51
|
Gao W, Yin Y, Wang P, Tan W, He M, Wen J. Production of fengycin from D-xylose through the expression and metabolic regulation of the Dahms pathway. Appl Microbiol Biotechnol 2022; 106:2557-2567. [PMID: 35362719 DOI: 10.1007/s00253-022-11871-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 02/14/2022] [Accepted: 03/05/2022] [Indexed: 12/01/2022]
Abstract
D-Xylose is a key component of lignocellulosic biomass and the second-most abundant carbohydrate on the planet. As one of the most powerful cyclo-lipopeptide antibiotics, fengycin displays strong wide-spectrum antifungal and antiviral, as well as potential anti-cancer activity. Pyruvate is a key metabolite linking the biosynthesis of fatty acids and amino acids, the precursors for fengycin. In this study, the genes encoding the Dahms xylose-utilization pathway were integrated into the amyE site of Bacillus subtilis 168, and based on the metabolic characteristics of the Dahms pathway, the acetate kinase (ackA) and lactate dehydrogenase (ldh) genes were knocked out. Then, the metabolic control module II was designed to convert glycolaldehyde, another intermediate of the Dahms pathway, in addition to pathways for the conversion of acetaldehyde into malic acid and oxaloacetic acid, resulting in strain BSU03. In the presence of module II, the content of acetic and lactic acid decreased significantly, and the xylose uptake efficiency increased. At the same time, the yield of fengycin increased by 87% compared to the original strain. Additionally, the underlying factors for the increase of fengycin titer were revealed through metabonomic analysis. This study therefore demonstrates that this regulation approach can not only optimize the intracellular fluxes for the Dahms pathway, but is also conducive to the synthesis of secondary metabolites similar to fengycin. KEY POINTS: • The expression and effect of the Dahms pathway on the synthesis of fengycin in Bacillus subtilis 168. • The expression of regulatory module II can promote the metabolic rate of the Dahms pathway and increase the synthesis of the fengycin.
Collapse
Affiliation(s)
- Wenting Gao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Ying Yin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Pan Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Wei Tan
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Mingliang He
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China. .,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China.
| |
Collapse
|
52
|
Biochemical and structural characterization of an aromatic ring-hydroxylating dioxygenase for terephthalic acid catabolism. Proc Natl Acad Sci U S A 2022; 119:e2121426119. [PMID: 35312352 PMCID: PMC9060491 DOI: 10.1073/pnas.2121426119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
SignificanceMore than 400 million tons of plastic waste is produced each year, the overwhelming majority of which ends up in landfills. Bioconversion strategies aimed at plastics have emerged as important components of enabling a circular economy for synthetic plastics, especially those that exhibit chemically similar linkages to those found in nature, such as polyesters. The enzyme system described in this work is essential for mineralization of the xenobiotic components of poly(ethylene terephthalate) (PET) in the biosphere. Our description of its structure and substrate preferences lays the groundwork for in vivo or ex vivo engineering of this system for PET upcycling.
Collapse
|
53
|
Soong YHV, Sobkowicz MJ, Xie D. Recent Advances in Biological Recycling of Polyethylene Terephthalate (PET) Plastic Wastes. Bioengineering (Basel) 2022; 9:98. [PMID: 35324787 PMCID: PMC8945055 DOI: 10.3390/bioengineering9030098] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022] Open
Abstract
Polyethylene terephthalate (PET) is one of the most commonly used polyester plastics worldwide but is extremely difficult to be hydrolyzed in a natural environment. PET plastic is an inexpensive, lightweight, and durable material, which can readily be molded into an assortment of products that are used in a broad range of applications. Most PET is used for single-use packaging materials, such as disposable consumer items and packaging. Although PET plastics are a valuable resource in many aspects, the proliferation of plastic products in the last several decades have resulted in a negative environmental footprint. The long-term risk of released PET waste in the environment poses a serious threat to ecosystems, food safety, and even human health in modern society. Recycling is one of the most important actions currently available to reduce these impacts. Current clean-up strategies have attempted to alleviate the adverse impacts of PET pollution but are unable to compete with the increasing quantities of PET waste exposed to the environment. In this review paper, current PET recycling methods to improve life cycle and waste management are discussed, which can be further implemented to reduce plastics pollution and its impacts on health and environment. Compared with conventional mechanical and chemical recycling processes, the biotechnological recycling of PET involves enzymatic degradation of the waste PET and the followed bioconversion of degraded PET monomers into value-added chemicals. This approach creates a circular PET economy by recycling waste PET or upcycling it into more valuable products with minimal environmental footprint.
Collapse
Affiliation(s)
- Ya-Hue Valerie Soong
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Margaret J. Sobkowicz
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| |
Collapse
|
54
|
Jayakody LN, Chinmoy B, Turner TL. Trends in valorization of highly-toxic lignocellulosic biomass derived-compounds via engineered microbes. BIORESOURCE TECHNOLOGY 2022; 346:126614. [PMID: 34954359 DOI: 10.1016/j.biortech.2021.126614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 05/26/2023]
Abstract
Lignocellulosic biomass-derived fuels, chemicals, and materials are promising sustainable solutions to replace the current petroleum-based production. The direct microbial conversion of thermos-chemically pretreated lignocellulosic biomass is hampered by the presence of highly toxic chemical compounds. Also, thermo-catalytic upgrading of lignocellulosic biomass generates wastewater that contains heterogeneous toxic chemicals, a mixture of unutilized carbon. Metabolic engineering efforts have primarily focused on the conversion of carbohydrates in lignocellulose biomass; substantial opportunities exist to harness value from toxic lignocellulose-derived toxic compounds. This article presents the comprehensive metabolic routes and tolerance mechanisms to develop robust synthetic microbial cell factories to valorize the highly toxic compounds to advanced-platform chemicals. The obtained platform chemicals can be used to manufacture high-value biopolymers and biomaterials via a hybrid biochemical approach for replacing petroleum-based incumbents. The proposed strategy enables a sustainable bio-based materials economy by microbial biofunneling of lignocellulosic biomass-derived toxic molecules, an untapped biogenic carbon.
Collapse
Affiliation(s)
- Lahiru N Jayakody
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA; Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL, USA.
| | - Baroi Chinmoy
- Illinois Sustainable Technology Center, University of Illinois Urbana Champaign, IL, USA
| | - Timothy L Turner
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
55
|
Affiliation(s)
- Dhananjay Dileep
- Chemical and Biological Engineering, Sweeney Hall, Iowa State University 618 Bissell Road Ames 50011 Iowa USA
| | - Michael Forrester
- Chemical and Biological Engineering, Sweeney Hall, Iowa State University 618 Bissell Road Ames 50011 Iowa USA
| | - Eric Cochran
- Chemical and Biological Engineering, Sweeney Hall, Iowa State University 618 Bissell Road Ames 50011 Iowa USA
| |
Collapse
|
56
|
Qi X, Yan W, Cao Z, Ding M, Yuan Y. Current Advances in the Biodegradation and Bioconversion of Polyethylene Terephthalate. Microorganisms 2021; 10:39. [PMID: 35056486 PMCID: PMC8779501 DOI: 10.3390/microorganisms10010039] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 01/04/2023] Open
Abstract
Polyethylene terephthalate (PET) is a widely used plastic that is polymerized by terephthalic acid (TPA) and ethylene glycol (EG). In recent years, PET biodegradation and bioconversion have become important in solving environmental plastic pollution. More and more PET hydrolases have been discovered and modified, which mainly act on and degrade the ester bond of PET. The monomers, TPA and EG, can be further utilized by microorganisms, entering the tricarboxylic acid cycle (TCA cycle) or being converted into high value chemicals, and finally realizing the biodegradation and bioconversion of PET. Based on synthetic biology and metabolic engineering strategies, this review summarizes the current advances in the modified PET hydrolases, engineered microbial chassis in degrading PET, bioconversion pathways of PET monomers, and artificial microbial consortia in PET biodegradation and bioconversion. Artificial microbial consortium provides novel ideas for the biodegradation and bioconversion of PET or other complex polymers. It is helpful to realize the one-step bioconversion of PET into high value chemicals.
Collapse
Affiliation(s)
- Xinhua Qi
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (X.Q.); (W.Y.); (Z.C.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Wenlong Yan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (X.Q.); (W.Y.); (Z.C.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Zhibei Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (X.Q.); (W.Y.); (Z.C.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (X.Q.); (W.Y.); (Z.C.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (X.Q.); (W.Y.); (Z.C.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
57
|
Qi X, Ma Y, Chang H, Li B, Ding M, Yuan Y. Evaluation of PET Degradation Using Artificial Microbial Consortia. Front Microbiol 2021; 12:778828. [PMID: 35003008 PMCID: PMC8733400 DOI: 10.3389/fmicb.2021.778828] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 01/30/2023] Open
Abstract
Polyethylene terephthalate (PET) biodegradation is regarded as an environmentally friendly degradation method. In this study, an artificial microbial consortium composed of Rhodococcus jostii, Pseudomonas putida and two metabolically engineered Bacillus subtilis was constructed to degrade PET. First, a two-species microbial consortium was constructed with two engineered B. subtilis that could secrete PET hydrolase (PETase) and monohydroxyethyl terephthalate hydrolase (MHETase), respectively; it could degrade 13.6% (weight loss) of the PET film within 7 days. A three-species microbial consortium was further obtained by adding R. jostii to reduce the inhibition caused by terephthalic acid (TPA), a breakdown product of PET. The weight of PET film was reduced by 31.2% within 3 days, achieving about 17.6% improvement compared with the two-species microbial consortium. Finally, P. putida was introduced to reduce the inhibition caused by ethylene glycol (EG), another breakdown product of PET, obtaining a four-species microbial consortium. With the four-species consortium, the weight loss of PET film reached 23.2% under ambient temperature. This study constructed and evaluated the artificial microbial consortia in PET degradation, which demonstrated the great potential of artificial microbial consortia in the utilization of complex substrates, providing new insights for biodegradation of complex polymers.
Collapse
Affiliation(s)
- Xinhua Qi
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Yuan Ma
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Hanchen Chang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Bingzhi Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Mingzhu Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Yingjin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| |
Collapse
|
58
|
Tiso T, Winter B, Wei R, Hee J, de Witt J, Wierckx N, Quicker P, Bornscheuer UT, Bardow A, Nogales J, Blank LM. The metabolic potential of plastics as biotechnological carbon sources - Review and targets for the future. Metab Eng 2021; 71:77-98. [PMID: 34952231 DOI: 10.1016/j.ymben.2021.12.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022]
Abstract
The plastic crisis requires drastic measures, especially for the plastics' end-of-life. Mixed plastic fractions are currently difficult to recycle, but microbial metabolism might open new pathways. With new technologies for degradation of plastics to oligo- and monomers, these carbon sources can be used in biotechnology for the upcycling of plastic waste to valuable products, such as bioplastics and biosurfactants. We briefly summarize well-known monomer degradation pathways and computed their theoretical yields for industrially interesting products. With this information in hand, we calculated replacement scenarios of existing fossil-based synthesis routes for the same products. Thereby, we highlight fossil-based products for which plastic monomers might be attractive alternative carbon sources. Notably, not the highest yield of product on substrate of the biochemical route, but rather the (in-)efficiency of the petrochemical routes (i.e., carbon, energy use) determines the potential of biochemical plastic upcycling. Our results might serve as a guide for future metabolic engineering efforts towards a sustainable plastic economy.
Collapse
Affiliation(s)
- Till Tiso
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Benedikt Winter
- Energy & Process Systems Engineering, ETH Zurich, Zurich, Switzerland; Institute of Technical Thermodynamics, RWTH Aachen University, Germany
| | - Ren Wei
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Johann Hee
- Unit of Technology of Fuels, RWTH Aachen University, Aachen, Germany
| | - Jan de Witt
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Peter Quicker
- Unit of Technology of Fuels, RWTH Aachen University, Aachen, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - André Bardow
- Energy & Process Systems Engineering, ETH Zurich, Zurich, Switzerland; Institute of Technical Thermodynamics, RWTH Aachen University, Germany; Institute of Energy and Climate Research (IEK 10), Research Center Jülich GmbH, Germany
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Lars M Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
59
|
Narancic T, Salvador M, Hughes GM, Beagan N, Abdulmutalib U, Kenny ST, Wu H, Saccomanno M, Um J, O'Connor KE, Jiménez JI. Genome analysis of the metabolically versatile Pseudomonas umsongensis GO16: the genetic basis for PET monomer upcycling into polyhydroxyalkanoates. Microb Biotechnol 2021; 14:2463-2480. [PMID: 33404203 PMCID: PMC8601165 DOI: 10.1111/1751-7915.13712] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/26/2023] Open
Abstract
The throwaway culture related to the single-use materials such as polyethylene terephthalate (PET) has created a major environmental concern. Recycling of PET waste into biodegradable plastic polyhydroxyalkanoate (PHA) creates an opportunity to improve resource efficiency and contribute to a circular economy. We sequenced the genome of Pseudomonas umsongensis GO16 previously shown to convert PET-derived terephthalic acid (TA) into PHA and performed an in-depth genome analysis. GO16 can degrade a range of aromatic substrates in addition to TA, due to the presence of a catabolic plasmid pENK22. The genetic complement required for the degradation of TA via protocatechuate was identified and its functionality was confirmed by transferring the tph operon into Pseudomonas putida KT2440, which is unable to utilize TA naturally. We also identified the genes involved in ethylene glycol (EG) metabolism, the second PET monomer, and validated the capacity of GO16 to use EG as a sole source of carbon and energy. Moreover, GO16 possesses genes for the synthesis of both medium and short chain length PHA and we have demonstrated the capacity of the strain to convert mixed TA and EG into PHA. The metabolic versatility of GO16 highlights the potential of this organism for biotransformations using PET waste as a feedstock.
Collapse
Affiliation(s)
- Tanja Narancic
- BiOrbic – Bioeconomy Research CentreUniversity College DublinBelfieldDublin4Ireland
- UCD Earth Institute and School of Biomolecular and Biomedical ScienceUniversity College DublinBelfieldDublin4Ireland
| | - Manuel Salvador
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordGU2 7XHUK
| | - Graham M. Hughes
- UCD Earth Institute and School of Biology and Environmental ScienceUniversity College DublinBelfieldDublin4Ireland
| | - Niall Beagan
- BiOrbic – Bioeconomy Research CentreUniversity College DublinBelfieldDublin4Ireland
| | - Umar Abdulmutalib
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordGU2 7XHUK
| | - Shane T. Kenny
- Bioplastech Ltd.NovaUCD, Belfield Innovation ParkUniversity College DublinBelfieldDublin4Ireland
| | - Huihai Wu
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordGU2 7XHUK
| | - Marta Saccomanno
- BiOrbic – Bioeconomy Research CentreUniversity College DublinBelfieldDublin4Ireland
| | - Jounghyun Um
- UCD Earth Institute and School of Biomolecular and Biomedical ScienceUniversity College DublinBelfieldDublin4Ireland
| | - Kevin E. O'Connor
- BiOrbic – Bioeconomy Research CentreUniversity College DublinBelfieldDublin4Ireland
- UCD Earth Institute and School of Biomolecular and Biomedical ScienceUniversity College DublinBelfieldDublin4Ireland
| | - José I. Jiménez
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordGU2 7XHUK
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
60
|
Kim HT, Hee Ryu M, Jung YJ, Lim S, Song HM, Park J, Hwang SY, Lee H, Yeon YJ, Sung BH, Bornscheuer UT, Park SJ, Joo JC, Oh DX. Chemo-Biological Upcycling of Poly(ethylene terephthalate) to Multifunctional Coating Materials. CHEMSUSCHEM 2021; 14:4251-4259. [PMID: 34339110 PMCID: PMC8519047 DOI: 10.1002/cssc.202100909] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Indexed: 05/13/2023]
Abstract
Chemo-biological upcycling of poly(ethylene terephthalate) (PET) developed in this study includes the following key steps: chemo-enzymatic PET depolymerization, biotransformation of terephthalic acid (TPA) into catechol, and its application as a coating agent. Monomeric units were first produced through PET glycolysis into bis(2-hydroxyethyl) terephthalate (BHET), mono(2-hydroxyethyl) terephthalate (MHET), and PET oligomers, and enzymatic hydrolysis of these glycolyzed products using Bacillus subtilis esterase (Bs2Est). Bs2Est efficiently hydrolyzed glycolyzed products into TPA as a key enzyme for chemo-enzymatic depolymerization. Furthermore, catechol solution produced from TPA via a whole-cell biotransformation (Escherichia coli) could be directly used for functional coating on various substrates after simple cell removal from the culture medium without further purification and water-evaporation. This work demonstrates a proof-of-concept of a PET upcycling strategy via a combination of chemo-biological conversion of PET waste into multifunctional coating materials.
Collapse
Affiliation(s)
- Hee Taek Kim
- Department of Food Science and TechnologyChungnam National UniversityDaejeon34134 (Republic ofKorea
| | - Mi Hee Ryu
- Research Center for Bio-based ChemicalsKorea Research Institute of Chemical TechnologyDaejeon34114 & Ulsan 44429 (Republic ofKorea
| | - Ye Jean Jung
- Research Center for Bio-based ChemicalsKorea Research Institute of Chemical TechnologyDaejeon34114 & Ulsan 44429 (Republic ofKorea
| | - Sooyoung Lim
- Research Center for Bio-based ChemicalsKorea Research Institute of Chemical TechnologyDaejeon34114 & Ulsan 44429 (Republic ofKorea
| | - Hye Min Song
- Department of Chemical Engineering and Materials ScienceGraduate Program in System Health Science & EngineeringEwha Womans UniversitySeoul03760 (Republic ofKorea
| | - Jeyoung Park
- Research Center for Bio-based ChemicalsKorea Research Institute of Chemical TechnologyDaejeon34114 & Ulsan 44429 (Republic ofKorea
- Advanced Materials and Chemical EngineeringUniversity of Science and Technology (UST)Daejeon34113 (Republic ofKorea
| | - Sung Yeon Hwang
- Research Center for Bio-based ChemicalsKorea Research Institute of Chemical TechnologyDaejeon34114 & Ulsan 44429 (Republic ofKorea
- Advanced Materials and Chemical EngineeringUniversity of Science and Technology (UST)Daejeon34113 (Republic ofKorea
| | - Hoe‐Suk Lee
- Department of Biochemical EngineeringGangneung-Wonju National UniversityGangneung-siGangwon-do25457 (Republic ofKorea
| | - Young Joo Yeon
- Department of Biochemical EngineeringGangneung-Wonju National UniversityGangneung-siGangwon-do25457 (Republic ofKorea
| | - Bong Hyun Sung
- Synthetic Biology and Bioengineering Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeon34141 (Republic ofKorea
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of Greifswald17487GreifswaldGermany
| | - Si Jae Park
- Department of Chemical Engineering and Materials ScienceGraduate Program in System Health Science & EngineeringEwha Womans UniversitySeoul03760 (Republic ofKorea
| | - Jeong Chan Joo
- Research Center for Bio-based ChemicalsKorea Research Institute of Chemical TechnologyDaejeon34114 & Ulsan 44429 (Republic ofKorea
- Department of BiotechnologyThe Catholic University of KoreaBucheon-siGyeonggi-do14662 (Republic ofKorea
| | - Dongyeop X. Oh
- Research Center for Bio-based ChemicalsKorea Research Institute of Chemical TechnologyDaejeon34114 & Ulsan 44429 (Republic ofKorea
- Advanced Materials and Chemical EngineeringUniversity of Science and Technology (UST)Daejeon34113 (Republic ofKorea
| |
Collapse
|
61
|
C2 feedstock-based biomanufacturing of value-added chemicals. Curr Opin Biotechnol 2021; 73:240-245. [PMID: 34536659 DOI: 10.1016/j.copbio.2021.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/23/2021] [Indexed: 11/21/2022]
Abstract
Engineering microbes to produce value-added chemicals from C6/C5 sugars sometimes requires long biosynthetic pathways, which causes carbon loss due to involving multiple metabolic branch nodes, leading to a lower product yield. Using C2 feedstocks derived from gaseous, cellulosic, and plastic wastes could establish shorter biosynthetic pathways to produce some target chemicals, for example, acetyl-CoA-derived natural products. Utilizing these waste-derived feedstocks would also contribute to reducing the carbon footprint of the chemical industry. In this review, we highlighted the promising waste-processing technologies that could provide C2 feedstocks that are compatible with microbial fermentation. We also analyzed the recent metabolic engineering works in which the microorganisms/fermentation processes were modified/optimized to utilize acetate, ethanol, or ethylene glycol more efficiently.
Collapse
|
62
|
Liu Y, Wang X, Ma L, Lü M, Zhang W, Lü C, Gao C, Xu P, Ma C. Dehydrogenation Mechanism of Three Stereoisomers of Butane-2,3-Diol in Pseudomonas putida KT2440. Front Bioeng Biotechnol 2021; 9:728767. [PMID: 34513815 PMCID: PMC8427195 DOI: 10.3389/fbioe.2021.728767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas putida KT2440 is a promising chassis of industrial biotechnology due to its metabolic versatility. Butane-2,3-diol (2,3-BDO) is a precursor of numerous value-added chemicals. It is also a microbial metabolite which widely exists in various habiting environments of P. putida KT2440. It was reported that P. putida KT2440 is able to use 2,3-BDO as a sole carbon source for growth. There are three stereoisomeric forms of 2,3-BDO: (2R,3R)-2,3-BDO, meso-2,3-BDO and (2S,3S)-2,3-BDO. However, whether P. putida KT2440 can utilize three stereoisomeric forms of 2,3-BDO has not been elucidated. Here, we revealed the genomic and enzymic basis of P. putida KT2440 for dehydrogenation of different stereoisomers of 2,3-BDO into acetoin, which will be channeled to central mechanism via acetoin dehydrogenase enzyme system. (2R,3R)-2,3-BDO dehydrogenase (PP0552) was detailedly characterized and identified to participate in (2R,3R)-2,3-BDO and meso-2,3-BDO dehydrogenation. Two quinoprotein alcohol dehydrogenases, PedE (PP2674) and PedH (PP2679), were confirmed to be responsible for (2S,3S)-2,3-BDO dehydrogenation. The function redundancy and inverse regulation of PedH and PedE by lanthanide availability provides a mechanism for the adaption of P. putida KT2440 to variable environmental conditions. Elucidation of the mechanism of 2,3-BDO catabolism in P. putida KT2440 would provide new insights for bioproduction of 2,3-BDO-derived chemicals based on this robust chassis.
Collapse
Affiliation(s)
- Yidong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiuqing Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Liting Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Min Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wen Zhang
- Center for Gene and Immunotherapy, The Second Hospital of Shandong University, Jinan, China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
63
|
Gao R, Pan H, Lian J. Recent advances in the discovery, characterization, and engineering of poly(ethylene terephthalate) (PET) hydrolases. Enzyme Microb Technol 2021; 150:109868. [PMID: 34489027 DOI: 10.1016/j.enzmictec.2021.109868] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022]
Abstract
Poly(ethylene terephthalate) (PET) is a class of polyester plastic composed of terephthalic acid (TPA) and ethylene glycol (EG). The accumulation of large amount of PET waste has resulted in severe environmental and health problems. Microbial polyester hydrolases with the ability to degrade PET provide an economy- and environment-friendly approach for the treatment of PET waste. In recent years, many PET hydrolases have been discovered and characterized from various microorganisms and engineered for better performance under practical application conditions. Here, recent progress in the discovery, characterization, and enzymatic mechanism elucidation of PET hydrolases is firstly reviewed. Then, structure-guided protein engineering of PET hydrolases with increased enzymatic activities, expanded substrate specificity, as well as improved protein stability is summarized. In addition, strategies for efficient expression of recombinant PET hydrolases, including secretory expression and cell-surface display, are briefly introduced. This review is concluded with future perspectives in biodegradation and subsequent biotransformation of PET wastes to produce value-added compounds.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haojie Pan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
64
|
Werner AZ, Clare R, Mand TD, Pardo I, Ramirez KJ, Haugen SJ, Bratti F, Dexter GN, Elmore JR, Huenemann JD, Peabody GL, Johnson CW, Rorrer NA, Salvachúa D, Guss AM, Beckham GT. Tandem chemical deconstruction and biological upcycling of poly(ethylene terephthalate) to β-ketoadipic acid by Pseudomonas putida KT2440. Metab Eng 2021; 67:250-261. [PMID: 34265401 DOI: 10.1016/j.ymben.2021.07.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 12/24/2022]
Abstract
Poly(ethylene terephthalate) (PET) is the most abundantly consumed synthetic polyester and accordingly a major source of plastic waste. The development of chemocatalytic approaches for PET depolymerization to monomers offers new options for open-loop upcycling of PET, which can leverage biological transformations to higher-value products. To that end, here we perform four sequential metabolic engineering efforts in Pseudomonas putida KT2440 to enable the conversion of PET glycolysis products via: (i) ethylene glycol utilization by constitutive expression of native genes, (ii) terephthalate (TPA) catabolism by expression of tphA2IIA3IIBIIA1II from Comamonas and tpaK from Rhodococcus jostii, (iii) bis(2-hydroxyethyl) terephthalate (BHET) hydrolysis to TPA by expression of PETase and MHETase from Ideonella sakaiensis, and (iv) BHET conversion to a performance-advantaged bioproduct, β-ketoadipic acid (βKA) by deletion of pcaIJ. Using this strain, we demonstrate production of 15.1 g/L βKA from BHET at 76% molar yield in bioreactors and conversion of catalytically depolymerized PET to βKA. Overall, this work highlights the potential of tandem catalytic deconstruction and biological conversion as a means to upcycle waste PET.
Collapse
Affiliation(s)
- Allison Z Werner
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Rita Clare
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Thomas D Mand
- BOTTLE Consortium, Golden, CO, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Isabel Pardo
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Kelsey J Ramirez
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Stefan J Haugen
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Felicia Bratti
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Gara N Dexter
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Joshua R Elmore
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jay D Huenemann
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - George L Peabody
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Christopher W Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Nicholas A Rorrer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA
| | - Adam M Guss
- BOTTLE Consortium, Golden, CO, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA; BOTTLE Consortium, Golden, CO, USA.
| |
Collapse
|
65
|
Xylose Metabolism in Bacteria—Opportunities and Challenges towards Efficient Lignocellulosic Biomass-Based Biorefineries. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a sustainable society based on circular economy, the use of waste lignocellulosic biomass (LB) as feedstock for biorefineries is a promising solution, since LB is the world’s most abundant renewable and non-edible raw material. LB is available as a by-product from agricultural and forestry processes, and its main components are cellulose, hemicellulose, and lignin. Following suitable physical, enzymatic, and chemical steps, the different fractions can be processed and/or converted to value-added products such as fuels and biochemicals used in several branches of industry through the implementation of the biorefinery concept. Upon hydrolysis, the carbohydrate-rich fraction may comprise several simple sugars (e.g., glucose, xylose, arabinose, and mannose) that can then be fed to fermentation units. Unlike pentoses, glucose and other hexoses are readily processed by microorganisms. Some wild-type and genetically modified bacteria can metabolize xylose through three different main pathways of metabolism: xylose isomerase pathway, oxidoreductase pathway, and non-phosphorylative pathway (including Weimberg and Dahms pathways). Two of the commercially interesting intermediates of these pathways are xylitol and xylonic acid, which can accumulate in the medium either through manipulation of the culture conditions or through genetic modification of the bacteria. This paper provides a state-of-the art perspective regarding the current knowledge on xylose transport and metabolism in bacteria as well as envisaged strategies to further increase xylose conversion into valuable products.
Collapse
|
66
|
Tourova TP, Sokolova DS, Nazina TN, Laptev AB. Comparative Analysis of the Taxonomic Composition of Bacterial Fouling Developing on Various Materials Exposed to Aqueous Environments. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721040159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
67
|
Towards robust Pseudomonas cell factories to harbour novel biosynthetic pathways. Essays Biochem 2021; 65:319-336. [PMID: 34223620 PMCID: PMC8314020 DOI: 10.1042/ebc20200173] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/01/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Biotechnological production in bacteria enables access to numerous valuable chemical compounds. Nowadays, advanced molecular genetic toolsets, enzyme engineering as well as the combinatorial use of biocatalysts, pathways, and circuits even bring new-to-nature compounds within reach. However, the associated substrates and biosynthetic products often cause severe chemical stress to the bacterial hosts. Species of the Pseudomonas clade thus represent especially valuable chassis as they are endowed with multiple stress response mechanisms, which allow them to cope with a variety of harmful chemicals. A built-in cell envelope stress response enables fast adaptations that sustain membrane integrity under adverse conditions. Further, effective export machineries can prevent intracellular accumulation of diverse harmful compounds. Finally, toxic chemicals such as reactive aldehydes can be eliminated by oxidation and stress-induced damage can be recovered. Exploiting and engineering these features will be essential to support an effective production of natural compounds and new chemicals. In this article, we therefore discuss major resistance strategies of Pseudomonads along with approaches pursued for their targeted exploitation and engineering in a biotechnological context. We further highlight strategies for the identification of yet unknown tolerance-associated genes and their utilisation for engineering next-generation chassis and finally discuss effective measures for pathway fine-tuning to establish stable cell factories for the effective production of natural compounds and novel biochemicals.
Collapse
|
68
|
Dissanayake L, Jayakody LN. Engineering Microbes to Bio-Upcycle Polyethylene Terephthalate. Front Bioeng Biotechnol 2021; 9:656465. [PMID: 34124018 PMCID: PMC8193722 DOI: 10.3389/fbioe.2021.656465] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/12/2021] [Indexed: 11/21/2022] Open
Abstract
Polyethylene terephthalate (PET) is globally the largest produced aromatic polyester with an annual production exceeding 50 million metric tons. PET can be mechanically and chemically recycled; however, the extra costs in chemical recycling are not justified when converting PET back to the original polymer, which leads to less than 30% of PET produced annually to be recycled. Hence, waste PET massively contributes to plastic pollution and damaging the terrestrial and aquatic ecosystems. The global energy and environmental concerns with PET highlight a clear need for technologies in PET "upcycling," the creation of higher-value products from reclaimed PET. Several microbes that degrade PET and corresponding PET hydrolase enzymes have been successfully identified. The characterization and engineering of these enzymes to selectively depolymerize PET into original monomers such as terephthalic acid and ethylene glycol have been successful. Synthetic microbiology and metabolic engineering approaches enable the development of efficient microbial cell factories to convert PET-derived monomers into value-added products. In this mini-review, we present the recent progress of engineering microbes to produce higher-value chemical building blocks from waste PET using a wholly biological and a hybrid chemocatalytic-biological strategy. We also highlight the potent metabolic pathways to bio-upcycle PET into high-value biotransformed molecules. The new synthetic microbes will help establish the circular materials economy, alleviate the adverse energy and environmental impacts of PET, and provide market incentives for PET reclamation.
Collapse
Affiliation(s)
- Lakshika Dissanayake
- School of Biological Sciences, Southern Illinois University, Carbondale, IL, United States
| | - Lahiru N. Jayakody
- School of Biological Sciences, Southern Illinois University, Carbondale, IL, United States
- Fermentation Science Institute, Southern Illinois University, Carbondale, IL, United States
| |
Collapse
|
69
|
Tiso T, Narancic T, Wei R, Pollet E, Beagan N, Schröder K, Honak A, Jiang M, Kenny ST, Wierckx N, Perrin R, Avérous L, Zimmermann W, O'Connor K, Blank LM. Towards bio-upcycling of polyethylene terephthalate. Metab Eng 2021; 66:167-178. [PMID: 33865980 DOI: 10.1016/j.ymben.2021.03.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/24/2021] [Accepted: 03/13/2021] [Indexed: 12/29/2022]
Abstract
Over 359 million tons of plastics were produced worldwide in 2018, with significant growth expected in the near future, resulting in the global challenge of end-of-life management. The recent identification of enzymes that degrade plastics previously considered non-biodegradable opens up opportunities to steer the plastic recycling industry into the realm of biotechnology. Here, the sequential conversion of post-consumer polyethylene terephthalate (PET) into two types of bioplastics is presented: a medium chain-length polyhydroxyalkanoate (PHA) and a novel bio-based poly(amide urethane) (bio-PU). PET films are hydrolyzed by a thermostable polyester hydrolase yielding highly pure terephthalate and ethylene glycol. The obtained hydrolysate is used directly as a feedstock for a terephthalate-degrading Pseudomonas umsongensis GO16, also evolved to efficiently metabolize ethylene glycol, to produce PHA. The strain is further modified to secrete hydroxyalkanoyloxy-alkanoates (HAAs), which are used as monomers for the chemo-catalytic synthesis of bio-PU. In short, a novel value-chain for PET upcycling is shown that circumvents the costly purification of PET monomers, adding technological flexibility to the global challenge of end-of-life management of plastics.
Collapse
Affiliation(s)
- Till Tiso
- iAMB - Institute of Applied Microbiology. ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Tanja Narancic
- BiOrbic - SFI Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland; School of Biomolecular and Biomedical Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ren Wei
- Department of Microbiology and Bioprocess Technology, Institute of Biochemistry, Leipzig University, Johannisallee 23, D-04103, Leipzig, Germany
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Strasbourg University, 25 rue Becquerel, F-67087, Strasbourg Cedex 2, France
| | - Niall Beagan
- BiOrbic - SFI Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Katja Schröder
- iAMB - Institute of Applied Microbiology. ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Annett Honak
- Department of Microbiology and Bioprocess Technology, Institute of Biochemistry, Leipzig University, Johannisallee 23, D-04103, Leipzig, Germany
| | - Mengying Jiang
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Strasbourg University, 25 rue Becquerel, F-67087, Strasbourg Cedex 2, France; SOPREMA, 14 rue de Saint-Nazaire, F-67025 Strasbourg Cedex, France
| | - Shane T Kenny
- Bioplastech Ltd., NovaUCD, Belfield Innovation Park, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nick Wierckx
- iAMB - Institute of Applied Microbiology. ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany; Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Rémi Perrin
- SOPREMA, 14 rue de Saint-Nazaire, F-67025 Strasbourg Cedex, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Strasbourg University, 25 rue Becquerel, F-67087, Strasbourg Cedex 2, France
| | - Wolfgang Zimmermann
- Department of Microbiology and Bioprocess Technology, Institute of Biochemistry, Leipzig University, Johannisallee 23, D-04103, Leipzig, Germany
| | - Kevin O'Connor
- BiOrbic - SFI Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland; School of Biomolecular and Biomedical Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Lars M Blank
- iAMB - Institute of Applied Microbiology. ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany.
| |
Collapse
|
70
|
Panda S, Fung VYK, Zhou JFJ, Liang H, Zhou K. Improving ethylene glycol utilization in Escherichia coli fermentation. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
71
|
Jayakody LN, Jin YS. In-depth understanding of molecular mechanisms of aldehyde toxicity to engineer robust Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2021; 105:2675-2692. [PMID: 33743026 DOI: 10.1007/s00253-021-11213-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/17/2021] [Accepted: 02/28/2021] [Indexed: 11/25/2022]
Abstract
Aldehydes are ubiquitous electrophilic compounds that ferment microorganisms including Saccharomyces cerevisiae encounter during the fermentation processes to produce food, fuels, chemicals, and pharmaceuticals. Aldehydes pose severe toxicity to the growth and metabolism of the S. cerevisiae through a variety of toxic molecular mechanisms, predominantly via damaging macromolecules and hampering the production of targeted compounds. Compounds with aldehyde functional groups are far more toxic to S. cerevisiae than all other functional classes, and toxic potency depends on physicochemical characteristics of aldehydes. The yeast synthetic biology community established a design-build-test-learn framework to develop S. cerevisiae cell factories to valorize the sustainable and renewable biomass, including the lignin-derived substrates. However, thermochemically pretreated biomass-derived substrate streams contain diverse aldehydes (e.g., glycolaldehyde and furfural), and biological conversions routes of lignocellulosic compounds consist of toxic aldehyde intermediates (e.g., formaldehyde and methylglyoxal), and some of the high-value targeted products have aldehyde functional group (e.g., vanillin and benzaldehyde). Numerous studies comprehensively characterized both single and additive effects of aldehyde toxicity via systems biology investigations, and novel molecular approaches have been discovered to overcome the aldehyde toxicity. Based on those novel approaches, researchers successfully developed synthetic yeast cell factories to convert lignocellulosic substrates to valuable products, including aldehyde compounds. In this mini-review, we highlight the salient relationship of physicochemical characteristics and molecular toxicity of aldehydes, the molecular detoxification and macromolecules protection mechanisms of aldehydes, and the advances of engineering robust S. cerevisiae against complex mixtures of aldehyde inhibitors. KEY POINTS: • We reviewed structure-activity relationships of aldehyde toxicity on S. cerevisiae. • Two-tier protection mechanisms to alleviate aldehyde toxicity are presented. • We highlighted the strategies to overcome the synergistic toxicity of aldehydes.
Collapse
Affiliation(s)
- Lahiru N Jayakody
- School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, IL, USA.
- Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL, USA.
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
72
|
Liu J, He J, Xue R, Xu B, Qian X, Xin F, Blank LM, Zhou J, Wei R, Dong W, Jiang M. Biodegradation and up-cycling of polyurethanes: Progress, challenges, and prospects. Biotechnol Adv 2021; 48:107730. [PMID: 33713745 DOI: 10.1016/j.biotechadv.2021.107730] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
Polyurethanes (PUR) are ranked globally as the 6th most abundant synthetic polymer material. Most PUR materials are specifically designed to ensure long-term durability and high resistance to environmental factors. As the demand for diverse PUR materials is increasing annually in many industrial sectors, a large amount of PUR waste is also being generated, which requires proper disposal. In contrast to other mass-produced plastics such as PE, PP, and PET, PUR is a family of synthetic polymers, which differ considerably in their physical properties due to different building blocks (for example, polyester- or polyether-polyol) used in the synthesis. Despite its xenobiotic properties, PUR has been found to be susceptible to biodegradation by different microorganisms, albeit at very low rate under environmental and laboratory conditions. Discovery and characterization of highly efficient PUR-degrading microbes and enzymes capable of disassembling PUR polymer chains into oligo- and monomeric compounds is of fundamental importance for a circular plastic economy. In this review, the main methods used for screening PUR-degrading microbes and enzymes are summarized and compared in terms of their catalytic mechanisms. Furthermore, recycling and upcycling strategies of waste PUR polymers, including microbial conversion of PUR monomers into value added products, are presented.
Collapse
Affiliation(s)
- Jiawei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jie He
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Rui Xue
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Bin Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Xiujuan Qian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Lars M Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Ren Wei
- Junior Research Group Plastic Biodegradation, Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| |
Collapse
|
73
|
Wei R, Wierckx N. Editorial: Microbial Degradation of Plastics. Front Microbiol 2021; 12:635621. [PMID: 33643269 PMCID: PMC7904672 DOI: 10.3389/fmicb.2021.635621] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/25/2021] [Indexed: 01/10/2023] Open
Affiliation(s)
- Ren Wei
- Junior Research Group Plastic Biodegradation, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
74
|
Palacios-Mateo C, van der Meer Y, Seide G. Analysis of the polyester clothing value chain to identify key intervention points for sustainability. ENVIRONMENTAL SCIENCES EUROPE 2021; 33:2. [PMID: 33432280 PMCID: PMC7787125 DOI: 10.1186/s12302-020-00447-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/08/2020] [Indexed: 05/04/2023]
Abstract
Clothing is one of the primary human needs, and the demand is met by the global production of thousands of tons of textile fibers, fabrics and garments every day. Polyester clothing manufactured from oil-based polyethylene terephthalate (PET) is the market leader. Conventional PET creates pollution along its entire value chain-during the production, use and end-of-life phases-and also contributes to the unsustainable depletion of resources. The consumption of PET garments thus compromises the quality of land, water and air, destroys ecosystems, and endangers human health. In this article, we discuss the different stages of the value chain for polyester clothing from the perspective of sustainability, describing current environmental challenges such as pollution from textile factory wastewater, and microfibers released from clothing during the laundry cycle. We also consider potential solutions such as enhanced reuse and recycling. Finally, we propose a series of recommendations that should be applied to polyester clothing at all stages along the value chain, offering the potential for meaningful and effective change to improve the environmental sustainability of polyester textiles on a global scale.
Collapse
Affiliation(s)
- Cristina Palacios-Mateo
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Yvonne van der Meer
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Gunnar Seide
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
75
|
Li J, Ye BC. Metabolic engineering of Pseudomonas putida KT2440 for high-yield production of protocatechuic acid. BIORESOURCE TECHNOLOGY 2021; 319:124239. [PMID: 33254462 DOI: 10.1016/j.biortech.2020.124239] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Protocatechuic acid (PCA) has been widely utilized in conventional pharmaceutical, cosmetic and functional food industries. Currently, chemical synthesis and solvent extraction are the main methods for commercial production, indicating several disadvantages. In this study, we developed a method for the biosynthesis of PCA in Pseudomonas putida KT2440 in high yield. First, we developed constitutive promoters with different expression intensities for fine-tuned gene expression. Second, we improved the biosynthesis of "natural" PCA in P. putida KT2440 via multilevel metabolic engineering strategies: overexpression of rate-limiting enzymes, removal of negative regulators, attenuation of pathway competition, and enhancement of precursor supply. Finally, by further bioprocess engineering efforts, the best-producing strain reached a titer of 12.5 g/L PCA from glucose at 72 h in a shake flask and 21.7 g/L in fed-batch fermentation without antibiotic pressure. This was the highest PCA titer from glucose using metabolically engineered microbial cell factories reported to date.
Collapse
Affiliation(s)
- Jin Li
- Laboratory of Biosystems and Microanalysis, Institute of Engineering Biology and Health, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, Institute of Engineering Biology and Health, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
76
|
Mohamed ET, Werner AZ, Salvachúa D, Singer CA, Szostkiewicz K, Rafael Jiménez-Díaz M, Eng T, Radi MS, Simmons BA, Mukhopadhyay A, Herrgård MJ, Singer SW, Beckham GT, Feist AM. Adaptive laboratory evolution of Pseudomonas putida KT2440 improves p-coumaric and ferulic acid catabolism and tolerance. Metab Eng Commun 2020; 11:e00143. [PMID: 32963959 PMCID: PMC7490845 DOI: 10.1016/j.mec.2020.e00143] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/05/2020] [Accepted: 08/20/2020] [Indexed: 01/27/2023] Open
Abstract
Pseudomonas putida KT2440 is a promising bacterial chassis for the conversion of lignin-derived aromatic compound mixtures to biofuels and bioproducts. Despite the inherent robustness of this strain, further improvements to aromatic catabolism and toxicity tolerance of P. putida will be required to achieve industrial relevance. Here, tolerance adaptive laboratory evolution (TALE) was employed with increasing concentrations of the hydroxycinnamic acids p-coumaric acid (pCA) and ferulic acid (FA) individually and in combination (pCA + FA). The TALE experiments led to evolved P. putida strains with increased tolerance to the targeted acids as compared to wild type. Specifically, a 37 h decrease in lag phase in 20 g/L pCA and a 2.4-fold increase in growth rate in 30 g/L FA was observed. Whole genome sequencing of intermediate and endpoint evolved P. putida populations revealed several expected and non-intuitive genetic targets underlying these aromatic catabolic and toxicity tolerance enhancements. PP_3350 and ttgB were among the most frequently mutated genes, and the beneficial contributions of these mutations were verified via gene knockouts. Deletion of PP_3350, encoding a hypothetical protein, recapitulated improved toxicity tolerance to high concentrations of pCA, but not an improved growth rate in high concentrations of FA. Deletion of ttgB, part of the TtgABC efflux pump, severely inhibited growth in pCA + FA TALE-derived strains but did not affect growth in pCA + FA in a wild type background, suggesting epistatic interactions. Genes involved in flagellar movement and transcriptional regulation were often mutated in the TALE experiments on multiple substrates, reinforcing ideas of a minimal and deregulated cell as optimal for domesticated growth. Overall, this work demonstrates increased tolerance towards and growth rate at the expense of hydroxycinnamic acids and presents new targets for improving P. putida for microbial lignin valorization.
Collapse
Affiliation(s)
- Elsayed T. Mohamed
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Allison Z. Werner
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
- Center for Bioenergy Innovation, Oak Ridge, TN, USA
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Christine A. Singer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Kiki Szostkiewicz
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Manuel Rafael Jiménez-Díaz
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Thomas Eng
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mohammad S. Radi
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Blake A. Simmons
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Markus J. Herrgård
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Steven W. Singer
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Gregg T. Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
- Center for Bioenergy Innovation, Oak Ridge, TN, USA
| | - Adam M. Feist
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Bioengineering, University of California, San Diego, CA, USA
| |
Collapse
|
77
|
Mohanan N, Montazer Z, Sharma PK, Levin DB. Microbial and Enzymatic Degradation of Synthetic Plastics. Front Microbiol 2020; 11:580709. [PMID: 33324366 PMCID: PMC7726165 DOI: 10.3389/fmicb.2020.580709] [Citation(s) in RCA: 283] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Synthetic plastics are pivotal in our current lifestyle and therefore, its accumulation is a major concern for environment and human health. Petroleum-derived (petro-)polymers such as polyethylene (PE), polyethylene terephthalate (PET), polyurethane (PU), polystyrene (PS), polypropylene (PP), and polyvinyl chloride (PVC) are extremely recalcitrant to natural biodegradation pathways. Some microorganisms with the ability to degrade petro-polymers under in vitro conditions have been isolated and characterized. In some cases, the enzymes expressed by these microbes have been cloned and sequenced. The rate of polymer biodegradation depends on several factors including chemical structures, molecular weights, and degrees of crystallinity. Polymers are large molecules having both regular crystals (crystalline region) and irregular groups (amorphous region), where the latter provides polymers with flexibility. Highly crystalline polymers like polyethylene (95%), are rigid with a low capacity to resist impacts. PET-based plastics possess a high degree of crystallinity (30-50%), which is one of the principal reasons for their low rate of microbial degradation, which is projected to take more than 50 years for complete degraded in the natural environment, and hundreds of years if discarded into the oceans, due to their lower temperature and oxygen availability. The enzymatic degradation occurs in two stages: adsorption of enzymes on the polymer surface, followed by hydro-peroxidation/hydrolysis of the bonds. The sources of plastic-degrading enzymes can be found in microorganisms from various environments as well as digestive intestine of some invertebrates. Microbial and enzymatic degradation of waste petro-plastics is a promising strategy for depolymerization of waste petro-plastics into polymer monomers for recycling, or to covert waste plastics into higher value bioproducts, such as biodegradable polymers via mineralization. The objective of this review is to outline the advances made in the microbial degradation of synthetic plastics and, overview the enzymes involved in biodegradation.
Collapse
Affiliation(s)
- Nisha Mohanan
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Zahra Montazer
- Faculty of Food Engineering, The Educational Complex of Agriculture and Animal Science, Torbat-e-jam, Iran
| | - Parveen K. Sharma
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - David B. Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
78
|
Carr CM, Clarke DJ, Dobson ADW. Microbial Polyethylene Terephthalate Hydrolases: Current and Future Perspectives. Front Microbiol 2020; 11:571265. [PMID: 33262744 PMCID: PMC7686037 DOI: 10.3389/fmicb.2020.571265] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022] Open
Abstract
Plastic has rapidly transformed our world, with many aspects of human life now relying on a variety of plastic materials. Biological plastic degradation, which employs microorganisms and their degradative enzymes, has emerged as one way to address the unforeseen consequences of the waste streams that have resulted from mass plastic production. The focus of this review is microbial hydrolase enzymes which have been found to act on polyethylene terephthalate (PET) plastic. The best characterized examples are discussed together with the use of genomic and protein engineering technologies to obtain PET hydrolase enzymes for different applications. In addition, the obstacles which are currently limiting the development of efficient PET bioprocessing are presented. By continuing to study the possible mechanisms and the structural elements of key enzymes involved in microbial PET hydrolysis, and by assessing the ability of PET hydrolase enzymes to work under practical conditions, this research will help inform large-scale waste management operations. Finally, the contribution of microbial PET hydrolases in creating a potential circular PET economy will be explored. This review combines the current knowledge on enzymatic PET processing with proposed strategies for optimization and use, to help clarify the next steps in addressing pollution by PET and other plastics.
Collapse
Affiliation(s)
- Clodagh M. Carr
- School of Microbiology, University College Cork, Cork, Ireland
| | - David J. Clarke
- School of Microbiology, University College Cork, Cork, Ireland
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- SSPC-SFI Research Centre for Pharmaceuticals, University College Cork, Cork, Ireland
| |
Collapse
|
79
|
Engineered Pseudomonas putida simultaneously catabolizes five major components of corn stover lignocellulose: Glucose, xylose, arabinose, p-coumaric acid, and acetic acid. Metab Eng 2020; 62:62-71. [DOI: 10.1016/j.ymben.2020.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/06/2020] [Accepted: 08/02/2020] [Indexed: 11/21/2022]
|
80
|
Pardo I, Jha RK, Bermel RE, Bratti F, Gaddis M, McIntyre E, Michener W, Neidle EL, Dale T, Beckham GT, Johnson CW. Gene amplification, laboratory evolution, and biosensor screening reveal MucK as a terephthalic acid transporter in Acinetobacter baylyi ADP1. Metab Eng 2020; 62:260-274. [DOI: 10.1016/j.ymben.2020.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 12/19/2022]
|
81
|
Dvořák P, Bayer EA, de Lorenzo V. Surface Display of Designer Protein Scaffolds on Genome-Reduced Strains of Pseudomonas putida. ACS Synth Biol 2020; 9:2749-2764. [PMID: 32877604 DOI: 10.1021/acssynbio.0c00276] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The bacterium Pseudomonas putida KT2440 is gaining considerable interest as a microbial platform for biotechnological valorization of polymeric organic materials, such as lignocellulosic residues or plastics. However, P. putida on its own cannot make much use of such complex substrates, mainly because it lacks an efficient extracellular depolymerizing apparatus. We seek to address this limitation by adopting a recombinant cellulosome strategy for this host. In this work, we report an essential step in this endeavor-a display of designer enzyme-anchoring protein "scaffoldins", encompassing cohesin binding domains from divergent cellulolytic bacterial species on the P. putida surface. Two P. putida chassis strains, EM42 and EM371, with streamlined genomes and differences in the composition of the outer membrane were employed in this study. Scaffoldin variants were optimally delivered to their surface with one of four tested autotransporter systems (Ag43 from Escherichia coli), and the efficient display was confirmed by extracellular attachment of chimeric β-glucosidase and fluorescent proteins. Our results not only highlight the value of cell surface engineering for presentation of recombinant proteins on the envelope of Gram-negative bacteria but also pave the way toward designer cellulosome strategies tailored for P. putida.
Collapse
Affiliation(s)
- Pavel Dvořák
- Department of Experimental Biology (Section of Microbiology), Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología CNB-CSIC, Cantoblanco, Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
82
|
Qi K, Li Z, Zhang C, Tan X, Wan C, Liu X, Wang L, Lee DJ. Biodegradation of real industrial wastewater containing ethylene glycol by using aerobic granular sludge in a continuous-flow reactor: Performance and resistance mechanism. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107711] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
83
|
Weimer A, Kohlstedt M, Volke DC, Nikel PI, Wittmann C. Industrial biotechnology of Pseudomonas putida: advances and prospects. Appl Microbiol Biotechnol 2020; 104:7745-7766. [PMID: 32789744 PMCID: PMC7447670 DOI: 10.1007/s00253-020-10811-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 08/02/2020] [Indexed: 11/17/2022]
Abstract
Pseudomonas putida is a Gram-negative, rod-shaped bacterium that can be encountered in diverse ecological habitats. This ubiquity is traced to its remarkably versatile metabolism, adapted to withstand physicochemical stress, and the capacity to thrive in harsh environments. Owing to these characteristics, there is a growing interest in this microbe for industrial use, and the corresponding research has made rapid progress in recent years. Hereby, strong drivers are the exploitation of cheap renewable feedstocks and waste streams to produce value-added chemicals and the steady progress in genetic strain engineering and systems biology understanding of this bacterium. Here, we summarize the recent advances and prospects in genetic engineering, systems and synthetic biology, and applications of P. putida as a cell factory. KEY POINTS: • Pseudomonas putida advances to a global industrial cell factory. • Novel tools enable system-wide understanding and streamlined genomic engineering. • Applications of P. putida range from bioeconomy chemicals to biosynthetic drugs.
Collapse
Affiliation(s)
- Anna Weimer
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany.
| |
Collapse
|
84
|
Köbbing S, Blank LM, Wierckx N. Characterization of Context-Dependent Effects on Synthetic Promoters. Front Bioeng Biotechnol 2020; 8:551. [PMID: 32596224 PMCID: PMC7303508 DOI: 10.3389/fbioe.2020.00551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/07/2020] [Indexed: 11/13/2022] Open
Abstract
Understanding the composability of genetic elements is central to synthetic biology. Even for seemingly well-known elements such as a sigma 70 promoter the genetic context-dependent variability of promoter activity remains poorly understood. The lack of understanding of sequence to function results in highly limited de novo design of novel genetic element combinations. To address this issue, we characterized in detail concatenated "stacked" synthetic promoters including varying spacer sequence lengths and compared the transcription strength to the output of the individual promoters. The proxy for promoter activity, the msfGFP synthesis from stacked promoters was consistently lower than expected from the sum of the activities of the single promoters. While the spacer sequence itself had no activity, it drastically affected promoter activities when placed up- or downstream of a promoter. Single promoter-spacer combinations revealed a bivalent effect on msfGFP synthesis. By systematic analysis of promoter and spacer combinations, a semi-empirical correlation was developed to determine the combined activity of stacked promoters.
Collapse
Affiliation(s)
- Sebastian Köbbing
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Nick Wierckx
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany.,Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
85
|
Ru J, Huo Y, Yang Y. Microbial Degradation and Valorization of Plastic Wastes. Front Microbiol 2020; 11:442. [PMID: 32373075 PMCID: PMC7186362 DOI: 10.3389/fmicb.2020.00442] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/02/2020] [Indexed: 12/23/2022] Open
Abstract
A growing accumulation of plastic wastes has become a severe environmental and social issue. It is urgent to develop innovative approaches for the disposal of plastic wastes. In recent years, reports on biodegradation of synthetic plastics by microorganisms or enzymes have sprung up, and these offer a possibility to develop biological treatment technology for plastic wastes. In this review, we have comprehensively summarized the microorganisms and enzymes that are able to degrade a variety of generally used synthetic plastics, such as polyethylene (PE), polystyrene (PS), polypropylene (PP), polyvinyl chloride (PVC), polyurethane (PUR), and polyethylene terephthalate (PET). In addition, we have highlighted the microbial metabolic pathways for plastic depolymerization products and the current attempts toward utilization of such products as feedstocks for microbial production of chemicals with high value. Taken together, these findings will contribute to building a conception of bio-upcycling plastic wastes by connecting the biodegradation of plastic wastes to the biosynthesis of valuable chemicals in microorganisms. Last, but not least, we have discussed the challenges toward microbial degradation and valorization of plastic wastes.
Collapse
Affiliation(s)
- Jiakang Ru
- Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yixin Huo
- Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
- Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, China
| | - Yu Yang
- Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
86
|
Schempp FM, Hofmann KE, Mi J, Kirchner F, Meffert A, Schewe H, Schrader J, Buchhaupt M. Investigation of monoterpenoid resistance mechanisms in Pseudomonas putida and their consequences for biotransformations. Appl Microbiol Biotechnol 2020; 104:5519-5533. [PMID: 32296906 PMCID: PMC7275096 DOI: 10.1007/s00253-020-10566-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/05/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022]
Abstract
Monoterpenoids are widely used in industrial applications, e.g. as active ingredients in pharmaceuticals, in flavor and fragrance compositions, and in agriculture. Severe toxic effects are known for some monoterpenoids making them challenging compounds for biotechnological production processes. Some strains of the bacterium Pseudomonas putida show an inherent extraordinarily high tolerance towards solvents including monoterpenoids. An understanding of the underlying factors can help to create suitable strains for monoterpenoids de novo production or conversion. In addition, knowledge about tolerance mechanisms could allow a deeper insight into how bacteria can oppose monoterpenoid containing drugs, like tea tree oil. Within this work, the resistance mechanisms of P. putida GS1 were investigated using selected monoterpenoid-hypertolerant mutants. Most of the mutations were found in efflux pump promoter regions or associated transcription factors. Surprisingly, while for the tested monoterpenoid alcohols, ketone, and ether high efflux pump expression increased monoterpenoid tolerance, it reduced the tolerance against geranic acid. However, an increase of geranic acid tolerance could be gained by a mutation in an efflux pump component. It was also found that increased monoterpenoid tolerance can counteract efficient biotransformation ability, indicating the need for a fine-tuned and knowledge-based tolerance improvement for production strain development.Key points• Altered monoterpenoid tolerance mainly related to altered activity of efflux pumps.• Increased tolerance to geranic acid surprisingly caused by decreased export activity. • Reduction of export activity can be beneficial for biotechnological conversions.
Collapse
Affiliation(s)
- Florence Miramella Schempp
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany.,Faculty Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Katharina Elisabeth Hofmann
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Jia Mi
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Ferdinand Kirchner
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Annika Meffert
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Hendrik Schewe
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Jens Schrader
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Markus Buchhaupt
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany.
| |
Collapse
|
87
|
Li WJ, Narancic T, Kenny ST, Niehoff PJ, O’Connor K, Blank LM, Wierckx N. Unraveling 1,4-Butanediol Metabolism in Pseudomonas putida KT2440. Front Microbiol 2020; 11:382. [PMID: 32256468 PMCID: PMC7090098 DOI: 10.3389/fmicb.2020.00382] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/20/2020] [Indexed: 12/30/2022] Open
Abstract
Plastics, in all forms, are a ubiquitous cornerstone of modern civilization. Although humanity undoubtedly benefits from the versatility and durability of plastics, they also cause a tremendous burden for the environment. Bio-upcycling is a promising approach to reduce this burden, especially for polymers that are currently not amenable to mechanical recycling. Wildtype P. putida KT2440 is able to grow on 1,4-butanediol as sole carbon source, but only very slowly. Adaptive laboratory evolution (ALE) led to the isolation of several strains with significantly enhanced growth rate and yield. Genome re-sequencing and proteomic analysis were applied to characterize the genomic and metabolic basis of efficient 1,4-butanediol metabolism. Initially, 1,4-butanediol is oxidized to 4-hydroxybutyrate, in which the highly expressed dehydrogenase enzymes encoded within the PP_2674-2680 ped gene cluster play an essential role. The resulting 4-hydroxybutyrate can be metabolized through three possible pathways: (i) oxidation to succinate, (ii) CoA activation and subsequent oxidation to succinyl-CoA, and (iii) beta oxidation to glycolyl-CoA and acetyl-CoA. The evolved strains were both mutated in a transcriptional regulator (PP_2046) of an operon encoding both beta-oxidation related genes and an alcohol dehydrogenase. When either the regulator or the alcohol dehydrogenase is deleted, no 1,4-butanediol uptake or growth could be detected. Using a reverse engineering approach, PP_2046 was replaced by a synthetic promotor (14g) to overexpress the downstream operon (PP_2047-2051), thereby enhancing growth on 1,4-butanediol. This work provides a deeper understanding of microbial 1,4-butanediol metabolism in P. putida, which is also expandable to other aliphatic alpha-omega diols. It enables the more efficient metabolism of these diols, thereby enabling biotechnological valorization of plastic monomers in a bio-upcycling approach.
Collapse
Affiliation(s)
- Wing-Jin Li
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Tanja Narancic
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- BEACON – SFI Bioeconomy Research Centre, University College Dublin, Dublin, Ireland
| | - Shane T. Kenny
- Bioplastech Ltd., NovaUCD, Belfield Innovation Park, University College Dublin, Dublin, Ireland
| | - Paul-Joachim Niehoff
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Kevin O’Connor
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- BEACON – SFI Bioeconomy Research Centre, University College Dublin, Dublin, Ireland
| | - Lars M. Blank
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Nick Wierckx
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
88
|
Jerdan R, Kuśmierska A, Petric M, Spiers AJ. Penetrating the air-liquid interface is the key to colonization and wrinkly spreader fitness. MICROBIOLOGY-SGM 2020; 165:1061-1074. [PMID: 31436522 DOI: 10.1099/mic.0.000844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In radiating populations of Pseudomonas fluorescens SBW25, adaptive wrinkly spreader (WS) mutants are able to gain access to the air-liquid (A-L) interface of static liquid microcosms and achieve a significant competitive fitness advantage over other non-biofilm-forming competitors. Aerotaxis and flagella-based swimming allows SBW25 cells to move into the high-O2 region located at the top of the liquid column and maintain their position by countering the effects of random cell diffusion, convection and disturbance (i.e. physical displacement). However, wild-type cells showed significantly lower levels of enrichment in this region compared to the archetypal WS, indicating that WS cells employ an additional mechanism to transfer to the A-L interface where displacement is no longer an issue and a biofilm can develop at the top of the liquid column. Preliminary experiments suggest that this might be achieved through the expression of an as yet unidentified surface active agent that is weakly associated with WS cells and alters liquid surface tension, as determined by quantitative tensiometry. The effect of physical displacement on the colonization of the high-O2 region and A-L interface was reduced through the addition of agar or polyethylene glycol to increase liquid viscosity, and under these conditions the competitive fitness of the WS was significantly reduced. These observations suggest that the ability to transfer to the A-L interface from the high-O2 region and remain there without further expenditure of energy (through, for example, the deployment of flagella) is a key evolutionary innovation of the WS, as it allows subsequent biofilm development and significant population increase, thereby affording these adaptive mutants a competitive fitness advantage over non-biofilm-forming competitors located within the liquid column.
Collapse
Affiliation(s)
- Robyn Jerdan
- School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK
| | - Anna Kuśmierska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland.,School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK
| | - Marija Petric
- School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK
| | - Andrew J Spiers
- School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK
| |
Collapse
|
89
|
Bator I, Wittgens A, Rosenau F, Tiso T, Blank LM. Comparison of Three Xylose Pathways in Pseudomonas putida KT2440 for the Synthesis of Valuable Products. Front Bioeng Biotechnol 2020; 7:480. [PMID: 32010683 PMCID: PMC6978631 DOI: 10.3389/fbioe.2019.00480] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/23/2019] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas putida KT2440 is a well-established chassis in industrial biotechnology. To increase the substrate spectrum, we implemented three alternative xylose utilization pathways, namely the Isomerase, Weimberg, and Dahms pathways. The synthetic operons contain genes from Escherichia coli and Pseudomonas taiwanensis. For isolating the Dahms pathway in P. putida KT2440 two genes (PP_2836 and PP_4283), encoding an endogenous enzyme of the Weimberg pathway and a regulator for glycolaldehyde degradation, were deleted. Before and after adaptive laboratory evolution, these strains were characterized in terms of growth and synthesis of mono-rhamnolipids and pyocyanin. The engineered strain using the Weimberg pathway reached the highest maximal growth rate of 0.30 h-1. After adaptive laboratory evolution the lag phase was reduced significantly. The highest titers of 720 mg L-1 mono-rhamnolipids and 30 mg L-1 pyocyanin were reached by the evolved strain using the Weimberg or an engineered strain using the Isomerase pathway, respectively. The different stoichiometries of the three xylose utilization pathways may allow engineering of tailored chassis for valuable bioproduct synthesis.
Collapse
Affiliation(s)
- Isabel Bator
- iAMB - Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Andreas Wittgens
- Institute for Pharmaceutical Biotechnology, Ulm-University, Ulm, Germany
- Ulm Center for Peptide Pharmaceuticals, Ulm, Germany
- Max-Planck-Institute for Polymer Research Mainz, Synthesis of Macromolecules, Mainz, Germany
| | - Frank Rosenau
- Institute for Pharmaceutical Biotechnology, Ulm-University, Ulm, Germany
- Ulm Center for Peptide Pharmaceuticals, Ulm, Germany
- Max-Planck-Institute for Polymer Research Mainz, Synthesis of Macromolecules, Mainz, Germany
| | - Till Tiso
- iAMB - Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Lars M. Blank
- iAMB - Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
90
|
Blank LM, Narancic T, Mampel J, Tiso T, O'Connor K. Biotechnological upcycling of plastic waste and other non-conventional feedstocks in a circular economy. Curr Opin Biotechnol 2019; 62:212-219. [PMID: 31881445 DOI: 10.1016/j.copbio.2019.11.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/01/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
Abstract
The envisaged circular economy requires absolute carbon efficiency and in the long run abstinence from fossil feedstocks, and integration of industrial production with end-of-life waste management. Non-conventional feedstocks arising from industrial production and societal consumption such as CO2 and plastic waste may soon enable manufacture of multiple products from simple bulk chemicals to pharmaceuticals using biotechnology. The change to these feedstocks could be faster than expected by many, especially if the true cost, including the carbon footprint of products, is considered. The efficiency of biotechnological processes can be improved through metabolic engineering, which can help fulfill the promises of the Paris agreement.
Collapse
Affiliation(s)
- Lars Mathias Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany.
| | - Tanja Narancic
- BEACON SFI Bioeconomy Research Centre and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jörg Mampel
- BRAIN AG, Darmstädter Str. 34-36, 64673 Zwingenberg, Germany
| | - Till Tiso
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Kevin O'Connor
- BEACON SFI Bioeconomy Research Centre and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
91
|
Peabody GL, Elmore JR, Martinez-Baird J, Guss AM. Engineered Pseudomonas putida KT2440 co-utilizes galactose and glucose. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:295. [PMID: 31890023 PMCID: PMC6927180 DOI: 10.1186/s13068-019-1627-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/04/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Efficient conversion of plant biomass to commodity chemicals is an important challenge that needs to be solved to enable a sustainable bioeconomy. Deconstruction of biomass to sugars and lignin yields a wide variety of low molecular weight carbon substrates that need to be funneled to product. Pseudomonas putida KT2440 has emerged as a potential platform for bioconversion of lignin and the other components of plant biomass. However, P. putida is unable to natively utilize several of the common sugars in hydrolysate streams, including galactose. RESULTS In this work, we integrated a De Ley-Doudoroff catabolic pathway for galactose catabolism into the chromosome of P. putida KT2440, using genes from several different organisms. We found that the galactonate catabolic pathway alone (DgoKAD) supported slow growth of P. putida on galactose. Further integration of genes to convert galactose to galactonate and to optimize the transporter expression level resulted in a growth rate of 0.371 h-1. Additionally, the best-performing strain was demonstrated to co-utilize galactose with glucose. CONCLUSIONS We have engineered P. putida to catabolize galactose, which will allow future engineered strains to convert more plant biomass carbon to products of interest. Further, by demonstrating co-utilization of glucose and galactose, continuous bioconversion processes for mixed sugar streams are now possible.
Collapse
Affiliation(s)
- George L. Peabody
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Joshua R. Elmore
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Present Address: Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354 USA
| | | | - Adam M. Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
92
|
Nogales J, Mueller J, Gudmundsson S, Canalejo FJ, Duque E, Monk J, Feist AM, Ramos JL, Niu W, Palsson BO. High-quality genome-scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities. Environ Microbiol 2019; 22:255-269. [PMID: 31657101 PMCID: PMC7078882 DOI: 10.1111/1462-2920.14843] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/27/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
Genome-scale reconstructions of metabolism are computational species-specific knowledge bases able to compute systemic metabolic properties. We present a comprehensive and validated reconstruction of the biotechnologically relevant bacterium Pseudomonas putida KT2440 that greatly expands computable predictions of its metabolic states. The reconstruction represents a significant reactome expansion over available reconstructed bacterial metabolic networks. Specifically, iJN1462 (i) incorporates several hundred additional genes and associated reactions resulting in new predictive capabilities, including new nutrients supporting growth; (ii) was validated by in vivo growth screens that included previously untested carbon (48) and nitrogen (41) sources; (iii) yielded gene essentiality predictions showing large accuracy when compared with a knock-out library and Bar-seq data; and (iv) allowed mapping of its network to 82 P. putida sequenced strains revealing functional core that reflect the large metabolic versatility of this species, including aromatic compounds derived from lignin. Thus, this study provides a thoroughly updated metabolic reconstruction and new computable phenotypes for P. putida, which can be leveraged as a first step toward understanding the pan metabolic capabilities of Pseudomonas.
Collapse
Affiliation(s)
- Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Joshua Mueller
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Francisco J Canalejo
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Estrella Duque
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Jonathan Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Juan Luis Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Wei Niu
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
93
|
Pseudomonas putida in the quest of programmable chemistry. Curr Opin Biotechnol 2019; 59:111-121. [DOI: 10.1016/j.copbio.2019.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/15/2019] [Accepted: 03/12/2019] [Indexed: 11/19/2022]
|
94
|
Abdelhamid Y, Brear P, Greenhalgh J, Chee X, Rahman T, Welch M. Evolutionary plasticity in the allosteric regulator-binding site of pyruvate kinase isoform PykA from Pseudomonas aeruginosa. J Biol Chem 2019; 294:15505-15516. [PMID: 31484721 DOI: 10.1074/jbc.ra119.009156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/21/2019] [Indexed: 11/06/2022] Open
Abstract
Unlike many other well-characterized bacteria, the opportunistic human pathogen Pseudomonas aeruginosa relies exclusively on the Entner-Doudoroff pathway (EDP) for glycolysis. Pyruvate kinase (PK) is the main "pacemaker" of the EDP, and its activity is also relevant for P. aeruginosa virulence. Two distinct isozymes of bacterial PK have been recognized, PykA and PykF. Here, using growth and expression analyses of relevant PK mutants, we show that PykA is the dominant isoform in P. aeruginosa Enzyme kinetics assays revealed that PykA displays potent K-type allosteric activation by glucose 6-phosphate and by intermediates from the pentose phosphate pathway. Unexpectedly, the X-ray structure of PykA at 2.4 Å resolution revealed that glucose 6-phosphate binds in a pocket that is distinct from the binding site reported for this metabolite in the PK from Mycobacterium tuberculosis (the only other available bacterial PK structure containing bound glucose 6-phosphate). We propose a mechanism by which glucose 6-phosphate binding at the allosteric site communicates with the PykA active site. Taken together, our findings indicate remarkable evolutionary plasticity in the mechanism(s) by which PK senses and responds to allosteric signals.
Collapse
Affiliation(s)
- Yassmin Abdelhamid
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Paul Brear
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Jack Greenhalgh
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Xavier Chee
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom.
| |
Collapse
|
95
|
Li W, Jayakody LN, Franden MA, Wehrmann M, Daun T, Hauer B, Blank LM, Beckham GT, Klebensberger J, Wierckx N. Laboratory evolution reveals the metabolic and regulatory basis of ethylene glycol metabolism by
Pseudomonas putida
KT2440. Environ Microbiol 2019; 21:3669-3682. [DOI: 10.1111/1462-2920.14703] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Wing‐Jin Li
- Institute of Applied Microbiology‐iAMB, Aachen Biology and Biotechnology‐ABBt RWTH Aachen University Worringerweg 1, 52074 Aachen Germany
| | - Lahiru N. Jayakody
- National Bioenergy Center National Renewable Energy Laboratory Golden CO 80401 USA
| | - Mary Ann Franden
- National Bioenergy Center National Renewable Energy Laboratory Golden CO 80401 USA
| | - Matthias Wehrmann
- University of Stuttgart Institute of Biochemistry and Technical Biochemistry Allmandring 31, 70569 Stuttgart Germany
| | - Tristan Daun
- Institute of Applied Microbiology‐iAMB, Aachen Biology and Biotechnology‐ABBt RWTH Aachen University Worringerweg 1, 52074 Aachen Germany
| | - Bernhard Hauer
- University of Stuttgart Institute of Biochemistry and Technical Biochemistry Allmandring 31, 70569 Stuttgart Germany
| | - Lars M. Blank
- Institute of Applied Microbiology‐iAMB, Aachen Biology and Biotechnology‐ABBt RWTH Aachen University Worringerweg 1, 52074 Aachen Germany
| | - Gregg T. Beckham
- National Bioenergy Center National Renewable Energy Laboratory Golden CO 80401 USA
| | - Janosch Klebensberger
- University of Stuttgart Institute of Biochemistry and Technical Biochemistry Allmandring 31, 70569 Stuttgart Germany
| | - Nick Wierckx
- Institute of Applied Microbiology‐iAMB, Aachen Biology and Biotechnology‐ABBt RWTH Aachen University Worringerweg 1, 52074 Aachen Germany
- Institute of Bio‐ and Geosciences IBG‐1: Biotechnology Forschungszentrum Jülich, 52425 Jülich Germany
| |
Collapse
|
96
|
Can biotechnology turn the tide on plastics? Curr Opin Biotechnol 2019; 57:160-166. [DOI: 10.1016/j.copbio.2019.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 12/30/2022]
|
97
|
Salvador M, Abdulmutalib U, Gonzalez J, Kim J, Smith AA, Faulon JL, Wei R, Zimmermann W, Jimenez JI. Microbial Genes for a Circular and Sustainable Bio-PET Economy. Genes (Basel) 2019; 10:E373. [PMID: 31100963 PMCID: PMC6562992 DOI: 10.3390/genes10050373] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 02/03/2023] Open
Abstract
Plastics have become an important environmental concern due to their durability and resistance to degradation. Out of all plastic materials, polyesters such as polyethylene terephthalate (PET) are amenable to biological degradation due to the action of microbial polyester hydrolases. The hydrolysis products obtained from PET can thereby be used for the synthesis of novel PET as well as become a potential carbon source for microorganisms. In addition, microorganisms and biomass can be used for the synthesis of the constituent monomers of PET from renewable sources. The combination of both biodegradation and biosynthesis would enable a completely circular bio-PET economy beyond the conventional recycling processes. Circular strategies like this could contribute to significantly decreasing the environmental impact of our dependence on this polymer. Here we review the efforts made towards turning PET into a viable feedstock for microbial transformations. We highlight current bottlenecks in degradation of the polymer and metabolism of the monomers, and we showcase fully biological or semisynthetic processes leading to the synthesis of PET from sustainable substrates.
Collapse
Affiliation(s)
- Manuel Salvador
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
| | - Umar Abdulmutalib
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
| | - Jaime Gonzalez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
| | - Juhyun Kim
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
| | - Alex A Smith
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
| | - Jean-Loup Faulon
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
- SYNBIOCHEM Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
- CNRS-UMR8030/Laboratoire iSSB, Université Paris-Saclay, 91000 Évry, France.
| | - Ren Wei
- Department of Microbiology and Bioprocess Technology, Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany.
| | - Wolfgang Zimmermann
- Department of Microbiology and Bioprocess Technology, Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany.
| | - Jose I Jimenez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
98
|
Narancic T, O'Connor KE. Plastic waste as a global challenge: are biodegradable plastics the answer to the plastic waste problem? MICROBIOLOGY-SGM 2018; 165:129-137. [PMID: 30497540 DOI: 10.1099/mic.0.000749] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The strength, flexibility and light weight of traditional oil-derived plastics make them ideal materials for a large number of applications, including packaging, medical devices, building, transportation, etc. However, the majority of produced plastics are single-use plastics, which, coupled with a throw-away culture, leads to the accumulation of plastic waste and pollution, as well as the loss of a valuable resource. In this review we discuss the advances and possibilities in the biotransformation and biodegradation of oil-based plastics. We review bio-based and biodegradable polymers and highlight the importance of end-of-life management of biodegradables. Finally, we discuss the role of a circular economy in reducing plastic waste pollution.
Collapse
Affiliation(s)
- Tanja Narancic
- 1BEACON - Bioeconomy Research Centre, Ireland, University College Dublin, Belfield, Dublin 4, Ireland.,2UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kevin E O'Connor
- 2UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.,1BEACON - Bioeconomy Research Centre, Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|