51
|
Liu Y, Zhu Y, Liu S, Liu J, Li X. NORAD lentivirus shRNA mitigates fibrosis and inflammatory responses in diabetic cardiomyopathy via the ceRNA network of NORAD/miR-125a-3p/Fyn. Inflamm Res 2021; 70:1113-1127. [PMID: 34591118 DOI: 10.1007/s00011-021-01500-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE Diabetic cardiomyopathy (DCM) is a serious complication of diabetes, but its pathogenesis is still unclear. This study investigated the mechanism of long noncoding RNA (lncRNA) NORAD in DCM. METHODS Male leptin receptor-deficient (db/db) mice and leptin control mice (db/ +) were procured. DCM model was established by subcutaneous injection of angiotensin II (ATII) in db/db mice. NORAD lentivirus shRNA or Adv-miR-125a-3p was administered to analyze cardiac function, fibrosis, serum biochemical indexes, inflammation and fibrosis. Primary cardiomyocytes were extracted and transfected with miR-125a-3p mimic. The competing endogenous RNA (ceRNA) network of NORAD/miR-125a-3p/Fyn was verified. The levels of fibrosis- and inflammation-related factors were measured. RESULTS In db/db mice treated with ATII, the body weight and serum biochemical indexes were increased, while the cardiac function was decreased, and inflammatory cell infiltration and fibrosis were induced. NORAD was upregulated in diabetic and DCM mice. The 4-week intravenous injection of NORAD lentivirus shRNA reduced body weight and serum biochemical indexes, improved cardiac function, and attenuated inflammation and fibrosis in DCM mice. NORAD acted as a sponge to adsorb miR-125a-3p, and miR-125a-3p targeted Fyn. Intravenous injection of miR-125a-3p adenovirus improved cardiac function and fibrosis and reduced inflammatory responses in DCM mice. Co-overexpression of miR-125-3p and Fyn partly reversed the improving effect of miR-125-3p overexpression on cardiac fibrosis in DCM mice. CONCLUSION NORAD lentivirus shRNA improved cardiac function and fibrosis and reduced inflammatory responses in DCM mice via the ceRNA network of NORAD/miR-125a-3p/Fyn. These findings provide a valuable and promising therapeutic target for the treatment of DCM.
Collapse
Affiliation(s)
- Ye Liu
- Department of Endocrinology, The Second Hospital of ShanXi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Yikun Zhu
- Department of Endocrinology, The Second Hospital of ShanXi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Sujun Liu
- Department of Endocrinology, The Second Hospital of ShanXi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Jiong Liu
- Department of Nuclear Medicine, The Second Hospital of ShanXi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Xing Li
- Department of Endocrinology, The Second Hospital of ShanXi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
52
|
Wei J, Zhao Q, Zhang Y, Shi W, Wang H, Zheng Z, Meng L, Xin Y, Jiang X. Sulforaphane-Mediated Nrf2 Activation Prevents Radiation-Induced Skin Injury through Inhibiting the Oxidative-Stress-Activated DNA Damage and NLRP3 Inflammasome. Antioxidants (Basel) 2021; 10:antiox10111850. [PMID: 34829721 PMCID: PMC8614868 DOI: 10.3390/antiox10111850] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
This article mainly observed the protective effect of sulforaphane (SFN) on radiation-induced skin injury (RISI). In addition, we will discuss the mechanism of SFN's protection on RISI. The RISI model was established by the irradiation of the left thigh under intravenous anesthesia. Thirty-two C57/BL6 mice were randomly divided into control group (CON), SFN group, irradiation (IR) group, and IR plus SFN (IR/SFN) group. At eight weeks after irradiation, the morphological changes of mouse skin tissues were detected by H&E staining. Then, the oxidative stress and inflammatory response indexes in mouse skin tissues, as well as the expression of Nrf2 and its downstream antioxidant genes, were evaluated by ELISA, real-time PCR, and Western blotting. The H&E staining showed the hyperplasia of fibrous tissue in the mouse dermis and hypodermis of the IR group. Western blotting and ELISA results showed that the inflammasome of NLRP3, caspase-1, and IL-1β, as well as oxidative stress damage indicators ROS, 4-HNE, and 3-NT, in the skin tissues of mice in the IR group were significantly higher than those in the control group (p < 0.05). However, the above pathological changes declined sharply after SFN treatment (p < 0.05). In addition, the expressions of Nrf2 and its regulated antioxidant enzymes, including CAT and HO-1, were higher in the skin tissues of SFN and IR/SFN groups, but lower in the control and IR groups (p < 0.05). SFN may be able to suppress the oxidative stress by upregulating the expression and function of Nrf2, and subsequently inhibiting the activation of NLRP3 inflammasome and DNA damage, so as to prevent and alleviate the RISI.
Collapse
Affiliation(s)
- Jinlong Wei
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (J.W.); (Q.Z.); (Y.Z.); (W.S.); (H.W.); (Z.Z.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Qin Zhao
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (J.W.); (Q.Z.); (Y.Z.); (W.S.); (H.W.); (Z.Z.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Yuyu Zhang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (J.W.); (Q.Z.); (Y.Z.); (W.S.); (H.W.); (Z.Z.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Weiyan Shi
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (J.W.); (Q.Z.); (Y.Z.); (W.S.); (H.W.); (Z.Z.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (J.W.); (Q.Z.); (Y.Z.); (W.S.); (H.W.); (Z.Z.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (J.W.); (Q.Z.); (Y.Z.); (W.S.); (H.W.); (Z.Z.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
- Correspondence: (Y.X.); ; (X.J.); Tel.: +86-13504310452 (Y.X.); +86-15804302750 (X.J.)
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (J.W.); (Q.Z.); (Y.Z.); (W.S.); (H.W.); (Z.Z.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
- Correspondence: (Y.X.); ; (X.J.); Tel.: +86-13504310452 (Y.X.); +86-15804302750 (X.J.)
| |
Collapse
|
53
|
Connolly EL, Sim M, Travica N, Marx W, Beasy G, Lynch GS, Bondonno CP, Lewis JR, Hodgson JM, Blekkenhorst LC. Glucosinolates From Cruciferous Vegetables and Their Potential Role in Chronic Disease: Investigating the Preclinical and Clinical Evidence. Front Pharmacol 2021; 12:767975. [PMID: 34764875 PMCID: PMC8575925 DOI: 10.3389/fphar.2021.767975] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/11/2021] [Indexed: 01/04/2023] Open
Abstract
An increasing body of evidence highlights the strong potential for a diet rich in fruit and vegetables to delay, and often prevent, the onset of chronic diseases, including cardiometabolic, neurological, and musculoskeletal conditions, and certain cancers. A possible protective component, glucosinolates, which are phytochemicals found almost exclusively in cruciferous vegetables, have been identified from preclinical and clinical studies. Current research suggests that glucosinolates (and isothiocyanates) act via several mechanisms, ultimately exhibiting anti-inflammatory, antioxidant, and chemo-protective effects. This review summarizes the current knowledge surrounding cruciferous vegetables and their glucosinolates in relation to the specified health conditions. Although there is evidence that consumption of a high glucosinolate diet is linked with reduced incidence of chronic diseases, future large-scale placebo-controlled human trials including standardized glucosinolate supplements are needed.
Collapse
Affiliation(s)
- Emma L Connolly
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Marc Sim
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Medical School, Royal Perth Hospital Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Nikolaj Travica
- IMPACT-The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Wolfgang Marx
- IMPACT-The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Gemma Beasy
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Gordon S Lynch
- Department of Anatomy and Physiology, Centre for Muscle Research, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Catherine P Bondonno
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Medical School, Royal Perth Hospital Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Joshua R Lewis
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Medical School, Royal Perth Hospital Research Foundation, The University of Western Australia, Perth, WA, Australia.,Centre for Kidney Research, Children's Hospital at Westmead, School of Public Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan M Hodgson
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Medical School, Royal Perth Hospital Research Foundation, The University of Western Australia, Perth, WA, Australia
| | - Lauren C Blekkenhorst
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Medical School, Royal Perth Hospital Research Foundation, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
54
|
Lu T, Lee HC. Coronary Large Conductance Ca 2+-Activated K + Channel Dysfunction in Diabetes Mellitus. Front Physiol 2021; 12:750618. [PMID: 34744789 PMCID: PMC8567020 DOI: 10.3389/fphys.2021.750618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
Diabetes mellitus (DM) is an independent risk of macrovascular and microvascular complications, while cardiovascular diseases remain a leading cause of death in both men and women with diabetes. Large conductance Ca2+-activated K+ (BK) channels are abundantly expressed in arteries and are the key ionic determinant of vascular tone and organ perfusion. It is well established that the downregulation of vascular BK channel function with reduced BK channel protein expression and altered intrinsic BK channel biophysical properties is associated with diabetic vasculopathy. Recent efforts also showed that diabetes-associated changes in signaling pathways and transcriptional factors contribute to the downregulation of BK channel expression. This manuscript will review our current understandings on the molecular, physiological, and biophysical mechanisms that underlie coronary BK channelopathy in diabetes mellitus.
Collapse
Affiliation(s)
- Tong Lu
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Hon-Chi Lee
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
55
|
Tian Y, Wang Z, Zheng X, Song W, Cai L, Rane M, Zhao Y. KLF15 negatively regulates cardiac fibrosis by which SDF-1β attenuates cardiac fibrosis in type 2 diabetic mice. Toxicol Appl Pharmacol 2021; 427:115654. [PMID: 34310909 DOI: 10.1016/j.taap.2021.115654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 02/08/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a serious diabetic complication that lacks effective preventive or therapeutic approaches. Wild-type and Klf15 knockout (Klf15-KO) mice were fed with either high fat diet (HFD, 60% kcal from fat) or normal diet (ND, 10% kcal from fat) for 3 months and then injected with streptozotocin or vehicle, to induce type 2 diabetes (T2D). All T2D and age-matched control mice were treated with or without SDF-1β at 5 mg/kg body-weight twice a week and also continually received HFD or ND for 3 months. At the end of 6-month study, after cardiac functions were measured, mice were euthanized to collect heart tissue. For in vitro mechanistic study, H9c2 cells were exposed to palmitate to mimic in vivo condition of T2D. SDF-1β prevented T2D-induced cardiac dysfunction and fibrosis and T2D-down-regulated KLF15 expression in wild-type diabetic heart tissue. However, the preventive effects of SDF-1β on both KLF15 expression and fibrosis was abolished, with partial cardiac protection in Klf15-KO/T2D mice. These results demonstrate partial KLF15-dependence for SDF-1β's cardiac fibrotic protection from T2D, but not on SDF-1β's protective effects on T2D-induced cardiac dysfunction. Further study showed that SDF-1β inhibited palmitate-induced cardiomyocyte fibrosis through its receptor CXCR7-mediated activation of p38β MAPK signaling pathway.
Collapse
Affiliation(s)
- Yuanyuan Tian
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zhenyu Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xiangyu Zheng
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Wenjing Song
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lu Cai
- Pediatric Research Institute, Departments of Pediatrics, Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Madhavi Rane
- Division Nephrology, Departments of Medicine, Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Yuguang Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
56
|
Farina M, Vieira LE, Buttari B, Profumo E, Saso L. The Nrf2 Pathway in Ischemic Stroke: A Review. Molecules 2021; 26:5001. [PMID: 34443584 PMCID: PMC8399750 DOI: 10.3390/molecules26165001] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke, characterized by the sudden loss of blood flow in specific area(s) of the brain, is the leading cause of permanent disability and is among the leading causes of death worldwide. The only approved pharmacological treatment for acute ischemic stroke (intravenous thrombolysis with recombinant tissue plasminogen activator) has significant clinical limitations and does not consider the complex set of events taking place after the onset of ischemic stroke (ischemic cascade), which is characterized by significant pro-oxidative events. The transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates the expression of a great number of antioxidant and/or defense proteins, has been pointed as a potential pharmacological target involved in the mitigation of deleterious oxidative events taking place at the ischemic cascade. This review summarizes studies concerning the protective role of Nrf2 in experimental models of ischemic stroke, emphasizing molecular events resulting from ischemic stroke that are, in parallel, modulated by Nrf2. Considering the acute nature of ischemic stroke, we discuss the challenges in using a putative pharmacological strategy (Nrf2 activator) that relies upon transcription, translation and metabolically active cells in treating ischemic stroke patients.
Collapse
Affiliation(s)
- Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Leonardo Eugênio Vieira
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil;
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
57
|
Ding W, Feng H, Li WJ, Liao HH, Zhang N, Zhou ZY, Mou SQ, Lin Z, Xia-He NZ, Xia H, Tang QZ. Apocynin attenuates diabetic cardiomyopathy by suppressing ASK1-p38/JNK signaling. Eur J Pharmacol 2021; 909:174402. [PMID: 34348125 DOI: 10.1016/j.ejphar.2021.174402] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022]
Abstract
Diabetic cardiomyopathy (DCM) significantly increased the morbidity of heart failure in diabetic patients. Long-time oxidative stress is an indisputable contributor for DCM development. Apocynin (APO) has been suggested to be a potential drug against oxidative stress. The study aims to find out the effects of APO on DCM and the related mechanisms. Mice were randomly divided into four groups: control (CON), APO, DCM and DCM + APO. Echocardiography analyses, histological analyses, Western blot and RT-PCR were used to explore the roles and mechanisms of APO in DCM. Isolated neonatal rat cardiomyocytes (NRCMs) and cardiac fibroblasts (CFs) were used for further confirming the APO treatment effects in vitro. Deteriorated cardiac function, enlarged cardiomyocytes, excess cardiac fibrosis and significant cardiac oxidative stress were observed in DCM group. However, APO treatment successfully improved cardiac function, decreased cardiac hypertrophy and fibrosis, and depressed oxidative stress. Mechanistically, APO treatment markedly suppressed apoptosis signal regulating kinase 1(ASK1)-p38/c-jun N-terminal kinase (JNK) signaling and reduced apoptosis. It also inhibited NRCM apoptosis and CF activation via depressing ASK1-p38/JNK signaling in vitro. Moreover, adenovirus-mediated ASK1 overexpression completely removed the protection of APO in vitro. In conclusion, APO treatment could effectively attenuate DCM-associated injuries in vivo and protect against high glucose-induced NRCM and CF injuries in vitro via suppressing ASK1-p38/JNK signaling. APO might be a potential ASK1 inhibitor for treating DCM.
Collapse
Affiliation(s)
- Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Hong Feng
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wen-Jing Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Zi-Ying Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Shan-Qi Mou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Zheng Lin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Na-Zi Xia-He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China.
| |
Collapse
|
58
|
Cao Y, Jiang W, Bai H, Li J, Zhu H, Xu L, Li Y, Li K, Tang H, Duan W, Wang S. Study on active components of mulberry leaf for the prevention and treatment of cardiovascular complications of diabetes. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
59
|
Donia T, Khamis A. Management of oxidative stress and inflammation in cardiovascular diseases: mechanisms and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34121-34153. [PMID: 33963999 DOI: 10.1007/s11356-021-14109-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Cardiovascular diseases (CVDs) have diverse physiopathological mechanisms with interconnected oxidative stress and inflammation as one of the common etiologies which result in the onset and development of atherosclerotic plaques. In this review, we illustrate this strong crosstalk between oxidative stress, inflammation, and CVD. Also, mitochondrial functions underlying this crosstalk, and various approaches for the prevention of redox/inflammatory biological impacts will be illustrated. In part, we focus on the laboratory biomarkers and physiological tests for the evaluation of oxidative stress status and inflammatory processes. The impact of a healthy lifestyle on CVD onset and development is displayed as well. Furthermore, the differences in oxidative stress and inflammation are related to genetic susceptibility to cardiovascular diseases and the variability in the assessment of CVDs risk between individuals; Omics technologies for measuring oxidative stress and inflammation will be explored. Finally, we display the oxidative stress-related microRNA and the functions of the redox basis of epigenetic modifications.
Collapse
Affiliation(s)
- Thoria Donia
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Abeer Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
60
|
Aldosterone Negatively Regulates Nrf2 Activity: An Additional Mechanism Contributing to Oxidative Stress and Vascular Dysfunction by Aldosterone. Int J Mol Sci 2021; 22:ijms22116154. [PMID: 34200377 PMCID: PMC8201089 DOI: 10.3390/ijms22116154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
High levels of aldosterone (Aldo) trigger oxidative stress and vascular dysfunction independent of effects on blood pressure. We sought to determine whether Aldo disrupts Nrf2 signaling, the main transcriptional factor involved in antioxidant responses that aggravate cell injury. Thoracic aorta from male C57Bl/6J mice and cultured human endothelial cells (EA.hy926) were stimulated with Aldo (100 nM) in the presence of tiron [reactive oxygen species (ROS) scavenger, eplerenone [mineralocorticoid receptor (MR) antagonist], and L-sulforaphane (SFN; Nrf2 activator). Thoracic aortas were also isolated from mice infused with Aldo (600 μg/kg per day) for 14 days. Aldo decreased endothelium-dependent vasorelaxation and increased ROS generation, effects prevented by tiron and MR blockade. Pharmacological activation of Nrf2 with SFN abrogated Aldo-induced vascular dysfunction and ROS generation. In EA.hy926 cells, Aldo increased ROS generation, which was prevented by eplerenone, tiron, and SFN. At short times, Aldo-induced ROS generation was linked to increased Nrf2 activation. However, after three hours, Aldo decreased the nuclear accumulation of Nrf2. Increased Keap1 protein expression, but not activation of p38 MAPK, was linked to Aldo-induced reduced Nrf2 activity. Arteries from Aldo-infused mice also exhibited decreased nuclear Nrf2 and increased Keap1 expression. Our findings suggest that Aldo reduces vascular Nrf2 transcriptional activity by Keap1-dependent mechanisms, contributing to mineralocorticoid-induced vascular dysfunction.
Collapse
|
61
|
Wu YH, Chueh KS, Chuang SM, Long CY, Lu JH, Juan YS. Bladder Hyperactivity Induced by Oxidative Stress and Bladder Ischemia: A Review of Treatment Strategies with Antioxidants. Int J Mol Sci 2021; 22:ijms22116014. [PMID: 34199527 PMCID: PMC8199707 DOI: 10.3390/ijms22116014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Overactive bladder (OAB) syndrome, including frequency, urgency, nocturia and urgency incontinence, has a significantly negative impact on the quality-of-life scale (QoL) and can cause sufferer withdrawal from social activities. The occurrence of OAB can result from an imbalance between the production of pro-oxidants, such as free radicals and reactive species, and their elimination through protective mechanisms of antioxidant-induced oxidative stress. Several animal models, such as bladder ischemia/reperfusion (I/R), partial bladder outlet obstruction (PBOO) and ovarian hormone deficiency (OHD), have suggested that cyclic I/R during the micturition cycle induces oxidative stress, leading to bladder denervation, bladder afferent pathway sensitization and overexpression of bladder-damaging molecules, and finally resulting in bladder hyperactivity. Based on the results of previous animal experiments, the present review specifically focuses on four issues: (1) oxidative stress and antioxidant defense system; (2) oxidative stress in OAB and biomarkers of OAB; (3) OAB animal model; (4) potential nature/plant antioxidant treatment strategies for urinary dysfunction with OAB. Moreover, we organized the relationships between urinary dysfunction and oxidative stress biomarkers in urine, blood and bladder tissue. Reviewed information also revealed the summary of research findings for the effects of various antioxidants for treatment strategies for OAB.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-H.W.); (K.-S.C.)
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 80661, Taiwan
| | - Kuang-Shun Chueh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-H.W.); (K.-S.C.)
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Shu-Mien Chuang
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Cheng-Yu Long
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jian-He Lu
- Emerging Compounds Research Center, Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pintung 91201, Taiwan;
| | - Yung-Shun Juan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-H.W.); (K.-S.C.)
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-3121101; Fax: +886-7-3506269
| |
Collapse
|
62
|
Byrne NJ, Rajasekaran NS, Abel ED, Bugger H. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic Biol Med 2021; 169:317-342. [PMID: 33910093 PMCID: PMC8285002 DOI: 10.1016/j.freeradbiomed.2021.03.046] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Even in the absence of coronary artery disease and hypertension, diabetes mellitus (DM) may increase the risk for heart failure development. This risk evolves from functional and structural alterations induced by diabetes in the heart, a cardiac entity termed diabetic cardiomyopathy (DbCM). Oxidative stress, defined as the imbalance of reactive oxygen species (ROS) has been increasingly proposed to contribute to the development of DbCM. There are several sources of ROS production including the mitochondria, NAD(P)H oxidase, xanthine oxidase, and uncoupled nitric oxide synthase. Overproduction of ROS in DbCM is thought to be counterbalanced by elevated antioxidant defense enzymes such as catalase and superoxide dismutase. Excess ROS in the cardiomyocyte results in further ROS production, mitochondrial DNA damage, lipid peroxidation, post-translational modifications of proteins and ultimately cell death and cardiac dysfunction. Furthermore, ROS modulates transcription factors responsible for expression of antioxidant enzymes. Lastly, evidence exists that several pharmacological agents may convey cardiovascular benefit by antioxidant mechanisms. As such, increasing our understanding of the pathways that lead to increased ROS production and impaired antioxidant defense may enable the development of therapeutic strategies against the progression of DbCM. Herein, we review the current knowledge about causes and consequences of ROS in DbCM, as well as the therapeutic potential and strategies of targeting oxidative stress in the diabetic heart.
Collapse
Affiliation(s)
- Nikole J Byrne
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
63
|
Barteková M, Adameová A, Görbe A, Ferenczyová K, Pecháňová O, Lazou A, Dhalla NS, Ferdinandy P, Giricz Z. Natural and synthetic antioxidants targeting cardiac oxidative stress and redox signaling in cardiometabolic diseases. Free Radic Biol Med 2021; 169:446-477. [PMID: 33905865 DOI: 10.1016/j.freeradbiomed.2021.03.045] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiometabolic diseases (CMDs) are metabolic diseases (e.g., obesity, diabetes, atherosclerosis, rare genetic metabolic diseases, etc.) associated with cardiac pathologies. Pathophysiology of most CMDs involves increased production of reactive oxygen species and impaired antioxidant defense systems, resulting in cardiac oxidative stress (OxS). To alleviate OxS, various antioxidants have been investigated in several diseases with conflicting results. Here we review the effect of CMDs on cardiac redox homeostasis, the role of OxS in cardiac pathologies, as well as experimental and clinical data on the therapeutic potential of natural antioxidants (including resveratrol, quercetin, curcumin, vitamins A, C, and E, coenzyme Q10, etc.), synthetic antioxidants (including N-acetylcysteine, SOD mimetics, mitoTEMPO, SkQ1, etc.), and promoters of antioxidant enzymes in CMDs. As no antioxidant indicated for the prevention and/or treatment of CMDs has reached the market despite the large number of preclinical and clinical studies, a sizeable translational gap is evident in this field. Thus, we also highlight potential underlying factors that may contribute to the failure of translation of antioxidant therapies in CMDs.
Collapse
Affiliation(s)
- Monika Barteková
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia.
| | - Adriana Adameová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, 83232 Bratislava, Slovakia
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Kristína Ferenczyová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Oľga Pecháňová
- Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, 81371 Bratislava, Slovakia
| | - Antigone Lazou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, And Department of Physiology & Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| |
Collapse
|
64
|
Mozzini C, Setti A, Cicco S, Pagani M. The Most Severe Paradigm of Early Cardiovascular Disease: Hutchinson-Gilford Progeria. Focus on the Role of Oxidative Stress. Curr Probl Cardiol 2021; 47:100900. [PMID: 34167843 DOI: 10.1016/j.cpcardiol.2021.100900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
Oxidative stress (OS) is one of the most frequently recognized causes of ageing. Telomere erosion, defects in the DNA damage response and alterations in the nuclear architecture are also associated with premature ageing. The most severe premature ageing syndrome, Hutchinson-Gilford progeria syndrome (HGPS) is associated with alterations in nuclear shape resulting in the deregulation of lamin A/C. In this review we describe emerging data reporting the role of OS and antioxidant defence in progeroid syndromes focusing on HGPS. We explore precise antioxidant defence mechanisms and related drugs that may create a potential path out of the woods in this disease. Pathways regulated by Nuclear factor E2 related factor (Nrf2), by Nuclear Factor kappa B (NF-kB), and related to the Unfolded Protein Response (UPR) and Endoplasmic Reticulum (ER) stress are under investigation in HGPS patients for which the goal is a significant lifespan extension in particular by postponing atherosclerosis-related complications.
Collapse
Affiliation(s)
- Chiara Mozzini
- Department of Medicine, Section of Internal Medicine, Carlo Poma Hospital, Mantova Italy.
| | - Angela Setti
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy.
| | - Sebastiano Cicco
- Unit of Internal Medicine "Guido Baccelli", Department of Biomedical Sciences and Human Oncology University of Bari, Aldo Moro Medical School, Bari, Italy.
| | - Mauro Pagani
- Department of Medicine, Section of Internal Medicine, Carlo Poma Hospital, Mantova Italy.
| |
Collapse
|
65
|
Syed AM, Ram C, Murty US, Sahu BD. A review on herbal Nrf2 activators with preclinical evidence in cardiovascular diseases. Phytother Res 2021; 35:5068-5102. [PMID: 33894007 DOI: 10.1002/ptr.7137] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/24/2021] [Accepted: 04/10/2021] [Indexed: 12/31/2022]
Abstract
Cardiovascular diseases (CVDs) are an ever-growing problem and are the most common cause of death worldwide. The uncontrolled production of reactive oxygen species (ROS) and the activation of ROS associated with various cell signaling pathways with oxidative cellular damage are the most common pathological conditions connected with CVDs including endothelial dysfunction, hypercontractility of vascular smooth muscle, cardiac hypertrophy and heart failure. The nuclear factor E2-related factor 2 (Nrf2) is a basic leucine zipper redox transcription factor, together with its negative regulator, kelch-like ECH-associated protein 1 (Keap1), which serves as a key regulator of cellular defense mechanisms to combat oxidative stress and associated diseases. Multiple lines of evidence described here support the cardiac protective property of Nrf2 in various experimental models of cardiac related disease conditions. In this review, we emphasized the molecular mechanisms of Nrf2 and described the detailed outline of current findings on the therapeutic possibilities of the Nrf2 activators specifically from herbal origin in various CVDs. Based on evidence from various preclinical experimental models, we have highlighted the activation of Nrf2 pathway as a budding therapeutic option for the prevention and treatment of CVDs, which needs further investigation and validation in the clinical settings.
Collapse
Affiliation(s)
- Abu Mohammad Syed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| | - Chetan Ram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| | - Upadhyayula Suryanarayana Murty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| |
Collapse
|
66
|
Su X, Wang S, Zhang H, Yang G, Bai Y, Liu P, Meng L, Jiang X, Xin Y. Sulforaphane prevents angiotensin II-induced cardiomyopathy by activation of Nrf2 through epigenetic modification. J Cell Mol Med 2021; 25:4408-4419. [PMID: 33793066 PMCID: PMC8093985 DOI: 10.1111/jcmm.16504] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Nuclear factor erythroid 2-related factor (Nrf2) is an important regulator of cellular antioxidant defence. We previously showed that SFN prevented Ang II-induced cardiac damage via activation of Nrf2. However, the underlying mechanism of SFN's persistent cardiac protection remains unclear. This study aimed to explore the potential of SFN in activating cardiac Nrf2 through epigenetic mechanisms. Wild-type mice were injected subcutaneously with Ang II, with or without SFN. Administration of chronic Ang II-induced cardiac inflammatory factor expression, oxidative damage, fibrosis and cardiac remodelling and dysfunction, all of which were effectively improved by SFN treatment, coupled with an up-regulation of Nrf2 and downstream genes. Bisulfite genome sequencing and chromatin immunoprecipitation (ChIP) were performed to detect the methylation level of the first 15 CpGs and histone H3 acetylation (Ac-H3) status in the Nrf2 promoter region, respectively. The results showed that SFN reduced Ang II-induced CpG hypermethylation and promoted Ac-H3 accumulation in the Nrf2 promoter region, accompanied by the inhibition of global DNMT and HDAC activity, and a decreased protein expression of key DNMT and HDAC enzymes. Taken together, SFN exerts its cardioprotective effect through epigenetic modification of Nrf2, which may partially contribute to long-term activation of cardiac Nrf2.
Collapse
Affiliation(s)
- Xuling Su
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Shudong Wang
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun, China
| | - Haiying Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Ge Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yang Bai
- The Center of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| | - Pinyi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
67
|
The Influence of Plant Extracts and Phytoconstituents on Antioxidant Enzymes Activity and Gene Expression in the Prevention and Treatment of Impaired Glucose Homeostasis and Diabetes Complications. Antioxidants (Basel) 2021; 10:antiox10030480. [PMID: 33803588 PMCID: PMC8003070 DOI: 10.3390/antiox10030480] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 11/25/2022] Open
Abstract
Diabetes is a complex metabolic disorder resulting either from insulin resistance or an impaired insulin secretion. Prolonged elevated blood glucose concentration, the key clinical sign of diabetes, initiates an enhancement of reactive oxygen species derived from glucose autoxidation and glycosylation of proteins. Consequently, chronic oxidative stress overwhelms cellular endogenous antioxidant defenses and leads to the acute and long-standing structural and functional changes of macromolecules resulting in impaired cellular functioning, cell death and organ dysfunction. The oxidative stress provoked chain of pathological events over time cause diabetic complications such as nephropathy, peripheral neuropathy, cardiomyopathy, retinopathy, hypertension, and liver disease. Under diabetic conditions, accompanying genome/epigenome and metabolite markers alterations may also affect glucose homeostasis, pancreatic β-cells, muscle, liver, and adipose tissue. By providing deeper genetic/epigenetic insight of direct or indirect dietary effects, nutrigenomics offers a promising opportunity to improve the quality of life of diabetic patients. Natural plant extracts, or their naturally occurring compounds, were shown to be very proficient in the prevention and treatment of different pathologies associated with oxidative stress including diabetes and its complications. Considering that food intake is one of the crucial components in diabetes’ prevalence, progression and complications, this review summarizes the effect of the major plant secondary metabolite and phytoconstituents on the antioxidant enzymes activity and gene expression under diabetic conditions.
Collapse
|
68
|
Adeyi AO, Ajisebiola BS, Adeyi OE, Adekunle O, Akande OB, James AS, Ajayi BO, Yusuf PO, Idowu BA. Moringa oleifera leaf fractions attenuated Naje haje venom-induced cellular dysfunctions via modulation of Nrf2 and inflammatory signalling pathways in rats. Biochem Biophys Rep 2021; 25:100890. [PMID: 33521334 PMCID: PMC7820385 DOI: 10.1016/j.bbrep.2020.100890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/12/2020] [Accepted: 12/18/2020] [Indexed: 12/25/2022] Open
Abstract
Naja haje envenoming could activate multiple pathways linked to haematotoxic, neurological, and antioxidant systems dysfunctions. Moringa oleifera has been used in the management of different snake venom-induced toxicities, but there is no scientific information on its antivenom effects against Naja haje. This study thus, investigated the antivenom activities of different extract partitions of M. oleifera leaves against N. haje envenoming. Forty five male rats were divided into nine groups (n = 5). Groups 2 to 9 were envenomed with 0.025 mg/kg (LD50) of N . haje venom while group 1 was given saline. Group 2 was left untreated, while group 3 was treated with polyvalent antivenom, groups 4, 6 and 8 were treated with 300 mg/kg-1 of N-hexane, ethylacetate and ethanol partitions of M. oleifera, respectively. Groups 5, 7 and 9 were also treated with 600 mgkg-1of the partitions, respectively. Ethanol extract and ethyl acetate partition of M. oleifera significantly improved haematological indices following acute anaemia induced by the venom. Likewise, haemorrhagic, haemolytic and anti-coagulant activities of N. haje venom were best inhibited by ethanol partition. Envenoming significantly down-regulated Nuclear factor erythroid 2-related factor 2 (Nrf2) with the consequent elevation of antioxidant enzymes activities in the serum and brain. Treatment with extract partitions however, elevated Nrf2 levels while normalising antioxidant enzyme activities. Furthermore, there were reduction in levels of pro-inflammatory cytokines (TNF-α and interleukin-1β) in tissues of treated envenomed rats. This study concludes that ethanol partition of M. oleifera was most effective against N. haje venom and could be considered as a potential source for antivenom metabolites.
Collapse
Affiliation(s)
| | | | - Olubisi Esther Adeyi
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | - Olarewaju Adekunle
- Department of Pure and Applied Zoology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Olanike Busirat Akande
- Department of Pure and Applied Zoology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Adewale Segun James
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Peter Ofemile Yusuf
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - Babatunde A. Idowu
- Department of Pure and Applied Zoology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
69
|
Abstract
Diabetic heart disease is a growing and important public health risk. Apart from the risk of coronary artery disease or hypertension, diabetes mellitus (DM) is a well-known risk factor for heart failure in the form of diabetic cardiomyopathy (DiaCM). Currently, DiaCM is defined as myocardial dysfunction in patients with DM in the absence of coronary artery disease and hypertension. The underlying pathomechanism of DiaCM is partially understood, but accumulating evidence suggests that metabolic derangements, oxidative stress, increased myocardial fibrosis and hypertrophy, inflammation, enhanced apoptosis, impaired intracellular calcium handling, activation of the renin-angiotensin-aldosterone system, mitochondrial dysfunction, and dysregulation of microRNAs, among other factors, are involved. Numerous animal models have been used to investigate the pathomechanisms of DiaCM. Despite some limitations, animal models for DiaCM have greatly advanced our understanding of pathomechanisms and have helped in the development of successful disease management strategies. In this review, we summarize the current pathomechanisms of DiaCM and provide animal models for DiaCM according to its pathomechanisms, which may contribute to broadening our understanding of the underlying mechanisms and facilitating the identification of possible new therapeutic targets.
Collapse
Affiliation(s)
- Wang-Soo Lee
- Division of Cardiology, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Corresponding authors: Wang-Soo Lee https://orcid.org/0000-0002-8264-0866 Division of Cardiology, Department of Internal Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea E-mail:
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Corresponding authors: Wang-Soo Lee https://orcid.org/0000-0002-8264-0866 Division of Cardiology, Department of Internal Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Korea E-mail:
| |
Collapse
|
70
|
Jin Q, Zhu Q, Wang K, Chen M, Li X. Allisartan isoproxil attenuates oxidative stress and inflammation through the SIRT1/Nrf2/NF‑κB signalling pathway in diabetic cardiomyopathy rats. Mol Med Rep 2021; 23:215. [PMID: 33495841 PMCID: PMC7845586 DOI: 10.3892/mmr.2021.11854] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Allisartan isoproxil is a new nonpeptide angiotensin II receptor blocker (ARB) precursor drug that is used to treat hypertension and reduce the risk of heart disease. The present study explored the effects of allisartan isoproxil on diabetic cardiomyopathy (DCM) and revealed the roles of hyperglycaemia‑induced oxidative stress and inflammation. A rat DCM model was established by high‑fat diet feeding in combination with intraperitoneal injection of streptozocin. Echocardiographs showed that diabetic rats exhibited significantly decreased cardiac function. Troponin T (cTnT) and B‑type natriuretic peptide (BNP) were significantly increased in DCM rats as obtained by ELISA. Allisartan isoproxil significantly improved the EF% and E'/A' ratio. Histopathologic staining showed that allisartan isoproxil prevented histological alterations, attenuated the accumulation of collagen, and ameliorated cTnT and BNP levels. Western blot and immunohistochemical results indicated that the expression levels of silent information regulator 2 homologue 1 (SIRT1) and nuclear factor erythroid 2‑related factor 2 (Nrf2) were decreased in the hearts of diabetic rats, and antioxidant defences were also decreased. In addition, allisartan isoproxil decreased the expression of NF‑κB p65 and the inflammatory cytokines TNF‑α and IL‑1β which were determined by reverse transcription‑quantitative PCR in the diabetic heart. Western blotting and TUNEL staining results also showed that cardiac Bax and cleaved caspase‑3 and the number of apoptotic myocardial cells were increased in the diabetic heart and decreased following treatment with allisartan isoproxil. In conclusion, the present results indicated that allisartan isoproxil alleviated DCM by attenuating diabetes‑induced oxidative stress and inflammation through the SIRT1/Nrf2/NF‑κB signalling pathway.
Collapse
Affiliation(s)
- Qinyang Jin
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Qin Zhu
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China
| | - Kai Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mengli Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
71
|
Li XL, Xu M, Yu F, Fu CL, Yu X, Cheng M, Gao HQ. Effects of D-pinitol on myocardial apoptosis and fibrosis in streptozocin-induced aging-accelerated mice. J Food Biochem 2021; 45:e13669. [PMID: 33598953 DOI: 10.1111/jfbc.13669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/17/2022]
Abstract
Diabetic cardiomyopathy (DCM) causes heart failure and increases the mortality in diabetic patients. Myocardial apoptosis and fibrosis are the main features of DCM and aging. The aim is to study the underlying mechanism of D-pinitol (DP) on myocardial apoptosis and fibrosis in an elderly diabetic mouse model. The diabetic model was established by SAMP-8 mice that were injected with streptozotocin daily for five consecutive days. The mice were administrated of DP (150 mg kg-1 day-1 ) by gavage for 10 weeks. The common metabolic disorder indices, cardiac dysfunction, oxidative stress, myocardial apoptosis and fibrosis, and PI3K/Akt/mTOR pathway were investigated. Our findings suggested that DP has a protective effect on DCM, which may be related to regulating oxidative stress, and PI3K/Akt/mTOR pathway involving cardiac fibrosis and apoptosis. DP may be a novel clinical application in fighting against DCM. PRACTICAL APPLICATIONS: D-pinitol (DP) was found in large quantities in soybean and legume foods. DP has a variety of functions, including hypoglycemic, anti-oxidation, anti-inflammatory, cardioprotective, and anti-tumor activity. We used the streptozotocin-induced SAMP8 mice as the diabetic model and treated with DP. We found that DP can improve cardiac dysfunction and inhibits the oxidative stress, myocardial apoptosis and fibrosis. DP has a significant effect on diabetic cardiomyopathy (DCM). The molecular mechanisms are related to regulating oxidative stress, and PI3K/Akt/mTOR pathway involving cardiac fibrosis and apoptosis. DP can prevent and/or delay the onset of DCM.
Collapse
Affiliation(s)
- Xiao-Li Li
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Mei Xu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Fei Yu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Chun-Li Fu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Yu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Mei Cheng
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Hai-Qing Gao
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
72
|
Behl T, Kaur I, Sehgal A, Sharma E, Kumar A, Grover M, Bungau S. Unfolding Nrf2 in diabetes mellitus. Mol Biol Rep 2021; 48:927-939. [PMID: 33389540 DOI: 10.1007/s11033-020-06081-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/10/2020] [Indexed: 11/24/2022]
Abstract
In spite of much awareness, diabetes mellitus continues to remain one of major reasons for mortality and morbidity rate all over the globe. Free radicals cause oxidative stress which is responsible for causing diabetes. The recent advancements in elucidation of ARE/keap1/Nrf2 pathway can help in better understanding of diabetes mellitus. Various clinical trials and animal studies have shown the promising effect of Nrf2 pathway in reversing diabetes by counteracting with the oxidative stress produced. The gene is known to dissociate from Keap1 on coming in contact with such stresses to show preventive and prognosis effect. The Nrf2 gene has been marked as a molecular player in dealing with wide intracellular as well as extracellular cellular interactions in different diseases. The regulation of this gene gives some transcription factor that contain antioxidant response elements (ARE) in their promoter region and thus are responsible for encoding certain proteins involved in regulation of metabolic and detoxifying enzymes.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Eshita Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Madhuri Grover
- B.S. Anangpuria Institute of Pharmacy, Alampur, Haryana, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
73
|
Bose C, Alves I, Singh P, Palade PT, Carvalho E, Børsheim E, Jun S, Cheema A, Boerma M, Awasthi S, Singh SP. Sulforaphane prevents age-associated cardiac and muscular dysfunction through Nrf2 signaling. Aging Cell 2020; 19:e13261. [PMID: 33067900 PMCID: PMC7681049 DOI: 10.1111/acel.13261] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/17/2020] [Accepted: 08/30/2020] [Indexed: 01/06/2023] Open
Abstract
Age-associated mitochondrial dysfunction and oxidative damage are primary causes for multiple health problems including sarcopenia and cardiovascular disease (CVD). Though the role of Nrf2, a transcription factor that regulates cytoprotective gene expression, in myopathy remains poorly defined, it has shown beneficial properties in both sarcopenia and CVD. Sulforaphane (SFN), a natural compound Nrf2-related activator of cytoprotective genes, provides protection in several disease states including CVD and is in various stages of clinical trials, from cancer prevention to reducing insulin resistance. This study aimed to determine whether SFN may prevent age-related loss of function in the heart and skeletal muscle. Cohorts of 2-month-old and 21- to 22-month-old mice were administered regular rodent diet or diet supplemented with SFN for 12 weeks. At the completion of the study, skeletal muscle and heart function, mitochondrial function, and Nrf2 activity were measured. Our studies revealed a significant drop in Nrf2 activity and mitochondrial functions, together with a loss of skeletal muscle and cardiac function in the old control mice compared to the younger age group. In the old mice, SFN restored Nrf2 activity, mitochondrial function, cardiac function, exercise capacity, glucose tolerance, and activation/differentiation of skeletal muscle satellite cells. Our results suggest that the age-associated decline in Nrf2 signaling activity and the associated mitochondrial dysfunction might be implicated in the development of age-related disease processes. Therefore, the restoration of Nrf2 activity and endogenous cytoprotective mechanisms by SFN may be a safe and effective strategy to protect against muscle and heart dysfunction due to aging.
Collapse
Affiliation(s)
- Chhanda Bose
- Division of Hematology & Oncology Department of Internal Medicine Texas Tech University Medical Sciences Center Lubbock TX USA
| | - Ines Alves
- Arkansas Children's Research Institute Little Rock AR USA
- Center for Neuroscience and Cell Biology University of Coimbra Coimbra Portugal
| | - Preeti Singh
- Department of Pharmacology and Toxicology University of Arkansas for Medical Sciences Little Rock AR USA
| | - Philip T. Palade
- Department of Pharmacology and Toxicology University of Arkansas for Medical Sciences Little Rock AR USA
| | - Eugenia Carvalho
- Arkansas Children's Research Institute Little Rock AR USA
- Center for Neuroscience and Cell Biology University of Coimbra Coimbra Portugal
- Department of Geriatrics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Elisabet Børsheim
- Arkansas Children's Research Institute Little Rock AR USA
- Department of Geriatrics University of Arkansas for Medical Sciences Little Rock AR USA
- Arkansas Children’s Nutrition Center Department of Pediatrics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Se‐Ran Jun
- Department of Biomedical Informatics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Amrita Cheema
- Departments of Oncology and Biochemistry, Molecular and Cellular Biology Georgetown University Medical Center Washington DC USA
| | - Marjan Boerma
- Division of Radiation Health Department of Pharmaceutical Sciences University of Arkansas for Medical Sciences Little Rock AR USA
| | - Sanjay Awasthi
- Division of Hematology & Oncology Department of Internal Medicine Texas Tech University Medical Sciences Center Lubbock TX USA
| | - Sharda P. Singh
- Division of Hematology & Oncology Department of Internal Medicine Texas Tech University Medical Sciences Center Lubbock TX USA
| |
Collapse
|
74
|
Progeria, atherosclerosis and clonal hematopoiesis: links and future perspectives. Mech Ageing Dev 2020; 192:111365. [PMID: 33007346 DOI: 10.1016/j.mad.2020.111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/26/2020] [Accepted: 09/22/2020] [Indexed: 11/20/2022]
Abstract
The main actors of this review are Hutchinson-Gilford progeria syndrome (HGPS) and atherosclerosis. HGPS is a very rare disease with no definitively approved specific drugs. Atherosclerosis is a very common disease with a more consolidated treatment strategy. Nevertheless, common mechanisms are shared by both these diseases, particularly related to inflammation, oxidative and endoplasmic reticulum (ER) stress. Pathways regulated by Nuclear factor E2 related factor (Nrf2), Nuclear factor kappa B (NF-kB) and related to the Unfolded Protein Response (UPR) and ER stress are receiving increasing attention. In HGPS "not omnia" happen(s) "cum tempore", that means that HGPS patients have atherosclerotic complications before their time. The third actor is clonal hematopoiesis: it constitutes a link between ageing and atherosclerosis. This review aims to analyse the current knowledge of atherosclerosis and clonal hematopoiesis in order to suggest therapeutic strategies to correct the timing of the atherosclerosis progression in HGPS. The goal for HGPS is a shift from "not omnia cum tempore" to "omnia cum tempore" in terms of significant lifespan extension by postponing atherosclerosis-related complications.
Collapse
|
75
|
Li Z, Guo H, Li J, Ma T, Zhou S, Zhang Z, Miao L, Cai L. Sulforaphane prevents type 2 diabetes-induced nephropathy via AMPK-mediated activation of lipid metabolic pathways and Nrf2 antioxidative function. Clin Sci (Lond) 2020; 134:2469-2487. [PMID: 32940670 DOI: 10.1042/cs20191088] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Abstract
Sulforaphane (SFN) prevents diabetic nephropathy (DN) in type 2 diabetes (T2D) by up-regulating nuclear factor (erythroid-derived 2)-like 2 (Nrf2). AMP-activated protein kinase (AMPK) can attenuate the pathogenesis of DN by improving renal lipotoxicity along with the activation of Nrf2-mediated antioxidative signaling. Therefore, we investigated whether AMPKα2, the central subunit of AMPK in energy metabolism, is required for SFN protection against DN in T2D, and whether potential cross-talk occurs between AMPKα2 and Nrf2. AMPKα2 knockout (Ampkα2-/-) mice and wildtype (WT) mice were fed a high-fat diet (HFD) or a normal diet (ND) to induce insulin resistance, followed by streptozotocin (STZ) injection to induce hyperglycemia, as a T2D model. Both T2D and control mice were treated with SFN or vehicle for 3 months. At the end of the 3-month treatment, all mice were maintained only on HFD or ND for an additional 3 months without SFN treatment. Mice were killed at sixth month after T2D onset. Twenty-four-hour urine albumin at third and sixth months was significantly increased as renal dysfunction, along with significant renal pathological changes and biochemical changes including renal hypertrophy, oxidative damage, inflammation, and fibrosis in WT T2D mice, which were prevented by SFN in certain contexts, but not in Ampkα2-/- T2D mice. SFN prevention of T2D-induced renal lipotoxicity was associated with AMPK-mediated activation of lipid metabolism and Nrf2-dependent antioxidative function in WT mice, but not in SFN-treated Ampkα2-/- mice. Therefore, SFN prevention of DN is AMPKα2-mediated activation of probably both lipid metabolism and Nrf2 via AMPK/AKT/glycogen synthase kinase (GSK)-3β/Src family tyrosine kinase (Fyn) pathways.
Collapse
Affiliation(s)
- Zhuo Li
- Pediatric Research Institute, Department of Pediatrics, Norton Children and University of Louisville School of Medicine, Louisville 40202, KY, U.S.A
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun 130041, China
| | - Hua Guo
- Pediatric Research Institute, Department of Pediatrics, Norton Children and University of Louisville School of Medicine, Louisville 40202, KY, U.S.A
- Department of Immunology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jia Li
- Pediatric Research Institute, Department of Pediatrics, Norton Children and University of Louisville School of Medicine, Louisville 40202, KY, U.S.A
- Departments of Cardiology and Nephrology at The First Hospital of Jilin University, Changchun 130021, China
| | - Tianjiao Ma
- Pediatric Research Institute, Department of Pediatrics, Norton Children and University of Louisville School of Medicine, Louisville 40202, KY, U.S.A
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Shanshan Zhou
- Pediatric Research Institute, Department of Pediatrics, Norton Children and University of Louisville School of Medicine, Louisville 40202, KY, U.S.A
- Departments of Cardiology and Nephrology at The First Hospital of Jilin University, Changchun 130021, China
| | - Zhiguo Zhang
- Departments of Cardiology and Nephrology at The First Hospital of Jilin University, Changchun 130021, China
| | - Lining Miao
- Department of Nephropathy, The Second Hospital of Jilin University, Changchun 130041, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, Norton Children and University of Louisville School of Medicine, Louisville 40202, KY, U.S.A
- Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville 40202, KY, U.S.A
| |
Collapse
|
76
|
Ogunlade B, Adelakun S, Iteire K. Sulforaphane response on aluminum-induced oxidative stress, alterations in sperm characterization and testicular histomorphometry in Wistar rats. Int J Reprod Biomed 2020; 18:611-624. [PMID: 32923928 PMCID: PMC7457154 DOI: 10.18502/ijrm.v13i8.7503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/04/2019] [Accepted: 03/03/2020] [Indexed: 11/24/2022] Open
Abstract
Background The exposure of male individual to environmental toxicant is regarded as a channel that results in reduced sperm counts and infertility.
Objective This study investigated the ameliorative response of Sulforaphane (SFN) on Aluminum trichloride (AlCl3) induced testicular toxicity in adult male Wistar rats. Materials and Methods A total of 32 adult male Wistar rats (180-200 gm between 8-10 wk) were divided into four groups (n = 8/each). Group A) received distilled water orally as placebo; Group B) received 100 mg/kgbw AlCl3 only orally; Group C) received 100 mg/kgbw AlCl3 and 100 mg/kgbw SFN orally; and Group D) received 100 mg/kgbw SFN only orally. After 28 days of experiment, animals underwent cervical dislocation, blood serum was obtained for analysis, and testes were harvested for biochemical assays, histology, hormonal profile, and sperm characterization. Results The sperm parameters showed a significant difference within the AlCl3 only group compared with the control and SFN only groups (p = 0.02). However, AlCl3 and SFN co-treatment showed improvement in the motility, viability, and sperm count compared with the AlCl3 only group (p = 0.02). Furthermore, there was a significant decline in the levels of hormones profile and antioxidant status in AlCl3 only group compared to the control and SFN only (p = 0.02). The testicular histoarchitecture of the AlCl3 only group showed shrinkage of seminiferous tubules, spermatogenesis disruption, and empty lumen compared to the control and SFN only groups. Conclusion The present study revealed the ameliorative response of SFN on AlCl3-induced testicular toxicity on serum hormone profiles, antioxidant status, lipid peroxidation, and histomorphometric analysis through oxidative stress.
Collapse
Affiliation(s)
- Babatunde Ogunlade
- Department of Human Anatomy, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Sunday Adelakun
- Department of Human Anatomy, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Kingsley Iteire
- Department of Human Anatomy, University of Medical Sciences, Ondo city, Ondo State, Nigeria
| |
Collapse
|
77
|
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Back to Nucleus: Combating with Cadmium Toxicity Using Nrf2 Signaling Pathway as a Promising Therapeutic Target. Biol Trace Elem Res 2020; 197:52-62. [PMID: 31786752 DOI: 10.1007/s12011-019-01980-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022]
Abstract
There are concerns about the spread of heavy metals in the environment, and human activities are one of the most important factors in their spread. These agents have the high half-life resulting in their persistence in the environment. So, prevention of their spread is the first step. However, heavy metals are an inevitable part of modern and industrial life and they are applied in different fields. Cadmium is one of the heavy metals which has high carcinogenesis ability. Industrial waste, vehicle emissions, paints, and fertilizers are ways of exposing human to cadmium. This potentially toxic agent harmfully affects the various organs and systems of body such as the liver, kidney, brain, and cardiovascular system. Oxidative stress is one of the most important pathways of cadmium toxicity. So, improving the antioxidant defense system can be considered as a potential target. On the other hand, the Nrf2 signaling pathway involves improving the antioxidant capacity by promoting the activity of antioxidant enzymes such as catalase and superoxide dismutase. At the present review, we demonstrate how Nrf2 signaling pathway can be modulated to diminish the cadmium toxicity.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
78
|
Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol 2020; 17:585-607. [PMID: 32080423 PMCID: PMC7849055 DOI: 10.1038/s41569-020-0339-2] [Citation(s) in RCA: 480] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
The pathogenesis and clinical features of diabetic cardiomyopathy have been well-studied in the past decade, but effective approaches to prevent and treat this disease are limited. Diabetic cardiomyopathy occurs as a result of the dysregulated glucose and lipid metabolism associated with diabetes mellitus, which leads to increased oxidative stress and the activation of multiple inflammatory pathways that mediate cellular and extracellular injury, pathological cardiac remodelling, and diastolic and systolic dysfunction. Preclinical studies in animal models of diabetes have identified multiple intracellular pathways involved in the pathogenesis of diabetic cardiomyopathy and potential cardioprotective strategies to prevent and treat the disease, including antifibrotic agents, anti-inflammatory agents and antioxidants. Some of these interventions have been tested in clinical trials and have shown favourable initial results. In this Review, we discuss the mechanisms underlying the development of diabetic cardiomyopathy and heart failure in type 1 and type 2 diabetes mellitus, and we summarize the evidence from preclinical and clinical studies that might provide guidance for the development of targeted strategies. We also highlight some of the novel pharmacological therapeutic strategies for the treatment and prevention of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Zhiguo Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Chao Zheng
- The Second Affiliated Hospital Center of Chinese-American Research Institute for Diabetic Complications, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kupper A Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA
- Division of Endocrinology, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Bradley B Keller
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
79
|
Testai L, Citi V, Martelli A, Brogi S, Calderone V. Role of hydrogen sulfide in cardiovascular ageing. Pharmacol Res 2020; 160:105125. [PMID: 32783975 DOI: 10.1016/j.phrs.2020.105125] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases are the main cause of morbidity and mortality in the Western society and ageing is a relevant non-modifiable risk factor. Morphological and functional alterations at endothelial level represent first events of ageing, inevitably followed by vascular dysfunction and consequent atherosclerosis that deeply influences cardiovascular health. Indeed, myocardial hypertrophy and fibrosis typically occur and contribute to compromise overall cardiac output. As regards the intracellular molecular mechanisms involved in the cardiovascular ageing, an intricate network is emerging, revealing a role for many mediators, including SIRT1/AMPK/PCG1α pathway, anti-oxidants factors (i.e. Nrf-2 and FOXOs) and pro-inflammatory cytokines. Thus, the search for pharmacological and non-pharmacological strategies that can promote a "healthy ageing", in order to slow down age-related machinery, are currently an exciting challenge for the biomedical research. Interestingly, hydrogen sulfide (H2S) has been recently recognized as a new player capable to influence intracellular machinery involved in ageing and then it is view as a potential target for preventing cardiovascular diseases. Therefore, this review is focused on the role of H2S in cardiovascular ageing, and on the evidence of the relationship between progressive decline in endogenous H2S levels and the onset of various cardiovascular age-related diseases.
Collapse
Affiliation(s)
- Lara Testai
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy; Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, 56120, Pisa, Italy.
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy; Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, 56120, Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy; Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, 56120, Pisa, Italy
| |
Collapse
|
80
|
Sulforaphane suppresses obesity-related glomerulopathy-induced damage by enhancing autophagy via Nrf2. Life Sci 2020; 258:118153. [PMID: 32738361 DOI: 10.1016/j.lfs.2020.118153] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/18/2020] [Accepted: 07/23/2020] [Indexed: 01/14/2023]
Abstract
AIMS Obesity-related glomerulopathy (ORG) is characterized by glomerulomegaly with or without focal and segmental glomerulosclerosis lesions. Isothiocyanate sulforaphane (SFN) can protect kidneys from ORG-related damages. In this study, we investigated the effects of SFN as a preventive therapy or intervention for ORG to reveal its mechanism of action. MAIN METHODS We established a mouse obesity model with preventive SFN or N-acetylcysteine treatment for 2 months. Thereafter, we used nuclear factor erythroid 2-related factor 2-deficient (Nrf2-/-) and wild type mice in our ORG model with SFN treatment. Finally, we generated a corresponding mouse podocyte model in vitro. The body weight, wet weight of perirenal-and peritesticular fat, and urinary albumin/creatinine ratio were assessed. We used periodic acid-Schiff staining and electron microscopy to assess the function of the kidneys and podocytes. In addition, we evaluated the expression of Nrf2 and podocyte-specific proteins by western blotting. KEY FINDINGS Treatment with SFN reduced body weight, organ-associated fat weight, and urinary albumin/creatinine ratio in both the preventive treatment and disease intervention regimens. SFN treated mice exhibited higher expression levels of podocyte-specific proteins and better podocyte function. However, treatment with SFN did not affect these parameters in obese Nrf2-/- mice. Light chain 3 of microtubule-associated protein 1-II and metallothionein had higher expression in the wild type than in the Nrf2-/- mice. SIGNIFICANCE Treatment with SFN limited ORG-induced damage by enhancing podocyte autophagy via Nrf2.
Collapse
|
81
|
Sánchez-Gloria JL, Osorio-Alonso H, Arellano-Buendía AS, Carbó R, Hernández-Díazcouder A, Guzmán-Martín CA, Rubio-Gayosso I, Sánchez-Muñoz F. Nutraceuticals in the Treatment of Pulmonary Arterial Hypertension. Int J Mol Sci 2020; 21:E4827. [PMID: 32650586 PMCID: PMC7402298 DOI: 10.3390/ijms21144827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/13/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease characterized by the loss and obstructive remodeling of the pulmonary arterial wall, causing a rise in pulmonary arterial pressure and pulmonary vascular resistance, which is responsible for right heart failure, functional decline, and death. Although many drugs are available for the treatment of this condition, it continues to be life-threatening, and its long-term treatment is expensive. On the other hand, many natural compounds present in food have beneficial effects on several cardiovascular conditions. Several studies have explored many of the potential beneficial effects of natural plant products on PAH. However, the mechanisms by which natural products, such as nutraceuticals, exert protective and therapeutic effects on PAH are not fully understood. In this review, we analyze the current knowledge on nutraceuticals and their potential use in the protection and treatment of PAH, as well as whether nutraceuticals could enhance the effects of drugs used in PAH through similar mechanisms.
Collapse
Affiliation(s)
- José L. Sánchez-Gloria
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (H.O.-A.); (A.S.A.-B.)
| | - Abraham S. Arellano-Buendía
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (H.O.-A.); (A.S.A.-B.)
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Adrián Hernández-Díazcouder
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Carlos A. Guzmán-Martín
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Ivan Rubio-Gayosso
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
| | - Fausto Sánchez-Muñoz
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| |
Collapse
|
82
|
Wang F, Liu P, An H, Zhang Y. Sulforaphane suppresses the viability and metastasis, and promotes the apoptosis of bladder cancer cells by inhibiting the expression of FAT‑1. Int J Mol Med 2020; 46:1085-1095. [PMID: 32705150 PMCID: PMC7387090 DOI: 10.3892/ijmm.2020.4665] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/13/2020] [Indexed: 01/15/2023] Open
Abstract
FAT atypical cadherin 1 (FAT1) regulates complex mechanisms for the promotion of oncogenesis or the suppression of malignancies. Sulforaphane (SFN) has antioxidant and anti-tumor activities. The present study investigated the roles of SFN and FAT1 in bladder cancer (BC). The expression of FAT1 in BC cell lines and tissues was measured by western blot analysis and reverse transcription-quantitative PCR (RT-qPCR). The association between FAT1 expression and the 5-year survival rate of patients with BC was evaluated. The viability of and FAT1 expression in T24 and SW780 cells exposed to various concentrations of SFN were detected by MTT assay, and western blot analysis and RT-qPCR, respectively. Furthermore, the viability, migration, invasion and apoptosis of and FAT1 expression in BC cells subjected to FAT1 overexpression or knockdown, and with or without SFN stimulation, were examined. The results revealed that FAT1 expression in BC cells and tissues was increased, and patients with a high FAT-1 expression had a shorter 5-year survival time than those with a low FAT-1 expression. BC cell viability and FAT1 expression were suppressed by SFN in a concentration-dependent manner. The knockdown of FAT1 inhibited the viability, migration and invasion, and promoted the apoptosis of BC cells, whereas the overexpression of FAT1 produced opposite effects. In addition, cells exposed to SFN exhibited a reduced viability, migration, invasion and an increased apoptosis, effects which were promoted by FAT1 knockdown; however, the overexpression of FAT1 blocked the above-mentioned effects of SFN on the cells. On the whole, the present study demonstrates that SFN suppresses the progression of BC by inhibiting the expression of FAT-1; thus, SFN may be used as a potential drug for the treatment of BC.
Collapse
Affiliation(s)
- Fei Wang
- Shenzhen Key Laboratory of Viral Oncology, Clinical Innovation and Research Center, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Penghua Liu
- Department of Urology, Baoan Central Hospital of Shenzhen, The Fifth Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518102, P.R. China
| | - Hexiang An
- Department of Urology, Baoan Central Hospital of Shenzhen, The Fifth Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518102, P.R. China
| | - Yu Zhang
- Department of Urology, Baoan Central Hospital of Shenzhen, The Fifth Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518102, P.R. China
| |
Collapse
|
83
|
Tang L, Ren X, Han Y, Chen L, Meng X, Zhang C, Chu H, Kong L, Ma H. Sulforaphane attenuates apoptosis of hippocampal neurons induced by high glucose via regulating endoplasmic reticulum. Neurochem Int 2020; 136:104728. [DOI: 10.1016/j.neuint.2020.104728] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/27/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022]
|
84
|
Wang M, Pu D, Zhao Y, Chen J, Zhu S, Lu A, Liao Z, Sun Y, Xiao Q. Sulforaphane protects against skeletal muscle dysfunction in spontaneous type 2 diabetic db/db mice. Life Sci 2020; 255:117823. [PMID: 32445760 DOI: 10.1016/j.lfs.2020.117823] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
AIMS Skeletal muscle diseases have become to be the most common complication in patients with type 2 diabetic mellitus (T2DM). However, the effective therapies against skeletal muscle diseases are not yet available. Sulforaphane (SFN) is an organic isothiocyanate found in cruciferous plants. Our aim was to explore whether SFN could attenuate the skeletal muscle diseases in spontaneous type 2 diabetic db/db mice. MATERIALS AND METHODS The db/m and littermate db/db mice were treated with SFN or dimethyl sulfoxide. The grip strength of mice was measured by a grasping forcing machine. The electron transmission microscopy was used to perform the skeletal muscle. The western blot was used to detect the nuclear factor E2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) signal pathway related proteins, and inflammatory and apoptotic associated proteins. The mRNA levels of anti-inflammatory and anti-oxidative relative genes were detected by RT-QPCR. KEY FINDINGS We found that SFN could significantly increase the grip strength of the db/db mice. The lean mass and gastrocnemius mass were increased in the db/db mice after administration with SFN. Additionally, the db/db mice restored the skeletal muscle fiber organization after SFN treatment. Mechanistically, SFN could activate the Nrf2/HO-1 signal pathway, and downregulate the expression of inflammatory and apoptotic associated proteins. Furthermore, SFN could also regulate the mRNA levels of anti-inflammatory and anti-oxidative related genes. SIGNIFICANCE Our results demonstrated that SFN can protect against skeletal muscle diseases in db/db type 2 diabetic mice and provide a potential drug to prevent skeletal muscle dysfunction in T2DM patients.
Collapse
Affiliation(s)
- Meili Wang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Die Pu
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuxing Zhao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jinliang Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shiyu Zhu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ankang Lu
- Department of Geriatrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhilin Liao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Sun
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
85
|
Kang Y, Zhang G, Huang EC, Huang J, Cai J, Cai L, Wang S, Keller BB. Sulforaphane prevents right ventricular injury and reduces pulmonary vascular remodeling in pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 2020; 318:H853-H866. [PMID: 32108526 DOI: 10.1152/ajpheart.00321.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Right ventricular (RV) dysfunction is the main determinant of mortality in patients with pulmonary arterial hypertension (PAH) and while inflammation is pathogenic in PAH, there is limited information on the role of RV inflammation in PAH. Sulforaphane (SFN), a potent Nrf2 activator, has significant anti-inflammatory effects and facilitates cardiac protection in preclinical diabetic models. Therefore, we hypothesized that SFN might play a comparable role in reducing RV and pulmonary inflammation and injury in a murine PAH model. We induced PAH using SU5416 and 10% hypoxia (SuHx) for 4 wk in male mice randomized to SFN at a daily dose of 0.5 mg/kg 5 days per week for 4 wk or to vehicle control. Transthoracic echocardiography was performed to characterize chamber-specific ventricular function during PAH induction. At 4 wk, we measured RV pressure and relevant measures of histology and protein and gene expression. SuHx induced progressive RV, but not LV, diastolic and systolic dysfunction, and RV and pulmonary remodeling, fibrosis, and inflammation. SFN prevented SuHx-induced RV dysfunction and remodeling, reduced RV inflammation and fibrosis, upregulated Nrf2 expression and its downstream gene NQO1, and reduced the inflammatory mediator leucine-rich repeat and pyrin domain-containing 3 (NLRP3). SFN also reduced SuHx-induced pulmonary vascular remodeling, inflammation, and fibrosis. SFN alone had no effect on the heart or lungs. Thus, SuHx-induced RV and pulmonary dysfunction, inflammation, and fibrosis can be attenuated or prevented by SFN, supporting the rationale for further studies to investigate SFN and the role of Nrf2 and NLRP3 pathways in preclinical and clinical PAH studies.NEW & NOTEWORTHY Pulmonary arterial hypertension (PAH) in this murine model (SU5416 + hypoxia) is associated with early changes in right ventricular (RV) diastolic and systolic function. RV and lung injury in the SU5416 + hypoxia model are associated with markers for fibrosis, inflammation, and oxidative stress. Sulforaphane (SFN) alone for 4 wk has no effect on the murine heart or lungs. Sulforaphane (SFN) attenuates or prevents the RV and lung injury in the SUF5416 + hypoxia model of PAH, suggesting that Nrf2 may be a candidate target for strategies to prevent or reverse PAH.
Collapse
Affiliation(s)
- Yin Kang
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky
| | - Guangyan Zhang
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky
| | - Emma C Huang
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky
| | - Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, Department of Anesthesiology, Jewish Hospital, Louisville, Kentucky
| | - Jun Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Sheng Wang
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Anesthesiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bradley B Keller
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
86
|
Ge C, Hu L, Lou D, Li Q, Feng J, Wu Y, Tan J, Xu M. Nrf2 deficiency aggravates PM 2.5-induced cardiomyopathy by enhancing oxidative stress, fibrosis and inflammation via RIPK3-regulated mitochondrial disorder. Aging (Albany NY) 2020; 12:4836-4865. [PMID: 32182211 PMCID: PMC7138545 DOI: 10.18632/aging.102906] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/05/2020] [Indexed: 01/04/2023]
Abstract
PM2.5 is a well-known air pollutant threatening public health, and long-term exposure to PM2.5 increases the risk of cardiovascular diseases. Nrf2 plays a pivotal role in the amelioration of PM2.5-induced lung injury. However, if Nrf2 is involved in PM2.5-induced heart injury, and the underlying molecular mechanisms have not been explored. In this study, wild type (Nrf2+/+) and Nrf2 knockout (Nrf2-/-) mice were exposed to PM2.5 for 6 months. After PM2.5 exposure, Nrf2-/- mice developed severe physiological changes, lung injury and cardiac dysfunction. In the PM2.5-exposed hearts, Nrf2 deficiency caused significant collagen accumulation through promoting the expression of fibrosis-associated signals. Additionally, Nrf2-/- mice exhibited greater oxidative stress in cardiac tissues after PM2.5 exposure. Furthermore, PM2.5-induced inflammation in heart samples were accelerated in Nrf2-/- mice through promoting inhibitor of α/nuclear factor κB (IκBα/NF-κB) signaling pathways. We also found that Nrf2-/- aggravated autophagy initiation and glucose metabolism disorder in hearts of mice with PM2.5 challenge. Cardiac receptor-interacting protein kinase 3 (RIPK3) expression triggered by PM2.5 was further enhanced in mice with the loss of Nrf2. Collectively, these results suggested that strategies for enhancing Nrf2 could be used to treat PM2.5-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Linfeng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Qiang Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Jing Feng
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Yekuan Wu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| |
Collapse
|
87
|
Uddin MS, Mamun AA, Jakaria M, Thangapandiyan S, Ahmad J, Rahman MA, Mathew B, Abdel-Daim MM, Aleya L. Emerging promise of sulforaphane-mediated Nrf2 signaling cascade against neurological disorders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135624. [PMID: 31784171 DOI: 10.1016/j.scitotenv.2019.135624] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Neurological disorders represent a great challenge and are the leading cause of death and disability globally. Although numerous complicated mechanisms are involved in the progressions of chronic and acute neurodegenerative disorders, most of the diseases share mutual pathogenic features such as oxidative stress, mitochondrial dysfunction, neuroinflammation, protein misfolding, excitotoxicity, and neuronal damage, all of these are the common targets of nuclear factor erythroid 2 related factor 2 (Nrf2) signaling cascade. No cure has yet been discovered to tackle these disorders, so, intervention approaches targeting phytochemicals have been recommended as an alternative form of treatment. Sulforaphane is a sulfur-rich dietary phytochemical which has several activities such as antioxidant, anti-inflammatory, and anti-tumor via multiple targets and various mechanisms. Given its numerous actions, sulforaphane has drawn considerable attention for neurological disorders in recent years. Nrf2 is one of the most crucial targets of sulforaphane which has potential in regulating the series of cytoprotective enzyme expressions that have neuroprotective, antioxidative, and detoxification actions. Neurological disorders are auspicious candidates for Nrf2-targeted treatment strategy. Sulforaphane protects various neurological disorders by regulating the Nrf2 pathway. In this article, we recapitulate current studies of sulforaphane-mediated Nrf2 activation in the treatment of various neurological disorders.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md Jakaria
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | | | - Jamil Ahmad
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Md Ataur Rahman
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, Riyadh 11451, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France.
| |
Collapse
|
88
|
Paunkov A, Chartoumpekis DV, Ziros PG, Chondrogianni N, Kensler TW, Sykiotis GP. Impact of Antioxidant Natural Compounds on the Thyroid Gland and Implication of the Keap1/Nrf2 Signaling Pathway. Curr Pharm Des 2020; 25:1828-1846. [PMID: 31267862 DOI: 10.2174/1381612825666190701165821] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/20/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Natural compounds with potential antioxidant properties have been used in the form of food supplements or extracts with the intent to prevent or treat various diseases. Many of these compounds can activate the cytoprotective Nrf2 pathway. Besides, some of them are known to impact the thyroid gland, often with potential side-effects, but in other instances, with potential utility in the treatment of thyroid disorders. OBJECTIVE In view of recent data regarding the multiple roles of Nrf2 in the thyroid, this review summarizes the current bibliography on natural compounds that can have an effect on thyroid gland physiology and pathophysiology, and it discusses the potential implication of the Nrf2 system in the respective mechanisms. METHODS & RESULTS Literature searches for articles from 1950 to 2018 were performed in PubMed and Google Scholar using relevant keywords about phytochemicals, Nrf2 and thyroid. Natural substances were categorized into phenolic compounds, sulfur-containing compounds, quinones, terpenoids, or under the general category of plant extracts. For individual compounds in each category, respective data were summarized, as derived from in vitro (cell lines), preclinical (animal models) and clinical studies. The main emerging themes were as follows: phenolic compounds often showed potential to affect the production of thyroid hormones; sulfur-containing compounds impacted the pathogenesis of goiter and the proliferation of thyroid cancer cells; while quinones and terpenoids modified Nrf2 signaling in thyroid cell lines. CONCLUSION Natural compounds that modify the activity of the Nrf2 pathway should be evaluated carefully, not only for their potential to be used as therapeutic agents for thyroid disorders, but also for their thyroidal safety when used for the prevention and treatment of non-thyroidal diseases.
Collapse
Affiliation(s)
- Ana Paunkov
- Service of Endocrinology, Diabetology and Metabolism, University of Lausanne, Lausanne, Switzerland
| | - Dionysios V Chartoumpekis
- Department of Internal Medicine, Endocrinology Unit, Patras University Medical School, Patras, Greece
| | - Panos G Ziros
- Service of Endocrinology, Diabetology and Metabolism, University of Lausanne, Lausanne, Switzerland
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Thomas W Kensler
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Gerasimos P Sykiotis
- Service of Endocrinology, Diabetology and Metabolism, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
89
|
Agrimi J, Baroni C, Anakor E, Lionetti V. Perioperative Heart-Brain Axis Protection in Obese Surgical Patients: The Nutrigenomic Approach. Curr Med Chem 2020; 27:258-281. [PMID: 30324875 DOI: 10.2174/0929867325666181015145225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/01/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
The number of obese patients undergoing cardiac and noncardiac surgery is rapidly increasing because they are more prone to concomitant diseases, such as diabetes, thrombosis, sleep-disordered breathing, cardiovascular and cerebrovascular disorders. Even if guidelines are already available to manage anesthesia and surgery of obese patients, the assessment of the perioperative morbidity and mortality from heart and brain disorders in morbidly obese surgical patients will be challenging in the next years. The present review will recapitulate the new mechanisms underlying the Heart-brain Axis (HBA) vulnerability during the perioperative period in healthy and morbidly obese patients. Finally, we will describe the nutrigenomics approach, an emerging noninvasive dietary tool, to maintain a healthy body weight and to minimize the HBA propensity to injury in obese individuals undergoing all types of surgery by personalized intake of plant compounds that may regulate the switch from health to disease in an epigenetic manner. Our review provides current insights into the mechanisms underlying HBA response in obese surgical patients and how they are modulated by epigenetically active food constituents.
Collapse
Affiliation(s)
- Jacopo Agrimi
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Carlotta Baroni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ekene Anakor
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,UOS Anesthesiology, Fondazione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
90
|
Adelusi TI, Du L, Hao M, Zhou X, Xuan Q, Apu C, Sun Y, Lu Q, Yin X. Keap1/Nrf2/ARE signaling unfolds therapeutic targets for redox imbalanced-mediated diseases and diabetic nephropathy. Biomed Pharmacother 2020; 123:109732. [PMID: 31945695 DOI: 10.1016/j.biopha.2019.109732] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Hyperglycemia/oxidative stress has been implicated in the initiation and progression of diabetic complications while the components of Keap1/Nrf2/ARE signaling are being exploited as therapeutic targets for the treatment/management of these pathologies. Antioxidant agents like drugs, nutraceuticals and pure compounds that target the proteins of this pathway and their downstream genes hold the therapeutic strength to put the progression of this disease at bay. Here, we elucidate how the modulation of Keap1/Nrf2/ARE had been exploited for the treatment/management of end-stage diabetic kidney complication (diabetic nephropathy) by looking into (1) Nrf2 nuclear translocation and phosphorylation by some protein kinases at specific amino acid sequences and (2) Keap1 downregulation/Keap1-Nrf2 protein-protein inhibition (PPI) as potential therapeutic mechanisms exploited by Nrf2 activators for the modulation of diabetic nephropathy biomarkers (Collagen IV, Laminin, TGF-β1 and Fibronectin) that ultimately lead to the amelioration of this disease progression. Furthermore, we brought to limelight the relationship between diabetic nephropathy and Keap1/Nrf2/ARE and finally elucidate how the modulation of this signaling pathway could be further explored to create novel therapeutic milestones.
Collapse
Affiliation(s)
- Temitope Isaac Adelusi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Meng Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Xuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Chowdhury Apu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
91
|
Martelli A, Citi V, Testai L, Brogi S, Calderone V. Organic Isothiocyanates as Hydrogen Sulfide Donors. Antioxid Redox Signal 2020; 32:110-144. [PMID: 31588780 DOI: 10.1089/ars.2019.7888] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Hydrogen sulfide (H2S), the "new entry" in the series of endogenous gasotransmitters, plays a fundamental role in regulating the biological functions of various organs and systems. Consequently, the lack of adequate levels of H2S may represent the etiopathogenetic factor of multiple pathological alterations. In these diseases, the use of H2S donors represents a precious and innovative opportunity. Recent Advances: Natural isothiocyanates (ITCs), sulfur compounds typical of some botanical species, have long been investigated because of their intriguing pharmacological profile. Recently, the ITC moiety has been proposed as a new H2S-donor chemotype (with a l-cysteine-mediated reaction). Based on this recent discovery, we can clearly observe that almost all the effects of natural ITCs can be explained by the H2S release. Consistently, the ITC function was also used as an original H2S-releasing moiety for the design of synthetic H2S donors and original "pharmacological hybrids." Very recently, the chemical mechanism of H2S release, resulting from the reaction between l-cysteine and some ITCs, has been elucidated. Critical Issues: Available literature gives convincing demonstration that H2S is the real player in ITC pharmacology. Further, countless studies have been carried out on natural ITCs, but this versatile moiety has been used only rarely for the design of synthetic H2S donors with optimal drug-like properties. Future Directions: The development of more ITC-based synthetic H2S donors with optimal drug-like properties and selectivity toward specific tissues/pathologies seem to represent a stimulating and indispensable prospect of future experimental activities.
Collapse
Affiliation(s)
- Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| | | | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| |
Collapse
|
92
|
Sun Y, Zhou S, Guo H, Zhang J, Ma T, Zheng Y, Zhang Z, Cai L. Protective effects of sulforaphane on type 2 diabetes-induced cardiomyopathy via AMPK-mediated activation of lipid metabolic pathways and NRF2 function. Metabolism 2020; 102:154002. [PMID: 31706979 DOI: 10.1016/j.metabol.2019.154002] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/12/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK), particularly AMPKα2 isoform, plays a critical role in maintaining cardiac homeostasis. It was reported that sulforaphane (SFN) prevented type 2 diabetes (T2D)-induced cardiomyopathy accompanied by the activation of AMPK; In this study, AMPK's pivotal role in SFN-mediated prevention against T2D-induced cardiomyopathy was tested using global deletion of AMPKα2 gene (AMPKα2-KO) mice. METHODS AND RESULTS T2D was established by feeding 3-month high-fat diet (HFD) to induce insulin resistance, followed by an intraperitoneal injection of streptozotocin (STZ) to induce mild hyperglycemia in both AMPKα2-KO and wild-type (WT) mice. Then both T2D and control mice were subsequently treated with or without SFN for 3 months while continually feeding HFD or normal diet. Upon completion of the 3-month treatment, five mice from each group were sacrificed as a 3-month time-point (3 M). The rest continued normal diet or HFD until terminating study at the sixth month (6 M) of diabetes. Cardiac function was examined with echocardiography before sacrifice at both 3 M and 6 M. SFN prevented T2D-induced progression of cardiac dysfunction, remodeling (hypertrophy and fibrosis), inflammation, and oxidative damage in wild-type diabetic mice, but not in AMPKα2-KO mice. Mechanistically, SFN prevented T2D-induced cardiomyopathy not only by improving AMPK-mediated lipid metabolic pathways, but also enhancing NRF2 activation via AMPK/AKT/GSK3β pathway. However, these improving effects of SFN were abolished in AMPKα2-KO diabetic mice. CONCLUSIONS AMPK is indispensable for the SFN-induced prevention of cardiomyopathy in T2D, and the activation of NRF2 by SFN is mediated by AMPK/AKT/GSK3β signaling pathways.
Collapse
Affiliation(s)
- Yike Sun
- Department of Cardiology, First Hospital of Jilin University, Changchun 130021, China; Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville 40202, USA
| | - Shanshan Zhou
- Department of Cardiology, First Hospital of Jilin University, Changchun 130021, China
| | - Hua Guo
- Department of Cardiology, First Hospital of Jilin University, Changchun 130021, China; Department of Immunology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, China
| | - Jian Zhang
- Department of Cardiology, First Hospital of Jilin University, Changchun 130021, China; Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville 40202, USA
| | - Tianjiao Ma
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville 40202, USA; Department of Rheumatology and Immunology, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Yang Zheng
- Department of Cardiology, First Hospital of Jilin University, Changchun 130021, China.
| | - Zhiguo Zhang
- Department of Cardiology, First Hospital of Jilin University, Changchun 130021, China.
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville 40202, USA; Departments of Radiation Oncology and Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
93
|
Wang X, Fang H, Xu G, Yang Y, Xu R, Liu Q, Xue X, Liu J, Wang H. Resveratrol Prevents Cognitive Impairment in Type 2 Diabetic Mice by Upregulating Nrf2 Expression and Transcriptional Level. Diabetes Metab Syndr Obes 2020; 13:1061-1075. [PMID: 32308456 PMCID: PMC7150671 DOI: 10.2147/dmso.s243560] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE This study aimed to determine whether the natural antioxidant resveratrol (RSV) prevents type 2 diabetes mellitus (T2DM)-induced cognitive impairment and to explore whether redox-associated factor nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in the neuroprotective effect of RSV. MATERIALS AND METHODS We established a T2DM model with 8-week-old male ICR mice by administration of a high-fat diet for 2 months and low-dose streptozotocin for 3 days. Then, diabetic and age-matched control mice were treated with or without RSV for 4 months every other day and subjected to the Morris water maze test. After the mice were euthanized, whole brains were sectioned for Nissl staining and immunofluorescence labeling. Hippocampal sections were observed by transmission electron microscopy to evaluate the ultrastructure of synapses. Inflammatory factors, oxidative stress-related indexes, and Nrf2 and downstream target gene expression were analyzed in hippocampal tissues by quantitative real-time PCR, Western blotting, and associated quantitative kits. RESULTS In the Morris water maze test, compared to control mice, T2DM mice showed learning and memory impairments, but RSV treatment prevented the learning and memory decline in T2DM mice. Similarly, RSV prevented T2DM-induced hippocampal neuron destruction and synaptic ultrastructural damage. The expression levels of inflammatory factors and oxidative stress-related indicators were increased in the T2DM group compared with the control group but were decreased significantly by RSV treatment in the T2DM group. Additionally, the expression of Nrf2 and its downstream target genes was decreased in the T2DM group compared with the control group and was significantly increased by RSV treatment in the T2DM group. CONCLUSION RSV prevented T2DM-induced cognitive impairment through anti-inflammatory and antioxidant activities. This effect was accompanied by the upregulation of Nrf2 transcriptional activity and the increased expression of downstream antioxidant genes.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei050017, People’s Republic of China
| | - Hui Fang
- Second Department of Endocrinology, Tangshan Gongren Hospital, Tangshan, Hebei063000, People’s Republic of China
- Correspondence: Hui Fang Second Department of Endocrinology, Tangshan Gongren Hospital, 27 Wenhua Road, Lubei District, Tangshan, Hebei063000, People’s Republic of ChinaTel +86-13831581838Fax +00863152814801 Email
| | - Gang Xu
- Department of Burns and Orthopedics, Tangshan Gongren Hospital, Tangshan, Hebei063000, People’s Republic of China
| | - Ying Yang
- Second Department of Endocrinology, Tangshan Gongren Hospital, Tangshan, Hebei063000, People’s Republic of China
| | - Ruizhe Xu
- Department of Clinical Medicine, Tangshan Vocational and Technical College, Tangshan, Hebei, 063000, People’s Republic of China
| | - Qiang Liu
- Department of Internal Medicine, North China University of Science and Technology, Tangshan, Hebei063000, People’s Republic of China
| | - Xiangyu Xue
- Department of Internal Medicine, North China University of Science and Technology, Tangshan, Hebei063000, People’s Republic of China
| | - Jiaqi Liu
- Department of Internal Medicine, North China University of Science and Technology, Tangshan, Hebei063000, People’s Republic of China
| | - Hezhi Wang
- Department of Surgery, Hebei Medical University, Shijiazhuang050017, People’s Republic of China
| |
Collapse
|
94
|
Panagiotidou E, Chondrogianni N. We Are What We Eat: Ubiquitin–Proteasome System (UPS) Modulation Through Dietary Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:329-348. [DOI: 10.1007/978-3-030-38266-7_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
95
|
Wang J, Zhang J, Chen L, Cai J, Li Z, Zhang Z, Zheng Q, Wang Y, Zhou S, Liu Q, Cai L. Combination of Broccoli Sprout Extract and Zinc Provides Better Protection against Intermittent Hypoxia-Induced Cardiomyopathy Than Monotherapy in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2985901. [PMID: 31934264 PMCID: PMC6942874 DOI: 10.1155/2019/2985901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/31/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022]
Abstract
Nuclear factor-E2-related factor 2 (Nrf2) and metallothionein have each been reported to protect against chronic intermittent hypoxia- (IH-) induced cardiomyopathy. Sulforaphane-rich broccoli sprout extract (BSE) and zinc can effectively induce Nrf2 and metallothionein, respectively, to protect against IH-induced cardiomyopathy via antioxidative stress. However, whether the cardiac protective effects of the combination of BSE and zinc can be synergistic or the same has not been evaluated. In this study, we treated 8-week-old C57BL/6J mice with BSE and/or zinc during exposure to IH for 8 weeks. Cardiac dysfunction, as determined by echocardiography, and pathological remodeling and abnormalities, including cardiac fibrosis, inflammation, and oxidative damage, examined by histopathology and western blotting, were clearly observed in IH mice but were not significant in IH mice treated with either BSE, zinc, or zinc/BSE. Furthermore, the effects of the combined treatment with BSE and zinc were always greater than those of single treatments. Nrf2 function and metallothionein expression in the heart increased to a greater extent using the combination of BSE and zinc than using BSE or zinc alone. These findings for the first time indicate that the dual activation of Nrf2 and metallothionein by combined treatment with BSE and zinc may be more effective than monotherapy at preventing the development of IH-induced cardiomyopathy.
Collapse
Affiliation(s)
- Jiqun Wang
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Jian Zhang
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - Liping Chen
- Department of Echocardiography, The First Hospital of Jilin University, Changchun 130021, China
| | - Jun Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Zhijie Li
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhiguo Zhang
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - Qi Zheng
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY 40202, USA
| | - Yonggang Wang
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - Shanshan Zhou
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - Quan Liu
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Departments of Radiation Oncology, Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
96
|
Karan A, Bhakkiyalakshmi E, Jayasuriya R, Sarada DVL, Ramkumar KM. The pivotal role of nuclear factor erythroid 2-related factor 2 in diabetes-induced endothelial dysfunction. Pharmacol Res 2019; 153:104601. [PMID: 31838079 DOI: 10.1016/j.phrs.2019.104601] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/23/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Endothelial dysfunction (ED) is a key event in the onset and progression of vascular complications associated with diabetes. Regulation of endothelial function and the underlying signaling mechanisms in the progression of diabetes-induced vascular complications have been well established. Recent studies indicate that increased oxidative stress is an important determinant of endothelial injury and patients with hypertension display ED mediated by impaired Nitric Oxide (NO) availability. Further, oxidative stress is known to be associated with inflammation and ED in vascular remodeling and diabetes-associated hypertension. Numerous strategies have been developed to improve the function of endothelial cells and increasing number of evidences highlight the indispensable role of antioxidants in modulation of endothelium-dependent vasodilation responses. Nuclear factor Erythroid 2-related factor 2 (Nrf2), is the principal transcriptional regulator, that is central in mediating oxidative stress signal response. Having unequivocally established the relationship between type 2 diabetes mellitus (T2DM) and oxidative stress, the pivotal role of Nrf2/Keap1/ARE network, has taken the center stage as target for developing therapies towards maintaining the cellular redox environment. Several activators of Nrf2 are known to combat diabetes-induced ED and few are currently in clinical trials. Focusing on their therapeutic value in diabetes-induced ED, this review highlights some natural and synthetic molecules that are involved in the modulation of the Nrf2/Keap1/ARE network and its underlying molecular mechanisms in the regulation of ED. Further emphasis is also laid on the therapeutic benefits of directly up-regulating Nrf2-mediated antioxidant defences in regulating endothelial redox homeostasis for countering diabetes-induced ED.
Collapse
Affiliation(s)
- Amin Karan
- Life Science Division, SRM Research Institute, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamilnadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Elango Bhakkiyalakshmi
- Life Science Division, SRM Research Institute, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamilnadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Life Science Division, SRM Research Institute, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamilnadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - D V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Life Science Division, SRM Research Institute, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamilnadu, India; Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
97
|
Shivarudrappa AH, Ponesakki G. Lutein reverses hyperglycemia-mediated blockage of Nrf2 translocation by modulating the activation of intracellular protein kinases in retinal pigment epithelial (ARPE-19) cells. J Cell Commun Signal 2019; 14:207-221. [PMID: 31820335 DOI: 10.1007/s12079-019-00539-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/21/2019] [Indexed: 01/15/2023] Open
Abstract
Diabetic retinopathy (DR) is a major cause of acquired blindness among working adults. The retinal pigment epithelium (RPE), constitutes an outer blood-retinal barrier, is vastly affected in diabetic humans and animals. Lower levels of lutein in the serum and retina of diabetic population, and beneficial effects of carotenoids supplementation in diabetic retinopathy patients created an interest to examine the protective effect of lutein on hyperglycemia-mediated changes in oxidative stress and antioxidant defense system in ARPE-19 cells. The WST-1 assay was performed to analyze the impact of glucose, and lutein on the viability of ARPE-19. The intracellular oxidative stress was measured by a DCF (dichlorofluorescein) assay, mitochondrial membrane potential (MMP) was monitored using a JC-10 MMP assay kit and GSH level was examined using GSH/GSSG ratio detection kit. The oxidative stress markers, protein carbonyl and malondialdehyde were spectrophotometrically measured using 2,4-dinitrophenylhydrazine and 2-thiobarbituric acid, respectively. The expression of endogenous antioxidant enzymes and regulatory proteins in ARPE-19 was quantified by western blotting. The localization of Nrf2 protein was examined by immunofluorescent staining. The results show that lutein (up to 1.0 μM) did not affect the viability of ARPE-19 grown in both normal and high-glucose conditions. Lutein treatment blocked high glucose-mediated elevation of intracellular ROS, protein carbonyl and malondialdehyde content in ARPE-19 cells. The decreased MMP and GSH levels observed in ARPE-19 grown under high-glucose condition were rescued by lutein treatment. Further, lutein protected high glucose-mediated down-regulation of a redox-sensitive transcription factor, Nrf2, and antioxidant enzymes, SOD2, HO-1, and catalase. This protective effect of lutein was linked with activated nuclear translocation of Nrf2, which was associated with increased activation of regulatory proteins such as Erk and AKT. Our study indicates that improving the concentration of lutein in the retina could protect RPE from diabetes-associated damage.
Collapse
Affiliation(s)
- Arpitha Haranahalli Shivarudrappa
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, 570 020, India
- Academy of Scientific and Innovative Research (AcSIR), Gazhiabad, 201 002, India
| | - Ganesan Ponesakki
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, 570 020, India.
- Academy of Scientific and Innovative Research (AcSIR), Gazhiabad, 201 002, India.
- Department of Biochemistry and Biotechnology, CSIR-Central Leather Resaerch Institute (CLRI), Adyar, Chennai, 600 020, India.
| |
Collapse
|
98
|
Ruhee RT, Ma S, Suzuki K. Sulforaphane Protects Cells against Lipopolysaccharide-Stimulated Inflammation in Murine Macrophages. Antioxidants (Basel) 2019; 8:antiox8120577. [PMID: 31766492 PMCID: PMC6943607 DOI: 10.3390/antiox8120577] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammation is an essential part for the general or innate immune defenses to defend against tissue damage and accelerate the curing process by providing protection against pathogens. Sulforaphane (SFN) is a natural isothiocyanate that has potential properties against inflammation, along with other protective functions. The purpose of this study was to examine the mechanism of its protective effect on lipopolysaccharide (LPS)-induced inflammation in Raw 264.7 macrophages. Here, we compared LPS-challenged macrophages with or without SFN pretreatment. Macrophages were pre-incubated for 6 h with a wide range of concentrations of SFN (0 to 50 µM), and then treated with LPS for 24 h. Nitric oxide (NO) concentration and gene expression of different inflammatory mediators, i.e., interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1β, were measured. SFN neither directly reacted with cytokines, nor with NO. To understand the mechanisms, we performed analyses of the expression of regulatory enzyme inducible nitic oxide synthase (iNOS), the transcription factor NF-E2-related factor 2 (Nrf2), and its enzyme heme-oxygenase (HO)-1. Our results revealed that LPS increased significantly the expression of inflammatory cytokines and concentration of NO in non-treated cells. SFN was able to prevent the expression of NO and cytokines through regulating inflammatory enzyme iNOS and activation of Nrf2/HO-1 signal transduction pathway.
Collapse
Affiliation(s)
- Ruheea Taskin Ruhee
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan;
| | - Sihui Ma
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
- Correspondence: (S.M.); (K.S.); Tel.: +81-4-2947-6753 (S.M.); +81-4-2947-6898 (K.S.)
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
- Correspondence: (S.M.); (K.S.); Tel.: +81-4-2947-6753 (S.M.); +81-4-2947-6898 (K.S.)
| |
Collapse
|
99
|
Sulforaphane-Induced Klf9/Prdx6 Axis Acts as a Molecular Switch to Control Redox Signaling and Determines Fate of Cells. Cells 2019; 8:cells8101159. [PMID: 31569690 PMCID: PMC6829349 DOI: 10.3390/cells8101159] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/21/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022] Open
Abstract
Sulforaphane (SFN), an activator of transcription factor Nrf2 (NFE2-related factor), modulates antioxidant defense by Nrf2-mediated regulation of antioxidant genes like Peroxiredoxin 6 (Prdx6) and affects cellular homeostasis. We previously observed that dose levels of SFN are crucial in determining life or death of lens epithelial cells (LECs). Herein, we demonstrated that higher doses of SFN (>6 μM) activated death signaling by overstimulation of Nrf2/ARE (antioxidant response element)-mediated Kruppel-like factor (Klf9) repression of Prdx6 expression, which increased reactive oxygen species (ROS) load and cell death. Mechanistically, Klf9 bound to its repressive Klf9 binding elements (RKBE; 5-CA/GCCC-3) in the Prdx6 promoter, and repressed Prdx6 transcription. Under the condition of higher dose of SFN, excessive Nrf2 abundance caused death signaling by enforcing Klf9 activation through ARE (5-RTGAYnnnGC-3) in Klf9 promoter that suppress antioxidant genes such as Prdx6 via a Klf9-dependent fashion. Klf9-depletion showed that Klf9 independently caused ROS reduction and subsequent cell survival, demonstrating that Klf9 upregulation caused cell death. Our work revealed the molecular mechanism of dose-dependent altered activity of SFN in LECs, and demonstrated that SFN activity was linked to levels of Nrf2/Klf9/Prdx6 axis. We proposed that in the development of therapeutic interventions for aging/oxidative disorders, combinations of Klf9-ShRNA and Nrf2 inducers may prove to be a promising strategy.
Collapse
|
100
|
Asiatic acid inhibits cardiac fibrosis throughNrf2/HO-1 and TGF-β1/Smads signaling pathways in spontaneous hypertension rats. Int Immunopharmacol 2019; 74:105712. [DOI: 10.1016/j.intimp.2019.105712] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 05/26/2019] [Accepted: 06/18/2019] [Indexed: 01/13/2023]
|