51
|
Cannavo A, Rengo G, Liccardo D, Pironti G, Scimia MC, Scudiero L, De Lucia C, Ferrone M, Leosco D, Zambrano N, Koch WJ, Trimarco B, Esposito G. Prothymosin alpha protects cardiomyocytes against ischemia-induced apoptosis via preservation of Akt activation. Apoptosis 2014; 18:1252-61. [PMID: 23857453 DOI: 10.1007/s10495-013-0876-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The human prothymosin alpha (PTα) gene encodes a 12.5 kDa highly acidic nuclear protein that is widely expressed in mammalian tissues including the heart and importantly, is detectable also in blood serum. During apoptosis or necrosis, PTα changes its nuclear localization and is able to exert an important cytoprotective effect. Since the role of PTα in the heart has never been evaluated, the aim of the present study was to investigate the effects of PTα on cardiomyocytes during ischemic injury. Our data show that seven after myocardial infarction (MI), PTα expression levels are significantly increased both in blood serum and in cardiac tissue, and notably we observe that PTα translocates from the nuclei to cytoplasm and plasma membrane of cardiomyocytes following MI. Furthermore, in vitro experiments in cardiomyocytes, confirm that after 6 h of simulated ischemia (SI), PTα protein levels are upregulated compared to normoxic cells. Importantly, treatment of cardiomyocytes with a recombinant PTα (rPTα), during SI results in a significant decrease in the apoptotic response and in a robust increase in cell survival. Moreover, these effects are accompanied to a significant preservation of the activated levels of the anti-apoptotic serine-threonine kinase Akt. Consistent with our in vitro observation, rPTα-treated MI mice exhibit a strong reduction in infarct size at 24 h, compared to the MI control group and at the molecular level, PTα treatment induces activation of Akt. The present study provides for the first time the demonstration that PTα offers cardioprotection against ischemic injury by an Akt-dependent mechanism.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Watari K, Nakaya M, Kurose H. Multiple functions of G protein-coupled receptor kinases. J Mol Signal 2014; 9:1. [PMID: 24597858 PMCID: PMC3973964 DOI: 10.1186/1750-2187-9-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/25/2014] [Indexed: 02/07/2023] Open
Abstract
Desensitization is a physiological feedback mechanism that blocks detrimental effects of persistent stimulation. G protein-coupled receptor kinase 2 (GRK2) was originally identified as the kinase that mediates G protein-coupled receptor (GPCR) desensitization. Subsequent studies revealed that GRK is a family composed of seven isoforms (GRK1–GRK7). Each GRK shows a differential expression pattern. GRK1, GRK4, and GRK7 are expressed in limited tissues. In contrast, GRK2, GRK3, GRK5, and GRK6 are ubiquitously expressed throughout the body. The roles of GRKs in GPCR desensitization are well established. When GPCRs are activated by their agonists, GRKs phosphorylate serine/threonine residues in the intracellular loops and the carboxyl-termini of GPCRs. Phosphorylation promotes translocation of β-arrestins to the receptors and inhibits further G protein activation by interrupting receptor-G protein coupling. The binding of β-arrestins to the receptors also helps to promote receptor internalization by clathrin-coated pits. Thus, the GRK-catalyzed phosphorylation and subsequent binding of β-arrestin to GPCRs are believed to be the common mechanism of GPCR desensitization and internalization. Recent studies have revealed that GRKs are also involved in the β-arrestin-mediated signaling pathway. The GRK-mediated phosphorylation of the receptors plays opposite roles in conventional G protein- and β-arrestin-mediated signaling. The GRK-catalyzed phosphorylation of the receptors results in decreased G protein-mediated signaling, but it is necessary for β-arrestin-mediated signaling. Agonists that selectively activate GRK/β-arrestin-dependent signaling without affecting G protein signaling are known as β-arrestin-biased agonists. Biased agonists are expected to have potential therapeutic benefits for various diseases due to their selective activation of favorable physiological responses or avoidance of the side effects of drugs. Furthermore, GRKs are recognized as signaling mediators that are independent of either G protein- or β-arrestin-mediated pathways. GRKs can phosphorylate non-GPCR substrates, and this is found to be involved in various physiological responses, such as cell motility, development, and inflammation. In addition to these effects, our group revealed that GRK6 expressed in macrophages mediates the removal of apoptotic cells (engulfment) in a kinase activity-dependent manner. These studies revealed that GRKs block excess stimulus and also induce cellular responses. Here, we summarized the involvement of GRKs in β-arrestin-mediated and G protein-independent signaling pathways.
Collapse
Affiliation(s)
| | | | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
53
|
De Biase C, De Rosa R, Luciano R, De Luca S, Capuano E, Trimarco B, Galasso G. Effects of physical activity on endothelial progenitor cells (EPCs). Front Physiol 2014; 4:414. [PMID: 24550833 PMCID: PMC3909827 DOI: 10.3389/fphys.2013.00414] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/29/2013] [Indexed: 12/28/2022] Open
Abstract
Physical activity has a therapeutic role in cardiovascular disease (CVD), through its beneficial effects on endothelial function and cardiovascular system. Circulating endothelial progenitor cells (EPCs) are bone marrow (BM) derived cells that represent a novel therapeutic target in CVD patients, because of their ability to home to sites of ischemic injury and repair the damaged vessels. Several studies show that physical activity results in a significant increase in circulating EPCs, and, in particular, there are some evidence of the beneficial exercise-induced effects on EPCs activity in CVD settings, including coronary artery disease (CAD), heart failure (HF), and peripheral artery disease (PAD). The aim of this paper is to review the current evidence about the beneficial effects of physical exercise on endothelial function and EPCs levels and activity in both healthy subjects and patients with CVD.
Collapse
Affiliation(s)
- Chiara De Biase
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Roberta De Rosa
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Rossella Luciano
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Stefania De Luca
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Ernesto Capuano
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Gennaro Galasso
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| |
Collapse
|
54
|
Bathgate-Siryk A, Dabul S, Pandya K, Walklett K, Rengo G, Cannavo A, De Lucia C, Liccardo D, Gao E, Leosco D, Koch WJ, Lymperopoulos A. Negative impact of β-arrestin-1 on post-myocardial infarction heart failure via cardiac and adrenal-dependent neurohormonal mechanisms. Hypertension 2014; 63:404-412. [PMID: 24218435 PMCID: PMC3889868 DOI: 10.1161/hypertensionaha.113.02043] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/16/2013] [Indexed: 12/20/2022]
Abstract
β-Arrestin (βarr)-1 and β-arrestin-2 (βarrs) are universal G-protein-coupled receptor adapter proteins that negatively regulate cardiac β-adrenergic receptor (βAR) function via βAR desensitization and downregulation. In addition, they mediate G-protein-independent βAR signaling, which might be beneficial, for example, antiapoptotic, for the heart. However, the specific role(s) of each βarr isoform in cardiac βAR dysfunction, the molecular hallmark of chronic heart failure (HF), remains unknown. Furthermore, adrenal βarr1 exacerbates HF by chronically enhancing adrenal production and hence circulating levels of aldosterone and catecholamines. Herein, we sought to delineate specific roles of βarr1 in post-myocardial infarction (MI) HF by testing the effects of βarr1 genetic deletion on normal and post-MI cardiac function and morphology. We studied βarr1 knockout (βarr1KO) mice alongside wild-type controls under normal conditions and after surgical MI. Normal (sham-operated) βarr1KO mice display enhanced βAR-dependent contractility and post-MI βarr1KO mice enhanced overall cardiac function (and βAR-dependent contractility) compared with wild type. Post-MI βarr1KO mice also show increased survival and decreased cardiac infarct size, apoptosis, and adverse remodeling, as well as circulating catecholamines and aldosterone, compared with post-MI wild type. The underlying mechanisms, on one hand, improved cardiac βAR signaling and function, as evidenced by increased βAR density and procontractile signaling, via reduced cardiac βAR desensitization because of cardiac βarr1 absence, and, on the other hand, decreased production leading to lower circulating levels of catecholamines and aldosterone because of adrenal βarr1 absence. Thus, βarr1, via both cardiac and adrenal effects, is detrimental for cardiac structure and function and significantly exacerbates post-MI HF.
Collapse
Affiliation(s)
- Ashley Bathgate-Siryk
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, 3200 S University Dr, HPD Bldg/Room 1338, Fort Lauderdale, FL 33328.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Leosco D, Parisi V, Femminella GD, Formisano R, Petraglia L, Allocca E, Bonaduce D. Effects of exercise training on cardiovascular adrenergic system. Front Physiol 2013; 4:348. [PMID: 24348425 PMCID: PMC3842896 DOI: 10.3389/fphys.2013.00348] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/12/2013] [Indexed: 12/20/2022] Open
Abstract
In heart failure (HF), exercise has been shown to modulate cardiac sympathetic hyperactivation which is one of the earliest features of neurohormonal derangement in this syndrome and correlates with adverse outcome. An important molecular alteration related to chronic sympathetic overstimulation in HF is represented by cardiac β-adrenergic receptor (β-AR) dysfunction. It has been demonstrated that exercise reverses β-AR dysfunction by restoring cardiac receptor membrane density and G-protein-dependent adenylyl cyclase activation. In particular, several evidence indicate that exercise reduces levels of cardiac G-protein coupled receptor kinase-2 (GRK2) which is known to be involved in both β1-AR and β2-AR dysregulation in HF. Similar alterations of β-AR system have been described also in the senescent heart. It has also been demonstrated that exercise training restores adrenal GRK2/α-2AR/catecholamine (CA) production axis. At vascular level, exercise shows a therapeutic effect on age-related impairment of vascular reactivity to adrenergic stimulation and restores β-AR-dependent vasodilatation by increasing vascular β-AR responsiveness and reducing endothelial GRK2 activity. Sympathetic nervous system overdrive is thought to account for >50% of all cases of hypertension and a lack of balance between parasympathetic and sympathetic modulation has been observed in hypertensive subjects. Non-pharmacological, lifestyle interventions have been associated with reductions in SNS overactivity and blood pressure in hypertension. Several evidence have highlighted the blood pressure lowering effects of aerobic endurance exercise in patients with hypertension and the significant reduction in sympathetic neural activity has been reported as one of the main mechanisms explaining the favorable effects of exercise on blood pressure control.
Collapse
Affiliation(s)
- Dario Leosco
- Department of Translational Medical Sciences, University of Naples "Federico II," Naples, Italy
| | - Valentina Parisi
- Department of Translational Medical Sciences, University of Naples "Federico II," Naples, Italy
| | - Grazia D Femminella
- Department of Translational Medical Sciences, University of Naples "Federico II," Naples, Italy
| | - Roberto Formisano
- Department of Translational Medical Sciences, University of Naples "Federico II," Naples, Italy
| | - Laura Petraglia
- Department of Translational Medical Sciences, University of Naples "Federico II," Naples, Italy
| | - Elena Allocca
- Department of Translational Medical Sciences, University of Naples "Federico II," Naples, Italy
| | - Domenico Bonaduce
- Department of Translational Medical Sciences, University of Naples "Federico II," Naples, Italy
| |
Collapse
|
56
|
Barrese V, Taglialatela M. New advances in beta-blocker therapy in heart failure. Front Physiol 2013; 4:323. [PMID: 24294204 PMCID: PMC3827547 DOI: 10.3389/fphys.2013.00323] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 10/18/2013] [Indexed: 12/24/2022] Open
Abstract
The use of β-blockers (BB) in heart failure (HF) has been considered a contradiction for many years. Considering HF simply as a state of inadequate systolic function, BB were contraindicated because of their negative effects on myocardial contractility. Nevertheless, evidence collected in the past years have suggested that additional mechanisms, such as compensatory neuro-humoral hyperactivation or inflammation, could participate in the pathogenesis of this complex disease. Indeed, chronic activation of the sympathetic nervous system, although initially compensating the reduced cardiac output from the failing heart, increases myocardial oxygen demand, ischemia and oxidative stress; moreover, high catecholamine levels induce peripheral vasoconstriction and increase both cardiac pre- and after-load, thus determining additional stress to the cardiac muscle (1). As a consequence of such a different view of the pathogenic mechanisms of HF, the efficacy of BB in the treatment of HF has been investigated in numerous clinical trials. Results from these trials highlighted BB as valid therapeutic tools in HF, providing rational basis for their inclusion in many HF treatment guidelines. However, controversy still exists about their use, in particular with regards to the selection of specific molecules, since BB differ in terms of adrenergic β-receptors selectivity, adjunctive effects on α-receptors, and effects on reactive oxygen species and inflammatory cytokines production. Further concerns about the heterogeneity in the response to BB, as well as the use in specific patients, are matter of debate among clinicians. In this review, we will recapitulate the pharmacological properties and the classification of BB, and the alteration of the adrenergic system occurring during HF that provide a rationale for their use; we will also focus on the possible molecular mechanisms, such as genetic polymorphisms, underlying the different efficacy of molecules belonging to this class.
Collapse
Affiliation(s)
- Vincenzo Barrese
- Section of Pharmacology, Department of Neuroscience, University of Naples Federico II Naples, Italy
| | | |
Collapse
|
57
|
Siryk-Bathgate A, Dabul S, Lymperopoulos A. Current and future G protein-coupled receptor signaling targets for heart failure therapy. Drug Des Devel Ther 2013; 7:1209-1222. [PMID: 24143078 PMCID: PMC3797606 DOI: 10.2147/dddt.s35905] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although there have been significant advances in the therapy of heart failure in recent decades, such as the introduction of β-blockers and antagonists of the renin-angiotensin-aldosterone system, this devastating disease still carries tremendous morbidity and mortality in the western world. G protein-coupled receptors, such as β-adrenergic and angiotensin II receptors, located in the membranes of all three major cardiac cell types, ie, myocytes, fibroblasts, and endothelial cells, play crucial roles in regulation of cardiac function in health and disease. Their importance is reflected by the fact that, collectively, they represent the direct targets of over one-third of the currently approved cardiovascular drugs used in clinical practice. Over the past few decades, advances in elucidation of the signaling pathways they elicit, specifically in the heart, have led to identification of an increasing number of new molecular targets for heart failure therapy. Here, we review these possible targets for heart failure therapy that have emerged from studies of cardiac G protein-coupled receptor signaling in health and disease, with a particular focus on the main cardiac G protein-coupled receptor types, ie, the β-adrenergic and the angiotensin II type 1 receptors. We also highlight key issues that need to be addressed to improve the chances of success of novel therapies directed against these targets.
Collapse
Affiliation(s)
- Ashley Siryk-Bathgate
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, USA
| | - Samalia Dabul
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, USA
| |
Collapse
|
58
|
Cannavo A, Rengo G, Liccardo D, Pagano G, Zincarelli C, De Angelis MC, Puglia R, Di Pietro E, Rabinowitz JE, Barone MV, Cirillo P, Trimarco B, Palmer TM, Ferrara N, Koch WJ, Leosco D, Rapacciuolo A. β1-adrenergic receptor and sphingosine-1-phosphate receptor 1 (S1PR1) reciprocal downregulation influences cardiac hypertrophic response and progression to heart failure: protective role of S1PR1 cardiac gene therapy. Circulation 2013; 128:1612-1622. [PMID: 23969695 PMCID: PMC3952877 DOI: 10.1161/circulationaha.113.002659] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/09/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND The sphingosine-1-phosphate receptor 1 (S1PR1) and β1-adrenergic receptor (β1AR) are G-protein-coupled receptors expressed in the heart. These 2 receptors have opposing actions on adenylyl cyclase because of differential G-protein coupling. Importantly, both of these receptors can be regulated by the actions of G-protein-coupled receptor kinase-2, which triggers desensitization and downregulation processes. Although classic signaling paradigms suggest that simultaneous activation of β1ARs and S1PR1s in a myocyte would simply result in opposing action on cAMP production, in this report we have uncovered a direct interaction between these 2 receptors, with regulatory involvement of G-protein-coupled receptor kinase-2. METHODS AND RESULTS In HEK (human embryonic kidney) 293 cells overexpressing both β1AR and S1PR1, we demonstrated that β1AR downregulation can occur after stimulation with sphingosine-1-phosphate (an S1PR1 agonist), whereas S1PR1 downregulation can be triggered by isoproterenol (a β-adrenergic receptor agonist) treatment. This cross talk between these 2 distinct G-protein-coupled receptors appears to have physiological significance, because they interact and show reciprocal regulation in mouse hearts undergoing chronic β-adrenergic receptor stimulation and in a rat model of postischemic heart failure. CONCLUSIONS We demonstrate that restoration of cardiac plasma membrane levels of S1PR1 produces beneficial effects that counterbalance the deleterious β1AR overstimulation in heart failure.
Collapse
MESH Headings
- Animals
- Cardiomegaly/physiopathology
- Cardiomegaly/therapy
- Disease Models, Animal
- Disease Progression
- Down-Regulation/physiology
- Genetic Therapy/methods
- Green Fluorescent Proteins/genetics
- HEK293 Cells
- Heart Failure/physiopathology
- Heart Failure/therapy
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Myoblasts, Cardiac/cytology
- Myocardial Infarction/physiopathology
- Myocardial Infarction/therapy
- Rats
- Rats, Inbred WKY
- Receptor Cross-Talk/physiology
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Lysosphingolipid/genetics
- Receptors, Lysosphingolipid/metabolism
- Sphingosine-1-Phosphate Receptors
Collapse
Affiliation(s)
- Alessandro Cannavo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy
- Center of Translational Medicine, Temple University, Philadelphia, PA
| | - Giuseppe Rengo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy
- Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy
| | - Daniela Liccardo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy
| | - Gennaro Pagano
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy
| | - Carmela Zincarelli
- Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy
| | - Maria Carmen De Angelis
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Italy
| | - Roberto Puglia
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Italy
| | - Elisa Di Pietro
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Italy
| | | | - Maria Vittoria Barone
- Department of Pediatrics and European Laboratory for the Investigation of Food-Induced Diseases “Federico II” University, Naples, Italy
| | - Plinio Cirillo
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Italy
| | - Bruno Trimarco
- Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy
| | - Timothy M. Palmer
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Nicola Ferrara
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy
- Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy
| | - Walter J. Koch
- Center of Translational Medicine, Temple University, Philadelphia, PA
| | - Dario Leosco
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy
| | - Antonio Rapacciuolo
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Italy
| |
Collapse
|
59
|
de Lucia C, Femminella GD, Rengo G, Ruffo A, Parisi V, Pagano G, Liccardo D, Cannavo A, Iacotucci P, Komici K, Zincarelli C, Rengo C, Perrone-Filardi P, Leosco D, Iacono F, Romeo G, Amato B, Ferrara N. Risk of acute myocardial infarction after transurethral resection of prostate in elderly. BMC Surg 2013; 13 Suppl 2:S35. [PMID: 24267821 PMCID: PMC3851236 DOI: 10.1186/1471-2482-13-s2-s35] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Benign prostatic hyperplasia is a frequent disease among elderly, and is responsible for considerable disability. Benign prostatic hyperplasia can be clinically significant due to lower urinary tract symptoms that take place because the gland is enlarged and obstructs urine flow. Transurethral resection of the prostate remains the gold standard treatment for patients with moderate or severe symptoms who need active treatment or who either fail or do not want medical therapy. Moreover, perioperative and postoperative surgery complications as cardiovascular ones still occur. The incidence of acute myocardial infarction in patients undergoing transurethral resection of the prostate is controversial. The first studies showed an increase in mortality and relative risk of death from myocardial infarction in transurethral resection of the prostate group vs open prostatectomy but these results are in contrast with more recent data. Discussion Given the conflicting evidence of the studies in the literature, in this review we are going to discuss the factors that may influence the risk of myocardial infarction in elderly patients undergoing prostate surgery. We analyzed the possible common factors that lead to the development of myocardial infarction and benign prostatic hyperplasia (cardiovascular and metabolic), the stressor factors related to prostatectomy (surgical and haemodynamic) and the risk factors specific of the elderly population (comorbidity and therapies). Summary Although transurethral resection of the prostate is considered at low risk for severe complications, there are several reports indicating that cardiovascular events in elderly patients undergoing this surgical operation are more common than in the general population. Several cardio-metabolic, surgical and aging-related factors may help explain this observation but results in literature are not concord, especially due to the fact that most data derive from retrospective studies in which selection bias cannot be excluded. Subsequently, further studies are necessary to clarify the incidence of acute myocardial infarction in old people.
Collapse
|
60
|
Rengo G, Parisi V, Femminella GD, Pagano G, de Lucia C, Cannavo A, Liccardo D, Giallauria F, Scala O, Zincarelli C, Perrone Filardi P, Ferrara N, Leosco D. Molecular aspects of the cardioprotective effect of exercise in the elderly. Aging Clin Exp Res 2013; 25:487-97. [PMID: 23949971 DOI: 10.1007/s40520-013-0117-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/09/2013] [Indexed: 01/01/2023]
Abstract
Aging is a well-recognized risk factor for several different forms of cardiovascular disease. However, mechanisms by which aging exerts its negative effect on outcome have been only partially clarified. Numerous evidence indicate that aging is associated with alterations of several mechanisms whose integrity confers protective action on the heart and vasculature. The present review aims to focus on the beneficial effects of exercise, which plays a pivotal role in primary and secondary prevention of cardiovascular diseases, in counteracting age-related deterioration of protective mechanisms that are crucially involved in the homeostasis of cardiovascular system. In this regard, animal and human studies indicate that exercise training is able: (1) to improve the inotropic reserve of the aging heart through restoration of cardiac β-adrenergic receptor signaling; (2) to rescue the mechanism of cardiac preconditioning and angiogenesis whose integrity has been shown to confer cardioprotection against ischemia and to improve post-myocardial infarction left ventricular remodeling; (3) to counteract age-related reduction of antioxidant systems that is associated to decreased cellular resistance to reactive oxygen species accumulation. Moreover, this review also describes the molecular effects induced by different exercise training protocols (endurance vs. resistance) in the attempt to better explain what kind of exercise strategy could be more efficacious to improve cardiovascular performance in the elderly population.
Collapse
Affiliation(s)
- Giuseppe Rengo
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, via Sergio Pansini, 5, 80131, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Carotenuto A, Cipolletta E, Gomez-Monterrey I, Sala M, Vernieri E, Limatola A, Bertamino A, Musella S, Sorriento D, Grieco P, Trimarco B, Novellino E, Iaccarino G, Campiglia P. Design, synthesis and efficacy of novel G protein-coupled receptor kinase 2 inhibitors. Eur J Med Chem 2013; 69:384-92. [PMID: 24077529 DOI: 10.1016/j.ejmech.2013.08.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/19/2013] [Accepted: 08/22/2013] [Indexed: 11/25/2022]
Abstract
G protein-coupled receptor kinase 2 (GRK2) is a relevant signaling node of the cellular transduction network, playing major roles in the physiology of various organs/tissues including the heart and blood vessels. Emerging evidence suggests that GRK2 is up regulated in pathological situations such as heart failure, hypertrophy and hypertension, and its inhibition offers a potential therapeutic solution to these diseases. We explored the GRK2 inhibitory activity of a library of cyclic peptides derived from the HJ loop of G protein-coupled receptor kinases 2 (GRK2). The design of these cyclic compounds was based on the conformation of the HJ loop within the X-ray structure of GRK2. One of these compounds, the cyclic peptide 7, inhibited potently and selectively the GRK2 activity, being more active than its linear precursor. In a cellular system, this peptide confirms the beneficial signaling properties of a potent GRK2 inhibitor. Preferred conformations of the most potent analog were investigated by NMR spectroscopy.
Collapse
|
62
|
Rengo G, Cannavo A, Liccardo D, Zincarelli C, de Lucia C, Pagano G, Komici K, Parisi V, Scala O, Agresta A, Rapacciuolo A, Perrone Filardi P, Ferrara N, Koch WJ, Trimarco B, Femminella GD, Leosco D. Vascular endothelial growth factor blockade prevents the beneficial effects of β-blocker therapy on cardiac function, angiogenesis, and remodeling in heart failure. Circ Heart Fail 2013; 6:1259-67. [PMID: 24029661 DOI: 10.1161/circheartfailure.113.000329] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Impaired angiogenesis in the post-myocardial infarction heart contributes to the progression to heart failure. The inhibition of vascular endothelial growth factor (VEGF) signaling has been shown to be crucial for the transition from compensatory hypertrophy to cardiac failure. Importantly, β-adrenergic receptor blocker therapy has been also shown to improve myocardial perfusion by enhancing neoangiogenesis in the failing heart. METHODS AND RESULTS Eight weeks from surgically induced myocardial infarction, heart failure rats were randomized to receive bisoprolol (B) or vehicle. At the end of a 10-week treatment period, echocardiography revealed reduced cardiac diameters and improved cardiac function in B-treated compared with vehicle-treated rats. Moreover, B treatment was associated with increased cardiac angiogenesis and in vivo coronary perfusion and reduced cardiac fibrosis. Importantly, 2 weeks after B treatment was started, increased cardiac VEGF expression and Akt and endothelial NO synthase activation were observed by comparing B-treated with drug-untreated failing hearts. To test whether the proangiogenic effects of B act via activation of VEGF pathway, rats were intravenously injected with adenoviral vector encoding a decoy VEGF receptor (Ad-Flk) or a control adenovirus (Ad-C), at the start of the treatment with B. After 10 weeks, histological analysis revealed reduced capillary and coronary perfusion in B-treated plus Ad-Flk rats compared with B-treated plus Ad-C rats. Moreover, VEGF inhibition counteracted the positive effects of B on cardiac function and remodeling. CONCLUSIONS β-Blockade promotes cardiac angiogenesis in heart failure via activation of VEGF signaling pathway. β-Blocker-induced enhancement of cardiac angiogenesis is essential for the favorable effects of this therapy on cardiac function and remodeling.
Collapse
Affiliation(s)
- Giuseppe Rengo
- Division of Cardiology, "Salvatore Maugeri" Foundation-IRCCS-Institute of Telese Terme
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Lymperopoulos A. Physiology and pharmacology of the cardiovascular adrenergic system. Front Physiol 2013; 4:240. [PMID: 24027534 PMCID: PMC3761154 DOI: 10.3389/fphys.2013.00240] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/14/2013] [Indexed: 12/25/2022] Open
Abstract
Heart failure (HF), the leading cause of death in the western world, ensues in response to cardiac injury or insult and represents the inability of the heart to adequately pump blood and maintain tissue perfusion. It is characterized by complex interactions of several neurohormonal mechanisms that get activated in the syndrome in order to try and sustain cardiac output in the face of decompensating function. The most prominent among these neurohormonal mechanisms is the adrenergic (or sympathetic) nervous system (ANS), whose activity and outflow are greatly elevated in HF. Acutely, provided that the heart still works properly, this activation of the ANS will promptly restore cardiac function according to the fundamental Frank-Starling law of cardiac function. However, if the cardiac insult persists over time, this law no longer applies and ANS will not be able to sustain cardiac function. This is called decompensated HF, and the hyperactive ANS will continue to "push" the heart to work at a level much higher than the cardiac muscle can handle. From that point on, ANS hyperactivity becomes a major problem in HF, conferring significant toxicity to the failing heart and markedly increasing its morbidity and mortality. The present review discusses the role of the ANS in cardiac physiology and in HF pathophysiology, the mechanisms of regulation of ANS activity and how they go awry in chronic HF, and, finally, the molecular alterations in heart physiology that occur in HF along with their pharmacological and therapeutic implications for the failing heart.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of PharmacyFort Lauderdale, FL, USA
| |
Collapse
|
64
|
Gao WQ, Han CG, Lu XC, Liu YX, Hui HP, Wang H. GRK 2 level in peripheral blood lymphocytes of elderly patients with acute myocardial infarction. J Geriatr Cardiol 2013; 10:281-285. [PMID: 24133517 PMCID: PMC3796703 DOI: 10.3969/j.issn.1671-5411.2013.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/22/2013] [Accepted: 06/22/2013] [Indexed: 06/02/2023] Open
Abstract
OBJECTIVE To investigate the G protein-coupled receptor kinase 2 (GRK 2) level in peripheral blood lymphocytes with cardiac function in elderly patients with acute myocardial infarction. METHODS This study enrolled 40 patients with acute ST-segment elevation myocardial infarction (STEMI) and 40 patients with unstable angina. All patients were 65 years or older. Cardiac function was evaluated by echocardiography, and the GRK 2 level in peripheral blood lymphocytes was measured. Patients with STEMI were followed up for 2 years. RESULTS The GRK 2 level in peripheral blood lymphocytes was significantly higher in patients with STEMI than in patients with unstable angina, and was negatively correlated with left ventricular ejection fraction, cardiac output, stroke volume, and left ventricular fractional shortening. The GRK 2 level was significantly elevated in some patients with acute STEMI and poor cardiac function. CONCLUSIONS Increased GRK 2 level in patients with acute STEMI may contribute to poor myocardial systolic function and myocardial remodeling. Measurement of the GRK 2 level in peripheral blood lymphocytes may assist in the evaluation of cardiac function and myocardial remodeling in elderly patients with acute STEMI.
Collapse
Affiliation(s)
- Wen-Qian Gao
- The First Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | | | - Xiao-Chun Lu
- The First Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yong-Xue Liu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Hai-Peng Hui
- The First Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Hao Wang
- The First Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
65
|
Lymperopoulos A, Rengo G, Koch WJ. Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ Res 2013; 113:739-753. [PMID: 23989716 PMCID: PMC3843360 DOI: 10.1161/circresaha.113.300308] [Citation(s) in RCA: 435] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/28/2013] [Indexed: 12/17/2022]
Abstract
Heart failure (HF), the leading cause of death in the western world, develops when a cardiac injury or insult impairs the ability of the heart to pump blood and maintain tissue perfusion. It is characterized by a complex interplay of several neurohormonal mechanisms that become activated in the syndrome to try and sustain cardiac output in the face of decompensating function. Perhaps the most prominent among these neurohormonal mechanisms is the adrenergic (or sympathetic) nervous system (ANS), whose activity and outflow are enormously elevated in HF. Acutely, and if the heart works properly, this activation of the ANS will promptly restore cardiac function. However, if the cardiac insult persists over time, chances are the ANS will not be able to maintain cardiac function, the heart will progress into a state of chronic decompensated HF, and the hyperactive ANS will continue to push the heart to work at a level much higher than the cardiac muscle can handle. From that point on, ANS hyperactivity becomes a major problem in HF, conferring significant toxicity to the failing heart and markedly increasing its morbidity and mortality. The present review discusses the role of the ANS in cardiac physiology and in HF pathophysiology, the mechanisms of regulation of ANS activity and how they go awry in chronic HF, methods of measuring ANS activity in HF, the molecular alterations in heart physiology that occur in HF, along with their pharmacological and therapeutic implications, and, finally, drugs and other therapeutic modalities used in HF treatment that target or affect the ANS and its effects on the failing heart.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Ft. Lauderdale, FL, USA
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, and Division of Cardiology, Fondazione Salvatore Maugeri, Telese Terme, Italy
| | - Walter J. Koch
- Center for Translational Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
66
|
Salazar NC, Vallejos X, Siryk A, Rengo G, Cannavo A, Liccardo D, De Lucia C, Gao E, Leosco D, Koch WJ, Lymperopoulos A. GRK2 blockade with βARKct is essential for cardiac β2-adrenergic receptor signaling towards increased contractility. Cell Commun Signal 2013; 11:64. [PMID: 23984976 PMCID: PMC3846709 DOI: 10.1186/1478-811x-11-64] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/23/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND β1- and β2-adrenergic receptors (ARs) play distinct roles in the heart, e.g. β1AR is pro-contractile and pro-apoptotic but β2AR anti-apoptotic and only weakly pro-contractile. G protein coupled receptor kinase (GRK)-2 desensitizes and opposes βAR pro-contractile signaling by phosphorylating the receptor and inducing beta-arrestin (βarr) binding. We posited herein that GRK2 blockade might enhance the pro-contractile signaling of the β2AR subtype in the heart. We tested the effects of cardiac-targeted GRK2 inhibition in vivo exclusively on β2AR signaling under normal conditions and in heart failure (HF). RESULTS We crossed β1AR knockout (B1KO) mice with cardiac-specific transgenic mice expressing the βARKct, a known GRK2 inhibitor, and studied the offspring under normal conditions and in post-myocardial infarction (MI). βARKct expression in vivo proved essential for β2AR-dependent contractile function, as β2AR stimulation with isoproterenol fails to increase contractility in either healthy or post-MI B1KO mice and it only does so in the presence of βARKct. The main underlying mechanism for this is blockade of the interaction of phosphodiesterase (PDE) type 4D with the cardiac β2AR, which is normally mediated by the actions of GRK2 and βarrs on the receptor. The molecular "brake" that PDE4D poses on β2AR signaling to contractility stimulation is thus "released". Regarding the other beneficial functions of cardiac β2AR, βARKct increased overall survival of the post-MI B1KO mice progressing to HF, via a decrease in cardiac apoptosis and an increase in wound healing-associated inflammation early (at 24 hrs) post-MI. However, these effects disappear by 4 weeks post-MI, and, in their place, upregulation of the other major GRK in the heart, GRK5, is observed. CONCLUSIONS GRK2 inhibition in vivo with βARKct is absolutely essential for cardiac β2AR pro-contractile signaling and function. In addition, β2AR anti-apoptotic signaling in post-MI HF is augmented by βARKct, although this effect is short-lived.
Collapse
Affiliation(s)
- Norma C Salazar
- Department of Pharmaceutical Sciences, Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA
| | - Ximena Vallejos
- Department of Pharmaceutical Sciences, Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA
| | - Ashley Siryk
- Department of Pharmaceutical Sciences, Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA
| | - Giuseppe Rengo
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Sciences and Immunology, University “Federico II”, Naples, Italy
| | - Alessandro Cannavo
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Sciences and Immunology, University “Federico II”, Naples, Italy
| | - Daniela Liccardo
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Sciences and Immunology, University “Federico II”, Naples, Italy
| | - Claudio De Lucia
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Sciences and Immunology, University “Federico II”, Naples, Italy
| | - Erhe Gao
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Dario Leosco
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Sciences and Immunology, University “Federico II”, Naples, Italy
| | - Walter J Koch
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
67
|
Lei B, Schwinn DA, Morris DP. Stimulation of α1a adrenergic receptors induces cellular proliferation or antiproliferative hypertrophy dependent solely on agonist concentration. PLoS One 2013; 8:e72430. [PMID: 23991110 PMCID: PMC3749976 DOI: 10.1371/journal.pone.0072430] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/08/2013] [Indexed: 12/05/2022] Open
Abstract
Stimulation of α1aAdrenergic Receptors (ARs) is known to have anti-proliferative and hypertrophic effects; however, some studies also suggests this receptor can increase cell proliferation. Surprisingly, we find the α1aAR expressed in rat-1 fibroblasts can produce either phenotype, depending exclusively on agonist concentration. Stimulation of the α1aAR by high dose phenylephrine (>10−7 M) induces an antiproliferative, hypertrophic response accompanied by robust and extended p38 activation. Inhibition of p38 with SB203580 prevented the antiproliferative response, while inhibition of Erk or Jnk had no effect. In stark contrast, stimulation of the α1aAR with low dose phenylephrine (∼10−8 M) induced an Erk-dependent increase in cellular proliferation. Agonist-induced Erk phosphorylation was preceded by rapid FGFR and EGFR transactivation; however, only EGFR inhibition blocked Erk activation and proliferation. The general matrix metalloprotease inhibitor, GM6001, blocked agonist induced Erk activation within seconds, strongly suggesting EGFR activation involved extracellular triple membrane pass signaling. Erk activation required little Ca2+ release and was blocked by PLCβ or PKC inhibition but not by intracellular Ca2+ chelation, suggesting Ca2+ independent activation of novel PKC isoforms. In contrast, Ca2+ release was essential for PI3K/Akt activation, which was acutely maximal at non-proliferative doses of agonist. Remarkably, our data suggests EGFR transactivation leading to Erk induced proliferation has the lowest activation threshold of any α1aAR response. The ability of α1aARs to induce proliferation are discussed in light of evidence suggesting antagonistic growth responses reflect native α1aAR function.
Collapse
Affiliation(s)
- Beilei Lei
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Debra A. Schwinn
- Departments of Anesthesiology, Pharmacology, Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Daniel P. Morris
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
68
|
Paolillo S, Rengo G, Pagano G, Pellegrino T, Savarese G, Femminella GD, Tuccillo M, Boemio A, Attena E, Formisano R, Petraglia L, Scopacasa F, Galasso G, Leosco D, Trimarco B, Cuocolo A, Perrone-Filardi P. Impact of diabetes on cardiac sympathetic innervation in patients with heart failure: a 123I meta-iodobenzylguanidine (123I MIBG) scintigraphic study. Diabetes Care 2013; 36:2395-401. [PMID: 23530014 PMCID: PMC3714495 DOI: 10.2337/dc12-2147] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Impaired parasympathetic and sympathetic nervous system activity have been demonstrated in patients with diabetes mellitus (DM) and correlated with worse prognosis. Few data are available on the effect of DM on cardiac neuropathy in heart failure (HF). The aim of the current study was to assess cardiac sympathetic activity in HF patients with and without DM. RESEARCH DESIGN AND METHODS Patients with severe HF (n = 75), with (n = 37) and without DM (n = 38), and 14 diabetic patients with normal cardiac function underwent (123)I meta-iodobenzylguanidine scintigraphy from which early and late heart-to-mediastinum (H/M) ratios were calculated. Clinical, echocardiographic, and biochemical data were measured. RESULTS DM compared with non-DM patients showed significantly lower early (1.65 ± 0.21 vs. 1.75 ± 0.21; P < 0.05) and late H/M ratios (1.46 ± 0.22 vs. 1.58 ± 0.24; P < 0.03). Early and late H/M were significantly higher in DM patients without HF (2.22 ± 0.35 and 1.99 ± 0.24, respectively) than HF patients with (P < 0.0001) and without (P < 0.0001) DM. In HF patients, an inverse correlation between early or late H/M ratio and hemoglobin A1c (HbA1c) (Pearson = -0.473, P = 0.001; Pearson = -0.382, P = 0.001, respectively) was observed. In DM, in multivariate analysis, HbA1c and ejection fraction remained significant predictors of early H/M; HbA1c remained the only significant predictor of late H/M. No correlation between early or late H/M and HbA1c was found in non-DM patients. CONCLUSIONS Diabetic patients with HF show lower cardiac sympathetic activity than HF patients not having DM or than DM patients with a similar degree of autonomic dysfunction not having HF. HbA1c correlated with the degree of reduction in cardiac sympathetic activity.
Collapse
Affiliation(s)
- Stefania Paolillo
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University, Naples,Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Vasudevan NT, Mohan ML, Gupta MK, Martelli EE, Hussain AK, Qin Y, Chandrasekharan UM, Young D, Feldman AM, Sen S, Dorn GW, Dicorleto PE, Naga Prasad SV. Gβγ-independent recruitment of G-protein coupled receptor kinase 2 drives tumor necrosis factor α-induced cardiac β-adrenergic receptor dysfunction. Circulation 2013; 128:377-87. [PMID: 23785004 DOI: 10.1161/circulationaha.113.003183] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Proinflammatory cytokine tumor necrosis factor-α (TNFα) induces β-adrenergic receptor (βAR) desensitization, but mechanisms proximal to the receptor in contributing to cardiac dysfunction are not known. METHODS AND RESULTS Two different proinflammatory transgenic mouse models with cardiac overexpression of myotrophin (a prohypertrophic molecule) or TNFα showed that TNFα alone is sufficient to mediate βAR desensitization as measured by cardiac adenylyl cyclase activity. M-mode echocardiography in these mouse models showed cardiac dysfunction paralleling βAR desensitization independent of sympathetic overdrive. TNFα-mediated βAR desensitization that precedes cardiac dysfunction is associated with selective upregulation of G-protein coupled receptor kinase 2 (GRK2) in both mouse models. In vitro studies in β2AR-overexpressing human embryonic kidney 293 cells showed significant βAR desensitization, GRK2 upregulation, and recruitment to the βAR complex following TNFα. Interestingly, inhibition of phosphoinositide 3-kinase abolished GRK2-mediated βAR phosphorylation and GRK2 recruitment on TNFα. Furthermore, TNFα-mediated βAR phosphorylation was not blocked with βAR antagonist propranolol. Additionally, TNFα administration in transgenic mice with cardiac overexpression of Gβγ-sequestering peptide βARK-ct could not prevent βAR desensitization or cardiac dysfunction showing that GRK2 recruitment to the βAR is Gβγ independent. Small interfering RNA knockdown of GRK2 resulted in the loss of TNFα-mediated βAR phosphorylation. Consistently, cardiomyocytes from mice with cardiac-specific GRK2 ablation normalized the TNFα-mediated loss in contractility, showing that TNFα-induced βAR desensitization is GRK2 dependent. CONCLUSIONS TNFα-induced βAR desensitization is mediated by GRK2 and is independent of Gβγ, uncovering a hitherto unknown cross-talk between TNFα and βAR function, providing the underpinnings of inflammation-mediated cardiac dysfunction.
Collapse
Affiliation(s)
- Neelakantan T Vasudevan
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Rengo G, Galasso G, Femminella GD, Parisi V, Zincarelli C, Pagano G, De Lucia C, Cannavo A, Liccardo D, Marciano C, Vigorito C, Giallauria F, Ferrara N, Furgi G, Filardi PP, Koch WJ, Leosco D. Reduction of lymphocyte G protein-coupled receptor kinase-2 (GRK2) after exercise training predicts survival in patients with heart failure. Eur J Prev Cardiol 2013; 21:4-11. [PMID: 23689525 DOI: 10.1177/2047487313491656] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Increased cardiac G protein-coupled receptor kinase-2 (GRK2) expression has a pivotal role at inducing heart failure (HF)-related β-adrenergic receptor (βAR) dysfunction. Importantly, abnormalities of βAR signalling in the failing heart, including GRK2 overexpression, are mirrored in circulating lymphocytes and correlate with HF severity. Exercise training has been shown to exert several beneficial effects on the failing heart, including normalization of cardiac βAR function and GRK2 protein levels. In the present study, we evaluated whether lymphocyte GRK2 levels and short-term changes of this kinase after an exercise training programme can predict long-term survival in HF patients. METHODS For this purpose, we prospectively studied 193 HF patients who underwent a 3-month exercise training programme. Lymphocyte GRK2 protein levels, plasma N-terminal pro-brain natriuretic peptide, and norepinephrine were measured at baseline and after training along with clinical and functional parameters (left ventricular ejection fraction, NYHA class, and peak-VO2). Cardiac-related mortality was evaluated during a mean follow-up period of 37 ± 20 months. RESULTS Exercise was associated with a significant reduction of lymphocyte GRK2 protein levels (from 1.29 ± 0.52 to 1.16 ± 0.65 densitometric units, p < 0.0001). Importantly, exercise related changes of GRK2 (delta values) robustly predicted survival in our study population. Interestingly, HF patients who did not show reduced lymphocyte GRK2 protein levels after training presented the poorest outcome. CONCLUSIONS Our data offer the first demonstration that changes of lymphocyte GRK2 after exercise training can strongly predict outcome in advanced HF.
Collapse
Affiliation(s)
- Giuseppe Rengo
- Fondazione S. Maugeri, Istituto di Telese, Benevento, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Smrcka AV. Molecular targeting of Gα and Gβγ subunits: a potential approach for cancer therapeutics. Trends Pharmacol Sci 2013; 34:290-8. [PMID: 23557963 DOI: 10.1016/j.tips.2013.02.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/21/2013] [Accepted: 02/26/2013] [Indexed: 11/26/2022]
Abstract
G-Protein-coupled receptors (GPCRs) signal through G protein α and βγ subunit families to regulate a wide range of physiological and pathophysiological processes. As such, GPCRs are major targets for therapeutic drugs. Downstream targets of GPCRs have also gained interest as a therapeutic approach to complex pathologies involving multiple GPCRs. One such approach involves targeting of the G proteins themselves. Several small molecule Gα and Gβγ modulators have been developed and been tested in various animal models of disease. Here we will discuss the requirements for targeting Gα and Gβγ subunits, the mechanisms of action of currently identified inhibitors, and focus on the potential utility of Gα and Gβγ inhibitors in the treatment of various cancers.
Collapse
Affiliation(s)
- Alan V Smrcka
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
72
|
Arrestins in the cardiovascular system. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:297-334. [PMID: 23764059 DOI: 10.1016/b978-0-12-394440-5.00012-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Of the four mammalian arrestins, only the β-arrestins (βarrs; Arrestin2 and -3) are expressed throughout the cardiovascular system, where they regulate, as either desensitizers/internalizers or signal transducers, several G-protein-coupled receptors (GPCRs) critical for cardiovascular homeostasis. The cardiovascular roles of βarrs have been delineated at an accelerated pace via a variety of techniques and tools, such as knockout mice, siRNA knockdown, artificial or naturally occurring polymorphic GPCRs, and availability of new βarr "biased" GPCR ligands. This chapter summarizes the current knowledge of cardiovascular arrestin physiology and pharmacology, addressing the individual cardiovascular receptors affected by βarrs in vivo, as well as the individual cell types, tissues, and organs of the cardiovascular system in which βarr effects are exerted; for example, cardiac myocyte or fibroblast, vascular smooth muscle, adrenal gland and platelet. In the broader scope of cardiovascular βarr pharmacology, a discussion of the βarr "bias" of certain cardiovascular GPCR ligands is also included.
Collapse
|
73
|
Bojic T, Sudar E, Mikhailidis D, Alavantic D, Isenovic E. The role of G protein coupled receptor kinases in neurocardiovascular pathophysiology. Arch Med Sci 2012; 8:970-7. [PMID: 23319968 PMCID: PMC3542506 DOI: 10.5114/aoms.2012.29996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/14/2012] [Accepted: 06/29/2012] [Indexed: 12/15/2022] Open
Abstract
In coronary artery disease the G protein related kinases (GRKs) play a role in desensitization of β-adrenoreceptors (AR) after coronary occlusion. Targeted deletion and lowering of cardiac myocyte GRK-2 decreases the risk of post-ischemic heart failure (HF). Studies carried out in humans confirm the role of GRK-2 as a marker for the progression of HF after myocardial infarction (MI). The level of GRK-2 could be an indicator of β-AR blocker efficacy in patients with acute coronary syndrome. Elevated levels of GRK-2 are an early ubiquitous consequence of myocardial injury. In hypertension an increased level of GRK-2 was reported in both animal models and human studies. The role of GRKs in vagally mediated disorders such as vasovagal syncope and atrial fibrillation remains controversial. The role of GRKs in the pathogenesis of neurocardiological diseases provides an insight into the molecular pathogenesis process, opens potential therapeutic options and suggests new directins for scientific research.
Collapse
Affiliation(s)
- Tijana Bojic
- Institute of Nuclear Sciences Vinča, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Emina Sudar
- Institute of Nuclear Sciences Vinča, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Dimitri Mikhailidis
- Department of Clinical Biochemistry (Vascular Disease Prevention Clinics), Royal Free Hospital Campus, University College London Medical School, UK
| | - Dragan Alavantic
- Institute of Nuclear Sciences Vinča, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Esma Isenovic
- Institute of Nuclear Sciences Vinča, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| |
Collapse
|
74
|
Gurevich VV, Gurevich EV. Synthetic biology with surgical precision: targeted reengineering of signaling proteins. Cell Signal 2012; 24:1899-1908. [PMID: 22664341 PMCID: PMC3404258 DOI: 10.1016/j.cellsig.2012.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/14/2012] [Indexed: 01/14/2023]
Abstract
The complexity of living systems exceeds everything else studied by natural sciences. Sophisticated networks of intimately intertwined signaling pathways coordinate cellular functions. Clear understanding how the integration of multiple inputs produces coherent behavior is one of the major challenges of cell biology. Integration via perfectly timed highly regulated protein-protein interactions and precise targeting of the "output" proteins to particular substrates is emerging as a common theme of signaling regulation. This often involves specialized scaffolding proteins, whose key function is to ensure that correct partners come together in an appropriate place at the right time. Defective or faulty signaling underlies many congenital and acquired human disorders. Several pioneering studies showed that ectopic expression of existing proteins or their elements can restore functions destroyed by mutations or normalize the signaling pushed out of balance by disease and/or current small molecule-based therapy. Several recent studies show that proteins with new functional modalities can be generated by mixing and matching existing domains, or via functional recalibration and fine-tuning of existing proteins by precisely targeted mutations. Using arrestins as an example, we describe how manipulation of individual functions yields signaling-biased proteins. Creative protein redesign generates novel tools valuable for unraveling the intricacies of cell biology. Engineered proteins with specific functional changes also have huge therapeutic potential in disorders associated with inherited or acquired signaling errors.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | | |
Collapse
|
75
|
Eckhouse SR, Jones JA, Spinale FG. Gene targeting in ischemic heart disease and failure: translational and clinical studies. Biochem Pharmacol 2012; 85:1-11. [PMID: 22935384 DOI: 10.1016/j.bcp.2012.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 08/16/2012] [Accepted: 08/20/2012] [Indexed: 01/16/2023]
Abstract
Alternative and innovative targeted strategies hold relevance in improving the current treatments for ischemic heart disease (IHD). One potential treatment modality, gene targeting, may provide a unique alternative to current IHD therapies. The principal function of gene targeting in IHD is to augment the expression of an endogenous gene through amplification of an exogenous gene, delivered by a plasmid or a viral vector to enhance myocardial perfusion, and limit the long-term sequelae. The initial clinical studies of gene targeting in IHD were focused upon induction of angiogenic factors and the outcomes were equivocal. Nevertheless, significant advancements have been made in viral vectors, mode of delivery, and potentially relevant targets for IHD. Several of these advancements, particularly with a focus on translational large animal studies, are the focus of this review. The development of novel vectors with prolonged transduction efficiency and minimal inflammation, coupled with hybrid perfusion-mapping delivery devices, and improving the safety of vector use and efficacy of gene systems are but a few of the exciting progresses that are likely to proceed to clinical studies in the near future.
Collapse
Affiliation(s)
- Shaina R Eckhouse
- Division of Cardiothoracic Surgery, Medical University of South Carolina, SC, USA
| | | | | |
Collapse
|
76
|
Rengo G, Lymperopoulos A, Zincarelli C, Femminella G, Liccardo D, Pagano G, de Lucia C, Cannavo A, Gargiulo P, Ferrara N, Perrone Filardi P, Koch W, Leosco D. Blockade of β-adrenoceptors restores the GRK2-mediated adrenal α(2) -adrenoceptor-catecholamine production axis in heart failure. Br J Pharmacol 2012; 166:2430-2440. [PMID: 22519418 PMCID: PMC3448904 DOI: 10.1111/j.1476-5381.2012.01972.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 02/07/2012] [Accepted: 03/20/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Sympathetic nervous system (SNS) hyperactivity is characteristic of chronic heart failure (HF) and significantly worsens prognosis. The success of β-adrenoceptor antagonist (β-blockers) therapy in HF is primarily attributed to protection of the heart from the noxious effects of augmented catecholamine levels. β-Blockers have been shown to reduce SNS hyperactivity in HF, but the underlying molecular mechanisms are not understood. The GPCR kinase-2 (GRK2)-α(2) adrenoceptor-catecholamine production axis is up-regulated in the adrenal medulla during HF causing α(2) -adrenoceptor dysfunction and elevated catecholamine levels. Here, we sought to investigate if β-blocker treatment in HF could lower SNS activation by directly altering adrenal GRK2 levels. EXPERIMENTAL APPROACH Four weeks after myocardial infarction-induced HF, adult rats were randomized to 10-week treatment with vehicle (HF/C) or bisoprolol (HF/B). Cardiac function and dimensions were measured. In heart and adrenal gland, GRK2 levels were assessed by RT-PCR and Western blotting and adrenoceptors studied with radioligand binding. Catecholamines and α(2) adrenoceptors in adrenal medulla chromaffin cell cultures were also measured. KEY RESULTS Bisoprolol treatment ameliorated HF-related adverse cardiac remodelling and reduced plasma catecholamine levels, compared with HF/C rats. Bisoprolol also attenuated adrenal GRK2 overexpression as observed in HF/C rats and increased α(2) adrenoceptor density. In cultures of adrenal medulla chromaffin cells from all study groups, bisoprolol reversed HF-related α(2) adrenoceptor dysfunction. This effect was reversed by GRK2 overexpression. CONCLUSION AND IMPLICATIONS Blockade of β-adrenoceptors normalized the adrenal α(2) adrenoceptor-catecholamine production axis by reducing GRK2 levels. This effect may contribute significantly to the decrease of HF-related sympathetic overdrive by β-blockers.
Collapse
Affiliation(s)
- G Rengo
- Cardiology Division, Fondazione Salvatore Maugeri, IRCCS, Telese Terme (BN), Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Rengo G, Zincarelli C, Femminella GD, Liccardo D, Pagano G, de Lucia C, Altobelli GG, Cimini V, Ruggiero D, Perrone-Filardi P, Gao E, Ferrara N, Lymperopoulos A, Koch WJ, Leosco D. Myocardial β(2) -adrenoceptor gene delivery promotes coordinated cardiac adaptive remodelling and angiogenesis in heart failure. Br J Pharmacol 2012; 166:2348-2361. [PMID: 22452704 PMCID: PMC3448898 DOI: 10.1111/j.1476-5381.2012.01954.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 02/28/2012] [Accepted: 03/02/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE We investigated whether β(2) -adrenoceptor overexpression could promote angiogenesis and improve blood perfusion and left ventricular (LV) remodeling of the failing heart. EXPERIMENTAL APPROACH We explored the angiogenic effects of β(2) -adrenoceptor overexpression in a rat model of post-myocardial infarction (MI) heart failure (HF). Cardiac adenoviral-mediated β(2) -adrenoceptor overexpression was obtained via direct intramyocardial injection 4-weeks post-MI. Adenovirus(Ad)-GFP and saline injected rats served as controls. Furthermore, we extended our observation to β(2) -adrenoceptor -/- mice undergoing MI. KEY RESULTS Transgenes were robustly expressed in the LV at 2 weeks post-gene therapy, whereas their expression was minimal at 4-weeks post-gene delivery. In HF rats, cardiac β(2) -adrenoceptor overexpression resulted in enhanced basal and isoprenaline-stimulated cardiac contractility at 2-weeks post-gene delivery. At 4 weeks post-gene transfer, Ad-β(2) -adrenoceptor HF rats showed improved LV remodeling and cardiac function. Importantly, β(2) -adrenoceptor overexpression was associated with a markedly increased capillary and arteriolar length density and enhanced in vivo myocardial blood flow and coronary reserve. At the molecular level, cardiac β(2) -adrenoceptor gene transfer induced the activation of the VEGF/PKB/eNOS pro-angiogenic pathway. In β(2) -adrenoceptor-/- mice, we found a ~25% reduction in cardiac capillary density compared with β(2) -adrenoceptor+/+ mice. The lack of β(2) -adrenoceptors was associated with a higher mortality rate at 30 days and LV dilatation, and a worse global cardiac contractility compared with controls. CONCLUSIONS AND IMPLICATION β(2) -Adrenoceptors play an important role in the regulation of the angiogenic response in HF. The activation of VEGF/PKB/eNOS pathway seems to be strongly involved in this mechanism.
Collapse
Affiliation(s)
- G Rengo
- Salvatore Maugeri Foundation, IRCCS, Telese Terme (BN), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Haack KKV, Engler CW, Papoutsi E, Pipinos II, Patel KP, Zucker IH. Parallel changes in neuronal AT1R and GRK5 expression following exercise training in heart failure. Hypertension 2012; 60:354-61. [PMID: 22753221 DOI: 10.1161/hypertensionaha.112.195693] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although exercise training (ExT) is an important therapeutic strategy for improving quality of life in patients with chronic heart failure (CHF), the central mechanisms by which ExT is beneficial are not well understood. The angiotensin II type 1 receptor (AT1R) plays a pivotal role in the development of CHF and is upregulated in a number of tissues owing, in part, to transcription factor nuclear factor kappa B (NF-κB). In addition, AT1R is marked for internalization and recycling via G-protein-coupled receptor kinase (GRK) phosphorylation. Because previous studies have shown that the beneficial effects of ExT in CHF rely on a reduction in angiotensin II, we hypothesized ExT would decrease AT1R, GRK5, and NF-κB protein expression in the paraventricular nucleus and rostral ventrolateral medulla of CHF rats. Following infarction by coronary artery ligation, animals were exercised 4 weeks postsurgery on a treadmill at a final speed of 25 miles per minute for 60 minutes, 5 days per week for 6 weeks. Western blot analysis of paraventricular nucleus and rostral ventrolateral medulla micropunches revealed an upregulation of AT1R, GRK5, and NF-κB in the infarcted group that was reversed by ExT. Furthermore, the relative expression of phosphorylated AT1R and AT1R/GRK5 physical association was increased in the CHF sedentary group and reversed by ExT. Overexpression of GRK5 in cultured CATH.a neurons blunted angiotensin II-mediated upregulation of AT1R and NF-κB; conversely, silencing of GRK5 exacerbated angiotensin II-mediated AT1R and NF-κB upregulation. Taken together, increased GRK5 may regulate AT1R expression in CHF, and ExT mitigates AT1R and its pathway components.
Collapse
Affiliation(s)
- Karla K V Haack
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | | | | | | | |
Collapse
|
79
|
Belmonte SL, Blaxall BC. Conducting the G-protein Coupled Receptor (GPCR) Signaling Symphony in Cardiovascular Diseases: New Therapeutic Approaches. ACTA ACUST UNITED AC 2012; 9:e85-e90. [PMID: 23162605 DOI: 10.1016/j.ddmod.2012.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are a virtually ubiquitous class of membrane-bound receptors, which functionally couple hormone or neurotransmitter signals to physiological responses. Dysregulation of GPCR signaling contributes to the pathophysiology of a host of cardiovascular disorders. Pharmacological agents targeting GPCRs have been established as therapeutic options for decades. Nevertheless, the persistent burden of cardiovascular diseases necessitates improved treatments. To that end, exciting drug development efforts have begun to focus on novel compounds that discriminately activate particular GPCR signaling pathways.
Collapse
Affiliation(s)
- Stephen L Belmonte
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
80
|
Montó F, Oliver E, Vicente D, Rueda J, Agüero J, Almenar L, Ivorra MD, Barettino D, D'Ocon P. Different expression of adrenoceptors and GRKs in the human myocardium depends on heart failure etiology and correlates to clinical variables. Am J Physiol Heart Circ Physiol 2012; 303:H368-76. [PMID: 22685168 DOI: 10.1152/ajpheart.01061.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Downregulation of β(1)- adrenergic receptors (β(1)-ARs) and increased expression/function of G-protein-coupled receptor kinase 2 (GRK2) have been observed in human heart failure, but changes in expression of other ARs and GRKs have not been established. Another unresolved question is the incidence of these compensatory mechanisms depending on heart failure etiology and treatment. To analyze these questions, we quantified the mRNA/protein expressions of six ARs (α(1A), α(1B), α(1D), β(1), β(2), and β(3)) and three GRKs (GRK2, GRK3, and GRK5) in left (LV) and right ventricle (RV) from four donors, 10 patients with ischemic cardiomyopathy (IC), 14 patients with dilated cardiomyopathy (DC), and 10 patients with nonischemic, nondilated cardiopathies (NINDC). We correlated the changes in the expressions of ARs and GRKs with clinical variables such as left ventricular ejection fraction (LVEF) and left ventricular end-systolic and left ventricular end-diastolic diameter (LVESD and LVEDD, respectively). The main findings were 1) the expression of the α(1A)-AR in the LV positively correlates with LVEF; 2) the expression of GRK3 and GRK5 inversely correlates with LVESD and LVEDD, supporting previous observations about a protective role for both kinases in failing hearts; and 3) β(1)-AR expression is downregulated in the LV and RV of IC, in the LV of DC, and in the RV of NINDC. This difference, better than an increased expression of GRK2 (not observed in IC), determines the lower LVEF in IC and DC vs. NINDC.
Collapse
Affiliation(s)
- Fermí Montó
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Deiss K, Kisker C, Lohse MJ, Lorenz K. Raf kinase inhibitor protein (RKIP) dimer formation controls its target switch from Raf1 to G protein-coupled receptor kinase (GRK) 2. J Biol Chem 2012; 287:23407-17. [PMID: 22610096 DOI: 10.1074/jbc.m112.363812] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins controlling cellular networks have evolved distinct mechanisms to ensure specificity in protein-protein interactions. Raf kinase inhibitor protein (RKIP) is a multifaceted kinase modulator, but it is not well understood how this small protein (21 kDa) can coordinate its diverse signaling functions. Raf1 and G protein-coupled receptor kinase (GRK) 2 are direct interaction partners of RKIP and thus provide the possibility to untangle the mechanism of its target specificity. Here, we identify RKIP dimer formation as an important mechanistic feature in the target switch from Raf1 to GRK2. Co-immunoprecipitation and cross-linking experiments revealed RKIP dimerization upon phosphorylation of RKIP at serine 153 utilizing purified proteins as well as in cells overexpressing RKIP. A functional phosphomimetic RKIP mutant had a high propensity for dimerization and reproduced the switch from Raf1 to GRK2. RKIP dimerization and GRK2 binding, but not Raf1 interaction, were prevented by a peptide comprising amino acids 127-146 of RKIP, which suggests that this region is critical for dimer formation. Furthermore, a dimeric RKIP mutant displayed a higher affinity to GRK2, but a lower affinity to Raf1. Functional analyses of phosphomimetic as well as dimeric RKIP demonstrated that enhanced dimerization of RKIP translates into decreased Raf1 and increased GRK2 inhibition. The detection of RKIP dimers in a complex with GRK2 in murine hearts implies their physiological relevance. These findings represent a novel mechanistic feature how RKIP can discriminate between its different interaction partners and thus advances our understanding how specific inhibition of kinases can be achieved.
Collapse
Affiliation(s)
- Katharina Deiss
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Strasse 9, 97078 Wuerzburg, Germany
| | | | | | | |
Collapse
|
82
|
Rengo G, Perrone-Filardi P, Femminella GD, Liccardo D, Zincarelli C, de Lucia C, Pagano G, Marsico F, Lymperopoulos A, Leosco D. Targeting the β-adrenergic receptor system through G-protein-coupled receptor kinase 2: a new paradigm for therapy and prognostic evaluation in heart failure: from bench to bedside. Circ Heart Fail 2012; 5:385-391. [PMID: 22589366 DOI: 10.1161/circheartfailure.112.966895] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/13/2012] [Indexed: 01/14/2023]
Affiliation(s)
- Giuseppe Rengo
- Salvatore Maugeri Foundation, IRCCS, Telese Terme, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
|
84
|
Raake PW, Zhang X, Vinge LE, Brinks H, Gao E, Jaleel N, Li Y, Tang M, Most P, Dorn GW, Houser SR, Katus HA, Chen X, Koch WJ. Cardiac G-protein-coupled receptor kinase 2 ablation induces a novel Ca2+ handling phenotype resistant to adverse alterations and remodeling after myocardial infarction. Circulation 2012; 125:2108-18. [PMID: 22496128 DOI: 10.1161/circulationaha.111.044255] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND G-protein-coupled receptor kinase 2 (GRK2) is a primary regulator of β-adrenergic signaling in the heart. G-protein-coupled receptor kinase 2 ablation impedes heart failure development, but elucidation of the cellular mechanisms has not been achieved, and such elucidation is the aim of this study. METHODS AND RESULTS Myocyte contractility, Ca(2+) handling and excitation-contraction coupling were studied in isolated cardiomyocytes from wild-type and GRK2 knockout (GRK2KO) mice without (sham) or with myocardial infarction (MI). In cardiac myocytes isolated from unstressed wild-type and GRK2KO hearts, myocyte contractions and Ca(2+) transients were similar, but GRK2KO myocytes had lower sarcoplasmic reticulum (SR) Ca(2+) content because of increased sodium-Ca(2+) exchanger activity and inhibited SR Ca(2+) ATPase by local protein kinase A-mediated activation of phosphodiesterase 4 resulting in hypophosphorylated phospholamban. This Ca(2+) handling phenotype is explained by a higher fractional SR Ca(2+) release induced by increased L-type Ca(2+) channel currents. After β-adrenergic stimulation, GRK2KO myocytes revealed significant increases in contractility and Ca(2+) transients, which were not mediated through cardiac L-type Ca(2+) channels but through an increased SR Ca(2+). Interestingly, post-MI GRK2KO mice showed better cardiac function than post-MI control mice, which is explained by an improved Ca(2+) handling phenotype. The SR Ca(2+) content was better maintained in post-MI GRK2KO myocytes than in post-MI control myocytes because of better-maintained L-type Ca(2+) channel current density and no increase in sodium-Ca(2+) exchanger in GRK2KO myocytes. An L-type Ca(2+) channel blocker, verapamil, reversed some beneficial effects of GRK2KO. CONCLUSIONS These data argue for novel differential regulation of L-type Ca(2+) channel currents and SR load by GRK2. G-protein-coupled receptor kinase 2 ablation represents a novel beneficial Ca(2+) handling phenotype resisting adverse remodeling after MI.
Collapse
Affiliation(s)
- Philip W Raake
- Department of Internal Medicine III, Cardiology, University of Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
Heart failure is a leading cause of morbidity and mortality with a prevalence that is rising throughout the world. Currently the pharmaceutical therapy of heart failure is mainly based on inhibition of the neurohumoral pathways that are activated secondary to the deterioration of cardiac function, and diuretics to alleviate the salt and water overload. With our increasing understanding of the pathophysiology of heart failure, it is now clear that the macroscopic and functional changes in the failing heart result from remodeling at the cellular, interstitial, and molecular levels. Therefore, emerging therapies propose to intervene directly in the remodeling process at the cellular and the molecular levels. Here, several experimental strategies that aim to correct the abnormalities in receptor and post-receptor-function, calcium handling, excitation and contraction coupling, signaling, and changes in the extra-cellular matrix in the failing heart will be discussed. These novel approaches, aiming to reverse the remodeling process at multiple levels, may appear on the clinical arena in the coming years.
Collapse
|
86
|
Reinkober J, Tscheschner H, Pleger ST, Most P, Katus HA, Koch WJ, Raake PWJ. Targeting GRK2 by gene therapy for heart failure: benefits above β-blockade. Gene Ther 2012; 19:686-93. [PMID: 22336718 DOI: 10.1038/gt.2012.9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heart failure (HF) is a common pathological end point for several cardiac diseases. Despite reasonable achievements in pharmacological, electrophysiological and surgical treatments, prognosis for chronic HF remains poor. Modern therapies are generally symptom oriented and do not currently address specific intracellular molecular signaling abnormalities. Therefore, new and innovative therapeutic approaches are warranted and, ideally, these could at least complement established therapeutic options if not replace them. Gene therapy has potential to serve in this regard in HF as vectors can be directed toward diseased myocytes and directly target intracellular signaling abnormalities. Within this review, we will dissect the adrenergic system contributing to HF development and progression with special emphasis on G-protein-coupled receptor kinase 2 (GRK2). The levels and activity of GRK2 are increased in HF and we and others have demonstrated that this kinase is a major molecular culprit in HF. We will cover the evidence supporting gene therapy directed against myocardial as well as adrenal GRK2 to improve the function and structure of the failing heart and how these strategies may offer complementary and synergistic effects with the existing HF mainstay therapy of β-adrenergic receptor antagonism.
Collapse
Affiliation(s)
- J Reinkober
- Department of Internal Medicine III, Cardiology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
87
|
Lymperopoulos A, Bathgate A. Pharmacogenomics of the heptahelical receptor regulators G-protein-coupled receptor kinases and arrestins: the known and the unknown. Pharmacogenomics 2012; 13:323-341. [PMID: 22304582 DOI: 10.2217/pgs.11.178] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heptahelical G-protein-coupled receptors are the most diverse and therapeutically important family of receptors, playing major roles in the physiology of various organs and tissues. They couple their ligand binding to G-protein activation, which then transmits intracellular signals. G-protein signaling is terminated by phosphorylation of the receptor by the family of G-protein-coupled receptor kinases (GRKs), followed by arrestin (Arr) binding, which uncouples the phosphorylated receptor from the G-protein and subsequently targets the receptor for internalization. Moreover, Arrs can transmit signals in their own right during receptor internalization. Genetic polymorphisms in receptors, as well as in GRK and Arr family members per se, which affect regulation of receptor signaling and function, have just started being identified and characterized. The present review will discuss what is known so far in this evolving field of GRK/Arr pharmacogenomics, as well as highlight important areas likely to produce invaluable information in the future.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Ft. Lauderdale, FL 33328, USA.
| | | |
Collapse
|
88
|
Schumacher-Bass SM, Traynham CJ, Koch WJ. G protein-coupled Receptor Kinase 2 as a Therapeutic Target for Heart Failure. ACTA ACUST UNITED AC 2012; 9:e155-e162. [PMID: 24839449 DOI: 10.1016/j.ddstr.2014.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An ever-increasing number of people world-wide are developing and suffering from heart failure, and existing therapies, although improved are not ideal. Therefore, innovative treatment strategies are urgently needed. As our understanding of the underlying dysfunction of the myocardium increases, so does our ability to target the mechanisms responsible for heart failure progression. In this review we discuss novel molecular therapies and approaches for the treatment of heart failure. We will focus on the G protein-coupled receptor kinase GRK2, an increasing target for heart failure therapy, based on its important role in disease progression and the therapeutic potential of GRK2 inhibitors.
Collapse
Affiliation(s)
- Sarah M Schumacher-Bass
- Department of Pharmacology and Center for Translational Medicine, Temple University School of Medicine, Medical Education Research Building, 3500 North Broad Street, MERB 940, Philadelphia, PA 19140, USA
| | - Christopher J Traynham
- Department of Pharmacology and Center for Translational Medicine, Temple University School of Medicine, Medical Education Research Building, 3500 North Broad Street, MERB 940, Philadelphia, PA 19140, USA
| | - Walter J Koch
- Department of Pharmacology and Center for Translational Medicine, Temple University School of Medicine, Medical Education Research Building, 3500 North Broad Street, MERB 940, Philadelphia, PA 19140, USA
| |
Collapse
|
89
|
Gironacci MM, Adamo HP, Corradi G, Santos RA, Ortiz P, Carretero OA. Angiotensin (1-7) induces MAS receptor internalization. Hypertension 2011; 58:176-81. [PMID: 21670420 PMCID: PMC3141282 DOI: 10.1161/hypertensionaha.111.173344] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/19/2011] [Indexed: 11/16/2022]
Abstract
Angiotensin (Ang) (1-7) is the endogenous ligand for the G protein-coupled receptor Mas, a receptor associated with cardiac, renal, and cerebral protective responses. Physiological evidence suggests that Mas receptor (MasR) undergoes agonist-dependent desensitization, but the underlying molecular mechanism regulating receptor activity is unknown. We investigated the hypothesis that MasR desensitizes and internalizes on stimulation with Ang-(1-7). For this purpose, we generated a chimera between the MasR and the yellow fluorescent protein (YFP; MasR-YFP). MasR-YFP-transfected HEK 293T cells were incubated with Ang-(1-7), and the relative cellular distribution of MasR-YFP was observed by confocal microscopy. In resting cells, MasR-YFP was mostly localized to the cell membrane. Ang-(1-7) induced a redistribution of MasR-YFP to intracellular vesicles of various sizes after 5 minutes. Following the time course of [(125)I]Ang-(1-7) endocytosis, we observed that half of MasR-YFP underwent endocytosis after 10 minutes, and this was blocked by a MasR antagonist. MasR-YFP colocalized with Rab5, the early endosome antigen 1, and the adaptor protein complex 2, indicating that the R is internalized through a clathrin-mediated pathway and targeted to early endosomes after Ang-(1-7) stimulation. A fraction of MasR-YFP also colocalized with caveolin 1, suggesting that at some point MasR-YFP traverses caveolin 1-positive compartments. In conclusion, MasR undergoes endocytosis on stimulation with Ang-(1-7), and this event may explain the desensitization of MasR responsiveness. In this way, MasR activity and density may be tightly controlled by the cell.
Collapse
Affiliation(s)
- Mariela M Gironacci
- Instituto de Química y Fisicoquímica Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
90
|
Fargnoli AS, Katz MG, Yarnall C, Sumaroka MV, Stedman H, Rabinowitz JJ, Koch WJ, Bridges CR. A pharmacokinetic analysis of molecular cardiac surgery with recirculation mediated delivery of βARKct gene therapy: developing a quantitative definition of the therapeutic window. J Card Fail 2011; 17:691-9. [PMID: 21807332 DOI: 10.1016/j.cardfail.2011.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/03/2011] [Accepted: 03/25/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Two major problems for translating gene therapy for heart failure therapy are: safe and efficient delivery and the inability to establish a relationship between vector exposure and in vivo effects. We present a pharmacokinetics (PK) analysis of molecular cardiac surgery with recirculating delivery (MCARD) of scAAV6-βARKct. MCARD's stable cardiac specific delivery profile was exploited to determine vector exposure, half-life, and systemic clearance. METHODS AND RESULTS Five naive sheep underwent MCARD with 10(14) genome copies of scAAV6-βARKct. Blood samples were collected over the recirculation interval time of 20 minutes and evaluated with quantitative polymerase chain reaction (qPCR). C(t) curves were generated and expressed on a log scale. The exposure, half-life, and clearance curves were generated for analysis. qPCR and Western blots were used to determine biodistribution. Finally, all in vivo transduction data was plotted against MCARD's PK to determine if a relationship existed. Vector concentrations at each time point were (cardiac and systemic, respectively): 5 minutes: 9.16 ± 0.15 and 3.21 ± 0.38; 10 minutes: 8.81 ± 0.19 and 3.62 ± 0.37; 15 minutes: 8.75 ± 0.12 and 3.69 ± 0.31; and 20 minutes: 8.66 ± 0.22 and 3.95 ± 0.26; P < .00001. The half life of the vector was 2.66 ± 0.24 minutes. PK model data revealed that only 0.61 ± 0.43% of the original dose remained in the blood after delivery, and complete clearance from the system was achieved at 1 week. A PK transfer function revealed a positive correlation between exposure and in vivo transduction. Robust βARKct expression was found in all cardiac regions with none in the liver. CONCLUSION MCARD may offer a viable method to establish a relationship between vector exposure and in vivo transduction. Using this methodology, it may be possible to address a critical need for establishing an effective therapeutic window.
Collapse
Affiliation(s)
- Anthony S Fargnoli
- Department of Surgery, Division of Cardiovascular Surgery, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Zhu W, Woo AYH, Zhang Y, Cao CM, Xiao RP. β-adrenergic receptor subtype signaling in the heart: from bench to the bedside. CURRENT TOPICS IN MEMBRANES 2011; 67:191-204. [PMID: 21771491 DOI: 10.1016/b978-0-12-384921-2.00009-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Weizhong Zhu
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|