 in MZ AT cells and BrdU-Sox9 in the AP d1L cells. Taken together, we hypothesize that the expansion of the SC/P niche took place mainly in MZ from pituitary rats in AT and d1L. These results suggest that the SC niche actively participates in pituitary plasticity during these reproductive states, contributing to the origin of hormone cell populations.
Collapse
Affiliation(s)
- Alicia Maldré Vaca
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre Esq. Enrique Barros, Ciudad Universitaria, Córdoba, Argentina; and
| | - Carolina Beatriz Guido
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre Esq. Enrique Barros, Ciudad Universitaria, Córdoba, Argentina; and
| | - Liliana Del Valle Sosa
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre Esq. Enrique Barros, Ciudad Universitaria, Córdoba, Argentina; and
| | - Juan Pablo Nicola
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Centro de Investigaciones en Bioquímica Clínica e Inmunología-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Jorge Mukdsi
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre Esq. Enrique Barros, Ciudad Universitaria, Córdoba, Argentina; and
| | - Juan Pablo Petiti
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre Esq. Enrique Barros, Ciudad Universitaria, Córdoba, Argentina; and
| | - Alicia Ines Torres
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre Esq. Enrique Barros, Ciudad Universitaria, Córdoba, Argentina; and
| |
Collapse
|
70
|
Tsukada T, Azuma M, Horiguchi K, Fujiwara K, Kouki T, Kikuchi M, Yashiro T. Folliculostellate cell interacts with pericyte via TGFβ2 in rat anterior pituitary. J Endocrinol 2016; 229:159-70. [PMID: 26957638 DOI: 10.1530/joe-16-0033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 12/14/2022]
Abstract
The anterior pituitary gland comprises five types of endocrine cells plus non-endocrine cells including folliculostellate cells, endothelial cells, and capillary mural cells (pericytes). In addition to being controlled by the hypothalamic-pituitary-target organ axis, the functions of these cells are likely regulated by local cell and extracellular matrix (ECM) interactions. However, these complex interactions are not fully understood. We investigated folliculostellate cell-mediated cell-to-cell interaction. Using S100β-GFP transgenic rats, which express GFP in folliculostellate cells, we designed a three-dimensional cell culture to examine the effects of folliculostellate cells. Interestingly, removal of folliculostellate cells reduced collagen synthesis (Col1a1 and Col3a1). Because pericytes are important collagen-producing cells in the gland, we stained for desmin (a pericyte marker). Removal of folliculostellate cells resulted in fewer desmin-positive pericytes and less desmin mRNA. We then attempted to identify the factor mediating folliculostellate cell-pericyte interaction. RT-PCR and in situ hybridization revealed that the important profibrotic factor transforming growth factor beta-2 (TGFβ2) was specifically expressed in folliculostellate cells and that TGFβ receptor II was expressed in pericytes, endothelial cells, and parenchymal cells. Immunocytochemistry showed that TGFβ2 induced SMAD2 nuclear translocation in pericytes. TGFβ2 increased collagen synthesis in a dose-dependent manner. This action was completely blocked by TGFβ receptor I inhibitor (SB431542). Diminished collagen synthesis in folliculostellate cell-deficient cell aggregates was partially recovered by TGFβ2. TGFβ2-mediated folliculostellate cell-pericyte interaction appears to be essential for collagen synthesis in rat anterior pituitary. This finding sheds new light on local cell-ECM interactions in the gland.
Collapse
Affiliation(s)
- Takehiro Tsukada
- Division of Histology and Cell BiologyDepartment of Anatomy, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Morio Azuma
- Division of Histology and Cell BiologyDepartment of Anatomy, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Kotaro Horiguchi
- Laboratory of Anatomy and Cell BiologyDepartment of Health Sciences, Kyorin University, Tokyo, Japan
| | - Ken Fujiwara
- Division of Histology and Cell BiologyDepartment of Anatomy, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Tom Kouki
- Division of Histology and Cell BiologyDepartment of Anatomy, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Motoshi Kikuchi
- Laboratory of Natural HistoryJichi Medical University School of Medicine, Tochigi, Japan
| | - Takashi Yashiro
- Division of Histology and Cell BiologyDepartment of Anatomy, Jichi Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
71
|
Eckstrum KS, Weis KE, Baur NG, Yoshihara Y, Raetzman LT. Icam5 Expression Exhibits Sex Differences in the Neonatal Pituitary and Is Regulated by Estradiol and Bisphenol A. Endocrinology 2016; 157:1408-20. [PMID: 26789235 PMCID: PMC4816737 DOI: 10.1210/en.2015-1521] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endocrine-disrupting chemicals are prevalent in the environment and can impair reproductive success by affecting the hypothalamic-pituitary-gonadal axis. The developing pituitary gland is sensitive to exposure to endocrine-disrupting chemicals, such as bisphenol A (BPA), and sex-specific effects can occur. However, effects on the critical window of neonatal pituitary gland development in mice have not been explored. Therefore, this study determined baseline gene expression in male and female pituitaries and consequences of environmental exposure to 17β-estradiol (E2) and BPA on transcription of genes exhibiting sex differences during the neonatal period. Through microarray and quantitative RT-PCR analysis of pituitaries at postnatal day (PND)1, 3 genes were differentially expressed between males and females: Lhb, Fshb, and intracellular adhesion molecule-5 (Icam5). To see whether E2 and BPA exposure regulates these genes, pituitaries were cultured at PND1 with 10(-8) M E2 or 4.4 × 10(-6) M BPA. E2 decreased expression of Lhb, Fshb, and Icam5 mRNA in females but only significantly decreased expression of Icam5 in males. BPA decreased expression of Icam5 similarly to E2, but it did not affect Lhb or Fshb. Importantly, in vivo exposure to 50-μg/kg · d E2 from PND0 to PND7 decreased expression of Lhb, Fshb, and Icam5 mRNA in both males and females, whereas 50-mg/kg · d BPA exposure during the same time frame decreased expression of Icam5 in females only. Overall, we have uncovered that genes differentially expressed between the sexes can be regulated in part by hormonal and chemical signals in vivo and directly at the pituitary and can be regulated in a sex-specific manner.
Collapse
Affiliation(s)
- Kirsten S Eckstrum
- Department of Molecular and Integrative Physiology (K.S.E., K.E.W., N.G.B., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and RIKEN Brain Science Institute (Y.Y.), Wako, Saitama 351-0198, Japan
| | - Karen E Weis
- Department of Molecular and Integrative Physiology (K.S.E., K.E.W., N.G.B., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and RIKEN Brain Science Institute (Y.Y.), Wako, Saitama 351-0198, Japan
| | - Nicholas G Baur
- Department of Molecular and Integrative Physiology (K.S.E., K.E.W., N.G.B., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and RIKEN Brain Science Institute (Y.Y.), Wako, Saitama 351-0198, Japan
| | - Yoshihiro Yoshihara
- Department of Molecular and Integrative Physiology (K.S.E., K.E.W., N.G.B., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and RIKEN Brain Science Institute (Y.Y.), Wako, Saitama 351-0198, Japan
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology (K.S.E., K.E.W., N.G.B., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and RIKEN Brain Science Institute (Y.Y.), Wako, Saitama 351-0198, Japan
| |
Collapse
|
72
|
Le Tissier PR, Mollard P. Bisphenol A Effects on Gonadotroph Function: Disruption of Pituitary Cell-Cell Communication? Endocrinology 2016; 157:1324-5. [PMID: 27035770 DOI: 10.1210/en.2016-1117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Paul R Le Tissier
- Centre for Integrative Physiology (P.R.L.T.), University of Edinburgh, Edinburgh, Scotland, EH8 9XD, United Kingdom; and Centre national de la recherche scientifique (CNRS) Unité Mixte de Recherches (UMR)-5203, Institut de Génomique Fonctionnelle; and Inserm Unité 1191; and University of Montpellier, UMR-5203 (P.M.), Montpellier F-34094, France
| | - Patrice Mollard
- Centre for Integrative Physiology (P.R.L.T.), University of Edinburgh, Edinburgh, Scotland, EH8 9XD, United Kingdom; and Centre national de la recherche scientifique (CNRS) Unité Mixte de Recherches (UMR)-5203, Institut de Génomique Fonctionnelle; and Inserm Unité 1191; and University of Montpellier, UMR-5203 (P.M.), Montpellier F-34094, France
| |
Collapse
|
73
|
Duncan PJ, Shipston MJ. BK Channels and the Control of the Pituitary. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:343-68. [PMID: 27238268 DOI: 10.1016/bs.irn.2016.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The pituitary gland provides the important link between the nervous system and the endocrine system and regulates a diverse range of physiological functions. The pituitary is connected to the hypothalamus by the pituitary stalk and is comprised primarily of two lobes. The anterior lobe consists of five hormone-secreting cell types which are electrically excitable and display single-spike action potentials as well as complex bursting patterns. Bursting is of particular interest as it raises intracellular calcium to a greater extent than spiking and is believed to underlie secretagogue-induced hormone secretion. BK channels have been identified as a key regulator of bursting in anterior pituitary cells. Experimental data and mathematical modeling have demonstrated that BK activation during the upstroke of an action potential results in a prolonged depolarization and an increase in intracellular calcium. In contrast, the posterior lobe is primarily composed of axonal projections of magnocellular neurosecretory cells which extend from the supraoptic and paraventricular nuclei of the hypothalamus. In these neuroendocrine cells, BK channel activation results in a decrease in excitability and hormone secretion. The opposite effect of BK channels in the anterior and posterior pituitary highlights the diverse role of BK channels in regulating the activity of excitable cells. Further studies of pituitary cell excitability and the specific role of BK channels would lead to a greater understanding of how pituitary cell excitability is regulated by both hypothalamic secretagogues and negative feedback loops, and could ultimately lead to novel treatments to pituitary-related disorders.
Collapse
Affiliation(s)
- P J Duncan
- Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| | - M J Shipston
- Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
74
|
Steyn FJ, Tolle V, Chen C, Epelbaum J. Neuroendocrine Regulation of Growth Hormone Secretion. Compr Physiol 2016; 6:687-735. [PMID: 27065166 DOI: 10.1002/cphy.c150002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article reviews the main findings that emerged in the intervening years since the previous volume on hormonal control of growth in the section on the endocrine system of the Handbook of Physiology concerning the intra- and extrahypothalamic neuronal networks connecting growth hormone releasing hormone (GHRH) and somatostatin hypophysiotropic neurons and the integration between regulators of food intake/metabolism and GH release. Among these findings, the discovery of ghrelin still raises many unanswered questions. One important event was the application of deconvolution analysis to the pulsatile patterns of GH secretion in different mammalian species, including Man, according to gender, hormonal environment and ageing. Concerning this last phenomenon, a great body of evidence now supports the role of an attenuation of the GHRH/GH/Insulin-like growth factor-1 (IGF-1) axis in the control of mammalian aging.
Collapse
Affiliation(s)
- Frederik J Steyn
- University of Queensland Centre for Clinical Research and the School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Virginie Tolle
- Unité Mixte de Recherche en Santé 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Jacques Epelbaum
- University of Queensland Centre for Clinical Research and the School of Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
75
|
Magri ML, Gottardo MF, Zárate S, Eijo G, Ferraris J, Jaita G, Ayala MM, Candolfi M, Pisera D, Seilicovich A. Opposite effects of dihydrotestosterone and estradiol on apoptosis in the anterior pituitary gland from male rats. Endocrine 2016; 51:506-16. [PMID: 26296379 DOI: 10.1007/s12020-015-0719-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/08/2015] [Indexed: 12/22/2022]
Abstract
Hormones locally synthesized in the anterior pituitary gland are involved in regulation of pituitary cell renewal. In the pituitary, testosterone (T) may exert its actions per se or by conversion to dihydrotestosterone (DHT) or 17β-estradiol (E2) by 5α-reductase and aromatase activity, which are expressed in this gland. Previous reports from our laboratory showed that estrogens modulate apoptosis of lactotropes and somatotropes from female rats. Now, we examined the in vitro and in vivo effects of gonadal steroids on apoptosis of anterior pituitary cells from adult male rats. T in vitro did not modify apoptosis in anterior pituitary cells from gonadectomized (GNX) male rats. DHT, a non-aromatizable androgen, exerted direct antiapoptotic action on total anterior pituitary cells and folliculo-stellate cells, but not on lactotropes, somatotropes, or gonadotropes. On the contrary, E2 exerted a rapid apoptotic effect on total cells as well as on lactotropes and somatotropes. Incubation of anterior pituitary cells with T in presence of Finasteride, an inhibitor of 5α-reductase, increased the percentage of TUNEL-positive cells. In vivo administration of DHT to GNX rats reduced apoptosis in the anterior pituitary whereas E2 exerted proapoptotic action and reduced cells in G2/M-phase of the cell cycle. In summary, our results indicate that DHT and E2 have opposite effects on apoptosis in the anterior pituitary gland suggesting that local metabolization of T to these steroids could be involved in pituitary cell turnover in males. Changes in expression and/or activity of 5α-reductase and aromatase may play a role in the development of anterior pituitary tumors.
Collapse
Affiliation(s)
- María Laura Magri
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - María Florencia Gottardo
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Sandra Zárate
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Guadalupe Eijo
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Jimena Ferraris
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Gabriela Jaita
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Mariela Moreno Ayala
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Daniel Pisera
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Paraguay 2155, C1121ABG, Buenos Aires, Argentina.
| |
Collapse
|
76
|
Willems C, Fu Q, Roose H, Mertens F, Cox B, Chen J, Vankelecom H. Regeneration in the Pituitary After Cell-Ablation Injury: Time-Related Aspects and Molecular Analysis. Endocrinology 2016; 157:705-21. [PMID: 26653762 DOI: 10.1210/en.2015-1741] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We recently showed that the mouse pituitary holds regenerative competence. Young-adult GHCre/iDTR mice, expressing diphtheria toxin (DT) receptor in GH-producing cells, regenerate the GH(+) cells, as ablated by 3-day DT treatment (3DT), up to 60% after 5 months. The pituitary's stem cells participate in this restoration process. Here, we characterized this regenerative capacity in relation to age and recovery period and started to search for underlying molecular mechanisms. Extending the recovery period (up to 19 mo) does not result in higher regeneration levels. In addition, the regenerative competence disappears at older age, coinciding with a reduction in pituitary stem cell number and fitness. Surprisingly, prolonging DT treatment of young-adult mice to 10 days (10DT) completely blocks the regeneration, although the stem cell compartment still reacts by promptly expanding, and retains in vitro stem cell functionality. To obtain a first broad view on molecular grounds underlying reparative capacity and/or failure, the stem cell-clustering side population was analyzed by whole-genome expression analysis. A number of stemness factors and components of embryonic, epithelial-mesenchymal transition, growth factor and Hippo pathways are higher expressed in the stem cell-clustering side population of the regenerating pituitary (after 3DT) when compared with the basal gland and to the nonregenerating pituitary (after 10DT). Together, the regenerative capacity of the pituitary is limited both in age-related terms and final efficacy, and appears to rely on stem cell-associated pathway activation. Dissection of the molecular profiles may eventually identify targets to induce or boost regeneration in situations of (injury-related) pituitary deficiency.
Collapse
Affiliation(s)
- Christophe Willems
- Department of Development and Regeneration (C.W., Q.F., H.R., F.M., B.C., J.C., H.V.), Cluster Stem Cell Biology and Embryology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven 3000, Belgium; Eye Center (Q.F.), Second Affiliated Hospital, School of Medicine, Zhejiang University, and Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou 310009, China; and Department of Hand Surgery (J.C.), Tongji Medical College, Union Hospital, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430022, China
| | - Qiuli Fu
- Department of Development and Regeneration (C.W., Q.F., H.R., F.M., B.C., J.C., H.V.), Cluster Stem Cell Biology and Embryology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven 3000, Belgium; Eye Center (Q.F.), Second Affiliated Hospital, School of Medicine, Zhejiang University, and Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou 310009, China; and Department of Hand Surgery (J.C.), Tongji Medical College, Union Hospital, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430022, China
| | - Heleen Roose
- Department of Development and Regeneration (C.W., Q.F., H.R., F.M., B.C., J.C., H.V.), Cluster Stem Cell Biology and Embryology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven 3000, Belgium; Eye Center (Q.F.), Second Affiliated Hospital, School of Medicine, Zhejiang University, and Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou 310009, China; and Department of Hand Surgery (J.C.), Tongji Medical College, Union Hospital, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430022, China
| | - Freya Mertens
- Department of Development and Regeneration (C.W., Q.F., H.R., F.M., B.C., J.C., H.V.), Cluster Stem Cell Biology and Embryology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven 3000, Belgium; Eye Center (Q.F.), Second Affiliated Hospital, School of Medicine, Zhejiang University, and Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou 310009, China; and Department of Hand Surgery (J.C.), Tongji Medical College, Union Hospital, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430022, China
| | - Benoit Cox
- Department of Development and Regeneration (C.W., Q.F., H.R., F.M., B.C., J.C., H.V.), Cluster Stem Cell Biology and Embryology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven 3000, Belgium; Eye Center (Q.F.), Second Affiliated Hospital, School of Medicine, Zhejiang University, and Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou 310009, China; and Department of Hand Surgery (J.C.), Tongji Medical College, Union Hospital, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430022, China
| | - Jianghai Chen
- Department of Development and Regeneration (C.W., Q.F., H.R., F.M., B.C., J.C., H.V.), Cluster Stem Cell Biology and Embryology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven 3000, Belgium; Eye Center (Q.F.), Second Affiliated Hospital, School of Medicine, Zhejiang University, and Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou 310009, China; and Department of Hand Surgery (J.C.), Tongji Medical College, Union Hospital, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430022, China
| | - Hugo Vankelecom
- Department of Development and Regeneration (C.W., Q.F., H.R., F.M., B.C., J.C., H.V.), Cluster Stem Cell Biology and Embryology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven 3000, Belgium; Eye Center (Q.F.), Second Affiliated Hospital, School of Medicine, Zhejiang University, and Key Laboratory of Ophthalmology of Zhejiang Province, Hangzhou 310009, China; and Department of Hand Surgery (J.C.), Tongji Medical College, Union Hospital, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430022, China
| |
Collapse
|
77
|
Chauvet N, Romanò N, Meunier AC, Galibert E, Fontanaud P, Mathieu MN, Osterstock G, Osterstock P, Baccino E, Rigau V, Loiseau H, Bouillot-Eimer S, Barlier A, Mollard P, Coutry N. Combining Cadherin Expression with Molecular Markers Discriminates Invasiveness in Growth Hormone and Prolactin Pituitary Adenomas. J Neuroendocrinol 2016; 28:12352. [PMID: 26686489 DOI: 10.1111/jne.12352] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/24/2015] [Accepted: 12/15/2015] [Indexed: 01/06/2023]
Abstract
Although growth hormone (GH)- and prolactin (PRL)-secreting pituitary adenomas are considered benign, in many patients, tumour growth and/or invasion constitute a particular challenge. In other tumours, progression relies in part on dysfunction of intercellular adhesion mediated by the large family of cadherins. In the present study, we have explored the contribution of cadherins in GH and PRL adenoma pathogenesis, and evaluated whether this class of adherence molecules was related to tumour invasiveness. We have first established, by quantitative polymerase chain reaction and immunohistochemistry, the expression profile of classical cadherins in the normal human pituitary gland. We show that the cadherin repertoire is restricted and cell-type specific. Somatotrophs and lactotrophs express mainly E-cadherin and cadherin 18, whereas N-cadherin is present in the other endocrine cell types. This repertoire undergoes major differential modification in GH and PRL tumours: E-cadherin is significantly reduced in invasive GH adenomas, and this loss is associated with a cytoplasmic relocalisation of cadherin 18 and catenins. In invasive prolactinomas, E-cadherin distribution is altered and is accompanied by a mislocalisation of cadherin 18, β-catenin and p120 catenin. Strikingly, de novo expression of N-cadherin is present in a subset of adenomas and cells exhibit a mesenchymal phenotype exclusively in invasive tumours. Binary tree analysis, performed by combining the cadherin repertoire with the expression of a subset of known molecular markers, shows that cadherin/catenin complexes play a significant role in discrimination of tumour invasion.
Collapse
Affiliation(s)
- N Chauvet
- UMR-5203, CNRS, Institut de Génomique Fonctionnelle, Montpellier, France
- U1191, INSERM, Montpellier, France
- UMR-5203, Université de Montpellier, Montpellier, France
| | - N Romanò
- UMR-5203, CNRS, Institut de Génomique Fonctionnelle, Montpellier, France
- U1191, INSERM, Montpellier, France
- UMR-5203, Université de Montpellier, Montpellier, France
| | - A-C Meunier
- UMR-5203, CNRS, Institut de Génomique Fonctionnelle, Montpellier, France
- U1191, INSERM, Montpellier, France
- UMR-5203, Université de Montpellier, Montpellier, France
| | - E Galibert
- UMR-5203, CNRS, Institut de Génomique Fonctionnelle, Montpellier, France
- U1191, INSERM, Montpellier, France
- UMR-5203, Université de Montpellier, Montpellier, France
| | - P Fontanaud
- UMR-5203, CNRS, Institut de Génomique Fonctionnelle, Montpellier, France
- U1191, INSERM, Montpellier, France
- UMR-5203, Université de Montpellier, Montpellier, France
| | - M-N Mathieu
- UMR-5203, CNRS, Institut de Génomique Fonctionnelle, Montpellier, France
- U1191, INSERM, Montpellier, France
- UMR-5203, Université de Montpellier, Montpellier, France
| | - G Osterstock
- UMR-5203, CNRS, Institut de Génomique Fonctionnelle, Montpellier, France
- U1191, INSERM, Montpellier, France
- UMR-5203, Université de Montpellier, Montpellier, France
| | - P Osterstock
- Service de Médecine Légale, Hôpital Lapeyronie, CHU Montpellier, Montpellier, France
| | - E Baccino
- Service de Médecine Légale, Hôpital Lapeyronie, CHU Montpellier, Montpellier, France
| | - V Rigau
- Laboratoire d'Anatomie et Cytologie Pathologiques, Hôpital Gui de Chauliac, CHU Montpellier, Montpellier, France
| | - H Loiseau
- Service de Neurochirurgie, CHU Bordeaux, Site Pellegrin, Université de Bordeaux, Bordeaux, France
| | - S Bouillot-Eimer
- Service de Pathologie, CHU Bordeaux, Site Pellegrin, Université de Bordeaux, Bordeaux, France
| | - A Barlier
- Faculté de Médecine, CRN2M-UMR 7286, CNRS, Université Aix-Marseille, Marseille, France
- Laboratoire de Biologie Moléculaire, AP-HM, Hôpital de la Conception, Marseille, France
| | - P Mollard
- UMR-5203, CNRS, Institut de Génomique Fonctionnelle, Montpellier, France
- U1191, INSERM, Montpellier, France
- UMR-5203, Université de Montpellier, Montpellier, France
| | - N Coutry
- UMR-5203, CNRS, Institut de Génomique Fonctionnelle, Montpellier, France
- U1191, INSERM, Montpellier, France
- UMR-5203, Université de Montpellier, Montpellier, France
| |
Collapse
|
78
|
Featherstone K, Hey K, Momiji H, McNamara AV, Patist AL, Woodburn J, Spiller DG, Christian HC, McNeilly AS, Mullins JJ, Finkenstädt BF, Rand DA, White MRH, Davis JRE. Spatially coordinated dynamic gene transcription in living pituitary tissue. eLife 2016; 5:e08494. [PMID: 26828110 PMCID: PMC4749562 DOI: 10.7554/elife.08494] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 12/13/2015] [Indexed: 12/22/2022] Open
Abstract
Transcription at individual genes in single cells is often pulsatile and stochastic. A key question emerges regarding how this behaviour contributes to tissue phenotype, but it has been a challenge to quantitatively analyse this in living cells over time, as opposed to studying snap-shots of gene expression state. We have used imaging of reporter gene expression to track transcription in living pituitary tissue. We integrated live-cell imaging data with statistical modelling for quantitative real-time estimation of the timing of switching between transcriptional states across a whole tissue. Multiple levels of transcription rate were identified, indicating that gene expression is not a simple binary 'on-off' process. Immature tissue displayed shorter durations of high-expressing states than the adult. In adult pituitary tissue, direct cell contacts involving gap junctions allowed local spatial coordination of prolactin gene expression. Our findings identify how heterogeneous transcriptional dynamics of single cells may contribute to overall tissue behaviour.
Collapse
Affiliation(s)
- Karen Featherstone
- Centre for Endocrinology and Diabetes, University of Manchester, Manchester, United Kingdom
| | - Kirsty Hey
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Hiroshi Momiji
- Warwick Systems Biology, University of Warwick, Coventry, United Kingdom
| | - Anne V McNamara
- Systems Biology Centre, University of Manchester, Manchester, United Kingdom
| | - Amanda L Patist
- Centre for Endocrinology and Diabetes, University of Manchester, Manchester, United Kingdom
| | - Joanna Woodburn
- Centre for Endocrinology and Diabetes, University of Manchester, Manchester, United Kingdom
| | - David G Spiller
- Systems Biology Centre, University of Manchester, Manchester, United Kingdom
| | - Helen C Christian
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Alan S McNeilly
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - John J Mullins
- The Molecular Physiology Group, Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - David A Rand
- Warwick Systems Biology, University of Warwick, Coventry, United Kingdom
| | - Michael RH White
- Systems Biology Centre, University of Manchester, Manchester, United Kingdom
| | - Julian RE Davis
- Centre for Endocrinology and Diabetes, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
79
|
Vankelecom H. Pituitary Stem Cells: Quest for Hidden Functions. STEM CELLS IN NEUROENDOCRINOLOGY 2016. [DOI: 10.1007/978-3-319-41603-8_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
80
|
Willems C, Vankelecom H. Pituitary cell differentiation from stem cells and other cells: toward restorative therapy for hypopituitarism? Regen Med 2015; 9:513-34. [PMID: 25159067 DOI: 10.2217/rme.14.19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pituitary gland, key regulator of our endocrine system, produces multiple hormones that steer essential physiological processes. Hence, deficient pituitary function (hypopituitarism) leads to severe disorders. Hypopituitarism can be caused by defective embryonic development, or by damage through tumor growth/resection and traumatic brain injury. Lifelong hormone replacement is needed but associated with significant side effects. It would be more desirable to restore pituitary tissue and function. Recently, we showed that the adult (mouse) pituitary holds regenerative capacity in which local stem cells are involved. Repair of deficient pituitary may therefore be achieved by activating these resident stem cells. Alternatively, pituitary dysfunction may be mended by cell (replacement) therapy. The hormonal cells to be transplanted could be obtained by (trans-)differentiating various kinds of stem cells or other cells. Here, we summarize the studies on pituitary cell regeneration and on (trans-)differentiation toward hormonal cells, and speculate on restorative therapies for pituitary deficiency.
Collapse
Affiliation(s)
- Christophe Willems
- Department of Development & Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | | |
Collapse
|
81
|
Steyn FJ. Nutrient Sensing Overrides Somatostatin and Growth Hormone-Releasing Hormone to Control Pulsatile Growth Hormone Release. J Neuroendocrinol 2015; 27:577-87. [PMID: 25808924 DOI: 10.1111/jne.12278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/07/2015] [Accepted: 03/07/2015] [Indexed: 12/14/2022]
Abstract
Pharmacological studies reveal that interactions between hypothalamic inhibitory somatostatin and stimulatory growth hormone-releasing hormone (GHRH) govern pulsatile GH release. However, in vivo analysis of somatostatin and GHRH release into the pituitary portal vasculature and peripheral GH output demonstrates that the withdrawal of somatostatin or the appearance of GHRH into pituitary portal blood does not reliably dictate GH release. Consequently, additional intermediates acting at the level of the hypothalamus and within the anterior pituitary gland are likely to contribute to the release of GH, entraining GH secretory patterns to meet physiological demand. The identification and validation of the actions of such intermediates is particularly important, given that the pattern of GH release defines several of the physiological actions of GH. This review highlights the actions of neuropeptide Y in regulating GH release. It is acknowledged that pulsatile GH release may not occur selectively in response to hypothalamic control of pituitary function. As such, interactions between somatotroph networks, the median eminence and pituitary microvasculature and blood flow, and the emerging role of tanycytes and pericytes as critical regulators of pulsatility are considered. It is argued that collective interactions between the hypothalamus, the median eminence and pituitary vasculature, and structural components within the pituitary gland dictate somatotroph function and thereby pulsatile GH release. These interactions may override hypothalamic somatostatin and GHRH-mediated GH release, and modify pulsatile GH release relative to the peripheral glucose supply, and thereby physiological demand.
Collapse
Affiliation(s)
- F J Steyn
- The University of Queensland Centre for Clinical Research and The School of Biomedical Sciences, University of Queensland, Herston, 4029, Australia
| |
Collapse
|
82
|
Hodson DJ, Legros C, Desarménien MG, Guérineau NC. Roles of connexins and pannexins in (neuro)endocrine physiology. Cell Mol Life Sci 2015; 72:2911-28. [PMID: 26084873 DOI: 10.1007/s00018-015-1967-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 12/12/2022]
Abstract
To ensure appropriate secretion in response to demand, (neuro)endocrine tissues liberate massive quantities of hormones, which act to coordinate and synchronize biological signals in distant secretory and nonsecretory cell populations. Intercellular communication plays a central role in this control. With regard to molecular identity, junctional cell-cell communication is supported by connexin-based gap junctions. In addition, connexin hemichannels, the structural precursors of gap junctions, as well as pannexin channels have recently emerged as possible modulators of the secretory process. This review focuses on the expression of connexins and pannexins in various (neuro)endocrine tissues, including the adrenal cortex and medulla, the anterior pituitary, the endocrine hypothalamus and the pineal, thyroid and parathyroid glands. Upon a physiological or pathological stimulus, junctional intercellular coupling can be acutely modulated or persistently remodeled, thus offering multiple regulatory possibilities. The functional roles of gap junction-mediated intercellular communication in endocrine physiology as well as the involvement of connexin/pannexin-related hemichannels are also discussed.
Collapse
Affiliation(s)
- David J Hodson
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | | | | | | |
Collapse
|
83
|
Herndon MK, Nilson JH. Maximal expression of Foxl2 in pituitary gonadotropes requires ovarian hormones. PLoS One 2015; 10:e0126527. [PMID: 25955311 PMCID: PMC4425675 DOI: 10.1371/journal.pone.0126527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/03/2015] [Indexed: 12/30/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) and activin regulate synthesis of FSH and ultimately fertility. Recent in vivo studies cast SMAD4 and FOXL2 as master transcriptional mediators of activin signaling that act together and independently of GnRH to regulate Fshb gene expression and female fertility. Ovarian hormones regulate GnRH and its receptor (GNRHR) through negative and positive feedback loops. In contrast, the role of ovarian hormones in regulating activin, activin receptors, and components of the activin signaling pathway, including SMAD4 and FOXL2, remains understudied. The widespread distribution of activin and many of its signaling intermediates complicates analysis of the effects of ovarian hormones on their synthesis in gonadotropes, one of five pituitary cell types. We circumvented this complication by using a transgenic model that allows isolation of polyribosomes selectively from gonadotropes of intact females and ovariectomized females treated with or without a GnRH antagonist. This paradigm allows assessment of ovarian hormonal feedback and distinguishes responses that are either independent or dependent on GnRH. Surprisingly, our results indicate that Foxl2 levels in gonadotropes decline significantly in the absence of ovarian input and independently of GnRH. Expression of the genes encoding other members of the activin signaling pathway are unaffected by loss of ovarian hormonal feedback, highlighting their selective effect on Foxl2. Expression of Gnrhr, a known target of FOXL2, also declines upon ovariectomy consistent with reduced expression of Foxl2 and loss of ovarian hormones. In contrast, Fshb mRNA increases dramatically post-ovariectomy due to increased compensatory input from GnRH. Together these data suggest that ovarian hormones regulate expression of Foxl2 thereby expanding the number of genes controlled by the hypothalamic-pituitary-gonadal axis that ultimately dictate reproductive fitness.
Collapse
Affiliation(s)
- Maria K. Herndon
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
| | - John H. Nilson
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
84
|
Vieira AC, Martínez JMC, Pose RB, Queijo ÁA, Posadas NA, López LMB. Dose-response and histopathological study, with special attention to the hypophysis, of the differential effects of domoic acid on rats and mice. Microsc Res Tech 2015; 78:396-403. [DOI: 10.1002/jemt.22486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 01/09/2015] [Accepted: 02/14/2015] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - Roberto Bermúdez Pose
- Departamento de Anatomía y Producción Animal; Facultad de Veterinaria; Lugo 27002 Spain
| | | | - Nuria Alemañ Posadas
- Departamento de Anatomía y Producción Animal; Facultad de Veterinaria; Lugo 27002 Spain
| | | |
Collapse
|
85
|
Ibáñez-Costa A, Córdoba-Chacón J, Gahete MD, Kineman RD, Castaño JP, Luque RM. Melatonin regulates somatotrope and lactotrope function through common and distinct signaling pathways in cultured primary pituitary cells from female primates. Endocrinology 2015; 156:1100-10. [PMID: 25545385 PMCID: PMC4330310 DOI: 10.1210/en.2014-1819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Melatonin (MT) is secreted by the pineal gland and exhibits a striking circadian rhythm in its release. Depending on the species studied, some pituitary hormones also display marked circadian/seasonal patterns and rhythms of secretion. However, the precise relationship between MT and pituitary function remains controversial, and studies focusing on the direct role of MT in normal pituitary cells are limited to nonprimate species. Here, adult normal primate (baboons) primary pituitary cell cultures were used to determine the direct impact of MT on the functioning of all pituitary cell types from the pars distalis. MT increased GH and prolactin (PRL) expression/release in a dose- and time-dependent fashion, a response that was blocked by somatostatin. However, MT did not significantly affect ACTH, FSH, LH, or TSH expression/release. MT did not alter GHRH- or ghrelin-induced GH and/or PRL secretions, suggesting that MT may activate similar signaling pathways as ghrelin/GHRH. The effects of MT on GH/PRL release, which are likely mediated through MT1 receptor, involve both common (adenylyl cyclase/protein kinase A/extracellular calcium-channels) and distinct (phospholipase C/intracellular calcium-channels) signaling pathways. Actions of MT on pituitary cells also included regulation of the expression of other key components for the control of somatotrope/lactotrope function (GHRH, ghrelin, and somatostatin receptors). These results show, for the first time in a primate model, that MT directly regulates somatotrope/lactotrope function, thereby lending support to the notion that the actions of MT on these cells might substantially contribute to the define daily patterns of GH and PRL observed in primates and perhaps in humans.
Collapse
Affiliation(s)
- Alejandro Ibáñez-Costa
- Department of Cell Biology, Physiology, and Immunology (A.I.-C., J.C.-C., M.D.G., J.P.C., R.M.L.), University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición; and Campus de Excelencia Internacional Agroalimentario (ceiA3), E-14014 Córdoba, Spain; and Department of Medicine (J.C.-C., R.D.K.), Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago and Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | | | | | | | | | | |
Collapse
|
86
|
Rutter GA, Hodson DJ. Beta cell connectivity in pancreatic islets: a type 2 diabetes target? Cell Mol Life Sci 2015; 72:453-467. [PMID: 25323131 PMCID: PMC11113448 DOI: 10.1007/s00018-014-1755-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 12/12/2022]
Abstract
Beta cell connectivity describes the phenomenon whereby the islet context improves insulin secretion by providing a three-dimensional platform for intercellular signaling processes. Thus, the precise flow of information through homotypically interconnected beta cells leads to the large-scale organization of hormone release activities, influencing cell responses to glucose and other secretagogues. Although a phenomenon whose importance has arguably been underappreciated in islet biology until recently, a growing number of studies suggest that such cell-cell communication is a fundamental property of this micro-organ. Hence, connectivity may plausibly be targeted by both environmental and genetic factors in type 2 diabetes mellitus (T2DM) to perturb normal beta cell function and insulin release. Here, we review the mechanisms that contribute to beta cell connectivity, discuss how these may fail during T2DM, and examine approaches to restore insulin secretion by boosting cell communication.
Collapse
Affiliation(s)
- Guy A Rutter
- Section of Cell Biology, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | - David J Hodson
- Section of Cell Biology, Department of Medicine, Imperial College London, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
87
|
Garcia-Lavandeira M, Diaz-Rodriguez E, Bahar D, Garcia-Rendueles AR, Rodrigues JS, Dieguez C, Alvarez CV. Pituitary Cell Turnover: From Adult Stem Cell Recruitment through Differentiation to Death. Neuroendocrinology 2015; 101:175-92. [PMID: 25662152 DOI: 10.1159/000375502] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/23/2015] [Indexed: 11/19/2022]
Abstract
The recent demonstration using genetic tracing that in the adult pituitary stem cells are normally recruited from the niche in the marginal zone and differentiate into secretory cells in the adenopituitary has elegantly confirmed the proposal made when the pituitary stem cell niche was first discovered 5 years ago. Some of the early controversies have also been resolved. However, many questions remain, such as which are the markers that make a pituitary stem cell truly unique and the exact mechanisms that trigger recruitment from the niche. Little is known about the processes of commitment and differentiation once a stem cell has left the niche. Moreover, the acceptance that pituitary cells are renewed by stem cells implies the existence of regulated mechanisms of cell death in differentiated cells which must themselves be explained. The demonstration of an apoptotic pathway mediated by RET/caspase 3/Pit-1/Arf/p53 in normal somatotrophs is therefore an important step towards understanding how pituitary cell number is regulated. Further work will elucidate how the rates of the three processes of cell renewal, differentiation and apoptosis are balanced in tissue homeostasis after birth, but altered in pituitary hyperplasia in response to physiological stimuli such as puberty and lactation. Thus, we can aim to understand the mechanisms underlying human disease due to insufficient (hypopituitarism) or excess (pituitary tumor) cell numbers.
Collapse
Affiliation(s)
- Montserrat Garcia-Lavandeira
- Neoplasia and Endocrine Differentiation, Centre for Investigations in Medicine (CIMUS), Instituto de Investigaciones Sanitarias, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
88
|
Bargi-Souza P, Kucka M, Bjelobaba I, Tomić M, Janjic MM, Nunes MT, Stojilkovic SS. Loss of basal and TRH-stimulated Tshb expression in dispersed pituitary cells. Endocrinology 2015; 156:242-54. [PMID: 25356823 PMCID: PMC4272397 DOI: 10.1210/en.2014-1281] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This study addresses the in vivo and in vitro expression pattern of three genes that are operative in the thyrotroph subpopulation of anterior pituitary cells: glycoprotein α-chain (Cga), thyroid-stimulating hormone β-chain (Tshb), and TRH receptor (Trhr). In vivo, the expression of Cga and Tshb was robust, whereas the expression of Trhr was low. In cultured pituitary cells, there was a progressive decline in the expression of Cga, Tshb, and Trhr. The expression of Tshb could not be reversed via pulsatile or continuous TRH application in variable concentrations and treatment duration or by the removal of thyroid and steroid hormones from the sera. In parallel, the expression of CGA and TSHB proteins declined progressively in pituitary cells from both sexes. The lack of the effect of TRH on Tshb expression was not related to the age of pituitary cultures and the presence of functional TRH receptors. In cultured pituitary fragments, there was also a rapid decline in expression of these genes, but TRH was able to induce transient Tshb expression. In vivo, thyrotrophs were often in close proximity to each other and to somatotroph and folliculostellate cell networks and especially to the lactotroph cell network; such an organization pattern was lost in vitro. These observations suggest that the lack of influence of anterior pituitary architecture and/or intrapituitary factors probably accounts for the loss of basal and TRH-stimulated Tshb expression in dispersed pituitary cells.
Collapse
Affiliation(s)
- Paula Bargi-Souza
- Section on Cellular Signaling (P.B.-S., M.K., I.B., M.T., M.M.J., S.S.S.), The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510; and Department of Physiology and Biophysics (P.B.-S., M.T.N.), Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
89
|
Graf M, Teo Qi-Wen ER, Sarusie MV, Rajaei F, Winkler C. Dmrt5 controls corticotrope and gonadotrope differentiation in the zebrafish pituitary. Mol Endocrinol 2014; 29:187-99. [PMID: 25489906 DOI: 10.1210/me.2014-1176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dmrt transcription factors control sex determination or sex-specific differentiation across all invertebrate and vertebrate species, in which they have been studied so far. In addition to important functions in the reproductive system, also nongonadal roles have been assigned to several dmrt family members. One example is dmrt5, which was shown to guide neurogenesis in the forebrain of some vertebrates including fish. Here we show that in zebrafish, dmrt5 is also expressed adjacent to the pituitary anlage and later in the anterior pars distalis in which it organizes differentiation of endocrine cells. We find that pituitary induction, cell survival, proliferation, and early lineage specification in the pituitary is independent of dmrt5. Instead, dmrt5 is required for terminal differentiation of corticotropes and gonadotropes. Gene knockdown and mutant analysis revealed that dmrt5 promotes corticotrope differentiation via tbx19 expression, whereas it prevents gonadotrope differentiation in the anterior pars distalis. In dmrt5 morphants and mutants, reduced corticotrope numbers may result in irregular positioning and reduced maintenance of lactotropes. In conclusion, our study establishes a novel function for dmrt5 for cell differentiation in the anterior pituitary. Intriguingly, its effect on gonadotrope numbers defines a first nongonadal role for a dmrt family member that appears crucial for the activity of the reproductive system.
Collapse
Affiliation(s)
- Martin Graf
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543
| | | | | | | | | |
Collapse
|
90
|
Roelfsema F, Pereira AM, Biermasz NR, Veldhuis JD. Hormone secretion by pituitary adenomas is characterized by increased disorderliness and spikiness but more regular pulsing. J Clin Endocrinol Metab 2014; 99:3836-44. [PMID: 25014002 PMCID: PMC4184075 DOI: 10.1210/jc.2014-2363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
CONTEXT Hormone secretion by functioning pituitary tumors is characterized by increased basal (nonpulsatile) secretion, enhanced pulse frequency, amplified pulse mass, and increased disorderliness. OBJECTIVE The objective of the study was to quantify (subtle) abnormalities of hormone secretion by pituitary adenomas and the influence of selective pituitary surgery and suppressive medications on these parameters. METHODS Approximate entropy (ApEn) was quantified with a refined algorithm, spikiness by a new method to evaluate sudden short-lived increases in hormone levels, and pulsing regularity, determined with a fully automated deconvolution program. These 3 distinct measures of secretory disruption were compared in untreated and treated patients with acromegaly, prolactinoma, and Cushing's disease together with matching profiles in healthy controls. RESULTS ApEn and spikiness were markedly increased in all untreated patient groups and normalized after pituitary surgery in acromegaly and hypercortisolism. In contrast, hormone-suppressive medical treatment in acromegaly and prolactinoma did not normalize ApEn. Spikiness normalized in acromegalic patients but not in prolactinoma. GH and cortisol pulsing regularity was elevated in acromegaly and Cushing's disease, respectively, and normalized after surgery. Medical treatment caused normalization of pulsing regularity in acromegaly but not in prolactinoma patients. CONCLUSION This study extends the understanding of disorganized hormone secretion by hyperfunctioning pituitary adenomas. The new findings are increased spikiness in all 3 tumor groups and increased pulsing regularity in GH- and ACTH-secreting adenomas. The mechanisms behind the marked pattern irregularity and the selective normalization by surgical and medical therapies are not established yet but may include diminished feedback signaling in addition to the anatomical and functional disorganization of intrapituitary cell networks.
Collapse
Affiliation(s)
- Ferdinand Roelfsema
- Department of Endocrinology and Metabolic Diseases (F.R., A.M.P., N.R.B.), Leiden University Medical Center, 2333ZA Leiden, The Netherlands; and Endocrine Research Unit (J.D.V.), Mayo Medical and Graduate Schools, Clinical Translational Research Center, Mayo Clinic, Rochester, Minnesota 55901
| | | | | | | |
Collapse
|
91
|
Bloch CL, Kedar N, Golan M, Gutnick MJ, Fleidervish IA, Levavi-Sivan B. Long-term GnRH-induced gonadotropin secretion in a novel hypothalamo-pituitary slice culture from tilapia brain. Gen Comp Endocrinol 2014; 207:21-7. [PMID: 24859253 DOI: 10.1016/j.ygcen.2014.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/29/2014] [Accepted: 05/01/2014] [Indexed: 12/19/2022]
Abstract
Organotypic cultures, prepared from hypothalamo-pituitary slices of tilapia, were developed to enable long-term study of secretory cells in the pituitary of a teleost. Values of membrane potential at rest were similar to those recorded from acute slices, and cells presented similar spontaneous spikes and spikelets. Some cells also exhibited slow spontaneous oscillations in membrane potential, which may be network-driven. Long-term (6days) continuous exposure to GnRH induced increases in LH and FSH secretion. FSH levels reached the highest levels after 24h of exposure to GnRH, and the highest secretion of LH was observed in days 4 and 5 of the experiment. Since slices were viable for several weeks in culture, maintaining the original cytoarchitecture, electrical membrane properties and the ability to secrete hormones in response to exogenous GnRH, this technique is ideal for studying the mechanisms regulating cell-to-cell communication under conditions resembling the in vivo tissue organization.
Collapse
Affiliation(s)
- Corinne L Bloch
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel; Koret School of Veterinary Medicine, Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Noa Kedar
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Matan Golan
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Michael J Gutnick
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food, and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Ilya A Fleidervish
- Department of Physiology and Cell Biology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Berta Levavi-Sivan
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
92
|
Abstract
The transcription factor gene Egr1 is necessary for female fertility; EGR1 protein is an established molecular regulator of adult female gonadotroph function where it mediates GNRH-stimulated transcription of the Lhb gene. Recent studies have also implicated pituitary EGR1 in the mediation of other physiological signals indicating an integrative function. However, the role of EGR1 in males is less well defined and this uncertainty is compounded by the absence of cellular expression data in the male pituitary gland. The aim of this study, therefore, was to define the distribution of Egr1 gene expression in the adult male rat pituitary. To further this aim, we have evaluated cellular populations in a transgenic rat model (Egr1-d2EGFP), in which we demonstrate regulated green fluorescent protein (GFP) expression in EGR1+ pituitary cells. Cellular filling by GFP enabled morphological and molecular differentiation of different populations of gonadotrophs; Egr1 transcription and LHB were highly co-localised in a major population of large cells but only minimally co-localised in small GFP+ cells; the latter cells were shown to be largely (80%) composed of minority populations of GH+ somatotrophs (9% of total GH+) and PRL+ lactotrophs (3% of total PRL+). Egr1 transcription was not found in TSH+, ACTH+ or SOX2+ precursor cells and was only minimally co-localised in S-100β+ folliculostellate cells. Our demonstration that the Egr1 gene is actively and selectively transcribed in a major sub-population of male LHB+ cells indicates a largely conserved role in gonadotroph function and has provided a basis for further defining this role.
Collapse
Affiliation(s)
- Pui-Sin Man
- School of BiosciencesCardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Timothy Wells
- School of BiosciencesCardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - David A Carter
- School of BiosciencesCardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|
93
|
Lyons DJ, Broberger C. TIDAL WAVES: Network mechanisms in the neuroendocrine control of prolactin release. Front Neuroendocrinol 2014; 35:420-38. [PMID: 24561279 DOI: 10.1016/j.yfrne.2014.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/22/2013] [Accepted: 02/10/2014] [Indexed: 11/19/2022]
Abstract
Neuroendocrine tuberoinfundibular dopamine (TIDA) neurons tonically inhibit pituitary release of the hormone, prolactin. Through the powerful actions of prolactin in promoting lactation and maternal behaviour while suppressing sexual drive and fertility, TIDA neurons play a key role in reproduction. We summarize insights from recent in vitro studies into the membrane properties and network behaviour of TIDA neurons including the observations that TIDA neurons exhibit a robust oscillation that is synchronized between cells and depends on intact gap junction communication. Comparisons are made with phasic firing patterns in other neuronal populations. Modulators involved in the control of lactation - including serotonin, thyrotropin-releasing hormone and prolactin itself - have been shown to change the electrical behaviour of TIDA cells. We propose that TIDA discharge mode may play a central role in tuning the amount of dopamine delivered to the pituitary and hence circulating prolactin concentrations in different reproductive states and pathological conditions.
Collapse
Affiliation(s)
- David J Lyons
- Dept. of Neuroscience, Karolinska Institutet, Retzius v. 8, 171 77 Stockholm, Sweden
| | - Christian Broberger
- Dept. of Neuroscience, Karolinska Institutet, Retzius v. 8, 171 77 Stockholm, Sweden.
| |
Collapse
|
94
|
Taura J, Takeda T, Fujii M, Hattori Y, Ishii Y, Kuroki H, Tsukimori K, Uchi H, Furue M, Yamada H. 2,3,4,7,8-Pentachlorodibenzofuran is far less potent than 2,3,7,8-tetrachlorodibenzo-p-dioxin in disrupting the pituitary-gonad axis of the rat fetus. Toxicol Appl Pharmacol 2014; 281:48-57. [PMID: 25220434 DOI: 10.1016/j.taap.2014.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/19/2014] [Accepted: 09/01/2014] [Indexed: 01/24/2023]
Abstract
The effect of 2,3,4,7,8-pentachlorodibenzofuran (PnCDF) on the fetal pituitary-gonad axis was compared with that produced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in Wistar rats. Maternal treatment at gestational day (GD) 15 with PnCDF and TCDD reduced the fetal expression at GD20 of pituitary luteinizing hormone (LH) and the testicular proteins necessary for steroidogenesis. The relative potencies of PnCDF ranged from 1/42nd to 1/63rd of the TCDD effect. While PnCDF, at a dose sufficient to cause a reduction in fetal LH, provoked defects in sexual behavior at adulthood, a dose less than the ED50 failed to produce any abnormality. There was a loss of fetal body weight following in utero exposure to PnCDF, and the effect of PnCDF was also much less than that of TCDD. The disturbance in fetal growth was suggested to be due to a reduction in the level of fetal growth hormone (GH) by dioxins. The disorder caused by PnCDF/TCDD in the fetal pituitary-gonad axis occurred at doses less than those needed to cause wasting syndrome in pubertal rats. The harmful effect of PnCDF relative to TCDD was more pronounced in fetal rats than in pubertal rats. These lines of evidence suggest that: 1) PnCDF as well as TCDD imprints defects in sexual behavior by disrupting the fetal pituitary-gonad axis; 2) these dioxins hinder fetal growth by reducing the expression of fetal GH; and 3) the fetal effects of PnCDF/TCDD are more sensitive than sub-acute toxicity during puberty, and the relative effect of PnCDF varies markedly depending on the indices used.
Collapse
Affiliation(s)
- Junki Taura
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoki Takeda
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Misaki Fujii
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukiko Hattori
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Ishii
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Kiyomi Tsukimori
- Department of Obstetrics, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Hiroshi Uchi
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan
| | - Masutaka Furue
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan; Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideyuki Yamada
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
95
|
Alatzoglou KS, Webb EA, Le Tissier P, Dattani MT. Isolated growth hormone deficiency (GHD) in childhood and adolescence: recent advances. Endocr Rev 2014; 35:376-432. [PMID: 24450934 DOI: 10.1210/er.2013-1067] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The diagnosis of GH deficiency (GHD) in childhood is a multistep process involving clinical history, examination with detailed auxology, biochemical testing, and pituitary imaging, with an increasing contribution from genetics in patients with congenital GHD. Our increasing understanding of the factors involved in the development of somatotropes and the dynamic function of the somatotrope network may explain, at least in part, the development and progression of childhood GHD in different age groups. With respect to the genetic etiology of isolated GHD (IGHD), mutations in known genes such as those encoding GH (GH1), GHRH receptor (GHRHR), or transcription factors involved in pituitary development, are identified in a relatively small percentage of patients suggesting the involvement of other, yet unidentified, factors. Genome-wide association studies point toward an increasing number of genes involved in the control of growth, but their role in the etiology of IGHD remains unknown. Despite the many years of research in the area of GHD, there are still controversies on the etiology, diagnosis, and management of IGHD in children. Recent data suggest that childhood IGHD may have a wider impact on the health and neurodevelopment of children, but it is yet unknown to what extent treatment with recombinant human GH can reverse this effect. Finally, the safety of recombinant human GH is currently the subject of much debate and research, and it is clear that long-term controlled studies are needed to clarify the consequences of childhood IGHD and the long-term safety of its treatment.
Collapse
Affiliation(s)
- Kyriaki S Alatzoglou
- Developmental Endocrinology Research Group (K.S.A., E.A.W., M.T.D.), Clinical and Molecular Genetics Unit, and Birth Defects Research Centre (P.L.T.), UCL Institute of Child Health, London WC1N 1EH, United Kingdom; and Faculty of Life Sciences (P.L.T.), University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
96
|
Vankelecom H, Chen J. Pituitary stem cells: where do we stand? Mol Cell Endocrinol 2014; 385:2-17. [PMID: 23994027 DOI: 10.1016/j.mce.2013.08.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/12/2013] [Accepted: 08/20/2013] [Indexed: 01/21/2023]
Abstract
Some 5 years ago, the stem cells of the adult pituitary gland were discovered. Subsequent in-depth characterization revealed expression of several stemness markers and embryo-typical factors. Now, the quest is open to decipher their role in the gland. When and how pituitary stem cells differentiate to contribute to the mature hormone-producing cell populations is not known. New research models support their involvement in cell regeneration after injury in the gland, and suggest a possible role in pituitary tumor formation. From their expression phenotype, pituitary stem cells seem to re-use embryonic developmental programs during the creation of new hormonal cells. Here, we will review the latest progression in the domain of pituitary stem cells, including the uncovering of some new molecular flavors and of the first potential functions. Eventually, we will speculate on their differentiation programs towards hormonal cells, with a particular focus on gonadotropes.
Collapse
Affiliation(s)
- Hugo Vankelecom
- Department of Development and Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, University of Leuven (KU Leuven), B-3000 Leuven, Belgium.
| | - Jianghai Chen
- Department of Hand Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science & Technology (HUST), Wuhan, Hubei 430022, PR China.
| |
Collapse
|
97
|
Kraemer WJ, Flanagan SD, Volek JS, Nindl BC, Vingren JL, Dunn-Lewis C, Comstock BA, Hooper DR, Szivak TK, Looney DP, Maresh CM, Hymer WC. Resistance exercise induces region-specific adaptations in anterior pituitary gland structure and function in rats. J Appl Physiol (1985) 2013; 115:1641-7. [PMID: 24092688 DOI: 10.1152/japplphysiol.00687.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The anterior pituitary gland (AP) increases growth hormone (GH) secretion in response to resistance exercise (RE), but the nature of AP adaptations to RE is unknown. To that end, we examined the effects of RE on regional AP somatotroph GH release, structure, and relative quantity. Thirty-six Sprague-Dawley rats were assigned to one of four groups: 1) no training or acute exercise (NT-NEX); 2) no training with acute exercise (NT-EX); 3) resistance training without acute exercise (RT-NEX); 4) resistance training with acute exercise (RT-EX). RE incorporated 10, 1 m-weighted ladder climbs at an 85° angle. RT groups trained 3 days/wk for 7 wk, progressively. After death, trunk blood was collected, and each AP was divided into quadrants (ventral-dorsal and left-right). We measured: 1) trunk plasma GH; 2) somatotroph GH release; 3) somatotroph size; 4) somatotroph secretory content; and 5) percent of AP cells identified as somatotrophs. Trunk GH differed by group (NT-NEX, 8.9 ± 2.4 μg/l; RT-NEX, 9.2 ± 3.5 μg/l; NT-EX, 15.6 ± 3.4 μg/l; RT-EX, 23.4 ± 4.6 μg/l). RT-EX demonstrated greater somatotroph GH release than all other groups, predominantly in ventral regions (P < 0.05-0.10). Ventral somatotrophs were larger in NT-EX and RT-NEX compared with RT-EX (P < 0.05-0.10). RT-NEX exhibited significantly greater secretory granule content than all other groups but in the ventral-right region only (P < 0.05-0.10). Our findings indicate reproducible patterns of spatially distinct, functionally different somatotroph subpopulations in the rat pituitary gland. RE training appears to induce dynamic adaptations in somatotroph structure and function.
Collapse
Affiliation(s)
- William J Kraemer
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Affiliation(s)
- Buffy S Ellsworth
- Department of Physiology, Southern Illinois University in Carbondale, 1135 Lincoln Drive, Carbondale, Illinois 62901-6523, USA.
| |
Collapse
|
99
|
Davis SW, Ellsworth BS, Peréz Millan MI, Gergics P, Schade V, Foyouzi N, Brinkmeier ML, Mortensen AH, Camper SA. Pituitary gland development and disease: from stem cell to hormone production. Curr Top Dev Biol 2013; 106:1-47. [PMID: 24290346 DOI: 10.1016/b978-0-12-416021-7.00001-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many aspects of pituitary development have become better understood in the past two decades. The signaling pathways regulating pituitary growth and shape have emerged, and the balancing interactions between the pathways are now appreciated. Markers for multipotent progenitor cells are being identified, and signature transcription factors have been discovered for most hormone-producing cell types. We now realize that pulsatile hormone secretion involves a 3D integration of cellular networks. About a dozen genes are known to cause pituitary hypoplasia when mutated due to their essential roles in pituitary development. Similarly, a few genes are known that predispose to familial endocrine neoplasia, and several genes mutated in sporadic pituitary adenomas are documented. In the next decade, we anticipate gleaning a deeper appreciation of these processes at the molecular level, insight into the development of the hypophyseal portal blood system, and evolution of better therapeutics for congenital and acquired hormone deficiencies and for common craniopharyngiomas and pituitary adenomas.
Collapse
Affiliation(s)
- Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|