51
|
Abstract
Cardiac lymphangiogenesis plays an important physiological role in the regulation of interstitial fluid homeostasis, inflammatory, and immune responses. Impaired or excessive cardiac lymphatic remodeling and insufficient lymph drainage have been implicated in several cardiovascular diseases including atherosclerosis and myocardial infarction (MI). Although the molecular mechanisms underlying the regulation of functional lymphatics are not fully understood, the interplay between lymphangiogenesis and immune regulation has recently been explored in relation to the initiation and development of these diseases. In this field, experimental therapeutic strategies targeting lymphangiogenesis have shown promise by reducing myocardial inflammation, edema and fibrosis, and improving cardiac function. On the other hand, however, whether lymphangiogenesis is beneficial or detrimental to cardiac transplant survival remains controversial. In the light of recent evidence, cardiac lymphangiogenesis, a thriving and challenging field has been summarized and discussed, which may improve our knowledge in the pathogenesis of cardiovascular diseases and transplant biology.
Collapse
Affiliation(s)
- Rui-Cheng Ji
- Faculty of Welfare and Health Science, Oita University, Oita, 870-1192, Japan.
| |
Collapse
|
52
|
Takeuchi-Igarashi H, Tachibana T, Murakashi E, Kubota S, Numabe Y. Effect of cellular communication network factor 2/connective tissue growth factor on tube formation by endothelial cells derived from human periodontal ligaments. Arch Oral Biol 2021; 132:105279. [PMID: 34628139 DOI: 10.1016/j.archoralbio.2021.105279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To clarify the role of cellular communication network factor 2/connective tissue growth factor (CCN2/CTGF) in periodontal tissue regeneration by investigating, the proliferative and tubulogenic responses of human endothelial cells obtained from the periodontal ligament to CCN2/CTGF. DESIGN Endothelial cells were seeded on agar gel medium with or without 50 ng/mL recombinant CCN2/CTGF (rCCN2/CTGF) and cultured for 6 h. Cells were morphologically and phenotypically analyzed by immunofluorescent microscopy. A colorimetric assay was used to evaluate cell proliferation, and transmission electron microscopy (TEM) was used for ultrastructural analysis. RESULTS The proliferation of endothelial cells was best promoted by rCCN2/CTGF at 50 ng/mL. In the control group, tube formation was not observed within 6 h. In contrast, endothelial cells seeded on the agar with 50 ng/mL rCCN2/CTGF clearly showed proliferation with network formation. Under a two-dimensional culture condition, a dense network of endothelial cells was not constructed on the plastic bottom. However, drastic morphological change was observed in the endothelial cells on the agar containing rCCN2/CTGF. The endothelial cells in the dense network were interconnected with each other and showed a tube-like structure. Tight junctions or adherens junctions were observed between the adjoining endothelial cells in the dense network. CONCLUSIONS CCN2/CTGF was found to promote the proliferation and tubulogenesis of endothelial cells from the periodontal ligament. These results suggest that CCN2/CTGF may contribute to the regeneration of damaged periodontal tissue by activating the remaining endothelial cells.
Collapse
Affiliation(s)
- Hiroko Takeuchi-Igarashi
- Department of Periodontology, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan; Core Research Facilities for Basic Science, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Toshiaki Tachibana
- Core Research Facilities for Basic Science, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Etsuko Murakashi
- Department of Periodontology, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan.
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan.
| | - Yukihiro Numabe
- Department of Periodontology, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan.
| |
Collapse
|
53
|
Zhang X, Qu H, Yang T, Kong X, Zhou H. Regulation and functions of NLRP3 inflammasome in cardiac fibrosis: Current knowledge and clinical significance. Biomed Pharmacother 2021; 143:112219. [PMID: 34560540 DOI: 10.1016/j.biopha.2021.112219] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiac fibrosis can lead to heart failure, arrhythmia, and sudden cardiac death, representing one of the leading causes of death due to cardiovascular diseases. Cardiac fibrosis involves several multifactorial processes that cannot be effectively controlled by the available therapies. Therefore, current research has focused on the development of novel drugs that can be used to prevent cardiac fibrosis. Recent studies on the functions of inflammasome have provided an in-depth understanding of the regulatory functions of inflammasome in cardiac fibrosis. This review summarizes the latest research on the functions of the NLRP3 inflammasome in various cardiovascular diseases. The latest findings indicate that the NLRP3 inflammasome mediates several inflammatory responses and is associated with pyroptosis, mitochondrial regulation, and myofibroblast differentiation in cardiac fibrosis. These novel findings provide insight into the vital role of the NLRP3 inflammasome in the pathogenesis of cardiac fibrosis, which can be used to identify new targets for its prevention and treatment.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine,Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiyan Qu
- Department of Cardiovascular Disease, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Yang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine,Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Cardiovascular Disease, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine,Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Cardiovascular Disease, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
54
|
Zhang S, Wang N, Ma Q, Fan F, Ma X. LncRNA TUG1 acts as a competing endogenous RNA to mediate CTGF expression by sponging miR-133b in myocardial fibrosis after myocardial infarction. Cell Biol Int 2021; 45:2534-2543. [PMID: 34553456 DOI: 10.1002/cbin.11707] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/03/2021] [Accepted: 09/04/2021] [Indexed: 12/31/2022]
Abstract
Myocardial fibrosis (MF) is one of the basic causes of many cardiovascular diseases. Noncoding RNAs (ncRNAs), including microRNA (miRNA) and long noncoding RNA (lncRNA), have been reported to play an indispensable role in MF. The current work is focused on investigating the biological role of lncRNA taurine upregulation gene 1 (TUG1) in activating cardiac myofibroblasts as well as the underlying mechanism. The outcome revealed that after myocardial infarction TUG1 expression increased and miR-133b expression decreased in the rat model of MF. The expression level of TUG1 increased following AngII treatment in cardiac myofibroblast. TUG1 knockdown inhibited the Ang-II induced cardiac myofibroblast activation and TUG1 overexpression increased proliferation and collagen generation of cardiac myofibroblasts. Bioinformatic prediction programs predicted that TUG1 had MRE directly combined with miR-133b seed sequence, luciferase activity, and RIP experiments indicated that TUG1, acted as a sponger and interacted with miR-133b in cardiac myofibroblasts. Furthermore, a target of miR-133b was CTGF and CTGF knockdown counteracted the promotion of MF by miR-133b knockdown. Collectively, our study suggested that TUG1 mediates CTGF expression by sponging miR-133b in the activation of cardiac myofibroblasts. The current work reveals a unique role of the TUG1/miR-133b/CTGF axis in MF, thus suggesting its immense therapeutic potential in the treatment of cardiac diseases.
Collapse
Affiliation(s)
- Songlin Zhang
- Department of Structural Heart Disease, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ningbo Wang
- Department of Structural Heart Disease, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Cardiology, Sunsimiao Hospital Beijing University of Chinese Medicine, Hancheng, China
| | - Qingyan Ma
- Department of Psychiatry, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fenling Fan
- Department of Structural Heart Disease, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiancang Ma
- Department of Psychiatry, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
55
|
Flores-Vergara R, Olmedo I, Aránguiz P, Riquelme JA, Vivar R, Pedrozo Z. Communication Between Cardiomyocytes and Fibroblasts During Cardiac Ischemia/Reperfusion and Remodeling: Roles of TGF-β, CTGF, the Renin Angiotensin Axis, and Non-coding RNA Molecules. Front Physiol 2021; 12:716721. [PMID: 34539441 PMCID: PMC8446518 DOI: 10.3389/fphys.2021.716721] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022] Open
Abstract
Communication between cells is a foundational concept for understanding the physiology and pathology of biological systems. Paracrine/autocrine signaling, direct cell-to-cell interplay, and extracellular matrix interactions are three types of cell communication that regulate responses to different stimuli. In the heart, cardiomyocytes, fibroblasts, and endothelial cells interact to form the cardiac tissue. Under pathological conditions, such as myocardial infarction, humoral factors released by these cells may induce tissue damage or protection, depending on the type and concentration of molecules secreted. Cardiac remodeling is also mediated by the factors secreted by cardiomyocytes and fibroblasts that are involved in the extensive reciprocal interactions between these cells. Identifying the molecules and cellular signal pathways implicated in these processes will be crucial for creating effective tissue-preserving treatments during or after reperfusion. Numerous therapies to protect cardiac tissue from reperfusion-induced injury have been explored, and ample pre-clinical research has attempted to identify drugs or techniques to mitigate cardiac damage. However, despite great success in animal models, it has not been possible to completely translate these cardioprotective effects to human applications. This review provides a current summary of the principal molecules, pathways, and mechanisms underlying cardiomyocyte and cardiac fibroblast crosstalk during ischemia/reperfusion injury. We also discuss pre-clinical molecules proposed as treatments for myocardial infarction and provide a clinical perspective on these potential therapeutic agents.
Collapse
Affiliation(s)
- Raúl Flores-Vergara
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
| | - Ivonne Olmedo
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Red para el Estudio de Enfermedades Cardiopulmonares de alta letalidad (REECPAL), Universidad de Chile, Santiago de Chile, Chile
| | - Pablo Aránguiz
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, Viña del Mar, Chile
| | - Jaime Andrés Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago de Chile, Chile
| | - Raúl Vivar
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
| | - Zully Pedrozo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Red para el Estudio de Enfermedades Cardiopulmonares de alta letalidad (REECPAL), Universidad de Chile, Santiago de Chile, Chile
| |
Collapse
|
56
|
Tamura T, Kodama T, Sato K, Murai K, Yoshioka T, Shigekawa M, Yamada R, Hikita H, Sakamori R, Akita H, Eguchi H, Johnson RL, Yokoi H, Mukoyama M, Tatsumi T, Takehara T. Dysregulation of PI3K and Hippo signaling pathways synergistically induces chronic pancreatitis via CTGF upregulation. J Clin Invest 2021; 131:143414. [PMID: 34032634 DOI: 10.1172/jci143414] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
The role of PI3K and Hippo signaling in chronic pancreatitis (CP) pathogenesis is unclear. Therefore, we assessed the involvement of these pathways in CP by examining the PI3K and Hippo signaling components PTEN and SAV1, respectively. We observed significant decreases in pancreatic PTEN and SAV1 levels in 2 murine CP models: repeated cerulein injection and pancreatic ductal ligation. Additionally, pancreas-specific deletion of Pten and Sav1 (DKO) induced CP in mice. Pancreatic connective tissue growth factor (CTGF) was markedly upregulated in both CP models and DKO mice, and pancreatic CCAAT/enhancer-binding protein-α (CEBPA) expression was downregulated in the CP models. Interestingly, in pancreatic acinar cells (PACs), CEBPA knockdown reduced PTEN and SAV1 and increased CTGF levels in vitro. Furthermore, CEBPA knockdown in PACs induced acinar-to-ductal metaplasia and activation of cocultured macrophages and pancreatic stellate cells. These results were mitigated by CTGF inhibition. CP in DKO mice was also ameliorated by Ctgf gene deletion, and cerulein-induced CP was alleviated by antibody-mediated CTGF neutralization. Finally, we observed significantly decreased PTEN, SAV1, and CEBPA and increased CTGF levels in human CP tissues compared with nonpancreatitis tissues. Taken together, our results indicate that dysregulation of PI3K and Hippo signaling induces CP via CTGF upregulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ryoko Yamada
- Department of Gastroenterology and Hepatology and
| | | | | | - Hirofumi Akita
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Randy L Johnson
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hideki Yokoi
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | | | | |
Collapse
|
57
|
Huang W, Qu M, Li L, Liu T, Lin M, Yu X. SiRNA in MSC-derived exosomes silences CTGF gene for locomotor recovery in spinal cord injury rats. Stem Cell Res Ther 2021; 12:334. [PMID: 34112262 PMCID: PMC8193895 DOI: 10.1186/s13287-021-02401-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND How to obtain a small interfering RNA (siRNA) vector has become a moot point in recent years. Exosomes (Exo) show advantages of long survival time in vivo, high transmission efficiency, and easy penetration across the blood-spinal cord barrier, renowned as excellent carriers of bioactive substances. METHODS We applied mesenchymal stem cell (MSC)-derived exosomes as the delivery of synthesized siRNA, which were extracted from rat bone marrow. We constructed exosomes-siRNA (Exo-siRNA) that could specifically silence CTGF gene in the injury sites by electroporation. During the administration, we injected Exo-siRNA into the tail vein of SCI rats, RESULTS: In vivo and in vitro experiments showed that Exo-siRNA not only effectively inhibited the expressions of CTGF gene, but quenched inflammation, and thwarted neuronal apoptosis and reactive astrocytes and glial scar formation. Besides, it significantly upregulated several neurotrophic factors and anti-inflammatory factors, acting as a facilitator of locomotor recovery of rats with spinal cord injury (SCI). CONCLUSIONS In conclusion, this study has combined the thoroughness of gene therapy and the excellent drug-loading characteristics of Exo for the precise treatment of SCI, which will shed new light on the drug-loading field of Exo.
Collapse
Affiliation(s)
- Wei Huang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, 116001, Liaoning Province, China
- Department of Orthopaedics, Dongguan Tungwah Hospital, No.1 Dongcheng East Road, Dongcheng District, Dongguan, 523000, Guangdong Province, China
| | - Mingjia Qu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, 116001, Liaoning Province, China
| | - Lu Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, 116001, Liaoning Province, China
| | - Tao Liu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, 116001, Liaoning Province, China
| | - Miaoman Lin
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, 116001, Liaoning Province, China
| | - Xiaobing Yu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, 116001, Liaoning Province, China.
| |
Collapse
|
58
|
Yes-Associated Protein (Yap) Is Up-Regulated in Heart Failure and Promotes Cardiac Fibroblast Proliferation. Int J Mol Sci 2021; 22:ijms22116164. [PMID: 34200497 PMCID: PMC8201133 DOI: 10.3390/ijms22116164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023] Open
Abstract
Left ventricular (LV) heart failure (HF) is a significant and increasing cause of death worldwide. HF is characterized by myocardial remodeling and excessive fibrosis. Transcriptional co-activator Yes-associated protein (Yap), the downstream effector of HIPPO signaling pathway, is an essential factor in cardiomyocyte survival; however, its status in human LV HF is not entirely elucidated. Here, we report that Yap is elevated in LV tissue of patients with HF, and is associated with down-regulation of its upstream inhibitor HIPPO component large tumor suppressor 1 (LATS1) activation as well as upregulation of the fibrosis marker connective tissue growth factor (CTGF). Applying the established profibrotic combined stress of TGFβ and hypoxia to human ventricular cardiac fibroblasts in vitro increased Yap protein levels, down-regulated LATS1 activation, increased cell proliferation and collagen I production, and decreased ribosomal protein S6 and S6 kinase phosphorylation, a hallmark of mTOR activation, without any significant effect on mTOR and raptor protein expression or phosphorylation of mTOR or 4E-binding protein 1 (4EBP1), a downstream effector of mTOR pathway. As previously reported in various cell types, TGFβ/hypoxia also enhanced cardiac fibroblast Akt and ERK1/2 phosphorylation, which was similar to our observation in LV tissues from HF patients. Further, depletion of Yap reduced TGFβ/hypoxia-induced cardiac fibroblast proliferation and Akt phosphorylation at Ser 473 and Thr308, without any significant effect on TGFβ/hypoxia-induced ERK1/2 activation or reduction in S6 and S6 kinase activities. Taken together, these data demonstrate that Yap is a mediator that promotes human cardiac fibroblast proliferation and suggest its possible contribution to remodeling of the LV, opening the door to further studies to decipher the cell-specific roles of Yap signaling in human HF.
Collapse
|
59
|
Rebolledo DL, Acuña MJ, Brandan E. Role of Matricellular CCN Proteins in Skeletal Muscle: Focus on CCN2/CTGF and Its Regulation by Vasoactive Peptides. Int J Mol Sci 2021; 22:5234. [PMID: 34063397 PMCID: PMC8156781 DOI: 10.3390/ijms22105234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 02/08/2023] Open
Abstract
The Cellular Communication Network (CCN) family of matricellular proteins comprises six proteins that share conserved structural features and play numerous biological roles. These proteins can interact with several receptors or soluble proteins, regulating cell signaling pathways in various tissues under physiological and pathological conditions. In the skeletal muscle of mammals, most of the six CCN family members are expressed during embryonic development or in adulthood. Their roles during the adult stage are related to the regulation of muscle mass and regeneration, maintaining vascularization, and the modulation of skeletal muscle fibrosis. This work reviews the CCNs proteins' role in skeletal muscle physiology and disease, focusing on skeletal muscle fibrosis and its regulation by Connective Tissue Growth factor (CCN2/CTGF). Furthermore, we review evidence on the modulation of fibrosis and CCN2/CTGF by the renin-angiotensin system and the kallikrein-kinin system of vasoactive peptides.
Collapse
Affiliation(s)
- Daniela L. Rebolledo
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
| | - María José Acuña
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O Higgins, Santiago 8370854, Chile
| | - Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Fundación Ciencia & Vida, Santiago 7810000, Chile
| |
Collapse
|
60
|
Gan QF, Choy KW, Foo CN, Leong PP, Cheong SK. Incorporating insulin growth Factor‐1 into regenerative and personalised medicine for musculoskeletal disorders: A systematic review. J Tissue Eng Regen Med 2021; 15:419-441. [DOI: 10.1002/term.3192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2025]
Affiliation(s)
- Quan Fu Gan
- Pre‐Clinical Sciences Department Faculty of Medicine and Health Sciences UTAR Sg Long Campus Selangor Malaysia
| | - Ker Woon Choy
- Department of Anatomy Faculty of Medicine Universiti Teknologi MARA Sungai Buloh Selangor Malaysia
| | - Chai Nien Foo
- Population Medicine Department Faculty of Medicine and Health Sciences UTAR Sg Long Campus Selangor Malaysia
| | - Pooi Pooi Leong
- Pre‐Clinical Sciences Department Faculty of Medicine and Health Sciences UTAR Sg Long Campus Selangor Malaysia
| | - Soon Keng Cheong
- Medicine Department Faculty of Medicine and Health Sciences UTAR Sg Long Campus Selangor Malaysia
| |
Collapse
|
61
|
Hamano M, Nomura S, Iida M, Komuro I, Yamanishi Y. Prediction of single-cell mechanisms for disease progression in hypertrophic remodelling by a trans-omics approach. Sci Rep 2021; 11:8112. [PMID: 33854108 PMCID: PMC8047020 DOI: 10.1038/s41598-021-86821-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/18/2021] [Indexed: 12/24/2022] Open
Abstract
Heart failure is a heterogeneous disease with multiple risk factors and various pathophysiological types, which makes it difficult to understand the molecular mechanisms involved. In this study, we proposed a trans-omics approach for predicting molecular pathological mechanisms of heart failure and identifying marker genes to distinguish heterogeneous phenotypes, by integrating multiple omics data including single-cell RNA-seq, ChIP-seq, and gene interactome data. We detected a significant increase in the expression level of natriuretic peptide A (Nppa), after stress loading with transverse aortic constriction (TAC), and showed that cardiomyocytes with high Nppa expression displayed specific gene expression patterns. Multiple NADH ubiquinone complex family, which are associated with the mitochondrial electron transport system, were negatively correlated with Nppa expression during the early stages of cardiac hypertrophy. Large-scale ChIP-seq data analysis showed that Nkx2-5 and Gtf2b were transcription factors characteristic of high-Nppa-expressing cardiomyocytes. Nppa expression levels may, therefore, represent a useful diagnostic marker for heart failure.
Collapse
Affiliation(s)
- Momoko Hamano
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.,Genome Science Division, Research Center for Advanced Science and Technologies, The University of Tokyo, Tokyo, 153-0041, Japan
| | - Midori Iida
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan.
| |
Collapse
|
62
|
Ren Z, Li J, Zhao S, Qiao Q, Li R. Knockdown of MCM8 functions as a strategy to inhibit the development and progression of osteosarcoma through regulating CTGF. Cell Death Dis 2021; 12:376. [PMID: 33828075 PMCID: PMC8027380 DOI: 10.1038/s41419-021-03621-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022]
Abstract
Osteosarcoma is the most common primary malignant tumor of bone derived from osteoblasts, which is a noteworthy threat to the health of children and adolescents. In this study, we found that MCM8 has significantly higher expression level in osteosarcoma tissues in comparison with normal tissues, which was also correlated with more advanced tumor grade and pathological stage. In agreement with the role of MCM proteins as indicators of cell proliferation, knockdown/overexpression of MCM8 inhibited/promoted osteosarcoma cell proliferation in vitro and tumor growth in vivo. Also, MCM8 knockdown/overexpression was also significantly associated with the promotion/inhibition of cell apoptosis and suppression/promotion of cell migration. More importantly, mechanistic study identified CTGF as a potential downstream target of MCM8, silencing of which could enhance the regulatory effects of MCM8 knockdown and alleviate the effects of MCM8 overexpression on osteosarcoma development. In summary, MCM8/CTGF axis was revealed as critical participant in the development and progression of osteosarcoma and MCM8 may be a promising therapeutic target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Zhinan Ren
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jun Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong, Hefei, 230601, China
| | - Shanwen Zhao
- Department of Foot and Ankle Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510610, China.,Orthopaedic Hospital of Guangdong Province, Guangzhou, 510630, China.,Academy of Orthopaedics, Guangdong Province, Guangzhou, 510630, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou, 510515, China
| | - Qi Qiao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Runguang Li
- Department of Foot and Ankle Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510610, China. .,Orthopaedic Hospital of Guangdong Province, Guangzhou, 510630, China. .,Academy of Orthopaedics, Guangdong Province, Guangzhou, 510630, China. .,Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou, 510515, China. .,Department of Orthopedics, Linzhi People's Hospital, Linzhi, 860000, China.
| |
Collapse
|
63
|
Vivar R, Anfossi R, Humeres C, Catalán M, Reyes C, Cárdenas S, Contreras A, Aránguiz P, González F, Diaz-Araya G. FoxO1 is required for high glucose-dependent cardiac fibroblasts into myofibroblast phenoconversion. Cell Signal 2021; 83:109978. [PMID: 33722671 DOI: 10.1016/j.cellsig.2021.109978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022]
Abstract
In the normal heart, cardiac fibroblasts (CFs) maintain extracellular matrix (ECM) homeostasis, whereas in pathological conditions, such as diabetes mellitus (DM), CFs converse into cardiac myofibroblasts (CMFs) and this CFs phenoconversion increase the synthesis and secretion of ECM proteins, promoting cardiac fibrosis and heart dysfunction. High glucose (HG) conditions increase TGF-β1 expression and FoxO1 activity, whereas FoxO1 is crucial to CFs phenoconversion induced by TGF-β1. In addition, FoxO1 increases CTGF expression, whereas CTGF plays an active role in the fibrotic process induced by hyperglycemia. However, the role of FoxO1 and CTGF in CFs phenoconversion induced by HG is not clear. In this study, we investigated the effects of FoxO1 pharmacological inhibition on CFs phenoconversion in both in vitro and ex vivo models of DM. Our results demonstrate that HG induces CFs phenoconversion and FoxO1 activation. Moreover, AS1842856, a pharmacological inhibitor of FoxO1 activity, prevents CFs phenoconversion and CTGF expression increase induced by HG, whereas these results were corroborated by FoxO1 silencing. Additionally, K252a, a pharmacological blocker of CTGF receptor, prevents HG-induced CFs phenoconversion, which was corroborated with CTGF expression knockdown. Furthermore, through CFs isolation from heart of diabetic rats, we showed that hyperglycemia induces FoxO1 activation, the increase of CTGF expression and CFs phenoconversion, whereas the FoxO1 activity inhibition reverses the effects induced by hyperglycemia on CFs. Altogether, our results demonstrate that FoxO1 and CTGF are necessary for CFs phenoconversion induced by HG and suggest that both proteins are likely to become a potential targeted drug for fibrotic response induced by hyperglycemic conditions.
Collapse
Affiliation(s)
- Raúl Vivar
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Renatto Anfossi
- Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile
| | - Claudio Humeres
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Mabel Catalán
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Christopher Reyes
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Simone Cárdenas
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Alejandra Contreras
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Pablo Aránguiz
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, 2520000 Viña del Mar, Chile
| | - Fabiola González
- Molecular and Clinical Pharmacology Program, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Guillermo Diaz-Araya
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile.; Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
64
|
Liu B, Wang B, Zhang X, Lock R, Nash T, Vunjak-Novakovic G. Cell type-specific microRNA therapies for myocardial infarction. Sci Transl Med 2021; 13:eabd0914. [PMID: 33568517 PMCID: PMC8848299 DOI: 10.1126/scitranslmed.abd0914] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
Current interventions fail to recover injured myocardium after infarction and prompt the need for development of cardioprotective strategies. Of increasing interest is the therapeutic use of microRNAs to control gene expression through specific targeting of mRNAs. In this Review, we discuss current microRNA-based therapeutic strategies, describing the outcomes and limitations of key microRNAs with a focus on target cell types and molecular pathways. Last, we offer a perspective on the outlook of microRNA therapies for myocardial infarction, highlighting the outstanding challenges and emerging strategies.
Collapse
Affiliation(s)
- Bohao Liu
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Bryan Wang
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Xiaokan Zhang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Roberta Lock
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Trevor Nash
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Medicine, Columbia University, New York, NY 10032, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| |
Collapse
|
65
|
Chandra S, Ehrlich KC, Lacey M, Baribault C, Ehrlich M. Epigenetics and expression of key genes associated with cardiac fibrosis: NLRP3, MMP2, MMP9, CCN2/CTGF and AGT. Epigenomics 2021; 13:219-234. [PMID: 33538177 PMCID: PMC7907962 DOI: 10.2217/epi-2020-0446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aims: Excessive inflammatory signaling and pathological remodeling of the extracellular matrix drive cardiac fibrosis and require changes in gene expression. Materials and methods: Using bioinformatics, both tissue-specific expression profiles and epigenomic profiles of some genes critical for cardiac fibrosis were examined, namely, NLRP3, MMP2, MMP9, CCN2/CTGF, AGT (encodes angiotensin II precursors) and hsa-mir-223 (post-transcriptionally regulates NLRP3). Results: In monocytes, neutrophils, fibroblasts, venous cells, liver and brain, enhancers or super-enhancers were found that correlate with high expression of these genes. One enhancer extended into a silent gene neighbor. These enhancers harbored tissue-specific foci of DNA hypomethylation, open chromatin and transcription factor binding. Conclusions: This study identified previously undescribed enhancers containing hypomethylated transcription factor binding subregions that are predicted to regulate expression of these cardiac fibrosis-inducing genes.
Collapse
Affiliation(s)
- Sruti Chandra
- Tulane Research Innovation for Arrhythmia Discoveries, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Kenneth C Ehrlich
- Tulane Center for Biomedical Informatics & Genomics, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Michelle Lacey
- Department of Mathematics, Tulane University, New Orleans, LA, 70112, USA.,Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Carl Baribault
- Center for Research & Scientific Computing, Tulane University Information Technology, New Orleans, LA, 70112, USA
| | - Melanie Ehrlich
- Tulane Center for Biomedical Informatics & Genomics, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA.,Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA.,Hayward Genetics Center, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| |
Collapse
|
66
|
Dorn LE, Lawrence W, Petrosino JM, Xu X, Hund TJ, Whitson BA, Stratton MS, Janssen PML, Mohler PJ, Schlosser A, Sorensen GL, Accornero F. Microfibrillar-Associated Protein 4 Regulates Stress-Induced Cardiac Remodeling. Circ Res 2021; 128:723-737. [PMID: 33530700 DOI: 10.1161/circresaha.120.317146] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Lisa E Dorn
- Physiology and Cell Biology (L.E.D., W.L., J.M.P., M.S.S., P.M.L.J., P.J.M., F.A.), The Ohio State University Wexner Medical Center, Columbus
| | - William Lawrence
- Physiology and Cell Biology (L.E.D., W.L., J.M.P., M.S.S., P.M.L.J., P.J.M., F.A.), The Ohio State University Wexner Medical Center, Columbus
| | - Jennifer M Petrosino
- Physiology and Cell Biology (L.E.D., W.L., J.M.P., M.S.S., P.M.L.J., P.J.M., F.A.), The Ohio State University Wexner Medical Center, Columbus
| | - Xianyao Xu
- Biomedical Engineering, The Ohio State University, Columbus (X.X., T.J.H.)
| | - Thomas J Hund
- Biomedical Engineering, The Ohio State University, Columbus (X.X., T.J.H.)
| | - Bryan A Whitson
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia (B.A.W., P.J.M.), The Ohio State University Wexner Medical Center, Columbus.,Dorothy M. Davis Heart and Lung Research Institute and Surgery (B.A.W.), The Ohio State University Wexner Medical Center, Columbus
| | - Matthew S Stratton
- Physiology and Cell Biology (L.E.D., W.L., J.M.P., M.S.S., P.M.L.J., P.J.M., F.A.), The Ohio State University Wexner Medical Center, Columbus
| | - Paul M L Janssen
- Physiology and Cell Biology (L.E.D., W.L., J.M.P., M.S.S., P.M.L.J., P.J.M., F.A.), The Ohio State University Wexner Medical Center, Columbus
| | - Peter J Mohler
- Physiology and Cell Biology (L.E.D., W.L., J.M.P., M.S.S., P.M.L.J., P.J.M., F.A.), The Ohio State University Wexner Medical Center, Columbus.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia (B.A.W., P.J.M.), The Ohio State University Wexner Medical Center, Columbus
| | - Anders Schlosser
- Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense (A.S., G.L.S.)
| | - Grith L Sorensen
- Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense (A.S., G.L.S.)
| | - Federica Accornero
- Physiology and Cell Biology (L.E.D., W.L., J.M.P., M.S.S., P.M.L.J., P.J.M., F.A.), The Ohio State University Wexner Medical Center, Columbus
| |
Collapse
|
67
|
Abstract
The myocardium consists of different cell types, of which endothelial cells, cardiomyocytes, and fibroblasts are the most abundant. Communication between these different cell types, also called paracrine signaling, is essential for normal cardiac function, but also important in cardiac remodeling and heart failure. Systematic studies on the expression of ligands and their corresponding receptors in different cell types showed that for 60% of the expressed ligands in a particular cell, the receptor is also expressed. The fact that many ligand-receptor pairs are present in most cells, including the major cell types in the heart, indicates that autocrine signaling is a widespread phenomenon. Autocrine signaling in cardiac remodeling and heart failure is involved in all pathophysiological mechanisms generally observed: hypertrophy, fibrosis, angiogenesis, cell survival, and inflammation. Herein, we review ligand-receptor pairs present in the major cardiac cell types based on RNA-sequencing expression databases, and we review current literature on extracellular signaling proteins with an autocrine function in the heart; these include C-type natriuretic peptide, fibroblast growth factors 2, F21, and 23, macrophage migration inhibitory factor, heparin binding-epidermal growth factor, angiopoietin-like protein 2, leptin, adiponectin, follistatin-like 1, apelin, neuregulin 1, vascular endothelial growth factor, transforming growth factor β, wingless-type integration site family, member 1-induced secreted protein-1, interleukin 11, connective tissue growth factor/cellular communication network factor, and calcitonin gene‒related peptide. The large number of autocrine signaling factors that have been studied in the literature supports the concept that autocrine signaling is an essential part of myocardial biology and disease.
Collapse
Affiliation(s)
- Vincent F. M. Segers
- Laboratory of PhysiopharmacologyUniversity of AntwerpBelgium
- Department of CardiologyUniversity Hospital AntwerpEdegemBelgium
| | - Gilles W. De Keulenaer
- Laboratory of PhysiopharmacologyUniversity of AntwerpBelgium
- Department of CardiologyZNA HospitalAntwerpBelgium
| |
Collapse
|
68
|
Gan QF, Foo CN, Leong PP, Cheong SK. Incorporating regenerative medicine into rehabilitation programmes: a potential treatment for ankle sprain. INTERNATIONAL JOURNAL OF THERAPY AND REHABILITATION 2021. [DOI: 10.12968/ijtr.2019.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ankle sprain has a great effect on morbidity and complications of chronic diseases. Experts have come to a consensus where ankle sprain can be managed by rest, ice, compression and elevation, non-steroidal anti-inflammatory drugs, immobilisation, functional support such as the use of an ankle brace, exercise, surgery and other therapies that include physiotherapy modalities and acupuncture. However, the time required for healing is still relatively long in addition to post-operative complications. Because of the challenges and setbacks faced by interventions to manage ankle sprains and in view of the recent trend and development in the field of regenerative medicine, this article discusses future treatments focusing on a personalised and holistic approach for ankle sprain management. This narrative review provides a novel idea for incorporating regenerative medicine into conventional therapy as an intervention for ankle sprain based on theoretical concepts and available evidence on regenerative medicine involving ligament injuries.
Collapse
Affiliation(s)
- Quan Fu Gan
- Pre-clinical Department, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Chai Nien Foo
- Population Medicine Department, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Pooi Pooi Leong
- Pre-clinical Department, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Soon Keng Cheong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| |
Collapse
|
69
|
He L, Liu R, Yue H, Ren S, Zhu G, Guo Y, Qin C. Actin-granule formation is an additional step in cardiac myofibroblast differentiation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:165. [PMID: 33569467 PMCID: PMC7867932 DOI: 10.21037/atm-20-8231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Atrial fibrillation is the most common and long-lasting cardiac arrhythmia, and profoundly effects the daily lives of patients. The pathogenesis and persistence of atrial fibrillation is closely related to the cardiac fibroblast and its myofibroblast differentiation as increased collagen synthesis and migration capability. Thus better understanding of myofibroblast differentiation is essential for the prevention and treatment of atrial fibrillation. Methods Cardiac fibroblasts were isolated from neonatal rats and its actin structure was analyzed by immunofluorescence staining. Myofibroblast differentiation was induced by Angiotensin II (Ang II) and ROCK signaling related proteins were determined by western blot. Fasudil and Ricolinostat were employed to abrogate ROCK signaling and their effects on myofibroblast differentiation were assessed by IF microscopy and Celigo Image Cytometry. Results Stress actin fibers similar to actin filaments in myofibroblast differentiation are regulated by ROCK signaling, and our results also suggested Guanine nucleotide exchange factor-H1 (GEF-H1) phosphorylation could be induced by Ang II. In addition, Fasudil could down-regulate RhoA, GEF-H1, and phosphorylated GEF-H1 to inhibit ROCK signaling and further reduce Col I expression and the myofibroblast proportion. Conclusions An individual phase characterized by actin-granule formation was identified in cardiac myofibroblast differentiation. In the meanwhile, myofibroblast differentiation and its F-actin assembly could be detained in this phase by Fasudil abrogating the ROCK signaling pathway.
Collapse
Affiliation(s)
- Li He
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ruiqi Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Honghua Yue
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shuofang Ren
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Guonian Zhu
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chaoyi Qin
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
70
|
Garvin AM, Khokhar BS, Czubryt MP, Hale TM. RAS inhibition in resident fibroblast biology. Cell Signal 2020; 80:109903. [PMID: 33370581 DOI: 10.1016/j.cellsig.2020.109903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Angiotensin II (Ang II) is a primary mediator of profibrotic signaling in the heart and more specifically, the cardiac fibroblast. Ang II-mediated cardiomyocyte hypertrophy in combination with cardiac fibroblast proliferation, activation, and extracellular matrix production compromise cardiac function and increase mortality in humans. Profibrotic actions of Ang II are mediated by increasing production of fibrogenic mediators (e.g. transforming growth factor beta, scleraxis, osteopontin, and periostin), recruitment of immune cells, and via increased reactive oxygen species generation. Drugs that inhibit Ang II production or action, collectively referred to as renin angiotensin system (RAS) inhibitors, are first line therapeutics for heart failure. Moreover, transient RAS inhibition has been found to persistently alter hypertensive cardiac fibroblast responses to injury providing a useful tool to identify novel therapeutic targets. This review summarizes the profibrotic actions of Ang II and the known impact of RAS inhibition on cardiac fibroblast phenotype and cardiac remodeling.
Collapse
Affiliation(s)
- Alexandra M Garvin
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Bilal S Khokhar
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Michael P Czubryt
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA.
| |
Collapse
|
71
|
Hinger SA, Wei J, Dorn LE, Whitson BA, Janssen PML, He C, Accornero F. Remodeling of the m 6A landscape in the heart reveals few conserved post-transcriptional events underlying cardiomyocyte hypertrophy. J Mol Cell Cardiol 2020; 151:46-55. [PMID: 33188779 DOI: 10.1016/j.yjmcc.2020.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/19/2020] [Accepted: 11/06/2020] [Indexed: 11/30/2022]
Abstract
Regulation of gene expression plays a fundamental role in cardiac stress-responses. Modification of coding transcripts by adenosine methylation (m6A) has recently emerged as a critical post-transcriptional mechanism underlying heart disease. Thousands of mammalian mRNAs are known to be m6A-modified, suggesting that remodeling of the m6A landscape may play an important role in cardiac pathophysiology. Here we found an increase in m6A content in human heart failure samples. We then adopted genome-wide analysis to define all m6A-regulated sites in human failing compared to non-failing hearts and identified targeted transcripts involved in histone modification as enriched in heart failure. Further, we compared all m6A sites regulated in human hearts with the ones occurring in isolated rat hypertrophic cardiomyocytes to define cardiomyocyte-specific m6A events conserved across species. Our results identified 38 shared transcripts targeted by m6A during stress conditions, and 11 events that are unique to unstressed cardiomyocytes. Of these, further evaluation of select mRNA and protein abundances demonstrates the potential impact of m6A on post-transcriptional regulation of gene expression in the heart.
Collapse
Affiliation(s)
- Scott A Hinger
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, IL, USA
| | - Lisa E Dorn
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Bryan A Whitson
- Department of Surgery, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Paul M L Janssen
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, IL, USA
| | - Federica Accornero
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
72
|
Chen Z, Zhang N, Chu HY, Yu Y, Zhang ZK, Zhang G, Zhang BT. Connective Tissue Growth Factor: From Molecular Understandings to Drug Discovery. Front Cell Dev Biol 2020; 8:593269. [PMID: 33195264 PMCID: PMC7658337 DOI: 10.3389/fcell.2020.593269] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/09/2020] [Indexed: 01/18/2023] Open
Abstract
Connective tissue growth factor (CTGF) is a key signaling and regulatory molecule involved in different biological processes, such as cell proliferation, angiogenesis, and wound healing, as well as multiple pathologies, such as tumor development and tissue fibrosis. Although the underlying mechanisms of CTGF remain incompletely understood, a commonly accepted theory is that the interactions between different protein domains in CTGF and other various regulatory proteins and ligands contribute to its variety of functions. Here, we highlight the structure of each domain of CTGF and its biology functions in physiological conditions. We further summarized main diseases that are deeply influenced by CTGF domains and the potential targets of these diseases. Finally, we address the advantages and disadvantages of current drugs targeting CTGF and provide the perspective for the drug discovery of the next generation of CTGF inhibitors based on aptamers.
Collapse
Affiliation(s)
- Zihao Chen
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ning Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hang Yin Chu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zong-Kang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
73
|
Gilles G, McCulloch AD, Brakebusch CH, Herum KM. Maintaining resting cardiac fibroblasts in vitro by disrupting mechanotransduction. PLoS One 2020; 15:e0241390. [PMID: 33104742 PMCID: PMC7588109 DOI: 10.1371/journal.pone.0241390] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Mechanical cues activate cardiac fibroblasts and induce differentiation into myofibroblasts, which are key steps for development of cardiac fibrosis. In vitro, the high stiffness of plastic culturing conditions will also induce these changes. It is therefore challenging to study resting cardiac fibroblasts and their activation in vitro. Here we investigate the extent to which disrupting mechanotransduction by culturing cardiac fibroblasts on soft hydrogels or in the presence of biochemical inhibitors can be used to maintain resting cardiac fibroblasts in vitro. Primary cardiac fibroblasts were isolated from adult mice and cultured on plastic or soft (4.5 kPa) polyacrylamide hydrogels. Myofibroblast marker gene expression and smooth muscle α-actin (SMA) fibers were quantified by real-time PCR and immunostaining, respectively. Myofibroblast differentiation was prevented on soft hydrogels for 9 days, but had occurred after 15 days on hydrogels. Transferring myofibroblasts to soft hydrogels reduced expression of myofibroblast-associated genes, albeit SMA fibers remained present. Inhibitors of transforming growth factor β receptor I (TGFβRI) and Rho-associated protein kinase (ROCK) were effective in preventing and reversing myofibroblast gene expression. SMA fibers were also reduced by blocker treatment although cell morphology did not change. Reversed cardiac fibroblasts maintained the ability to re-differentiate after the removal of blockers, suggesting that these are functionally similar to resting cardiac fibroblasts. However, actin alpha 2 smooth muscle (Acta2), lysyl oxidase (Lox) and periostin (Postn) were no longer sensitive to substrate stiffness, suggesting that transient treatment with mechanotransduction inhibitors changes the mechanosensitivity of some fibrosis-related genes. In summary, our results bring novel insight regarding the relative importance of specific mechanical signaling pathways in regulating different myofibroblast-associated genes. Furthermore, combining blocker treatment with the use of soft hydrogels has not been tested previously and revealed that only some genes remain mechano-sensitive after phenotypic reversion. This is important information for researchers using inhibitors to maintain a "resting" cardiac fibroblast phenotype in vitro as well as for our current understanding of mechanosensitive gene regulation.
Collapse
Affiliation(s)
- George Gilles
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Cord H. Brakebusch
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Kate M. Herum
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
74
|
Aránguiz P, Romero P, Vásquez F, Flores-Vergara R, Aravena D, Sánchez G, González M, Olmedo I, Pedrozo Z. Polycystin-1 mitigates damage and regulates CTGF expression through AKT activation during cardiac ischemia/reperfusion. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165986. [PMID: 33065236 DOI: 10.1016/j.bbadis.2020.165986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/04/2020] [Accepted: 10/05/2020] [Indexed: 02/03/2023]
Abstract
During ischemia/reperfusion (I/R), cardiomyocytes activate pathways that regulate cell survival and death and release factors that modulate fibroblast-to-myofibroblast differentiation. The mechanisms underlying these effects are not fully understood. Polycystin-1 (PC1) is a mechanosensor crucial for cardiac function. This work aims to assess the role of PC1 in cardiomyocyte survival, its role in profibrotic factor expression in cardiomyocytes, and its paracrine effects on I/R-induced cardiac fibroblast function. In vivo and ex vivo I/R and simulated in vitro I/R (sI/R) were induced in wild-type and PC1-knockout (PC1 KO) mice and PC1-knockdown (siPC1) neonatal rat ventricular myocytes (NRVM), respectively. Neonatal rat cardiac fibroblasts (NRCF) were stimulated with conditioned medium (CM) derived from NRVM or siPC1-NRVM supernatant after reperfusion and fibroblast-to-myofibroblast differentiation evaluated. Infarcts were larger in PC1-KO mice subjected to in vivo and ex vivo I/R, and necrosis rates were higher in siPC1-NRVM than control after sI/R. PC1 activated the pro-survival AKT protein during sI/R and induced PC1-AKT-pathway-dependent CTGF expression. Furthermore, conditioned media from sI/R-NRVM induced PC1-dependent fibroblast-to-myofibroblast differentiation in NRCF. This novel evidence shows that PC1 mitigates cardiac damage during I/R, likely through AKT activation, and regulates CTGF expression in cardiomyocytes via AKT. Moreover, PC1-NRVM regulates fibroblast-to-myofibroblast differentiation during sI/R. PC1, therefore, may emerge as a new key regulator of I/R injury-induced cardiac remodeling.
Collapse
Affiliation(s)
- P Aránguiz
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, Viña del Mar, Chile
| | - P Romero
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile; Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago de Chile, Chile
| | - F Vásquez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile; Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago de Chile, Chile
| | - R Flores-Vergara
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile; Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago de Chile, Chile
| | - D Aravena
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile; Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago de Chile, Chile
| | - G Sánchez
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile; Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
| | - M González
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile; Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago de Chile, Chile
| | - I Olmedo
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
| | - Z Pedrozo
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile; Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago de Chile, Chile; Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.
| |
Collapse
|
75
|
Takeuchi S, Yamanouchi K, Sugihara H, Matsuwaki T, Nishihara M. Differentiation of skeletal muscle Mesenchymal progenitor cells to myofibroblasts is reversible. Anim Sci J 2020; 91:e13368. [PMID: 32285501 PMCID: PMC7216888 DOI: 10.1111/asj.13368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
Accumulation of intramuscular adipose tissue (IMAT) and development of fibrous tissues due to accumulation of collagen both affect meat quality such as tenderness, texture, and flavor. Thus, it is important for the production of high‐quality meat to regulate the amount of adipose and fibrous tissues in skeletal muscle. IMAT is comprised of adipocytes, while collagens included in fibrous tissues are mainly produced by activated fibroblasts. Both adipocytes and fibroblasts are differentiated from their common ancestors, called mesenchymal progenitor cells (MPC). We previously established rat MPC clone, 2G11 cells. As several reports implicated the plasticity of fibroblast differentiation, in the present study, using 2G11 cells, we asked whether myofibroblasts differentiated from MPC are capable of re‐gaining adipogenic potential in vitro. By treating with bFGF, their αSMA expression was reduced and adipogenic potential was restored partially. Furthermore, by lowering cell density together with bFGF treatment, 2G11 cell‐derived myofibroblasts lost αSMA expression and showed the highest adipogenic potential, and this was along with their morphological change from flattened‐ to spindle‐like shape, which is typically observed with MPC. These results indicated that MPC‐derived myofibroblasts could re‐acquire adipogenic potential, possibly mediated through returning to an undifferentiated MPC‐like state.
Collapse
Affiliation(s)
- Shiho Takeuchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hidetoshi Sugihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Matsuwaki
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masugi Nishihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
76
|
Kraus L, Ma L, Yang Y, Nguyen F, Hoy RC, Okuno T, Khan M, Mohsin S. Cortical Bone Derived Stem Cells Modulate Cardiac Fibroblast Response via miR-18a in the Heart After Injury. Front Cell Dev Biol 2020; 8:494. [PMID: 32656212 PMCID: PMC7324629 DOI: 10.3389/fcell.2020.00494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/25/2020] [Indexed: 12/29/2022] Open
Abstract
The adult heart following injury such as a myocardial infarction forms a fibrotic scar associated with transformation of resident cardiac fibroblasts into myofibroblast, accelerating cardiac remodeling and dysfunction. Cell therapies provide a novel direction for the enhancement of cardiac structure and function but remain poorly described in terms of the effect on resident cardiac fibroblasts. We have shown cortical bone derived stem cells (CBSCs) exhibit an ability to repair the heart after myocardial injury together with reduced scar formation. Nevertheless, whether CBSCs possess ability to modulate resident fibroblast response after myocardial injury remains untested.
Collapse
Affiliation(s)
- Lindsay Kraus
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Lena Ma
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yijun Yang
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Faustina Nguyen
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Robert C Hoy
- Center for Metabolic Disease, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Tomoko Okuno
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Mohsin Khan
- Center for Metabolic Disease, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Sadia Mohsin
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
77
|
Fu X, Liu Q, Li C, Li Y, Wang L. Cardiac Fibrosis and Cardiac Fibroblast Lineage-Tracing: Recent Advances. Front Physiol 2020; 11:416. [PMID: 32435205 PMCID: PMC7218116 DOI: 10.3389/fphys.2020.00416] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/06/2020] [Indexed: 01/18/2023] Open
Abstract
Cardiac fibrosis is a common pathological change associated with cardiac injuries and diseases. Even though the accumulation of collagens and other extracellular matrix (ECM) proteins may have some protective effects in certain situations, prolonged fibrosis usually negatively affects cardiac function and often leads to deleterious consequences. While the development of cardiac fibrosis involves several cell types, the major source of ECM proteins is cardiac fibroblast. The high plasticity of cardiac fibroblasts enables them to quickly change their behaviors in response to injury and transition between several differentiation states. However, the study of cardiac fibroblasts in vivo was very difficult due to the lack of specific research tools. The development of cardiac fibroblast lineage-tracing mouse lines has greatly promoted cardiac fibrosis research. In this article, we review the recent cardiac fibroblast lineage-tracing studies exploring the origin of cardiac fibroblasts and their complicated roles in cardiac fibrosis, and briefly discuss the translational potential of basic cardiac fibroblast researches.
Collapse
Affiliation(s)
- Xing Fu
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Qianglin Liu
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Chaoyang Li
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Yuxia Li
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Leshan Wang
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| |
Collapse
|
78
|
CCN-Based Therapeutic Peptides Modify Pancreatic Ductal Adenocarcinoma Microenvironment and Decrease Tumor Growth in Combination with Chemotherapy. Cells 2020; 9:cells9040952. [PMID: 32294968 PMCID: PMC7226963 DOI: 10.3390/cells9040952] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/23/2022] Open
Abstract
The prominent desmoplastic stroma of pancreatic ductal adenocarcinoma (PDAC) is a determinant factor in tumor progression and a major barrier to the access of chemotherapy. The PDAC microenvironment therefore appears to be a promising therapeutic target. CCN2/CTGF is a profibrotic matricellular protein, highly present in the PDAC microenvironment and associated with disease progression. Here we have investigated the therapeutic value of the CCN2-targeting BLR100 and BLR200, two modified synthetic peptides derived from active regions of CCN3, an endogenous inhibitor of CCN2. In a murine orthotopic PDAC model, the two peptides, administered as monotherapy at low doses (approximating physiological levels of CCN3), had tumor inhibitory activity that increased with the dose. The peptides affected the tumor microenvironment, inhibiting fibrosis and vessel formation and reducing necrosis. Both peptides were active in preventing ascites formation. An increased activity was obtained in combination regimens, administering BLR100 or BLR200 with the chemotherapeutic drug gemcitabine. Pharmacokinetic analysis indicated that the improved activity of the combination was not mainly determined by the substantial increase in gemcitabine delivery to tumors, suggesting other effects on the tumor microenvironment. The beneficial remodeling of the tumor stroma supports the potential value of these CCN3-derived peptides for targeting pathways regulated by CCN2 in PDAC.
Collapse
|
79
|
Gaignebet L, Kańduła MM, Lehmann D, Knosalla C, Kreil DP, Kararigas G. Sex-Specific Human Cardiomyocyte Gene Regulation in Left Ventricular Pressure Overload. Mayo Clin Proc 2020; 95:688-697. [PMID: 31954524 DOI: 10.1016/j.mayocp.2019.11.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To assess gene expression in cardiomyocytes isolated from patients with aortic stenosis, hypothesizing that maladaptive remodeling and inflammation-related genes are higher in male vs female patients. PATIENTS AND METHODS In this study, 34 patients with aortic stenosis undergoing aortic valve replacement from March 20, 2016, through May 24, 2017, at the German Heart Centre in Berlin, Germany, were included. Isolated cardiomyocytes from interventricular septum samples were used for gene expression analysis. Clinical and echocardiographic data were collected preoperatively. RESULTS Age, body mass index, systolic and diastolic blood pressure, comorbidities, and medication were similar between the 17 male and 17 female patients. The mean ± SD left ventricular end-diastolic diameter (52±9 vs 45±4 mm; P=.007) and posterior wall thickness (14.2±2.5 vs 12.1±1.6 mm; P=.03) were higher in male vs female patients, while ejection fraction was lower in male patients (49%±14% vs 59%±5%; P=.01). Focusing on structural genes involved in the development of cardiac hypertrophy and remodeling, we found that most were expressed higher in male vs female patients. Our modeling analysis revealed that 2 inflammation-related genes, CCN2 and NFKB1, were negatively related to ejection fraction, with this effect being male specific (P=.03 and P=.02, respectively). CONCLUSION These findings provide novel insight into cardiomyocyte-specific molecular changes related to sex differences in pressure overload and a significant male-specific association between cardiac function and inflammation-related genes. Considering these sex differences may contribute toward a more accurate design of research and the development of more appropriate therapeutic approaches for both male and female patients.
Collapse
Affiliation(s)
- Lea Gaignebet
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | | | - Daniel Lehmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Christoph Knosalla
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany; German Heart Centre, Berlin, Germany
| | - David P Kreil
- Department of Biotechnology, BOKU University, Vienna, Austria
| | - Georgios Kararigas
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany.
| |
Collapse
|
80
|
Yamada S, Terzic A. Decoding Sex-Biased Gene Expression Patterns in Heart Disease. Mayo Clin Proc 2020; 95:636-638. [PMID: 32247335 DOI: 10.1016/j.mayocp.2020.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 11/16/2022]
Affiliation(s)
- Satsuki Yamada
- Center for Regenerative Medicine, Department of Cardiovascular Medicine, Division of Geriatric Medicine, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Andre Terzic
- Center for Regenerative Medicine, Department of Cardiovascular Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Department of Clinical Genomics, Mayo Clinic, Rochester, MN.
| |
Collapse
|
81
|
She G, Hou MC, Zhang Y, Zhang Y, Wang Y, Wang HF, Lai BC, Zhao WB, Du XJ, Deng XL. Gal-3 (Galectin-3) and K Ca3.1 Mediate Heterogeneous Cell Coupling and Myocardial Fibrogenesis Driven by βAR (β-Adrenoceptor) Activation. Hypertension 2019; 75:393-404. [PMID: 31838908 DOI: 10.1161/hypertensionaha.119.13696] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heart failure is associated with sympatho-βAR (β-adrenoceptor) activation and cardiac fibrosis. Gal-3 (galectin-3) and KCa3.1 channels that are upregulated in diverse cells of diseased heart are implicated in mediating myocardial inflammation and fibrosis. It remains unclear whether Gal-3 interacts with KCa3.1 leading to cardiac fibrosis in the setting of βAR activation. We tested the effect of KCa3.1 blocker TRAM-34 on cardiac fibrosis and inflammation in cardiac-restricted β2-TG (β2AR overexpressed transgenic) mice and determined KCa3.1 expression in β2-TG×Gal-3-/- mouse hearts. Mechanisms of KCa3.1 in mediating Gal-3 induced fibroblast activation were studied ex vivo. Expression of Gal-3 and KCa3.1 was elevated in β2-TG hearts. Gal-3 gene deletion in β2-TG mice decreased KCa3.1 expression in inflammatory cells but not in fibroblasts. Treatment of β2-TG mice with TRAM-34 for 1 or 2 months significantly ameliorated cardiac inflammation and fibrosis and reduced Gal-3 level. In cultured fibroblasts, Gal-3 upregulated KCa3.1 expression and channel currents with enhanced membrane potential and Ca2+ entry through TRPV4 (transient receptor potential V4) and TRPC6 (transient receptor potential C6) channels leading to fibroblast activation. In conclusion, βAR stimulation promotes Gal-3 production that upregulates KCa3.1 channels in noncardiomyocyte cells and activates KCa3.1 channels in fibroblasts leading to hyperpolarization of membrane potential and Ca2+ entry via TRP channels. Gal-3-KCa3.1 signaling mobilizes diverse cells facilitating regional inflammation and fibroblast activation and hence myocardial fibrosis.
Collapse
Affiliation(s)
- Gang She
- From the Department of Physiology and Pathophysiology (G.S., M.-C.H., Yu Zhang, Yi Zhang, Y.W., X.-J.D., X.-L.D.), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Meng-Chen Hou
- From the Department of Physiology and Pathophysiology (G.S., M.-C.H., Yu Zhang, Yi Zhang, Y.W., X.-J.D., X.-L.D.), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Department of Pathology, Xi'an Guangren Hospital (M.-C.H., H.-F.W.), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yu Zhang
- From the Department of Physiology and Pathophysiology (G.S., M.-C.H., Yu Zhang, Yi Zhang, Y.W., X.-J.D., X.-L.D.), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yi Zhang
- From the Department of Physiology and Pathophysiology (G.S., M.-C.H., Yu Zhang, Yi Zhang, Y.W., X.-J.D., X.-L.D.), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yan Wang
- From the Department of Physiology and Pathophysiology (G.S., M.-C.H., Yu Zhang, Yi Zhang, Y.W., X.-J.D., X.-L.D.), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Hui-Fang Wang
- Department of Pathology, Xi'an Guangren Hospital (M.-C.H., H.-F.W.), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Bao-Chang Lai
- Cardiovascular Research Centre, School of Basic Medical Sciences (B.-C.L., X.-L.D.), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Wei-Bo Zhao
- Experimental Cardiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (W.-B.Z., X.-J.D.)
| | - Xiao-Jun Du
- From the Department of Physiology and Pathophysiology (G.S., M.-C.H., Yu Zhang, Yi Zhang, Y.W., X.-J.D., X.-L.D.), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xiu-Ling Deng
- From the Department of Physiology and Pathophysiology (G.S., M.-C.H., Yu Zhang, Yi Zhang, Y.W., X.-J.D., X.-L.D.), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Cardiovascular Research Centre, School of Basic Medical Sciences (B.-C.L., X.-L.D.), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education (X.-L.D.), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Experimental Cardiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (W.-B.Z., X.-J.D.)
| |
Collapse
|
82
|
Tan CY, Wong JX, Chan PS, Tan H, Liao D, Chen W, Tan LW, Ackers-Johnson M, Wakimoto H, Seidman JG, Seidman CE, Lunde IG, Zhu F, Hu Q, Bian J, Wang JW, Foo RS, Jiang J. Yin Yang 1 Suppresses Dilated Cardiomyopathy and Cardiac Fibrosis Through Regulation of Bmp7 and Ctgf. Circ Res 2019; 125:834-846. [PMID: 31495264 DOI: 10.1161/circresaha.119.314794] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RATIONALE Pathogenic variations in the lamin gene (LMNA) cause familial dilated cardiomyopathy (DCM). LMNA insufficiency caused by LMNA pathogenic variants is believed to be the basic mechanism underpinning LMNA-related DCM. OBJECTIVE To assess whether silencing of cardiac Lmna causes DCM and investigate the role of Yin Yang 1 (Yy1) in suppressing Lmna DCM. METHODS AND RESULTS We developed a Lmna DCM mouse model induced by cardiac-specific Lmna short hairpin RNA. Silencing of cardiac Lmna induced DCM with associated cardiac fibrosis and inflammation. We demonstrated that upregulation of Yy1 suppressed Lmna DCM and cardiac fibrosis by inducing Bmp7 expression and preventing upregulation of Ctgf. Knockdown of upregulated Bmp7 attenuated the suppressive effect of Yy1 on DCM and cardiac fibrosis. However, upregulation of Bmp7 alone was not sufficient to suppress DCM and cardiac fibrosis. Importantly, upregulation of Bmp7 together with Ctgf silencing significantly suppressed DCM and cardiac fibrosis. Mechanistically, upregulation of Yy1 regulated Bmp7 and Ctgf reporter activities and modulated Bmp7 and Ctgf gene expression in cardiomyocytes. Downregulation of Ctgf inhibited TGF-β (transforming growth factor-β)/Smad signaling in DCM hearts. Regulation of both Bmp7 and Ctgf further suppressed TGFβ/Smad signaling. In addition, co-modulation of Bmp7 and Ctgf reduced CD3+ T cell numbers in DCM hearts. CONCLUSIONS Our findings demonstrate that upregulation of Yy1 or co-modulation of Bmp7 and Ctgf offer novel therapeutic strategies for the treatment of DCM caused by LMNA insufficiency.
Collapse
Affiliation(s)
- Chia Yee Tan
- From the Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (C.Y.T., J.X.W., P.S.C., H.T., D.L., W.C., J.J.).,Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (C.Y.T., J.X.W., P.S.C., H.T., D.L., W.C., M.A.-J., J.W.W., R.S.F., J.J.)
| | - Jing Xuan Wong
- From the Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (C.Y.T., J.X.W., P.S.C., H.T., D.L., W.C., J.J.).,Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (C.Y.T., J.X.W., P.S.C., H.T., D.L., W.C., M.A.-J., J.W.W., R.S.F., J.J.)
| | - Pui Shi Chan
- From the Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (C.Y.T., J.X.W., P.S.C., H.T., D.L., W.C., J.J.).,Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (C.Y.T., J.X.W., P.S.C., H.T., D.L., W.C., M.A.-J., J.W.W., R.S.F., J.J.)
| | - Hansen Tan
- From the Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (C.Y.T., J.X.W., P.S.C., H.T., D.L., W.C., J.J.).,Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (C.Y.T., J.X.W., P.S.C., H.T., D.L., W.C., M.A.-J., J.W.W., R.S.F., J.J.)
| | - Dan Liao
- From the Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (C.Y.T., J.X.W., P.S.C., H.T., D.L., W.C., J.J.).,Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (C.Y.T., J.X.W., P.S.C., H.T., D.L., W.C., M.A.-J., J.W.W., R.S.F., J.J.)
| | - Weiming Chen
- From the Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (C.Y.T., J.X.W., P.S.C., H.T., D.L., W.C., J.J.).,Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (C.Y.T., J.X.W., P.S.C., H.T., D.L., W.C., M.A.-J., J.W.W., R.S.F., J.J.)
| | - Lek Wen Tan
- Genome Institute of Singapore, A*STAR (L.W.T., M.A.-J., R.S.F.)
| | - Matthew Ackers-Johnson
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (C.Y.T., J.X.W., P.S.C., H.T., D.L., W.C., M.A.-J., J.W.W., R.S.F., J.J.).,Genome Institute of Singapore, A*STAR (L.W.T., M.A.-J., R.S.F.)
| | - Hiroko Wakimoto
- Genetics, Harvard Medical School, Boston, MA (H.W., J.G.S., C.E.S.)
| | | | | | - Ida Gjervold Lunde
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Norway (I.G.L.)
| | - Feng Zhu
- School of Computer, Jiangsu University of Science and Technology, Zhenjiang, P.R China (F.Z.)
| | - Qidong Hu
- Anatomy (Q.H.), Yong Loo Lin School of Medicine, National University of Singapore
| | - Jinsong Bian
- Pharmacology (J.B.), Yong Loo Lin School of Medicine, National University of Singapore
| | - Jiong-Wei Wang
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (C.Y.T., J.X.W., P.S.C., H.T., D.L., W.C., M.A.-J., J.W.W., R.S.F., J.J.).,Physiology (J.-W.W.), Yong Loo Lin School of Medicine, National University of Singapore.,Surgery (J.-W.W.), Yong Loo Lin School of Medicine, National University of Singapore
| | - Roger S Foo
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (C.Y.T., J.X.W., P.S.C., H.T., D.L., W.C., M.A.-J., J.W.W., R.S.F., J.J.).,Genome Institute of Singapore, A*STAR (L.W.T., M.A.-J., R.S.F.)
| | - Jianming Jiang
- From the Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (C.Y.T., J.X.W., P.S.C., H.T., D.L., W.C., J.J.).,Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, Singapore (C.Y.T., J.X.W., P.S.C., H.T., D.L., W.C., M.A.-J., J.W.W., R.S.F., J.J.)
| |
Collapse
|
83
|
Cowling RT, Kupsky D, Kahn AM, Daniels LB, Greenberg BH. Mechanisms of cardiac collagen deposition in experimental models and human disease. Transl Res 2019; 209:138-155. [PMID: 30986384 PMCID: PMC6996650 DOI: 10.1016/j.trsl.2019.03.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/19/2022]
Abstract
The inappropriate deposition of extracellular matrix within the heart (termed cardiac fibrosis) is associated with nearly all types of heart disease, including ischemic, hypertensive, diabetic, and valvular. This alteration in the composition of the myocardium can physically limit cardiomyocyte contractility and relaxation, impede electrical conductivity, and hamper regional nutrient diffusion. Fibrosis can be grossly divided into 2 types, namely reparative (where collagen deposition replaces damaged myocardium) and reactive (where typically diffuse collagen deposition occurs without myocardial damage). Despite the widespread association of fibrosis with heart disease and general understanding of its negative impact on heart physiology, it is still not clear when collagen deposition becomes pathologic and translates into disease symptoms. In this review, we have summarized the current knowledge of cardiac fibrosis in human patients and experimental animal models, discussing the mechanisms that have been deduced from the latter in relation to the former. Because assessment of the extent of fibrosis is paramount both as a research tool to further understanding and as a clinical tool to assess patients, we have also summarized the current state of noninvasive/minimally invasive detection systems for cardiac fibrosis. Albeit not exhaustive, our aim is to provide an overview of the current understanding of cardiac fibrosis, both clinically and experimentally.
Collapse
Affiliation(s)
- Randy T Cowling
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, California.
| | - Daniel Kupsky
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, California
| | - Andrew M Kahn
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, California
| | - Lori B Daniels
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, California
| | - Barry H Greenberg
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, California
| |
Collapse
|
84
|
Connective Tissue Growth Factor Is Related to All-cause Mortality in Hemodialysis Patients and Is Lowered by On-line Hemodiafiltration: Results from the Convective Transport Study. Toxins (Basel) 2019; 11:toxins11050268. [PMID: 31086050 PMCID: PMC6563290 DOI: 10.3390/toxins11050268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/26/2019] [Accepted: 05/08/2019] [Indexed: 11/17/2022] Open
Abstract
Connective tissue growth factor (CTGF) plays a key role in the pathogenesis of tissue fibrosis. The aminoterminal fragment of CTGF is a middle molecule that accumulates in chronic kidney disease. The aims of this study are to explore determinants of plasma CTGF in hemodialysis (HD) patients, investigate whether CTGF relates to all-cause mortality in HD patients, and investigate whether online-hemodiafiltration (HDF) lowers CTGF. Data from 404 patients participating in the CONvective TRAnsport STudy (CONTRAST) were analyzed. Patients were randomized to low-flux HD or HDF. Pre-dialysis CTGF was measured by sandwich ELISA at baseline, after six and 12 months. CTGF was inversely related in multivariable analysis to glomerular filtration rate (GFR) (p < 0.001) and positively to cardiovascular disease (CVD) (p = 0.006), dialysis vintage (p < 0.001), interleukin-6 (p < 0.001), beta-2-microglobulin (p = 0.045), polycystic kidney disease (p < 0.001), tubulointerstitial nephritis (p = 0.002), and renal vascular disease (p = 0.041). Patients in the highest quartile had a higher mortality risk compared to those in the lowest quartile (HR 1.7, 95% CI: 1.02-2.88, p = 0.043). HDF lowered CTGF with 4.8% between baseline and six months, whereas during HD, CTGF increased with 4.9% (p < 0.001). In conclusion, in HD patients, CTGF is related to GFR, CVD and underlying renal disease and increased the risk of all-cause mortality. HDF reduces CTGF.
Collapse
|
85
|
Brand CS, Lighthouse JK, Trembley MA. Protective transcriptional mechanisms in cardiomyocytes and cardiac fibroblasts. J Mol Cell Cardiol 2019; 132:1-12. [PMID: 31042488 DOI: 10.1016/j.yjmcc.2019.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Heart failure is the leading cause of morbidity and mortality worldwide. Several lines of evidence suggest that physical activity and exercise can pre-condition the heart to improve the response to acute cardiac injury such as myocardial infarction or ischemia/reperfusion injury, preventing the progression to heart failure. It is becoming more apparent that cardioprotection is a concerted effort between multiple cell types and converging signaling pathways. However, the molecular mechanisms of cardioprotection are not completely understood. What is clear is that the mechanisms underlying this protection involve acute activation of transcriptional activators and their corresponding gene expression programs. Here, we review the known stress-dependent transcriptional programs that are activated in cardiomyocytes and cardiac fibroblasts to preserve function in the adult heart after injury. Focus is given to prominent transcriptional pathways such as mechanical stress or reactive oxygen species (ROS)-dependent activation of myocardin-related transcription factors (MRTFs) and transforming growth factor beta (TGFβ), and gene expression that positively regulates protective PI3K/Akt signaling. Together, these pathways modulate both beneficial and pathological responses to cardiac injury in a cell-specific manner.
Collapse
Affiliation(s)
- Cameron S Brand
- Department of Pharmacology, School of Medicine, University of California - San Diego, 9500 Gilman Drive, Biomedical Sciences Building, La Jolla, CA 92093, USA.
| | - Janet K Lighthouse
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY 14624, USA.
| | - Michael A Trembley
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
86
|
Li T, Liu C, Liu L, Xia H, Xiao Y, Wang X, Wang Y. Regulatory Mechanism of MicroRNA-145 in the Pathogenesis of Acute Aortic Dissection. Yonsei Med J 2019; 60:352-359. [PMID: 30900421 PMCID: PMC6433572 DOI: 10.3349/ymj.2019.60.4.352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Previous studies have confirmed that microRNAs play important roles in the pathogenesis of acute aortic dissection (AAD). Here, we aimed to explore the role of miR-145 and its regulatory mechanism in the pathogenesis of AAD. MATERIALS AND METHODS AAD tissue samples were harvested from patients with aortic dissection and normal donors. Rat aortic vascular smooth muscle cells (VSMCs) were transfected with miR-145 mimic/inhibitor or negative control mimic/inhibitor. Gene and protein expression was measured in human aortic dissection tissue specimens and VSMCs by qRT-PCR and Western blot. Luciferase reporter assay was applied to verify whether connective tissue growth factor (CTGF) was a direct target of miR-145 in VSMCs. Methyl thiazolyl tetrazolium assay was used to detect VSMC viability. RESULTS miR-145 expression was downregulated in aortic dissection tissues and was associated with the survival of patients with AAD. Overexpression of miR-145 promoted VSMC proliferation and inhibited cell apoptosis. Moreover, CTGF, which was increased in aortic dissection tissues, was decreased by miR-145 mimic and increased by miR-145 inhibitor. Furthermore, CTGF was confirmed as a target of miR-145 and could reverse the promotion effect of miR-145 on the progression of AAD. CONCLUSION miR-145 suppressed the progression of AAD by targeting CTGF, suggesting that a miR-145/CTGF axis may provide a potential therapeutic target for AAD.
Collapse
Affiliation(s)
- Tianbo Li
- Department of Cardiovascular Surgery, the Second Affiliated Hospital (Xinqiao Hospital) of Chinese People's Liberation Army Medical University, Chongqing, China
| | - Chencheng Liu
- Department of Cardiovascular Surgery, the Second Affiliated Hospital (Xinqiao Hospital) of Chinese People's Liberation Army Medical University, Chongqing, China
| | - Lingchao Liu
- Department of Cardiovascular Surgery, the Second Affiliated Hospital (Xinqiao Hospital) of Chinese People's Liberation Army Medical University, Chongqing, China
| | - Han Xia
- Department of Cardiovascular Surgery, the Second Affiliated Hospital (Xinqiao Hospital) of Chinese People's Liberation Army Medical University, Chongqing, China
| | - Yingbin Xiao
- Department of Cardiovascular Surgery, the Second Affiliated Hospital (Xinqiao Hospital) of Chinese People's Liberation Army Medical University, Chongqing, China
| | - Xuefeng Wang
- Department of Cardiovascular Surgery, the Second Affiliated Hospital (Xinqiao Hospital) of Chinese People's Liberation Army Medical University, Chongqing, China
| | - Yong Wang
- Department of Cardiovascular Surgery, the Second Affiliated Hospital (Xinqiao Hospital) of Chinese People's Liberation Army Medical University, Chongqing, China.
| |
Collapse
|
87
|
Li AY, Wang JJ, Yang SC, Zhao YS, Li JR, Liu Y, Sun JH, An LP, Guan P, Ji ES. Protective role of Gentianella acuta on isoprenaline induced myocardial fibrosis in rats via inhibition of NF-κB pathway. Biomed Pharmacother 2018; 110:733-741. [PMID: 30554111 DOI: 10.1016/j.biopha.2018.12.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022] Open
Abstract
Gentianella acuta (Michx.) Hulten (G. acuta) has been widely used in Mongolian medicines for the treatment of cardiovascular diseases in Ewenki and Oroqen, Inner Mongolia autonomous region, China. The aim of this study was to investigate the effects and related mechanism of G. acuta on isoproterenol (ISO)-induced oxidative stress, fibrosis, and myocardial damage in rats. Male Sprague Dawley rats were randomly divided into the normal control group, ISO induced group and ISO+G. acuta treatment group. Rats were administered with ISO subcutaneously (5 mg/kg/day) for 7 days, and were orally administered simultaneously with aqueous extracts of G. acuta for 21 days. This investigation showed G. acuta treatment ameliorated cardiac structural disorder, excessive collagenous fiber accumulation and cardiac malfunction. Compared with the ISO induced model group, G. acuta treatment increased superoxide dismutase (SOD) activities and glutathione (GSH) level, prevented the rise of malondialdehyde (MDA), and decreased hydroxyproline contents in the heart tissues. Moreover, G. acuta reduced the expression of transforming growth factor β1 (TGF-β1) and connective tissue growth factor (CTGF), and inhibited the expression and activation of NF-κB-P65 in myocardial tissues. These results suggested that G. acuta protects against ISO-induced cardiac malfunction probably by preventing oxidative stress, and fibrosis, and the mechanism might be through inhibiting NF-κB pathway.
Collapse
Affiliation(s)
- Ai-Ying Li
- Hebei key laboratory of Chinese medicine research on cardio-cerebrovascular disease and Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Jing-Jing Wang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Sheng-Chang Yang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Ya-Shuo Zhao
- Scientific Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Jie-Ru Li
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Yu Liu
- Hebei key laboratory of Chinese medicine research on cardio-cerebrovascular disease and Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Jia-Huan Sun
- Hebei key laboratory of Chinese medicine research on cardio-cerebrovascular disease and Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Li-Ping An
- Hebei key laboratory of Chinese medicine research on cardio-cerebrovascular disease and Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - Peng Guan
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China
| | - En-Sheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, PR China.
| |
Collapse
|
88
|
Goldberg-Smith P. Lisa Dorn. Circ Res 2018; 123:1115-1117. [PMID: 30359186 DOI: 10.1161/circresaha.118.314188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|