51
|
The Role of Sex and Sex Hormones in Regulating Obesity-Induced Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:65-86. [PMID: 29224091 DOI: 10.1007/978-3-319-70178-3_5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metabolic and non-metabolic complications due to obesity are becoming more prevalent, yet our understanding of the mechanisms driving these is not. This is due to individual risk factor variability making it difficult to predict disease outcomes such as diabetes and insulin resistance. Gender is a critical factor in obesity outcomes with women having more adiposity but reduced metabolic complications compared to men. The role of immune system activation during obesity is an emerging field that links adiposity to metabolic syndrome. Furthermore, evidence from animal models suggests that sex differences exist in immune responses and, therefore, could be a possible mechanism leading to sex differences in metabolic disease. While there is still much to learn in the area of sex-differences research, this chapter will review the current knowledge and literature detailing the role of sex and sex hormones on adiposity and metabolically induced inflammation in obesity.
Collapse
|
52
|
Is a reduction in brown adipose thermogenesis responsible for the change in core body temperature at menopause? Cardiovasc Endocrinol 2016. [DOI: 10.1097/xce.0000000000000089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
53
|
Uchoa MF, Moser VA, Pike CJ. Interactions between inflammation, sex steroids, and Alzheimer's disease risk factors. Front Neuroendocrinol 2016; 43:60-82. [PMID: 27651175 PMCID: PMC5123957 DOI: 10.1016/j.yfrne.2016.09.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder for which there are no effective strategies to prevent or slow its progression. Because AD is multifactorial, recent research has focused on understanding interactions among the numerous risk factors and mechanisms underlying the disease. One mechanism through which several risk factors may be acting is inflammation. AD is characterized by chronic inflammation that is observed before clinical onset of dementia. Several genetic and environmental risk factors for AD increase inflammation, including apolipoprotein E4, obesity, and air pollution. Additionally, sex steroid hormones appear to contribute to AD risk, with age-related losses of estrogens in women and androgens in men associated with increased risk. Importantly, sex steroid hormones have anti-inflammatory actions and can interact with several other AD risk factors. This review examines the individual and interactive roles of inflammation and sex steroid hormones in AD, as well as their relationships with the AD risk factors apolipoprotein E4, obesity, and air pollution.
Collapse
Affiliation(s)
- Mariana F Uchoa
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - V Alexandra Moser
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Christian J Pike
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
54
|
Stout MB, Swindell WR, Zhi X, Rohde K, List EO, Berryman DE, Kopchick JJ, Gesing A, Fang Y, Masternak MM. Transcriptome profiling reveals divergent expression shifts in brown and white adipose tissue from long-lived GHRKO mice. Oncotarget 2016; 6:26702-15. [PMID: 26436954 PMCID: PMC4694946 DOI: 10.18632/oncotarget.5760] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 08/29/2015] [Indexed: 12/24/2022] Open
Abstract
Mice lacking the growth hormone receptor (GHRKO) exhibit improved lifespan and healthspan due to loss of growth hormone signaling. Both the distribution and activity of brown and white adipose tissue (BAT and WAT) are altered in GHRKO mice, but the contribution of each tissue to age-related phenotypes has remained unclear. We therefore used whole-genome microarrays to evaluate transcriptional differences in BAT and WAT depots between GHRKO and normal littermates at six months of age. Our findings reveal a unique BAT transcriptome as well as distinctive responses of BAT to Ghr ablation. BAT from GHRKO mice exhibited elevated expression of genes associated with mitochondria and metabolism, along with reduced expression of genes expressed by monocyte-derived cells (dendritic cells [DC] and macrophages). Largely the opposite was observed in WAT, with increased expression of DC-expressed genes and reduced expression of genes associated with metabolism, cellular respiration and the mitochondrial inner envelope. These findings demonstrate divergent response patterns of BAT and WAT to loss of GH signaling in GHRKO mice. These patterns suggest both BAT and WAT contribute in different ways to phenotypes in GHRKO mice, with Ghr ablation blunting inflammation in BAT as well as cellular metabolism and mitochondrial biogenesis in WAT.
Collapse
Affiliation(s)
- Michael B Stout
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | | | - Xu Zhi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Kyle Rohde
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Darlene E Berryman
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Adam Gesing
- Department of Oncological Endocrinology, Medical University of Lodz, Lodz, Poland
| | - Yimin Fang
- Geriatrics Research Laboratory, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA.,Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
55
|
Tsai SY, Rodriguez AA, Dastidar SG, Del Greco E, Carr KL, Sitzmann JM, Academia EC, Viray CM, Martinez LL, Kaplowitz BS, Ashe TD, La Spada AR, Kennedy BK. Increased 4E-BP1 Expression Protects against Diet-Induced Obesity and Insulin Resistance in Male Mice. Cell Rep 2016; 16:1903-14. [PMID: 27498874 DOI: 10.1016/j.celrep.2016.07.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 06/09/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
Obesity is a major risk factor driving the global type II diabetes pandemic. However, the molecular factors linking obesity to disease remain to be elucidated. Gender differences are apparent in humans and are also observed in murine models. Here, we link these differences to expression of eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), which, upon HFD feeding, becomes significantly reduced in the skeletal muscle and adipose tissue of male but not female mice. Strikingly, restoring 4E-BP1 expression in male mice protects them against HFD-induced obesity and insulin resistance. Male 4E-BP1 transgenic mice also exhibit reduced white adipose tissue accumulation accompanied by decreased circulating levels of leptin and triglycerides. Importantly, transgenic 4E-BP1 male mice are also protected from aging-induced obesity and metabolic decline on a normal diet. These results demonstrate that 4E-BP1 is a gender-specific suppressor of obesity that regulates insulin sensitivity and energy metabolism.
Collapse
Affiliation(s)
- Shih-Yin Tsai
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Somasish G Dastidar
- Division of Biological Sciences, Departments of Pediatrics, Cellular and Molecular Medicine, and Neurosciences, Institute for Genomic Medicine, and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92903, USA
| | | | - Kaili Lia Carr
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | | | | | | | | | - Travis D Ashe
- Division of Biological Sciences, Departments of Pediatrics, Cellular and Molecular Medicine, and Neurosciences, Institute for Genomic Medicine, and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92903, USA
| | - Albert R La Spada
- Division of Biological Sciences, Departments of Pediatrics, Cellular and Molecular Medicine, and Neurosciences, Institute for Genomic Medicine, and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92903, USA; Rady Children's Hospital, San Diego, CA 92123, USA.
| | - Brian K Kennedy
- Buck Institute for Research on Aging, Novato, CA 94945, USA.
| |
Collapse
|
56
|
Sexually Dimorphic Expression of eGFP Transgene in the Akr1A1 Locus of Mouse Liver Regulated by Sex Hormone-Related Epigenetic Remodeling. Sci Rep 2016; 6:24023. [PMID: 27087367 PMCID: PMC4834580 DOI: 10.1038/srep24023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/14/2016] [Indexed: 12/19/2022] Open
Abstract
Sexually dimorphic gene expression is commonly found in the liver, and many of these genes are linked to different incidences of liver diseases between sexes. However, the mechanism of sexually dimorphic expression is still not fully understood. In this study, a pCAG-eGFP transgenic mouse strain with a specific transgene integration site in the Akr1A1 locus presented male-biased EGFP expression in the liver, and the expression was activated by testosterone during puberty. The integration of the pCAG-eGFP transgene altered the epigenetic regulation of the adjacent chromatin, including increased binding of STAT5b, a sexually dimorphic expression regulator, and the transformation of DNA methylation from hypermethylation into male-biased hypomethylation. Through this de novo sexually dimorphic expression of the transgene, the Akr1A1eGFP mouse provides a useful model to study the mechanisms and the dynamic changes of sexually dimorphic gene expression during either development or pathogenesis of the liver.
Collapse
|
57
|
Effect of body shape and inflammation on tooth loss in men and women. Clin Oral Investig 2016; 21:183-190. [DOI: 10.1007/s00784-016-1775-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 02/29/2016] [Indexed: 02/08/2023]
|
58
|
Asha GV, Raja Gopal Reddy M, Mahesh M, Vajreswari A, Jeyakumar SM. Male mice are susceptible to high fat diet-induced hyperglycaemia and display increased circulatory retinol binding protein 4 (RBP4) levels and its expression in visceral adipose depots. Arch Physiol Biochem 2016; 122:19-26. [PMID: 26619134 DOI: 10.3109/13813455.2015.1126609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vitamin A and its metabolites are known to modulate adipose tissue development and its associated complications. Here, we assessed the vitamin A status and its metabolic pathway gene expression in relation to sexual dimorphism by employing 35 days old C57BL/6J male and female mice, which were fed either stock or high fat (HF) diet for 26 weeks. HF diet feeding increased body weight/weight gain and white adipose tissue (WAT) of visceral and subcutaneous regions, however, increase in vitamin A levels observed only in subcutaneous WAT. Further, the expression of most of the vitamin A metabolic pathway genes showed no sexual dimorphism. The observed HF diet-induced hyperglycaemia in male corroborates with increased retinol binding protein 4 (RBP4) levels in plasma and its expression in visceral adipose depots. In conclusion, the male mice are susceptible to high fat diet-induced hyperglycaemia and display higher plasma RBP4 levels, possibly due to its over-expression in visceral adipose depots.
Collapse
Affiliation(s)
- G V Asha
- a Lipid Biochemistry Division, National Institute of Nutrition , Jamai Osmania, Hyderabad, Telangana , India
| | - M Raja Gopal Reddy
- a Lipid Biochemistry Division, National Institute of Nutrition , Jamai Osmania, Hyderabad, Telangana , India
| | - M Mahesh
- a Lipid Biochemistry Division, National Institute of Nutrition , Jamai Osmania, Hyderabad, Telangana , India
| | - A Vajreswari
- a Lipid Biochemistry Division, National Institute of Nutrition , Jamai Osmania, Hyderabad, Telangana , India
| | - S M Jeyakumar
- a Lipid Biochemistry Division, National Institute of Nutrition , Jamai Osmania, Hyderabad, Telangana , India
| |
Collapse
|
59
|
Schlecht I, Fischer B, Behrens G, Leitzmann MF. Relations of Visceral and Abdominal Subcutaneous Adipose Tissue, Body Mass Index, and Waist Circumference to Serum Concentrations of Parameters of Chronic Inflammation. Obes Facts 2016; 9:144-57. [PMID: 27241125 PMCID: PMC5644901 DOI: 10.1159/000443691] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/23/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Different measures of body fat composition may vary in their relations to parameters of chronic inflammation. METHODS We assessed the relations of visceral (VAT) and subcutaneous adipose tissue (SAT), BMI, and waist circumference (WC) to serum concentrations of high-sensitive C-reactive protein (hs-CRP), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), resistin, and adiponectin in 97 healthy adults using multivariate linear regression models, adjusted for age, sex, smoking, physical activity, menopausal status, and use of aspirin or non-steroidal anti-inflammatory drugs (NSAIDs). Parameters of chronic inflammation were mutually adjusted. RESULTS VAT (β = 0.34), SAT (β = 0.43), BMI (β = 0.40), and WC (β = 0.47) were all significantly associated with hs-CRP. BMI was additionally inversely related to adiponectin (β = -0.29). In exploratory subgroup analyses defined by gender, BMI, smoking, and use of aspirin or NSAIDs, VAT was the strongest indicator for increased levels of IL-6, SAT was the most consistent indicator for increased levels of hs-CRP, and BMI was the most consistent indicator for decreased levels of adiponectin. WC showed to be a weak indicator for increased levels of hs-CRP and decreased levels of adiponectin. CONCLUSION VAT, SAT, BMI, and WC show distinct associations with parameters of chronic inflammation. Whether these differences reflect differential metabolic risks requires clarification by longitudinal studies.
Collapse
Affiliation(s)
- Inga Schlecht
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | | | | | | |
Collapse
|
60
|
Moser VA, Pike CJ. Obesity and sex interact in the regulation of Alzheimer's disease. Neurosci Biobehav Rev 2015; 67:102-18. [PMID: 26708713 DOI: 10.1016/j.neubiorev.2015.08.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, for which a number of genetic, environmental, and lifestyle risk factors have been identified. A significant modifiable risk factor is obesity in mid-life. Interestingly, both obesity and AD exhibit sex differences and are regulated by sex steroid hormones. Accumulating evidence suggests interactions between obesity and sex in regulation of AD risk, although the pathways underlying this relationship are unclear. Inflammation and the E4 allele of apolipoprotein E have been identified as independent risk factors for AD and both interact with obesity and sex steroid hormones. We review the individual and cooperative effects of obesity and sex on development of AD and examine the potential contributions of apolipoprotein E, inflammation, and their interactions to this relationship.
Collapse
Affiliation(s)
- V Alexandra Moser
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA.
| | - Christian J Pike
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA; Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
61
|
de Vries GJ, Forger NG. Sex differences in the brain: a whole body perspective. Biol Sex Differ 2015; 6:15. [PMID: 26279833 PMCID: PMC4536872 DOI: 10.1186/s13293-015-0032-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/28/2015] [Indexed: 12/29/2022] Open
Abstract
Most writing on sexual differentiation of the mammalian brain (including our own) considers just two organs: the gonads and the brain. This perspective, which leaves out all other body parts, misleads us in several ways. First, there is accumulating evidence that all organs are sexually differentiated, and that sex differences in peripheral organs affect the brain. We demonstrate this by reviewing examples involving sex differences in muscles, adipose tissue, the liver, immune system, gut, kidneys, bladder, and placenta that affect the nervous system and behavior. The second consequence of ignoring other organs when considering neural sex differences is that we are likely to miss the fact that some brain sex differences develop to compensate for differences in the internal environment (i.e., because male and female brains operate in different bodies, sex differences are required to make output/function more similar in the two sexes). We also consider evidence that sex differences in sensory systems cause male and female brains to perceive different information about the world; the two sexes are also perceived by the world differently and therefore exposed to differences in experience via treatment by others. Although the topic of sex differences in the brain is often seen as much more emotionally charged than studies of sex differences in other organs, the dichotomy is largely false. By putting the brain firmly back in the body, sex differences in the brain are predictable and can be more completely understood.
Collapse
Affiliation(s)
- Geert J. de Vries
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30302-5030 USA
| | - Nancy G. Forger
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30302-5030 USA
| |
Collapse
|
62
|
Kob R, Fellner C, Bertsch T, Wittmann A, Mishura D, Sieber CC, Fischer BE, Stroszczynski C, Bollheimer CL. Gender-specific differences in the development of sarcopenia in the rodent model of the ageing high-fat rat. J Cachexia Sarcopenia Muscle 2015; 6:181-91. [PMID: 26136194 PMCID: PMC4458084 DOI: 10.1002/jcsm.12019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/05/2015] [Accepted: 02/23/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Sarcopenia is linked to functional impairments, loss of independence, and mortality. In the past few years, obesity has been established as being a risk factor for a decline in muscle mass and function. There are several molecular pathological mechanisms, which have been under discussion that might explain this relationship. However, most studies were conducted using male animals and for a short period of time. METHODS In this study, the gender-specific effect of long-term, high-fat content feeding in Sprague-Dawley rats was examined. Development of the quadriceps muscle of the animals was monitored in vivo using magnetic resonance. The results of these measurements and of the biochemical analysis of the aged muscle were compared. RESULTS Surprisingly, only male but not female rats showed a decline in muscle cross-sectional area at 16 months of age as a result of a chronic oversupply of dietary fats. This loss of muscle mass could not be explained by either de-regulation of the anabolic Akt pathway or by up-regulation of the main ubiquitin ligases of muscle, MAFbx and MuRF-1. However, fusion of satellite cells to myotubes was induced by the high-fat diet in male rats, possibly as a result of an increased need for compensatory regeneration processes. Caspase-3-dependent apoptosis induction, irrespective of diet, seems to be the major determinant of muscle decline during ageing in male but not female rats. CONCLUSION Taken together, activation of the apoptosis-inducing Caspase-3 seems to be the most important trigger for the age-related muscle loss. Male rats were more prone to the decline of muscle during ageing than female animals, which was further enforced by a long-term, high fat diet.
Collapse
Affiliation(s)
- Robert Kob
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Claudia Fellner
- Institute of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Thomas Bertsch
- Institute of Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Paracelsus Medical University, Nuremberg, Germany
| | - Astrid Wittmann
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Daria Mishura
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Cornel C Sieber
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany.,Department of General Internal Medicine and Geriatrics, Hospital of the Order of St. John of God, Regensburg, Germany
| | - Barbara E Fischer
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | | | - Cornelius L Bollheimer
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany.,Department of General Internal Medicine and Geriatrics, Hospital of the Order of St. John of God, Regensburg, Germany
| |
Collapse
|
63
|
Abstract
There are three different types of adipose tissue (AT)-brown, white, and beige-that differ with stage of development, species, and anatomical location. Of these, brown AT (BAT) is the least abundant but has the greatest potential impact on energy balance. BAT is capable of rapidly producing large amounts of heat through activation of the unique uncoupling protein 1 (UCP1) located within the inner mitochondrial membrane. White AT is an endocrine organ and site of lipid storage, whereas beige AT is primarily white but contains some cells that possess UCP1. BAT first appears in the fetus around mid-gestation and is then gradually lost through childhood, adolescence, and adulthood. We focus on the interrelationships between adipocyte classification, anatomical location, and impact of diet in early life together with the extent to which fat development differs between the major species examined. Ultimately, novel dietary interventions designed to reactivate BAT could be possible.
Collapse
Affiliation(s)
- Michael E Symonds
- Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham NG7 2UH, United Kingdom; , ,
| | | | | |
Collapse
|
64
|
Reaves DK, Ginsburg E, Bang JJ, Fleming JM. Persistent organic pollutants and obesity: are they potential mechanisms for breast cancer promotion? Endocr Relat Cancer 2015; 22:R69-86. [PMID: 25624167 PMCID: PMC4352112 DOI: 10.1530/erc-14-0411] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dietary ingestion of persistent organic pollutants (POPs) is correlated with the development of obesity. Obesity alters metabolism, induces an inflammatory tissue microenvironment, and is also linked to diabetes and breast cancer risk/promotion of the disease. However, no direct evidence exists with regard to the correlation among all three of these factors (POPs, obesity, and breast cancer). Herein, we present results from current correlative studies indicating a causal link between POP exposure through diet and their bioaccumulation in adipose tissue that promotes the development of obesity and ultimately influences breast cancer development and/or progression. Furthermore, as endocrine disruptors, POPs could interfere with hormonally responsive tissue functions causing dysregulation of hormone signaling and cell function. This review highlights the critical need for advanced in vitro and in vivo model systems to elucidate the complex relationship among obesity, POPs, and breast cancer, and, more importantly, to delineate their multifaceted molecular, cellular, and biochemical mechanisms. Comprehensive in vitro and in vivo studies directly testing the observed correlations as well as detailing their molecular mechanisms are vital to cancer research and, ultimately, public health.
Collapse
Affiliation(s)
- Denise K Reaves
- Department of BiologyNorth Carolina Central University, MTSC Room 2247, 1801 Fayetteville Street, Durham, North Carolina 27707, USANational Cancer InstituteNational Institutes of Health, Center for Cancer Training, Bethesda, Maryland 20892, USADepartment of BiologyNorth Carolina Central University, Durham, North Carolina 27707, USA
| | - Erika Ginsburg
- Department of BiologyNorth Carolina Central University, MTSC Room 2247, 1801 Fayetteville Street, Durham, North Carolina 27707, USANational Cancer InstituteNational Institutes of Health, Center for Cancer Training, Bethesda, Maryland 20892, USADepartment of BiologyNorth Carolina Central University, Durham, North Carolina 27707, USA
| | - John J Bang
- Department of BiologyNorth Carolina Central University, MTSC Room 2247, 1801 Fayetteville Street, Durham, North Carolina 27707, USANational Cancer InstituteNational Institutes of Health, Center for Cancer Training, Bethesda, Maryland 20892, USADepartment of BiologyNorth Carolina Central University, Durham, North Carolina 27707, USA
| | - Jodie M Fleming
- Department of BiologyNorth Carolina Central University, MTSC Room 2247, 1801 Fayetteville Street, Durham, North Carolina 27707, USANational Cancer InstituteNational Institutes of Health, Center for Cancer Training, Bethesda, Maryland 20892, USADepartment of BiologyNorth Carolina Central University, Durham, North Carolina 27707, USA
| |
Collapse
|
65
|
Prolactin (PRL) in Adipose Tissue: Regulation and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 846:1-35. [DOI: 10.1007/978-3-319-12114-7_1] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
66
|
Hetzler KL, Hardee JP, Puppa MJ, Narsale AA, Sato S, Davis JM, Carson JA. Sex differences in the relationship of IL-6 signaling to cancer cachexia progression. Biochim Biophys Acta Mol Basis Dis 2014; 1852:816-25. [PMID: 25555992 DOI: 10.1016/j.bbadis.2014.12.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/04/2014] [Accepted: 12/22/2014] [Indexed: 02/07/2023]
Abstract
A devastating aspect of cancer cachexia is severe loss of muscle and fat mass. Though cachexia occurs in both sexes, it is not well-defined in the female. The Apc(Min/+) mouse is genetically predisposed to develop intestinal tumors; circulating IL-6 is a critical regulator of cancer cachexia in the male Apc(Min/+) mouse. The purpose of this study was to examine the relationship between IL-6 signaling and cachexia progression in the female Apc(Min/+) mouse. Male and female Apc(Min/+) mice were examined during the initiation and progression of cachexia. Another group of females had IL-6 overexpressed between 12 and 14 weeks or 15-18 weeks of age to determine whether IL-6 could induce cachexia. Cachectic female Apc(Min/+) mice lost body weight, muscle mass, and fat mass; increased muscle IL-6 mRNA expression was associated with these changes, but circulating IL-6 levels were not. Circulating IL-6 levels did not correlate with downstream signaling in muscle in the female. Muscle IL-6r mRNA expression and SOCS3 mRNA expression as well as muscle IL-6r protein and STAT3 phosphorylation increased with severe cachexia in both sexes. Muscle SOCS3 protein increased in cachectic females but decreased in cachectic males. IL-6 overexpression did not affect cachexia progression in female Apc(Min/+) mice. Our results indicate that female Apc(Min/+) mice undergo cachexia progression that is at least initially IL-6-independent. Future studies in the female will need to determine mechanisms underlying regulation of IL-6 response and cachexia induction.
Collapse
Affiliation(s)
- Kimbell L Hetzler
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - Justin P Hardee
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - Melissa J Puppa
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - Aditi A Narsale
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - Shuichi Sato
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - J Mark Davis
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - James A Carson
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA.
| |
Collapse
|
67
|
Vieira-Potter VJ. Inflammation and macrophage modulation in adipose tissues. Cell Microbiol 2014; 16:1484-92. [PMID: 25073615 DOI: 10.1111/cmi.12336] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022]
Abstract
The adipose tissue is an active endocrine organ that harbours not only mature and developing adipocytes but also a wide array of immune cells, including macrophages, a key immune cell in determining metabolic functionality. With adipose tissue expansion, M1 pro-inflammatory macrophage infiltration increases, activates other immune cells, and affects lipid trafficking and metabolism, in part via inhibiting mitochondrial function and increasing reactive oxygen species (ROS). The pro-inflammatory cytokines produced and released interfere with insulin signalling, while inhibiting M1 macrophage activation improves systemic insulin sensitivity. In healthy adipose tissue, M2 alternative macrophages predominate and associate with enhanced lipid handling and mitochondrial function, anti-inflammatory cytokine production, and inhibition of ROS. The sequence of events leading to macrophage infiltration and activation in adipose tissue remains incompletely understood but lipid handling of both macrophages and adipocytes appears to play a major role.
Collapse
Affiliation(s)
- Victoria J Vieira-Potter
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
68
|
Zhou P, Hummel AD, Pywell CM, Dong XC, Duffield GE. High fat diet rescues disturbances to metabolic homeostasis and survival in the Id2 null mouse in a sex-specific manner. Biochem Biophys Res Commun 2014; 451:374-81. [PMID: 25108156 DOI: 10.1016/j.bbrc.2014.07.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/24/2022]
Abstract
Inhibitor of DNA binding 2 (ID2) is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our previous studies have demonstrated that Id2 null mice have altered expression of circadian genes involved in lipid metabolism, altered circadian feeding behavior, and sex-specific enhancement of insulin sensitivity and elevated glucose uptake in skeletal muscle and brown adipose tissue. Here we further characterized the Id2-/- mouse metabolic phenotype in a sex-specific context and under low and high fat diets, and examined metabolic and endocrine parameters associated with lipid and glucose metabolism. Under the low-fat diet Id2-/- mice showed decreased weight gain, reduced gonadal fat mass, and a lower survival rate. Under the high-fat diet, body weight and gonadal fat gain of Id2-/- male mice was comparable to control mice and survival rate improved markedly. Furthermore, the high-fat diet treated Id2-/- male mice lost the enhanced glucose tolerance feature observed in the other Id2-/- groups, and there was a sex-specific difference in white adipose tissue storage of Id2-/- mice. Additionally, a distinct pattern of hepatic lipid accumulation was observed in Id2-/- males: low lipids on the low-fat diet and steatosis on the high-fat diet. In summary, these data provides valuable insights into the impact of Id2 deficiency on metabolic homeostasis of mice in a sex-specific manner.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Alyssa D Hummel
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Cameron M Pywell
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | - Giles E Duffield
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
69
|
Schneider JE, Brozek JM, Keen-Rhinehart E. Our stolen figures: the interface of sexual differentiation, endocrine disruptors, maternal programming, and energy balance. Horm Behav 2014; 66:104-19. [PMID: 24681201 DOI: 10.1016/j.yhbeh.2014.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/15/2014] [Accepted: 03/18/2014] [Indexed: 02/06/2023]
Abstract
This article is part of a Special Issue "Energy Balance". The prevalence of adult obesity has risen markedly in the last quarter of the 20th century and has not been reversed in this century. Less well known is the fact that obesity prevalence has risen in domestic, laboratory, and feral animals, suggesting that all of these species have been exposed to obesogenic factors present in the environment. This review emphasizes interactions among three biological processes known to influence energy balance: Sexual differentiation, endocrine disruption, and maternal programming. Sexual dimorphisms include differences between males and females in body weight, adiposity, adipose tissue distribution, ingestive behavior, and the underlying neural circuits. These sexual dimorphisms are controlled by sex chromosomes, hormones that masculinize or feminize adult body weight during perinatal development, and hormones that act during later periods of development, such as puberty. Endocrine disruptors are natural and synthetic molecules that attenuate or block normal hormonal action during these same developmental periods. A growing body of research documents effects of endocrine disruptors on the differentiation of adipocytes and the central nervous system circuits that control food intake, energy expenditure, and adipose tissue storage. In parallel, interest has grown in epigenetic influences, including maternal programming, the process by which the mother's experience has permanent effects on energy-balancing traits in the offspring. This review highlights the points at which maternal programming, sexual differentiation, and endocrine disruption might dovetail to influence global changes in energy balancing traits.
Collapse
Affiliation(s)
- Jill E Schneider
- Lehigh University, Department of Biological Sciences, Bethlehem, PA 18015, USA.
| | - Jeremy M Brozek
- Lehigh University, Department of Biological Sciences, Bethlehem, PA 18015, USA
| | - Erin Keen-Rhinehart
- Susquehanna University, Department of Biological Sciences, Selinsgrove, PA 17870, USA
| |
Collapse
|