51
|
Alciato F, Sainaghi PP, Sola D, Castello L, Avanzi GC. TNF-α, IL-6, and IL-1 expression is inhibited by GAS6 in monocytes/macrophages. J Leukoc Biol 2010; 87:869-75. [DOI: 10.1189/jlb.0909610] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
52
|
Suh CH, Hilliard B, Li S, Merrill JT, Cohen PL. TAM receptor ligands in lupus: protein S but not Gas6 levels reflect disease activity in systemic lupus erythematosus. Arthritis Res Ther 2010; 12:R146. [PMID: 20637106 PMCID: PMC2945040 DOI: 10.1186/ar3088] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/01/2010] [Accepted: 07/16/2010] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The TAM (tyro 3, axl, mer) kinases are key regulators of innate immunity and are important in the phagocytosis of apoptotic cells. Gas6 and protein S are ligands for these TAM kinases and bind to phosphatidyl serine residues exposed during apoptosis. In animal models, absence of TAM kinases is associated with lupus-like disease. To test whether human systemic lupus erythematosus (SLE) patients might have deficient levels of TAM ligands, we measured Gas 6 and protein S levels in SLE. METHODS 107 SLE patients were recruited. Of these, 45 SLE patients were matched age, gender and ethnicity with normal controls (NC). Gas6 and free protein S were measured with sandwich enzyme linked immunosorbent assays (ELISAs). RESULTS Overall, the plasma concentrations of Gas6 and free protein S were not different between 45 SLE patients and 45 NC. In SLE patients, the levels of free protein S were positively correlated with age (r = 0.2405, P = 0.0126), however those of Gas6 were not. There was no correlation between the concentrations of Gas6 and free protein S in individuals. Levels of free protein S were significantly lower in SLE patients with a history of serositis, neurologic disorder, hematologic disorder and immunologic disorder. Gas6 levels were elevated in patients with a history of neurologic disorder. The SLE patients with anti-Sm or anti-cardiolipin IgG showed lower free protein S levels. Circulating free protein S was positively correlated with complement component 3 (C3) (r = 0.3858, P < 0.0001) and complement component 4 (C4) (r = 0.4275, P < 0.0001). In the patients with active BILAG hematologic involvement, the levels of free protein S were lower and those of Gas6 were higher. CONCLUSIONS In SLE, free protein S was decreased in patients with certain types of clinical history and disease activity. Levels of free protein S were strongly correlated with C3 and C4 levels. Gas6 levels in SLE patients differed little from levels in NC, but they were elevated in the small numbers of patients with a history of neurological disease. The correlation of decreased protein S levels with lupus disease activity is consistent with a role for the TAM receptors in scavenging apoptotic cells and controlling inflammation. Protein S appears more important functionally in SLE patients than Gas6 in this regard.
Collapse
Affiliation(s)
- Chang-Hee Suh
- Section of Rheumatology, Department of Medicine, Temple University School of Medicine, 3322 North Broad Street, Room 205, Philadelphia, PA 19140, USA,Department of Allergy-Rheumatology, Ajou University School of Medicine, Woncheon-dong San 5, Youngtong-gu, Suwon 443-721, Korea
| | - Brendan Hilliard
- Section of Rheumatology, Department of Medicine, Temple University School of Medicine, 3322 North Broad Street, Room 205, Philadelphia, PA 19140, USA
| | - Sophia Li
- Section of Rheumatology, Department of Medicine, Temple University School of Medicine, 3322 North Broad Street, Room 205, Philadelphia, PA 19140, USA
| | - Joan T Merrill
- Clinical Pharmacology Research Program, Oklahoma Medical Research Foundation, 825 N.W. 13th Street, Oklahoma City, OK 73106, USA
| | - Philip L Cohen
- Section of Rheumatology, Department of Medicine, Temple University School of Medicine, 3322 North Broad Street, Room 205, Philadelphia, PA 19140, USA
| |
Collapse
|
53
|
Malignant cells fuel tumor growth by educating infiltrating leukocytes to produce the mitogen Gas6. Blood 2009; 115:2264-73. [PMID: 19965679 DOI: 10.1182/blood-2009-06-228684] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The transforming and tumor growth-promoting properties of Axl, a member of the Tyro3, Axl, and Mer (TAM) family of receptor tyrosine kinases (TAMRs), are well recognized. In contrast, little is known about the role of the TAMR ligand growth arrest-specific gene 6 (Gas6) in tumor biology. By using Gas6-deficient (Gas6(-/-)) mice, we show that bone marrow-derived Gas6 promotes growth and metastasis in different experimental cancer models, including one resistant to vascular endothelial growth factor inhibitors. Mechanistic studies reveal that circulating leukocytes produce minimal Gas6. However, once infiltrated in the tumor, leukocytes up-regulate Gas6, which is mitogenic for tumor cells. Consistent herewith, impaired tumor growth in Gas6(-/-) mice is rescued by transplantation of wild-type bone marrow and, conversely, mimicked by transplantation of Gas6(-/-) bone marrow into wild-type hosts. These findings highlight a novel role for Gas6 in a positive amplification loop, whereby tumors promote their growth by educating infiltrating leukocytes to up-regulate the production of the mitogen Gas6. Hence, inhibition of Gas6 might offer novel opportunities for the treatment of cancer.
Collapse
|
54
|
Lutgens E, Tjwa M, Garcia de Frutos P, Wijnands E, Beckers L, Dahlbäck B, Daemen MJAP, Carmeliet P, Moons L. Genetic loss of Gas6 induces plaque stability in experimental atherosclerosis. J Pathol 2008; 216:55-63. [PMID: 18570189 DOI: 10.1002/path.2381] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The growth arrest-specific gene 6 (Gas6) plays a role in pro-atherogenic processes such as endothelial and leukocyte activation, smooth muscle cell migration and thrombosis, but its role in atherosclerosis remains uninvestigated. Here, we report that Gas6 is expressed in all stages of human and mouse atherosclerosis, in plaque endothelial cells, smooth muscle cells and macrophages. Gas6 expression is most abundant in lesions containing high amounts of macrophages, ie thin fibrous cap atheroma and ruptured plaque. Genetic loss of Gas6 does not affect the number and size of initial and advanced plaques in ApoE(-/-) mice, but alters its plaque composition. Compared to Gas6(+/+): ApoE(-/-) mice, initial and advanced plaques of Gas6(-/-): ApoE(-/-) mice contained more smooth muscle cells and more collagen and developed smaller lipid cores, while the expression of TGFbeta was increased. In addition, fewer macrophages were found in advanced plaques of Gas6(-/-): ApoE(-/-) mice. Hence, loss of Gas6 promotes the formation of more stable atherosclerotic lesions by increasing plaque fibrosis and by attenuating plaque inflammation. These findings identify a role for Gas6 in plaque composition and stability.
Collapse
Affiliation(s)
- E Lutgens
- Department of Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Ganopolsky JG, Abid MR, Aird WC, Blostein MD. GAS6-induced signaling in human endothelial cells is mediated by FOXO1a. J Thromb Haemost 2008; 6:1804-11. [PMID: 18680538 DOI: 10.1111/j.1538-7836.2008.03114.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Growth Arrest Specific gene product 6 (gas6) is a gamma-carboxylated protein that protects endothelial cells against apoptosis. Gas6 has previously been shown to induce phospatidyl-3-inositol-kinase (PI3K)/Akt signaling. Other studies have demonstrated a link between PI3K/Akt signaling and forkhead transcription factors in endothelial cells. OBJECTIVE To test the hypothesis that gas6 promotes cell survival via a forkhead-dependent pathway. RESULTS AND CONCLUSIONS Treatment of serum-starved human umbilical vein endothelial cells (HUVECs) with gas6 induced time-dependent phosphorylation and nuclear exclusion of FOXO1a. This effect was suppressed by the PI3K inhibitor wortmannin, demonstrating that FOXO1a phosphorylation is PI3-kinase dependent. Transduction of HUVECs with a phosphorylation-resistant form of FOXO1a [triple mutant (TM)-FOXO1a] abrogated the pro-survival effect of gas6 on serum-starved endothelial cells. Finally, treatment of serum-starved HUVECs with gas6 resulted in a reduction of FOXO1a transcriptional activity and downregulation of the pro-apoptotic gene, p27(kip1). Taken together, these findings suggest that gas6 protects endothelial cells from apoptosis by a mechanism that involves PI3K-Akt-dependent inactivation of FOXO1a.
Collapse
Affiliation(s)
- J G Ganopolsky
- The Lady Davis Institute, Sir Mortimer Davis Jewish General Hospital, McGill University, Montreal, QC, Canada
| | | | | | | |
Collapse
|
56
|
Bellido-Martín L, de Frutos PG. Vitamin K-dependent actions of Gas6. VITAMINS AND HORMONES 2008; 78:185-209. [PMID: 18374195 DOI: 10.1016/s0083-6729(07)00009-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gas6 (growth arrest-specific gene 6) is the last addition to the family of plasma vitamin K-dependent proteins. Gas6 was cloned and characterized in 1993 and found to be similar to the plasma anticoagulant protein S. Soon after it was recognized as a growth factor-like molecule, as it interacted with receptor tyrosine kinases (RTKs) of the TAM family; Tyro3, Axl, and MerTK. Since then, the role of Gas6, protein S, and the TAM receptors has been found to be important in inflammation, hemostasis, and cancer, making this system an interesting target in biomedicine. Gas6 employs a unique mechanism of action, interacting through its vitamin K-dependent Gla module with phosphatidylserine-containing membranes and through its carboxy-terminal LG domains with the TAM membrane receptors. The fact that these proteins are affected by anti-vitamin K therapy is discussed in detail.
Collapse
Affiliation(s)
- Lola Bellido-Martín
- Department of Cell Death and Proliferation, Institute for Biomedical Research of Barcelona, IIBB-CSIC-IDIBAPS, Barcelona 08036, Spain
| | | |
Collapse
|
57
|
Gas6 promotes inflammation by enhancing interactions between endothelial cells, platelets, and leukocytes. Blood 2008; 111:4096-105. [DOI: 10.1182/blood-2007-05-089565] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AbstractThe role of Gas6 in endothelial cell (EC) function remains incompletely characterized. Here we report that Gas6 amplifies EC activation in response to inflammatory stimuli in vitro. In vivo, Gas6 promotes and accelerates the sequestration of circulating platelets and leukocytes on activated endothelium as well as the formation and endothelial sequestration of circulating platelet-leukocyte conjugates. In addition, Gas6 promotes leukocyte extravasation, inflammation, and thrombosis in mouse models of inflammation (endotoxinemia, vasculitis, heart transplantation). Thus, Gas6 amplifies EC activation, thereby playing a key role in enhancing the interactions between ECs, platelets, and leukocytes during inflammation.
Collapse
|
58
|
Hutterer M, Knyazev P, Abate A, Reschke M, Maier H, Stefanova N, Knyazeva T, Barbieri V, Reindl M, Muigg A, Kostron H, Stockhammer G, Ullrich A. Axl and growth arrest-specific gene 6 are frequently overexpressed in human gliomas and predict poor prognosis in patients with glioblastoma multiforme. Clin Cancer Res 2008; 14:130-8. [PMID: 18172262 DOI: 10.1158/1078-0432.ccr-07-0862] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The receptor tyrosine kinase Axl has recently been identified as a critical element in the invasive properties of glioma cell lines. However, the effect of Axl and its ligand growth arrest--specific gene 6 (Gas6) in human gliomas is still unknown. EXPERIMENTAL DESIGN Axl and Gas6 expression was studied in 42 fresh-frozen and 79 paraffin-embedded glioma specimens by means of reverse transcription-PCR and immunohistochemistry. The prognostic value of Axl and Gas6 expression was evaluated using a population-based tissue microarray derived from a cohort of 55 glioblastoma multiforme (GBM) patients. RESULTS Axl and Gas6 were detectable in gliomas of malignancy grades WHO 2 to 4. Moderate to high Axl mRNA expression was found in 61%, Axl protein in 55%, Gas6 mRNA in 81%, and Gas6 protein in 74% of GBM samples, respectively. GBM patients with high Axl expression and Axl/Gas6 coexpression showed a significantly shorter time to tumor progression and an association with poorer overall survival. Comparative immunohistochemical studies showed that Axl staining was most pronounced in glioma cells of pseudopalisades and reactive astrocytes. Additionally, Axl/Gas6 coexpression was observed in glioma cells and tumor vessels. In contrast, Axl staining was not detectable in nonneoplastic brain tissue and Gas6 was strongly expressed in neurons. CONCLUSIONS In human gliomas, Axl and Gas6 are frequently overexpressed in both glioma and vascular cells and predict poor prognosis in GBM patients. Our results indicate that specific targeting of the Axl/Gas6 signaling pathway may represent a potential new approach for glioma treatment.
Collapse
Affiliation(s)
- Markus Hutterer
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Korshunov VA, Daul M, Massett MP, Berk BC. Axl Mediates Vascular Remodeling Induced by Deoxycorticosterone Acetate–Salt Hypertension. Hypertension 2007; 50:1057-62. [DOI: 10.1161/hypertensionaha.107.096289] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Vyacheslav A. Korshunov
- From the Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester, NY
| | - Matthew Daul
- From the Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester, NY
| | - Michael P. Massett
- From the Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester, NY
| | - Bradford C. Berk
- From the Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester, NY
| |
Collapse
|
60
|
Tagalakis V, Blostein M, Robinson-Cohen C, Kahn SR. The effect of anticoagulants on cancer risk and survival: systematic review. Cancer Treat Rev 2007; 33:358-68. [PMID: 17408861 DOI: 10.1016/j.ctrv.2007.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 02/12/2007] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Several in vitro and in vivo studies have shown that low molecular weight heparin and warfarin may directly inhibit tumour cell growth and prevent metastatic spread. However, the clinical evidence in support of an anti-cancer effect is less conclusive. We summarize the evidence from clinical studies that examine the effect of these anticoagulants on cancer development and briefly describe the current understanding of the potential mechanisms by which anticoagulants may exert an anti-cancer effect. METHODS English-language articles reporting on warfarin, coumarin or low molecular weight heparin for the treatment or prevention of cancer were selected from PUBMED. All randomized clinical trials, case-control studies, cohort studies, and meta-analyses were retrieved. Detailed data review and abstraction was performed according to pre-specified criteria. RESULTS Of ninety-nine articles retrieved, 12 warfarin and 17 low molecular weight heparin articles were included in the review. We found no consistent evidence that warfarin may improve cancer survival, though there is indirect evidence that prolonged warfarin use may decrease the risk of urogenital cancer. Low molecular weight heparin may improve survival of patients with small cell lung cancer and those with advanced malignancy who have more favorable prognoses. CONCLUSION Clinical evidence exists in support of an anti-neoplastic effect of anticoagulants. However, more research is needed to further define which cancer type and stage would most benefit from low molecular weight heparin, as well as to explore the role of warfarin in urogenital tumour development.
Collapse
Affiliation(s)
- Vicky Tagalakis
- Centre for Clinical Epidemiology and Community Studies, SMBD-Jewish General Hospital, McGill University, Montréal, Qué., Canada.
| | | | | | | |
Collapse
|
61
|
Sawabu T, Seno H, Kawashima T, Fukuda A, Uenoyama Y, Kawada M, Kanda N, Sekikawa A, Fukui H, Yanagita M, Yoshibayashi H, Satoh S, Sakai Y, Nakano T, Chiba T. Growth arrest-specific gene 6 and Axl signaling enhances gastric cancer cell survival via Akt pathway. Mol Carcinog 2007; 46:155-64. [PMID: 17186543 DOI: 10.1002/mc.20211] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Activation of tyrosine kinases is an important factor during cancer development. Axl, one of the receptor tyrosine kinases, binds to the specific ligand growth arrest-specific gene 6 (Gas6), which encodes a vitamin K-dependent gamma-carboxyglutamyl protein. Although many receptor tyrosine kinases and their ligands are involved in gastric carcinogenesis, whether Gas6-Axl signaling is involved in gastric carcinogenesis has not been elucidated. The aim of this study was to investigate the expression of Gas6 and Axl in gastric cancer and also their roles during gastric carcinogenesis. mRNA and protein of Gas6 and Axl were highly expressed in a substantial proportion of human gastric cancer tissue and cell lines, and Gas6 expression was significantly associated with lymph node metastasis. With recombinant Gas6 and a decoy-receptor of Axl in vitro, we demonstrated that Gas6-Axl signaling pathway enhanced cellular survival and invasion and suppressed apoptosis via Akt pathway. Our results suggests that Gas6-Axl signaling plays a role during gastric carcinogenesis, and that targeting Gas6-Axl signaling could be a novel therapeutic for gastric cancer.
Collapse
Affiliation(s)
- Tateo Sawabu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Shimojima M, Takada A, Ebihara H, Neumann G, Fujioka K, Irimura T, Jones S, Feldmann H, Kawaoka Y. Tyro3 family-mediated cell entry of Ebola and Marburg viruses. J Virol 2006; 80:10109-16. [PMID: 17005688 PMCID: PMC1617303 DOI: 10.1128/jvi.01157-06] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Filoviruses, represented by the genera Ebolavirus and Marburgvirus, cause a lethal hemorrhagic fever in humans and in nonhuman primates. Although filovirus can replicate in various tissues or cell types in these animals, the molecular mechanisms of its broad tropism remain poorly understood. Here we show the involvement of members of the Tyro3 receptor tyrosine kinase family-Axl, Dtk, and Mer-in cell entry of filoviruses. Ectopic expression of these family members in lymphoid cells, which otherwise are highly resistant to filovirus infection, enhanced infection by pseudotype viruses carrying filovirus glycoproteins on their envelopes. This enhancement was reduced by antibodies to Tyro3 family members, Gas6 ligand, or soluble ectodomains of the members. Live Ebola viruses infected both Axl- and Dtk-expressing cells more efficiently than control cells. Antibody to Axl inhibited infection of pseudotype viruses in a number of Axl-positive cell lines. These results implicate each Tyro3 family member as a cell entry factor in filovirus infection.
Collapse
Affiliation(s)
- Masayuki Shimojima
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Sabbagh F, Lecerf F, Maurois P, Bac P, German-Fattal M. Allogeneic activation is attenuated in a model of mouse lung perfused with magnesium-deficient blood. Transpl Immunol 2006; 16:200-7. [PMID: 17138054 DOI: 10.1016/j.trim.2006.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 08/03/2006] [Accepted: 09/07/2006] [Indexed: 01/11/2023]
Abstract
Hypomagnesemia, which is frequently observed in patients treated with calcineurin inhibitors to prevent rejection after allogeneic transplantation, has been associated with a faster rate of decline in allograft function. The effect of hypomagnesemia on lung allograft has not been reported yet. In our model of isolated mouse lung, we have evaluated the early effects of allogeneic lung perfusion with blood from magnesium (Mg)-deficient mice for 3 h on lung activation and remodelling, compared to isogeneic perfusion. Hypomagnesemia (0.21+/-0.07 mmol Mg(2+)/l) was observed in blood from Mg-deficient mice, but no inflammatory pattern. The mRNA level of the intercellular adhesion molecule (ICAM)-1, but neither of the vascular cell adhesion molecule (VCAM)-1, nor of the cytokines tumor necrosis factor (TNF)alpha and interleukin (IL)-2, was enhanced (p<0.05). Although caspase-3 mRNA was transiently enhanced, no apoptotic cells were evidenced in lung tissues even after 3 h. Using cDNA array, we found that the genes encoding RANKL, RANK, TNFR2, NFATX, IL-1R2, IL-6R gp130, SOCS3, PDGFRB, P63, CSF3R, CXCL1, CXCL5, CX3CL1, CSF1, which are involved in inflammation and apoptosis regulation, were markedly up-regulated in allogeneic conditions. Our results support a limited allogeneic activation and an early stage of the inflammatory process in lung, at the time of inflammatory cell recruitment without lung tissue remodelling, as a result of hypomagnesemia. These findings suggest that cyclosporine-related hypomagnesemia, observed in most of the transplanted patients, does not constitute an additional risk for lung allograft outcome.
Collapse
Affiliation(s)
- Fadi Sabbagh
- CNRS UMR 8162, IFR 13, Université Paris-Sud 11, Centre Chirurgical Marie-Lannelongue, 133 avenue de la Résistance, 92350 Le Plessis Robinson, France
| | | | | | | | | |
Collapse
|
64
|
Lindskog H, Athley E, Larsson E, Lundin S, Hellström M, Lindahl P. New Insights to Vascular Smooth Muscle Cell and Pericyte Differentiation of Mouse Embryonic Stem Cells In Vitro. Arterioscler Thromb Vasc Biol 2006; 26:1457-64. [PMID: 16627807 DOI: 10.1161/01.atv.0000222925.49817.17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The molecular mechanisms that regulate pericyte differentiation are not well understood, partly because of the lack of well-characterized in vitro systems that model this process. In this article, we develop a mouse embryonic stem (ES) cell-based angiogenesis/vasculogenesis assay and characterize the system for vascular smooth muscle cell (VSMC) and pericyte differentiation. METHODS AND RESULTS ES cells that were cultured for 5 days on OP9 stroma cells upregulated their transcription of VSMC and pericyte selective genes. Other SMC marker genes were induced at a later time point, which suggests that vascular SMC/pericyte genes are regulated by a separate mechanism. Moreover, sequence analysis failed to identify any conserved CArG elements in the vascular SMC and pericyte gene promoters, which indicates that serum response factor is not involved in their regulation. Gleevec, a tyrosine kinase inhibitor that blocks platelet-derived growth factor (PDGF) spell-receptor signaling, and a neutralizing antibody against transforming growth factor (TGF) beta1, beta2, and beta3 failed to inhibit the induction of vascular SMC/pericyte genes. Finally, ES-derived vascular sprouts recruited cocultured MEF cells to pericyte-typical locations. The recruited cells activated expression of a VSMC- and pericyte-specific reporter gene. CONCLUSIONS We conclude that OP9 stroma cells induce pericyte differentiation of cocultured mouse ES cells. The induction of pericyte marker genes is temporally separated from the induction of SMC genes and does not require platelet-derived growth factor B or TGFbeta1 signaling.
Collapse
Affiliation(s)
- Henrik Lindskog
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
65
|
Korshunov VA, Mohan AM, Georger MA, Berk BC. Axl, a receptor tyrosine kinase, mediates flow-induced vascular remodeling. Circ Res 2006; 98:1446-52. [PMID: 16627783 DOI: 10.1161/01.res.0000223322.16149.9a] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Intima-media thickening (IMT) in response to hemodynamic stress is a physiological process that requires coordinated signaling among endothelial, inflammatory, and vascular smooth muscle cells (VSMC). Axl, a receptor tyrosine kinase, whose ligand is Gas6, is highly induced in VSMC after carotid injury. Because Axl regulates cell migration, phagocytosis and apoptosis, we hypothesized that Axl would play a role in IMT. Vascular remodeling in mice deficient in Axl (Axl(-/-)) and wild-type littermates (Axl(+/+)) was induced by ligation of the left carotid artery (LCA) branches maintaining flow via the left occipital artery. Both genotypes had similar baseline hemodynamic parameters and carotid artery structure. Partial ligation altered blood flow equally in both genotypes: increased by 60% in the right carotid artery (RCA) and decreased by 80% in the LCA. There were no significant differences in RCA remodeling between genotypes. However, in the LCA Axl(-/-) developed significantly smaller intima+media compared with Axl(+/+) (31+/-4 versus 42+/-6x10(-6) microm3, respectively). Quantitative immunohistochemistry of Axl(-/-) LCA showed increased apoptosis compared with Axl(+/+) (5-fold). As expected, p-Akt was decreased in Axl(-/-), whereas there was no difference in Gas6 expression. Cell composition also changed significantly, with increases in CD45+ cells and decreases in VSMC, macrophages, and neutrophils in Axl(-/-) compared with Axl(+/+). These data demonstrate an important role for Axl in flow-dependent remodeling by regulating vascular apoptosis and vascular inflammation.
Collapse
Affiliation(s)
- Vyacheslav A Korshunov
- Cardiovascular Research Institute, Department of Medicine, University of Rochester, NY, USA.
| | | | | | | |
Collapse
|
66
|
Fisher P, Brigham-Burke M, Wu SJ, Luo J, Carton J, Staquet K, Gao W, Jackson S, Bethea D, Chen C, Hu B, Giles-Komar J, Yang J. A novel site contributing to growth-arrest-specific gene 6 binding to its receptors as revealed by a human monoclonal antibody. Biochem J 2006; 387:727-35. [PMID: 15579134 PMCID: PMC1135003 DOI: 10.1042/bj20040859] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gas6 (growth-arrest-specific gene 6) is a vitamin K-dependent protein known to activate the Axl family of receptor tyrosine kinases. It is an important regulator of thrombosis and many other biological functions. The C-terminus of Gas6 binds to receptors and consists of two laminin-like globular domains LG1 and LG2. It has been reported that a Ca2+-binding site at the junction of LG1 and LG2 domains and a hydrophobic patch at the LG2 domain are important for receptor binding [Sasaki, Knyazev, Cheburkin, Gohring, Tisi, Ullrich, Timpl and Hohenester (2002) J. Biol. Chem. 277, 44164-44170]. In the present study, we developed a neutralizing human monoclonal antibody, named CNTO300, for Gas6. The antibody was generated by immunization of human IgG-expressing transgenic mice with recombinant human Gas6 protein and the anti-Gas6 IgG sequences were rescued from an unstable hybridoma clone. Binding of Gas6 to its receptors was partially inhibited by the CNTO300 antibody in a dose-dependent manner. To characterize further the interaction between Gas6 and this antibody, the binding kinetics of CNTO300 for recombinant Gas6 were compared with independently expressed LG1 and LG2. The CNTO300 antibody showed comparable binding affinity, yet different dependence on Ca2+, to Gas6 and LG1. No binding to LG2 was detected. In the presence of EDTA, binding of the antibody to Gas6 was disrupted, but no significant effect of EDTA on LG1 binding was evident. Further epitope mapping identified a Gas6 peptide sequence recognized by the CNTO300 antibody. This peptide sequence was found to be located at the LG1 domain distant from the Ca2+-binding site and the hydrophobic patch. Co-interaction of Gas6 with its receptor and CNTO300 antibody was detected by BIAcore analysis, suggesting a second receptor-binding site on the LG1 domain. This hypothesis was further supported by direct binding of Gas6 receptors to an independently expressed LG1 domain. Our results revealed, for the first time, a second binding site for Gas6-receptor interaction.
Collapse
Affiliation(s)
- Paul W. Fisher
- *Cardiovascular and Metabolic Disease Research, Centocor Inc., 200 Great Valley Parkway, Malvern, PA 19355, U.S.A
| | - Michael Brigham-Burke
- *Cardiovascular and Metabolic Disease Research, Centocor Inc., 200 Great Valley Parkway, Malvern, PA 19355, U.S.A
| | - Sheng-Jiun Wu
- *Cardiovascular and Metabolic Disease Research, Centocor Inc., 200 Great Valley Parkway, Malvern, PA 19355, U.S.A
| | - Jinquan Luo
- *Cardiovascular and Metabolic Disease Research, Centocor Inc., 200 Great Valley Parkway, Malvern, PA 19355, U.S.A
| | - Jill Carton
- *Cardiovascular and Metabolic Disease Research, Centocor Inc., 200 Great Valley Parkway, Malvern, PA 19355, U.S.A
| | - Kim Staquet
- *Cardiovascular and Metabolic Disease Research, Centocor Inc., 200 Great Valley Parkway, Malvern, PA 19355, U.S.A
| | - Wei Gao
- *Cardiovascular and Metabolic Disease Research, Centocor Inc., 200 Great Valley Parkway, Malvern, PA 19355, U.S.A
| | - Sheila Jackson
- *Cardiovascular and Metabolic Disease Research, Centocor Inc., 200 Great Valley Parkway, Malvern, PA 19355, U.S.A
| | - Deidra Bethea
- *Cardiovascular and Metabolic Disease Research, Centocor Inc., 200 Great Valley Parkway, Malvern, PA 19355, U.S.A
| | - Cailin Chen
- †Johnson & Johnson Pharmaceutical Research and Development, Spring House, PA 19477, U.S.A
| | - Bing Hu
- *Cardiovascular and Metabolic Disease Research, Centocor Inc., 200 Great Valley Parkway, Malvern, PA 19355, U.S.A
| | - Jill Giles-Komar
- *Cardiovascular and Metabolic Disease Research, Centocor Inc., 200 Great Valley Parkway, Malvern, PA 19355, U.S.A
| | - Jing Yang
- *Cardiovascular and Metabolic Disease Research, Centocor Inc., 200 Great Valley Parkway, Malvern, PA 19355, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
67
|
Beug S, Vascotto SG, Tsilfidis C. Newt orthologue ofGrowth arrest-specific 6 (NvGas6) is implicated in stress response during newt forelimb regeneration. Dev Dyn 2006; 235:711-22. [PMID: 16444701 DOI: 10.1002/dvdy.20690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Red-spotted newts are capable of regenerating various structures and organs through the process of epimorphic regeneration. Receptor tyrosine kinases (RTKs) and their ligands are important for normal cellular development and physiology but most have not yet been characterised during regeneration. We have isolated a newt orthologue of Growth arrest-specific 6 (NvGas6), and examined its expression during forelimb regeneration and within a blastema cell line (B1H1). During limb regeneration, NvGas6 expression increases upon amputation, peaks during maximal blastema cell proliferation, and is subsequently downregulated during redifferentiation. Transcripts are localised to the wound epithelium and distal mesenchymal cells during dedifferentiation and proliferative phases, and scattered within redifferentiating tissues during later stages. In B1H1 cultures, NvGas6 is upregulated under reduced serum conditions and myogenesis. Treatment with mimosine and colchicine or exposure to heat shock or anoxia results in upregulation of NvGas6 expression. Taken together, our findings suggest that during regeneration, NvGas6 expression may be upregulated in response to cellular stress.
Collapse
Affiliation(s)
- Shawn Beug
- University of Ottawa Eye Institute, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
68
|
Sasaki T, Knyazev PG, Clout NJ, Cheburkin Y, Göhring W, Ullrich A, Timpl R, Hohenester E. Structural basis for Gas6-Axl signalling. EMBO J 2006; 25:80-7. [PMID: 16362042 PMCID: PMC1356355 DOI: 10.1038/sj.emboj.7600912] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 11/21/2005] [Indexed: 12/14/2022] Open
Abstract
Receptor tyrosine kinases of the Axl family are activated by the vitamin K-dependent protein Gas6. Axl signalling plays important roles in cancer, spermatogenesis, immunity, and platelet function. The crystal structure at 3.3 A resolution of a minimal human Gas6/Axl complex reveals an assembly of 2:2 stoichiometry, in which the two immunoglobulin-like domains of the Axl ectodomain are crosslinked by the first laminin G-like domain of Gas6, with no direct Axl/Axl or Gas6/Gas6 contacts. There are two distinct Gas6/Axl contacts of very different size, both featuring interactions between edge beta-strands. Structure-based mutagenesis, protein binding assays and receptor activation experiments demonstrate that both the major and minor Gas6 binding sites are required for productive transmembrane signalling. Gas6-mediated Axl dimerisation is likely to occur in two steps, with a high-affinity 1:1 Gas6/Axl complex forming first. Only the minor Gas6 binding site is highly conserved in the other Axl family receptors, Sky/Tyro3 and Mer. Specificity at the major contact is suggested to result from the segregation of charged and apolar residues to opposite faces of the newly formed beta-sheet.
Collapse
Affiliation(s)
- Takako Sasaki
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | - Naomi J Clout
- Division of Cell and Molecular Biology, Imperial College London, London, UK
| | | | | | - Axel Ullrich
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | - Rupert Timpl
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | - Erhard Hohenester
- Division of Cell and Molecular Biology, Imperial College London, London, UK
- Biophysics Section, Blackett Laboratory, Imperial College London, London SW7 2AZ, UK. Tel.:+44 20 7594 7701; Fax +44 20 7589 0191; E-mail:
| |
Collapse
|
69
|
Budagian V, Bulanova E, Orinska Z, Duitman E, Brandt K, Ludwig A, Hartmann D, Lemke G, Saftig P, Bulfone-Paus S. Soluble Axl is generated by ADAM10-dependent cleavage and associates with Gas6 in mouse serum. Mol Cell Biol 2005; 25:9324-39. [PMID: 16227584 PMCID: PMC1265819 DOI: 10.1128/mcb.25.21.9324-9339.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Axl receptor tyrosine kinase exists as a transmembrane protein and as a soluble molecule. We show that constitutive and phorbol 12-myristate 13-acetate-induced generation of soluble Axl (sAxl) involves the activity of disintegrin-like metalloproteinase 10 (ADAM10). Spontaneous and inducible Axl cleavage was inhibited by the broad-spectrum metalloproteinase inhibitor GM6001 and by hydroxamate GW280264X, which is capable of blocking ADAM10 and ADAM17. Furthermore, murine fibroblasts deficient in ADAM10 expression exhibited a significant reduction in constitutive and inducible Axl shedding, whereas reconstitution of ADAM10 restored sAxl production, suggesting that ADAM10-mediated proteolysis constitutes a major mechanism for sAxl generation in mice. Partially overlapping 14-amino-acid stretch deletions in the membrane-proximal region of Axl dramatically affected sAxl generation, indicating that these regions are involved in regulating the access of the protease to the cleavage site. Importantly, relatively high circulating levels of sAxl are present in mouse sera in a heterocomplex with Axl ligand Gas6. Conversely, two other family members, Tyro3 and Mer, were not detected in mouse sera and conditioned medium. sAxl is constitutively released by murine primary cells such as dendritic and transformed cell lines. Upon immobilization, sAxl promoted cell migration and induced the phosphorylation of Axl and phosphatidylinositol 3-kinase. Thus, ADAM10-mediated generation of sAxl might play an important role in diverse biological processes.
Collapse
Affiliation(s)
- Vadim Budagian
- Department of Immunology and Cell Biology, Research Center Borstel, Parkallee 22, D-23845 Borstel, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Holland SJ, Powell MJ, Franci C, Chan EW, Friera AM, Atchison RE, McLaughlin J, Swift SE, Pali ES, Yam G, Wong S, Lasaga J, Shen MR, Yu S, Xu W, Hitoshi Y, Bogenberger J, Nör JE, Payan DG, Lorens JB. Multiple roles for the receptor tyrosine kinase axl in tumor formation. Cancer Res 2005; 65:9294-303. [PMID: 16230391 DOI: 10.1158/0008-5472.can-05-0993] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A focus of contemporary cancer therapeutic development is the targeting of both the transformed cell and the supporting cellular microenvironment. Cell migration is a fundamental cellular behavior required for the complex interplay between multiple cell types necessary for tumor development. We therefore developed a novel retroviral-based screening technology in primary human endothelial cells to discover genes that control cell migration. We identified the receptor tyrosine kinase Axl as a novel regulator of endothelial cell haptotactic migration towards the matrix factor vitronectin. Using small interfering RNA-mediated silencing and overexpression of wild-type or mutated receptor proteins, we show that Axl is a key regulator of multiple angiogenic behaviors including endothelial cell migration, proliferation, and tube formation in vitro. Moreover, using sustained, retrovirally delivered short hairpin RNA (shRNA) Axl knockdown, we show that Axl is necessary for in vivo angiogenesis in a mouse model. Furthermore, we show that Axl is also required for human breast carcinoma cells to form a tumor in vivo. These findings indicate that Axl regulates processes vital for both neovascularization and tumorigenesis. Disruption of Axl signaling using a small-molecule inhibitor will hence simultaneously affect both the tumor and stromal cell compartments and thus represents a unique approach for cancer therapeutic development.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/blood supply
- Breast Neoplasms/enzymology
- Cell Growth Processes/physiology
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Transformation, Neoplastic/metabolism
- Cells, Cultured
- Chemotaxis/drug effects
- Chemotaxis/physiology
- Coculture Techniques
- Endothelial Cells/cytology
- Endothelial Cells/enzymology
- Humans
- Mice
- Mice, SCID
- Neovascularization, Pathologic/enzymology
- Neovascularization, Pathologic/genetics
- Neovascularization, Physiologic/genetics
- Neovascularization, Physiologic/physiology
- Oncogene Proteins/antagonists & inhibitors
- Oncogene Proteins/biosynthesis
- Oncogene Proteins/genetics
- Oncogene Proteins/physiology
- Proto-Oncogene Proteins
- RNA, Small Interfering/genetics
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/physiology
- Signal Transduction
- Transfection
- Transplantation, Heterologous
- Vitronectin/pharmacology
- Axl Receptor Tyrosine Kinase
Collapse
Affiliation(s)
- Sacha J Holland
- Rigel, Inc., South San Francisco, California and University of Michigan School of Dentistry, Ann Arbor, MI, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Shieh YS, Lai CY, Kao YR, Shiah SG, Chu YW, Lee HS, Wu CW. Expression of axl in lung adenocarcinoma and correlation with tumor progression. Neoplasia 2005; 7:1058-64. [PMID: 16354588 PMCID: PMC1501169 DOI: 10.1593/neo.05640] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 10/12/2005] [Accepted: 10/12/2005] [Indexed: 12/14/2022] Open
Abstract
We used the Transwell system to select highly invasive cell lines from minimally invasive parent cells, and we compared gene expression in paired cell lines with high and low invasive potentials. Axl was relatively overexpressed in the highly invasive cell lines when compared with their minimally invasive counterparts. However, there is only limited information about the role of Axl in cancer invasion. The biologic function of Axl in tumor invasion was investigated by overexpression of full-length Axl in minimally invasive cells and by siRNA knockdown of Axl expression in highly invasive cells. Overexpression of Axl in minimally invasive cells increased their invasiveness. siRNA reduced cell invasiveness as Axl was downregulated in highly invasive cells. We further investigated the protein expression of Axl by immunohistochemistry and its correlation with clinicopathologic features. Data from a study of 58 patient specimens showed that Axl immunoreactivity was statistically significant with respect to lymph node status (P < .0001) and the patient's clinical stage (P < .0001). Our results demonstrate that Axl protein kinase seems to play an important role in the invasion and progression of lung cancer.
Collapse
Affiliation(s)
- Yi-Shing Shieh
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan, ROC
- Department of Dentistry, Tri-Service General Hospital, Taipei, Taiwan, ROC
| | - Chiung-Ya Lai
- President Laboratory, National Health Research Institutes, Miaoli, Taiwan, ROC
| | - Yu-Rung Kao
- President Laboratory, National Health Research Institutes, Miaoli, Taiwan, ROC
| | - Shine-Gwo Shiah
- President Laboratory, National Health Research Institutes, Miaoli, Taiwan, ROC
| | - Yi-Wen Chu
- President Laboratory, National Health Research Institutes, Miaoli, Taiwan, ROC
| | - Herng-Sheng Lee
- Department of Pathology, Tri-Service General Hospital, Taipei, Taiwan, ROC
| | - Cheng-Wen Wu
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan, ROC
- President Laboratory, National Health Research Institutes, Miaoli, Taiwan, ROC
| |
Collapse
|
72
|
Hasanbasic I, Rajotte I, Blostein M. The role of gamma-carboxylation in the anti-apoptotic function of gas6. J Thromb Haemost 2005; 3:2790-7. [PMID: 16359517 DOI: 10.1111/j.1538-7836.2005.01662.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Gas6 is a novel member of the vitamin K-dependent family of gamma-carboxylated proteins and is a ligand for the receptor tyrosine kinase Axl. Gas6-Axl interactions have been shown to mediate cell survival in vascular endothelium. Although the receptor-binding portion of gas6 lies in the C-terminus, the significance of the N-terminal gamma-carboxylated residues (Gla domain) is not clear. To address this question, this study examines the role of the Gla domain in phospholipid binding as well as in the promotion of cell survival, especially in endothelial cells. The results show that carboxylated gas6 binds to phosphatidylserine-containing phospholipid membranes in an analogous manner to other gamma-carboxylated proteins whereas decarboxylated gas6 does not. The gamma-carboxylation inhibitor warfarin abrogates gas6-mediated protection of NIH3T3 fibroblasts from serum starvation-induced apoptosis. Furthermore, the role of gamma-carboxylation in gas6's survival effect on endothelium is demonstrated directly in that only carboxylated, but not decarboxylated, gas6 protects endothelial cells from serum starvation-induced apoptosis. gamma-carboxylation is also required for both Axl phosphorylation and PI3 kinase activation. Taken together, these findings demonstrate that gamma-carboxylation is necessary not only for gas6 binding to phospholipid membranes, but also for gas6-mediated endothelial cell survival.
Collapse
Affiliation(s)
- I Hasanbasic
- The Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
73
|
Couchie D, Lafdil F, Martin-Garcia N, Laperche Y, Zafrani ES, Mavier P. Expression and role of Gas6 protein and of its receptor Axl in hepatic regeneration from oval cells in the rat. Gastroenterology 2005; 129:1633-42. [PMID: 16285961 DOI: 10.1053/j.gastro.2005.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 07/27/2005] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS The growth arrest-specific gene 6 (Gas6) protein is a vitamin K-dependent protein that binds to the Axl subfamily of tyrosine kinase receptors and exerts antiapoptotic and proliferative effects. Because Gas6 plays a role in development and tissue remodelling, we studied its expression as well as that of its high-affinity receptor Axl in a well-characterized model of hepatic regeneration from precursor oval cells. METHODS Hepatic regeneration was induced by treating rats with acetylaminofluorene followed by partial hepatectomy. RESULTS Oval cell accumulation, which predominated in periportal regions, reached a maximum at days 9 and 14 after hepatectomy and declined thereafter. Oval cells expressed Gas6 protein and messenger RNA (mRNA). Axl mRNA hepatic levels paralleled the number of oval cells, and immunohistochemistry showed Axl expression in these cells. WB-F344 cells, a hepatocytic precursor cell line, also expressed Gas6 and Axl. Addition of Gas6 significantly increased the number of WB-F344 cells cultured with or without serum. Gas6 did not increase cell entry in the S phase of the cell cycle but inhibited 15-d-prostaglandin J2-induced WB-F344 cell apoptosis. CONCLUSIONS Our data demonstrate an expression of Gas6 and of its receptor Axl by oval cells during hepatic regeneration. Because the Gas6/Axl couple protects from apoptosis a hepatocytic precursor cell line, these results strongly suggest that the Gas6/Axl couple favors oval cell accumulation in regenerating liver by an autocrine/paracrine mechanism.
Collapse
Affiliation(s)
- Dominique Couchie
- INSERM U581, Hôpital Henri Mondor, Université Paris XII-Val de Marne, Créteil, France.
| | | | | | | | | | | |
Collapse
|
74
|
Hall MO, Obin MS, Heeb MJ, Burgess BL, Abrams TA. Both protein S and Gas6 stimulate outer segment phagocytosis by cultured rat retinal pigment epithelial cells. Exp Eye Res 2005; 81:581-91. [PMID: 15949798 DOI: 10.1016/j.exer.2005.03.017] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 03/08/2005] [Accepted: 03/29/2005] [Indexed: 01/12/2023]
Abstract
Survival of the retina requires the daily phagocytosis of photoreceptor outer segments (OS) by the overlying retinal pigment epithelium (RPE). OS phagocytosis by cultured RPE requires serum and we have recently shown that the vitamin K-dependent serum protein, Gas6, can completely replace serum in this process. Surprisingly, however, we show here that 4-month-old Gas6 knockout mice have normal appearing retinas, except for a reduced ratio of outer segment to inner segment length. We also show that removal of Gas6 from serum does not abrogate the ability of serum to support OS phagocytosis by rat RPE. Both of these findings suggest the presence of an additional serum ligand that is able to support OS phagocytosis by RPE cells. Protein S (PS) is a vitamin K-dependent serum protein with a high degree of structural similarity to Gas6, and a well characterized role in blood coagulation. We report here that recombinant rat PS is able to stimulate OS phagocytosis, and similar to Gas6, it does so through a Mer-dependent mechanism. This is the first demonstration of a common role for Gas6 and PS in any biological process. The existence of redundant ligands for Mer-dependent OS phagocytosis underscores the critical role of this process in the maintenance of retinal function.
Collapse
Affiliation(s)
- Michael O Hall
- Jules Stein Eye Institute, UCLA Medical Center, 100 Stein Plaza, Los Angeles, CA 90095-7008, USA.
| | | | | | | | | |
Collapse
|
75
|
Gould WR, Baxi SM, Schroeder R, Peng YW, Leadley RJ, Peterson JT, Perrin LA. Gas6 receptors Axl, Sky and Mer enhance platelet activation and regulate thrombotic responses. J Thromb Haemost 2005; 3:733-41. [PMID: 15733062 DOI: 10.1111/j.1538-7836.2005.01186.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gas6 (encoded by growth arrest-specific gene 6) is a vitamin-K dependent protein highly homologous to coagulation protein S that is secreted from platelet alpha-granules and has recently been demonstrated to participate in platelet thrombus formation. The current study evaluated the contribution of each of the three known Gas6 receptors (Axl, Sky and Mer) in human and mouse platelet function. Flow cytometry analyses confirmed that all three receptors are present on both human and mouse platelets. Pre-incubation of human platelets with either an anti-Gas6 antibody or blocking antibodies to Sky or Mer inhibited platelet aggregation and degranulation responses to both ADP and the PAR-1 activating peptide, SFLLRN, by more than 80%. In contrast, a stimulatory anti-Axl antibody increased activation responses to these agonists, suggesting a potentiating role for Gas6 in platelet activation. Moreover, in a mouse model of thrombosis, administration of Gas6 or Sky blocking antibodies resulted in a decrease in thrombus weight similar to clopidogrel but, unlike clopidogrel, produced no increase in template bleeding. Thus, Gas6 enhances platelet degranulation and aggregation responses through its known receptors, promoting platelet activation and mediating thrombus formation such that its inhibition prevents thrombosis without increasing bleeding.
Collapse
Affiliation(s)
- W R Gould
- Pfizer Global Research and Development, Department of Cardiovascular Pharmacology, Ann Arbor, MI, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
Balogh I, Hafizi S, Stenhoff J, Hansson K, Dahlbäck B. Analysis of Gas6 in human platelets and plasma. Arterioscler Thromb Vasc Biol 2005; 25:1280-6. [PMID: 15790929 DOI: 10.1161/01.atv.0000163845.07146.48] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Gas6 is a member of the vitamin K-dependent protein family. Gas6-deficient mice were found to be resistant to thrombosis because of defective platelet function. Mouse Gas6 was demonstrated to be present in platelets and found to be involved in platelet aggregation. The aim of this study was to investigate the presence of Gas6 in human platelets and plasma and determine its role in platelet function. METHODS AND RESULTS The presence of Gas6 in human platelets and plasma was analyzed using sensitive immunologic methods. Mass spectrometry and ELISA were used to identify and quantify Gas6 in plasma. Gas6 was demonstrated to be present in human plasma, at a concentration determined to be 13 to 23 ng/mL (0.16 to 0.28 nM). Furthermore, plasma Gas6 levels were found to be lower in patients administered with warfarin. However, Gas6 was undetectable in human platelets. CONCLUSIONS This is the first report to identify and quantify Gas6 in human plasma. However, Gas6 protein was not detected in human platelets, suggesting that any potential platelet-specific function could be because of Gas6 from the circulation. These findings open up new directions regarding the role of Gas6 in normal and pathophysiological situations such as inflammation, autoimmune disease, thrombosis and arteriosclerosis.
Collapse
Affiliation(s)
- Istvan Balogh
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, Wallenberg Laboratory, University Hospital Malmö, Sweden
| | | | | | | | | |
Collapse
|
77
|
Gallicchio M, Mitola S, Valdembri D, Fantozzi R, Varnum B, Avanzi GC, Bussolino F. Inhibition of vascular endothelial growth factor receptor 2–mediated endothelial cell activation by Axl tyrosine kinase receptor. Blood 2005; 105:1970-6. [PMID: 15507525 DOI: 10.1182/blood-2004-04-1469] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AbstractGAS6, the product of a growth arrest specific (GAS) gene, is the ligand of the tyrosine kinase receptor Axl. GAS6 and Axl are both expressed in endothelial cells, where they are involved in many processes such as leukocyte transmigration through capillaries and neointima formation in injured vessels. Here, we show that Axl stimulation by GAS6 results in inhibition of the ligand-dependent activation of vascular endothelial growth factor (VEGF) receptor 2 and the consequent activation of an angiogenic program in vascular endothelial cells. GAS6 inhibits chemotaxis of endothelial cells stimulated by VEGF-A isoforms, but not that triggered by fibroblast growth factor-2 or hepatocyte growth factor. Furthermore, it inhibits endothelial cell morphogenesis on Matrigel and VEGF-A–dependent vascularization of chick chorion allantoid membrane. GAS6 activates the tyrosine phosphatase SHP-2 (SH2 domain-containing tyrosine phosphatase 2), which is instrumental in the negative feedback exerted by Axl on VEGF-A activities. A dominant-negative SHP-2 mutant, in which Cys 459 is substituted by Ser, reverted the effect of GAS6 on stimulation of VEGF receptor 2 and endothelial chemotaxis triggered by VEGF-A. These studies provide the first demonstration of a cross talk between Axl and VEGF receptor 2 and add new information on the regulation of VEGF-A activities during tissue vascularization.
Collapse
Affiliation(s)
- Margherita Gallicchio
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, C. so Massimo D'azeglio 52, 10100 Torino, Italy.
| | | | | | | | | | | | | |
Collapse
|
78
|
Berkner KL, Runge KW. The physiology of vitamin K nutriture and vitamin K-dependent protein function in atherosclerosis. J Thromb Haemost 2004; 2:2118-32. [PMID: 15613016 DOI: 10.1111/j.1538-7836.2004.00968.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent advances in the discovery of new functions for vitamin K-dependent (VKD) proteins and in defining vitamin K nutriture have led to a substantial revision in our understanding of vitamin K physiology. The only unequivocal function for vitamin K is as a cofactor for the carboxylation of VKD proteins which renders them active. While vitamin K was originally associated only with hepatic VKD proteins that participate in hemostasis, VKD proteins are now known to be present in virtually every tissue and to be important to bone mineralization, arterial calcification, apoptosis, phagocytosis, growth control, chemotaxis, and signal transduction. The development of improved methods for analyzing vitamin K has shed considerable insight into the relative importance of different vitamin K forms in the diet and their contribution to hepatic vs. non-hepatic tissue. New assays that measure the extent of carboxylation in VKD proteins have revealed that while the current recommended daily allowance for vitamin K is sufficient for maintaining functional hemostasis, the undercarboxylation of at least one non-hemostatic protein is frequently observed in the general population. The advances in defining VKD protein function and vitamin K nutriture are described, as is the potential impact of VKD proteins on atherosclerosis. Many of the VKD proteins contribute to atherogenesis. Recent studies suggest involvement in arterial calcification, which may be influenced by dietary levels of vitamin K and by anticoagulant drugs such as warfarin that antagonize vitamin K action.
Collapse
Affiliation(s)
- K L Berkner
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA.
| | | |
Collapse
|
79
|
Shain SA. Exogenous Fibroblast Growth Factors Maintain Viability, Promote Proliferation, and Suppress GADD45α and GAS6 Transcript Content of Prostate Cancer Cells Genetically Modified to Lack Endogenous FGF-2. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.653.2.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Understanding processes regulating prostate cancer cell survival is critical to management of advanced disease. We used prostate cancer cell transfectants genetically modified to be deficient in either endogenous fibroblast growth factor (FGF-1) or endogenous FGF-2 to examine FGF maintenance of transfectant survival and proliferation and FGF-2-regulated expression of transfectant growth arrest DNA damage (GADD) and growth arrest sequences (GAS) family genes (known modulators of cell cycle progression and survival) and the AS3 gene (an androgen-modulated effector of prostate cell proliferation). When propagated in the absence of exogenous FGFs, FGF-2-deficient transfectants undergo exponential death, whereas FGF-1-deficient transfectants proliferate. Exogenous FGF-1, FGF-2, FGF-7, or FGF-8 promote survival and proliferation of FGF-2-deficient transfectants and enhance FGF-1-deficient transfectant proliferation. Transfectants express FGF receptor FGFR1, FGFR2(IIIb), FGFR2(IIIc), and FGFR3 transcripts, findings consistent with the effects of exogenous FGFs. FGF-2-deficient transfectants express high levels of AS3, GADD45α, GADD45γ, GAS8, and GAS11 transcripts and moderate levels of GADD153, GAS2, GAS3, and GAS6 transcripts and lack demonstrable GAS1 or GAS5 transcripts. FGF withdrawal-mediated death of FGF-2-deficient transfectants did not significantly affect cell AS3, GADD153, GADD45γ, GAS2, GAS3, GAS7, GAS8, or GAS11 transcript content, whereas GADD45α and GAS6 transcript content was elevated. These studies establish that endogenous FGF-2 dominantly regulates prostate cancer cell survival and proliferation and that exogenous FGFs may assume this function in the absence of endogenous FGF-2. Additionally, we provide the first evidence that FGFs regulate prostate GADD45α and GAS6 transcript content. The latter observations suggest that GADD45α and GAS6 proteins may be effectors of processes that regulate prostate cancer cell survival. Additional studies are required to examine this possibility in detail.
Collapse
Affiliation(s)
- Sydney A. Shain
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
80
|
Wu YM, Robinson DR, Kung HJ. Signal Pathways in Up-regulation of Chemokines by Tyrosine Kinase MER/NYK in Prostate Cancer Cells. Cancer Res 2004; 64:7311-20. [PMID: 15492251 DOI: 10.1158/0008-5472.can-04-0972] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The AXL/UFO family of tyrosine kinases is characterized by a common N-CAM (neural adhesion molecule)-related extracellular domain and a common ligand, GAS6 (growth arrest-specific protein 6). Family members are prone to transcriptional regulation and carry out diverse functions including the regulation of cell adhesion, migration, phagocytosis, and survival. In this report, we describe a new role of MER/N-CAM-related kinase (NYK), a member of the AXL family of kinases, in the up-regulation of chemokines in prostate cancer cells. We show that NYK has elevated expression in a subset of tumor specimens and prostate cancer cell lines. Activation of NYK in the prostate cancer cell line DU145 does not cause a mitogenic effect; instead, it causes a differentiation phenotype. Microarray analysis revealed that NYK is a strong inducer of endocrine factors including interleukin (IL)-8 and several other angiogenic CXC chemokines as well as bone morphogenic factors. The dramatic increase of IL-8 expression is seen at both transcriptional and posttranscriptional levels. The downstream signals engaged by NYK were characterized, and those responsible for the up-regulation of IL-8 transcription were defined. In contrast to IL-1alpha, NYK-induced up-regulation of IL-8 in DU145 depends on the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase/Jun/Fos pathway, but not phosphoinositide 3'-kinase/nuclear factor-kappaB. These data define a new function of the AXL family of kinases and suggest a potential role of NYK in prostate cancer progression.
Collapse
Affiliation(s)
- Yi-Mi Wu
- University of California at Davis, University of California Davis Cancer Center, Sacramento, California, USA
| | | | | |
Collapse
|
81
|
Hasanbasic I, Cuerquis J, Varnum B, Blostein MD. Intracellular signaling pathways involved in Gas6-Axl-mediated survival of endothelial cells. Am J Physiol Heart Circ Physiol 2004; 287:H1207-13. [PMID: 15130893 DOI: 10.1152/ajpheart.00020.2004] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gas6 is a γ-carboxylated ligand for the receptor tyrosine kinase Axl. Gas6-Axl interactions can rescue endothelial cells from apoptosis, and this study examined the intracellular signaling mechanisms responsible for this phenomenon. Using flow cytometry, we first confirmed that Gas6 can abrogate apoptosis induced by serum starvation of primary cultures of human umbilical vein endothelial cells (HUVECs). This effect is mediated through phosphorylation of the serine-threonine kinase Akt, with maximal phosphorylation observed after 4 h of treatment with 100 ng/ml Gas6. Inhibition of Akt phosphorylation and abrogation of gas6-mediated survival of HUVECs by wortmannin implicated phosphatidylinositol 3-kinase as the mediator of Akt phosphorylation. Dominant negative Akt constructs largely abrogated the protective effect of Gas6 on HUVECs, underscoring the importance of Akt activation in Gas6-mediated survival. Several downstream regulators of this survival pathway were identified in HUVECs, namely, NF-κB as well as the antiapoptotic and proapoptotic proteins Bcl-2 and caspase 3, respectively. We showed that NF-κB is phosphorylated early after Gas6 treatment as evidenced by doublet formation on Western blotting. As well, the level of Bcl-2 protein increased, supporting the notion that the Bcl-2 antiapoptotic pathway is stimulated. The levels of expression of the caspase 3 activation products p12 and p20 decreased with Gas6 treatment, consistent with a reduction in proapoptotic caspase 3 activation. Taken together, these experiments provide new information about the mechanism underlying Gas6 protection from apoptosis in primary endothelial cell cultures.
Collapse
Affiliation(s)
- Ines Hasanbasic
- Lady Davis Institute for Medical Research and Division of Hematology, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
82
|
Stenhoff J, Dahlbäck B, Hafizi S. Vitamin K-dependent Gas6 activates ERK kinase and stimulates growth of cardiac fibroblasts. Biochem Biophys Res Commun 2004; 319:871-8. [PMID: 15184064 DOI: 10.1016/j.bbrc.2004.05.070] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Indexed: 11/20/2022]
Abstract
The protein product of growth arrest specific gene 6 (Gas6), is the biological ligand for the Axl subfamily of receptor tyrosine kinases. We investigated the effects of exogenous Gas6 on growth of cardiac fibroblasts isolated from genetically Gas6-deficient mice. Recombinant Gas6, containing N terminal gamma-carboxyglutamic acid residues formed from a vitamin K-dependent reaction, stimulated both DNA synthesis and proliferation of cardiac fibroblasts under serum-free conditions. Gas6 also markedly enhanced survival of cells during prolonged serum starvation. Gas6 stimulated tyrosine phosphorylation of Axl as well as phosphorylation of ERK kinase. The mitogenic effects of Gas6 were inhibited by neutralising anti-Gas6 antibodies and by a soluble Axl ectodomain fusion protein. In contrast, recombinant Gas6 from cells treated with warfarin, which prevents the gamma-carboxylation reaction, neither stimulated fibroblast proliferation nor activated Axl tyrosine phosphorylation. Gas6-induced cell proliferation was additive to the effects of epidermal growth factor, suggesting activation of discrete signalling pathways. In conclusion, Gas6 appears to be a unique growth factor for fibroblasts and post-translational gamma-carboxylation is necessary for its biological activity. These findings implicate vitamin K-dependent biochemical reactions in growth processes in development and in disease.
Collapse
Affiliation(s)
- Jonas Stenhoff
- Department of Clinical Chemistry, Lund University, Wallenberg Laboratory, University Hospital Malmö, Malmö SE-205 02, Sweden
| | | | | |
Collapse
|
83
|
Maier JAM, Malpuech-Brugère C, Zimowska W, Rayssiguier Y, Mazur A. Low magnesium promotes endothelial cell dysfunction: implications for atherosclerosis, inflammation and thrombosis. Biochim Biophys Acta Mol Basis Dis 2004; 1689:13-21. [PMID: 15158909 DOI: 10.1016/j.bbadis.2004.01.002] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 01/05/2004] [Accepted: 01/06/2004] [Indexed: 01/08/2023]
Abstract
Because (i). endothelial cells are important players in cardiovascular diseases and (ii). Mg deficiency promotes atherosclerosis, thrombosis and hypertension, we evaluated whether low concentrations of Mg could directly affect endothelial behavior. We found that low Mg concentrations reversibly inhibit endothelial proliferation, and this event correlates with a marked down-regulation of the levels of CDC25B. The inhibition of endothelial proliferation is due to an up-regulation of interleukin-1 (IL-1), since an antisense oligonucleotide against IL-1 could prevent the growth inhibition observed in cells exposed to low concentrations of the cation. We also report the up-regulation of Vascular Cell Adhesion Molecule-1 (VCAM) and Plasminogen Activator Inhibitor (PAI)-1 after Mg deficiency. VCAM is responsible, at least in part, of the increased adhesion of monocytoid U937 cells to the endothelial cells grown in low magnesium. In addition, endothelial migratory response is severely impaired. By cDNA array, we identified several transcripts modulated by exposure to low Mg, some of which-c-src, ezrin, CD9, cytohesin and zyxin-contribute to endothelial adhesion to substrates and migration. In conclusion, our results demonstrate a direct role of low magnesium in promoting endothelial dysfunction by generating a pro-inflammatory, pro-thrombotic and pro-atherogenic environment that could play a role in the pathogenesis cardiovascular disease.
Collapse
Affiliation(s)
- Jeanette A M Maier
- Department of Preclinical Sciences LITA Vialba, University of Milan, Via GB Grassi 74, 20157, Milan, Italy.
| | | | | | | | | |
Collapse
|
84
|
Yanagita M. The role of the vitamin K-dependent growth factor Gas6 in glomerular pathophysiology. Curr Opin Nephrol Hypertens 2004; 13:465-70. [PMID: 15199298 DOI: 10.1097/01.mnh.0000133981.63053.e9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The product of growth arrest-specific gene 6 (gas6) is a unique vitamin K-dependent growth-potentiating factor for vascular smooth muscle cells, and anticoagulant warfarin inhibits the activation process of the protein. It has been reported that Gas6 is also a mitogen for mesangial cells, and that warfarin inhibits mesangial cell proliferation by blocking the activation of Gas6. A recent series of studies has revealed the in-vivo roles of Gas6 and its receptor Axl in the progression of various kidney diseases. This review summarizes these studies and discusses the possible interventions targeting the Gas6/Axl pathway to prevent the progression of kidney diseases. RECENT FINDINGS The expression of Gas6 and Axl is upregulated in an acute model of glomerulonephritis in rats, and the interference of the Gas6/Axl pathway by warfarin or the extracellular domain of Axl inhibits the progression of diseases. Induction of chronic glomerulonephritis in Gas6 mice results in less mortality, proteinuria, and histological changes of kidneys compared to wild-type mice. Administration of recombinant Gas6 reverses these phenotypes. Expression of Gas6 is also upregulated in streptozotocin-induced diabetic nephropathy, and administration of low-dose warfarin decreases albuminuria and hypertrophy of glomeruli. Possible roles of Gas6 are also reported in renal allograft dysfunction of rats and humans. SUMMARY The importance of the Gas6/Axl pathway has been implicated in many types of kidney disease. Further investigations on the role of the Gas6/Axl pathway in human kidney diseases and the development of specific antagonists targeting the pathway are warranted.
Collapse
Affiliation(s)
- Motoko Yanagita
- Yanagisawa Orphan Receptor Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, National Museum of Emerging Science and Innovation, Tokyo, Japan.
| |
Collapse
|
85
|
Middleton J, Americh L, Gayon R, Julien D, Aguilar L, Amalric F, Girard JP. Endothelial cell phenotypes in the rheumatoid synovium: activated, angiogenic, apoptotic and leaky. Arthritis Res Ther 2004; 6:60-72. [PMID: 15059266 PMCID: PMC400438 DOI: 10.1186/ar1156] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 01/28/2004] [Accepted: 02/04/2004] [Indexed: 01/23/2023] Open
Abstract
Endothelial cells are active participants in chronic inflammatory diseases. These cells undergo phenotypic changes that can be characterised as activated, angiogenic, apoptotic and leaky. In the present review, these phenotypes are described in the context of human rheumatoid arthritis as the disease example. Endothelial cells become activated in rheumatoid arthritis pathophysiology, expressing adhesion molecules and presenting chemokines, leading to leukocyte migration from the blood into the tissue. Endothelial cell permeability increases, leading to oedema formation and swelling of the joints. These cells proliferate as part of the angiogenic response and there is also a net increase in the turnover of endothelial cells since the number of apoptotic endothelial cells increases. The endothelium expresses various cytokines, cytokine receptors and proteases that are involved in angiogenesis, proliferation and tissue degradation. Associated with these mechanisms is a change in the spectrum of genes expressed, some of which are relatively endothelial specific and others are widely expressed by other cells in the synovium. Better knowledge of molecular and functional changes occurring in endothelial cells during chronic inflammation may lead to the development of endothelium-targeted therapies for rheumatoid arthritis and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jim Middleton
- Endocube S,A,S, Prologue Biotech, Labege cedex, France.
| | | | | | | | | | | | | |
Collapse
|
86
|
Valverde P, Obin MS, Taylor A. Role of Gas6/Axl signaling in lens epithelial cell proliferation and survival. Exp Eye Res 2004; 78:27-37. [PMID: 14667825 DOI: 10.1016/j.exer.2003.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Axl is a receptor tyrosine kinase that is activated by Gas6, a growth factor that belongs to the vitamin K-dependent protein family. Although Gas6 binding to Axl has been shown to transmit mitogenic and/or antiapoptotic signals to a variety of cell types, the role of the Axl-Gas6 system in normal and pathological lens biology is not known. We demonstrate for the first time that Axl protein is expressed in normal rat and bovine lens and that its ligand, Gas6, is present in bovine aqueous humor. In addition, we have detected tyrosine-phosphorylated Axl in normal rat and bovine lens epithelial tissues. We further show that human recombinant Gas6 is able to act as a growth factor in cultured human lens epithelial cells by activating Axl and then the AKT signaling pathway. Gas6 mediates a survival and anti-apoptotic response in cultured human lens epithelial cells subjected to serum-starvation (48-72hr), or treated with transforming growth factor beta1 (5 ng ml(-1), 48hr) or tumor necrosis alpha (100 ng ml(-1), 48hr), as demonstrated by increased number of viable cells, and decreased DNA condensation or caspase-3 activity. In contrast, Gas6 is not able to block apoptosis induced by staurosporin (1microM, 5-24hr) in human lens epithelial cells. Taken together, these data suggest that the Gas6/Axl signaling plays an important role in the control of lens epithelial cell growth and survival and hence in the maintenance of lens homeostasis.
Collapse
Affiliation(s)
- P Valverde
- JM USDA Human Nutrition Research Center on Aging at Tufts University, Boston MA 02111, USA.
| | | | | |
Collapse
|
87
|
Yin JL, Hambly BD, Bao SS, Painter D, Bishop GA, Eris JM. Expression of growth arrest-specific gene 6 and its receptors in dysfunctional human renal allografts. Transpl Int 2003. [DOI: 10.1111/j.1432-2277.2003.tb00370.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
88
|
The growth arrest-specific gene product Gas6 promotes the survival of human oligodendrocytes via a phosphatidylinositol 3-kinase-dependent pathway. J Neurosci 2003. [PMID: 12764109 DOI: 10.1523/jneurosci.23-10-04208.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Microarray analysis revealed that transcripts for the Axl and Mer receptor tyrosine kinases are expressed at high levels in O4+-immunopanned oligodendrocytes isolated from second trimester human fetal spinal cord. In humans the sole known ligand for the Axl/Rse/Mer kinases is growth arrest-specific gene 6 (Gas6), which in the CNS is secreted by neurons and endothelial cells. We hypothesized that Gas6 is a survival factor for oligodendrocytes and receptor activation signals downstream to the phosphatidylinositol 3 (PI3)-kinase/Akt pathway to increase cell survival in the absence of cell proliferation. To test this hypothesis, we grew enriched human oligodendrocytes for 6 d on a monolayer of NIH3T3 cells stably expressing Gas6. CNP+ oligodendrocytes on Gas6-secreting 3T3 cells had more primary processes and arborizations than those plated solely on 3T3 cells. Also, a twofold increase in CNP+ and MBP+ oligodendrocytes was observed when they were plated on the Gas6-secreting cells. The effect was abolished in the presence of Axl-Fc but remained unchanged in the presence of the irrelevant receptor fusion molecule TrkA-Fc. A significant decrease in CNP+/TUNEL+ oligodendrocytes was observed when recombinant human Gas6 (rhGas6) was administered to oligodendrocytes plated on poly-L-lysine, supporting a role for Gas6 signaling in oligodendrocyte survival during a period of active myelination in human fetal spinal cord development. PI3-kinase inhibitors blocked the anti-apoptotic effect of rhGas6, whereas a MEK/ERK inhibitor had no effect. Thus Gas6 sustains human fetal oligodendrocyte viability by receptor activation and downstream signaling via the PI3-kinase/Akt pathway.
Collapse
|
89
|
Collett G, Wood A, Alexander MY, Varnum BC, Boot-Handford RP, Ohanian V, Ohanian J, Fridell YW, Canfield AE. Receptor tyrosine kinase Axl modulates the osteogenic differentiation of pericytes. Circ Res 2003; 92:1123-9. [PMID: 12730092 DOI: 10.1161/01.res.0000074881.56564.46] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vascular pericytes undergo osteogenic differentiation in vivo and in vitro and may, therefore, be involved in diseases involving ectopic calcification and osteogenesis. The purpose of this study was to identify factors that inhibit the entry of pericytes into this differentiation pathway. RNA was prepared from pericytes at confluence and after their osteogenic differentiation (mineralized nodules). Subtractive hybridization was conducted on polyA PCR-amplified RNA to isolate genes expressed by confluent pericytes that were downregulated in the mineralized nodules. The subtraction product was used to screen a pericyte cDNA library and one of the positive genes identified was Axl, the receptor tyrosine kinase. Northern and Western blotting confirmed that Axl was expressed by confluent cells and was downregulated in mineralized nodules. Western blot analysis demonstrated that confluent pericytes also secrete the Axl ligand, Gas6. Immunoprecipitation of confluent cell lysates with an anti-phosphotyrosine antibody followed by Western blotting using an anti-Axl antibody, demonstrated that Axl was active in confluent pericytes and that its activity could not be further enhanced by incubating the cells with recombinant Gas6. The addition of recombinant Axl-extracellular domain (ECD) to pericyte cultures inhibited the phosphorylation of Axl by endogenous Gas6 and enhanced the rate of nodule mineralization. These effects were inhibited by coincubation of pericytes with Axl-ECD and recombinant Gas6. Together these results demonstrate that activation of Axl inhibits the osteogenic differentiation of vascular pericytes.
Collapse
Affiliation(s)
- Georgina Collett
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, 2.205, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Shankar SL, O'Guin K, Cammer M, McMorris FA, Stitt TN, Basch RS, Varnum B, Shafit-Zagardo B. The growth arrest-specific gene product Gas6 promotes the survival of human oligodendrocytes via a phosphatidylinositol 3-kinase-dependent pathway. J Neurosci 2003; 23:4208-18. [PMID: 12764109 PMCID: PMC6741089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Microarray analysis revealed that transcripts for the Axl and Mer receptor tyrosine kinases are expressed at high levels in O4+-immunopanned oligodendrocytes isolated from second trimester human fetal spinal cord. In humans the sole known ligand for the Axl/Rse/Mer kinases is growth arrest-specific gene 6 (Gas6), which in the CNS is secreted by neurons and endothelial cells. We hypothesized that Gas6 is a survival factor for oligodendrocytes and receptor activation signals downstream to the phosphatidylinositol 3 (PI3)-kinase/Akt pathway to increase cell survival in the absence of cell proliferation. To test this hypothesis, we grew enriched human oligodendrocytes for 6 d on a monolayer of NIH3T3 cells stably expressing Gas6. CNP+ oligodendrocytes on Gas6-secreting 3T3 cells had more primary processes and arborizations than those plated solely on 3T3 cells. Also, a twofold increase in CNP+ and MBP+ oligodendrocytes was observed when they were plated on the Gas6-secreting cells. The effect was abolished in the presence of Axl-Fc but remained unchanged in the presence of the irrelevant receptor fusion molecule TrkA-Fc. A significant decrease in CNP+/TUNEL+ oligodendrocytes was observed when recombinant human Gas6 (rhGas6) was administered to oligodendrocytes plated on poly-L-lysine, supporting a role for Gas6 signaling in oligodendrocyte survival during a period of active myelination in human fetal spinal cord development. PI3-kinase inhibitors blocked the anti-apoptotic effect of rhGas6, whereas a MEK/ERK inhibitor had no effect. Thus Gas6 sustains human fetal oligodendrocyte viability by receptor activation and downstream signaling via the PI3-kinase/Akt pathway.
Collapse
Affiliation(s)
- Sai Latha Shankar
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
Prior studies have shown that acidification due to hypercarbia protects endothelial cells from serum deprivation-induced apoptosis. However, the mechanism(s) responsible for the antiapoptotic effect of acidification is still unclear. cDNA array screening was performed on human umbilical vein endothelial cells cultured in a bicarbonate medium equilibrated either with 5% CO2 (pH 7.4) or with 20% CO2 (pH 7.0). Tyrosine kinase receptor Axl expression was 3.3-fold higher after 6 hours at pH 7.0 compared with pH 7.4; this modulation was confirmed by reverse transcriptase-polymerase chain reaction (3.0+/-0.9-fold, P<0.03; n=3), Northern blot (3.6+/-0.1-fold, P<0.0003; n=3), and Western blot (10+/-1.8-fold, P<0.004; n=3). In a time-course study, both Northern and Western blot analyses showed that the most marked difference in Axl expression between pH 7.4 and pH 7.0 occurred after 24 to 48 hours. Furthermore, Axl phosphorylation was enhanced at pH 7.0. Axl ligand, the survival factor growth arrest-specific gene 6 product (Gas6), was released into the conditioned medium, and by Western blot analysis, similar amounts of protein were found at pH 7.0 and 7.4. Full-length Axl cDNA overexpression reduced serum deprivation-induced apoptosis by 64.4+/-11.9% in human umbilical vein endothelial cells cultured at pH 7.4 compared with mock-transfected cells (P<0.0004). Furthermore, overexpression of either soluble Axl or antisense Gas6 mRNA partially reverted the protective effect of acidification, increasing approximately 2.5-fold the number of apoptotic cells at pH 7.0 (control 19.3+/-2.7%, soluble Axl 48.9+/-9.7%, P<0.001; antisense Gas6 49.3+/-14.3%, P<0.03). In conclusion, Gas6/Axl signaling may play an important role in endothelial cell survival during acidification. The full text of this article is available at http://www.circresaha.org.
Collapse
Affiliation(s)
- Daniela D'Arcangelo
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy.
| | | | | |
Collapse
|
92
|
Moises HW, Zoega T, Gottesman II. The glial growth factors deficiency and synaptic destabilization hypothesis of schizophrenia. BMC Psychiatry 2002; 2:8. [PMID: 12095426 PMCID: PMC117774 DOI: 10.1186/1471-244x-2-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2002] [Accepted: 07/03/2002] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND A systems approach to understanding the etiology of schizophrenia requires a theory which is able to integrate genetic as well as neurodevelopmental factors. PRESENTATION OF THE HYPOTHESIS Based on a co-localization of loci approach and a large amount of circumstantial evidence, we here propose that a functional deficiency of glial growth factors and of growth factors produced by glial cells are among the distal causes in the genotype-to-phenotype chain leading to the development of schizophrenia. These factors include neuregulin, insulin-like growth factor I, insulin, epidermal growth factor, neurotrophic growth factors, erbB receptors, phosphatidylinositol-3 kinase, growth arrest specific genes, neuritin, tumor necrosis factor alpha, glutamate, NMDA and cholinergic receptors. A genetically and epigenetically determined low baseline of glial growth factor signaling and synaptic strength is expected to increase the vulnerability for additional reductions (e.g., by viruses such as HHV-6 and JC virus infecting glial cells). This should lead to a weakening of the positive feedback loop between the presynaptic neuron and its targets, and below a certain threshold to synaptic destabilization and schizophrenia. TESTING THE HYPOTHESIS Supported by informed conjectures and empirical facts, the hypothesis makes an attractive case for a large number of further investigations. IMPLICATIONS OF THE HYPOTHESIS The hypothesis suggests glial cells as the locus of the genes-environment interactions in schizophrenia, with glial asthenia as an important factor for the genetic liability to the disorder, and an increase of prolactin and/or insulin as possible working mechanisms of traditional and atypical neuroleptic treatments.
Collapse
Affiliation(s)
- Hans W Moises
- Molecular Genetics Laboratory, Department of Psychiatry, Kiel University Hospital, Niemannsweg 147, 24105 Kiel, Germany
| | - Tomas Zoega
- Department of Psychiatry, National University of Iceland, Reykjavik, Iceland
| | - Irving I Gottesman
- Departments of Psychiatry and Psychology, University of Minnesota, Minneapolis, USA
| |
Collapse
|
93
|
Yin JL, Pilmore HL, Yan YQ, McCaughan GW, Bishop GA, Hambly BD, Eris JM. Expression of growth arrest-specific gene 6 and its receptors in a rat model of chronic renal transplant rejection. Transplantation 2002; 73:657-60. [PMID: 11889449 DOI: 10.1097/00007890-200202270-00032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Growth arrest-specific gene 6 (Gas6) is involved in a number of cell functions that include proliferation of vascular smooth muscle cells and mesangial cells. The proliferation of these cells is a feature of chronic rejection (CR) after kidney transplantation. Therefore, we examined the gene expression of Gas6 and its receptors Rse, Axl, and Mer in a rat model of CR. METHODS The rat model of CR was established in Lewis rat recipients of Fisher kidney transplants. The level of mRNA was measured by real-time quantitative reverse transcription-polymerase chain reaction. The proteins were detected by immunohistochemical staining and Western blot analysis. RESULTS Gas6 mRNA was extensively expressed in kidney tissue of both allografts and isografts. There was significant increase in expression of Gas6 mRNA in allografts at 4 weeks posttransplantation. Immunohistochemical study showed that Gas6 and its receptor Rse proteins were highly expressed in kidney tissue. Western blot analysis has also confirmed that Gas6 and Rse proteins are expressed in kidney tissue. CONCLUSIONS These findings suggest that Gas6 and its receptors have an as yet undefined role in kidney function and/or development and may be involved in the pathogenesis of CR. The action of Gas6 in rat kidney is mainly mediated through the Rse receptors rather than the Axl and Mer receptors.
Collapse
Affiliation(s)
- Jian L Yin
- Department of Renal Medicine, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | | | | | | | | | | | | |
Collapse
|
94
|
Luttun A, Carmeliet P. Genetic studies on the role of proteinases and growth factors in atherosclerosis and aneurysm formation. Ann N Y Acad Sci 2001; 947:124-32; discussion 132-3. [PMID: 11795260 DOI: 10.1111/j.1749-6632.2001.tb03935.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Expression analysis and epidemiologic studies have provided indirect evidence that proteinases and growth factors play a role in the development of atherosclerosis and complications such as aneurysm formation and plaque rupture. Studies using genetically altered mice have proven to be an elegant tool to study the causal involvement of these factors in atherogenesis and to gain insight into the underlying mechanisms. Recently, proteinases of the plasminogen and matrix metalloproteinase (MMP) systems as well as their inhibitors have received much attention, and these studies together have emphasized the complexity of their role in vascular disease. This overview summarizes the current knowledge on plasminogen activator inhibitor-1 (PAI-1) in the progression of atherosclerosis and the influence of MMPs in aneurysm formation. In addition, a possible role for Gas6, the product of growth arrest-specific gene 6, in atherosclerotic lesion development is put into perspective.
Collapse
Affiliation(s)
- A Luttun
- The Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Belgium
| | | |
Collapse
|
95
|
Demarchi F, Verardo R, Varnum B, Brancolini C, Schneider C. Gas6 anti-apoptotic signaling requires NF-kappa B activation. J Biol Chem 2001; 276:31738-44. [PMID: 11425860 DOI: 10.1074/jbc.m104457200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The growth arrest-specific 6 gene product Gas6 is a growth and survival factor related to protein S. Gas6 is the ligand of Axl receptor tyrosine kinase; upon binding to its receptor Gas6 activates the phosphatidylinositol 3-OH kinase (PI3K) and its downstream targets S6K and Akt. Gas6 anti-apoptotic signaling was previously shown to require functional PI3K and Akt and to involve Bad phosphorylation in serum-starved NIH 3T3 cells. Here we demonstrate that Gas6 induces a rapid and transient increase in nuclear NF-kappa B binding activity coupled to transcription activation from NF-kappa B-responsive promoters and increase in Bcl-x(L) protein level. Gas6 survival function is impaired in cells lacking p65/RelA and in NIH 3T3 cells transfected with a dominant negative I kappa B, indicating that NF-kappa B activation plays a central role in promoting survival in this system. Moreover, NF-kappa B activation can be blocked by a dominant negative Akt and by wortmannin, an inhibitor of PI3K, thus suggesting that NF-kappa B activation is a downstream event with respect to PI3K and Akt, as already described for other growth factors. In addition, we show that glycogen synthase kinase 3, which is phosphorylated in response to Gas6, can physically associate with NFKB1/p105 in living cells and can phosphorylate it in vitro. Furthermore, Gas6 treatment is coupled to a decrease in p105 protein level. Altogether these data suggest the involvement of NF-kappa B and glycogen synthase kinase 3 in Gas6 anti-apoptotic signaling and unveil a possible link between these survival pathways.
Collapse
Affiliation(s)
- F Demarchi
- Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie AREA Science Park, Padriciano 99, Trieste 34012, Italy
| | | | | | | | | |
Collapse
|
96
|
Abstract
Vascular smooth muscle cells (VSMC) exhibit several growth responses to agonists that regulate their function including proliferation (hyperplasia with an increase in cell number), hypertrophy (an increase in cell size without change in DNA content), endoreduplication (an increase in DNA content and usually size), and apoptosis. Both autocrine growth mechanisms (in which the individual cell synthesizes and/or secretes a substance that stimulates that same cell type to undergo a growth response) and paracrine growth mechanisms (in which the individual cells responding to the growth factor synthesize and/or secrete a substance that stimulates neighboring cells of another cell type) are important in VSMC growth. In this review I discuss the autocrine and paracrine growth factors important for VSMC growth in culture and in vessels. Four mechanisms by which individual agonists signal are described: direct effects of agonists on their receptors, transactivation of tyrosine kinase-coupled receptors, generation of reactive oxygen species, and induction/secretion of other growth and survival factors. Additional growth effects mediated by changes in cell matrix are discussed. The temporal and spatial coordination of these events are shown to modulate the environment in which other growth factors initiate cell cycle events. Finally, the heterogeneous nature of VSMC developmental origin provides another level of complexity in VSMC growth mechanisms.
Collapse
Affiliation(s)
- B C Berk
- Center for Cardiovascular Research, University of Rochester, School of Medicine and Dentistry, Rochester, New York 14642, USA.
| |
Collapse
|
97
|
Healy AM, Schwartz JJ, Zhu X, Herrick BE, Varnum B, Farber HW. Gas 6 promotes Axl-mediated survival in pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol 2001; 280:L1273-81. [PMID: 11350808 DOI: 10.1152/ajplung.2001.280.6.l1273] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined Gas 6-Axl interactions in human pulmonary artery endothelial cells (HPAEC) and in Axl-transduced HPAEC to test Gas 6 function during endothelial cell survival. We identified the 5.0-kb Axl, 4.2-kb Rse, and 2.6-kb Gas 6 mRNAs in HPAEC. Immunoprecipitation and Western blotting confirmed the presence of these proteins. Gas 6 is present in cell-associated and secreted fractions of growth-arrested HPAEC, independent of cell density. In addition, the Axl receptor is constitutively phosphorylated in growth-arrested cultures, and exogenous Gas 6 enhanced Axl phosphorylation threefold. Gas 6 added to growth-arrested HPAEC resulted in a significant increase in cell number (1.5 nM Gas 6 increased cell number 35%). Flow cytometry revealed that Gas 6 treatment resulted in 28% fewer apoptosing cells. Transduction of a full-length Axl cDNA into HPAEC resulted in 54% fewer apoptosing cells after Gas 6 treatment. Collectively, the data demonstrate antiapoptotic activities for Gas 6 in HPAEC and suggest that Gas 6 signaling may be relevant to endothelial cell survival in the quiescent environment of the vessel wall.
Collapse
Affiliation(s)
- A M Healy
- Pulmonary Center, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA.
| | | | | | | | | | | |
Collapse
|
98
|
Giatromanolaki A, Sivridis E, Athanassou N, Zois E, Thorpe PE, Brekken RA, Gatter KC, Harris AL, Koukourakis IM, Koukourakis MI. The angiogenic pathway "vascular endothelial growth factor/flk-1(KDR)-receptor" in rheumatoid arthritis and osteoarthritis. J Pathol 2001; 194:101-8. [PMID: 11329148 DOI: 10.1002/path.842] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Active angiogenesis, together with an up-regulation of angiogenic factors, is evident in the synovium of both rheumatoid arthritis (RA) and osteoarthritis (OA). The present study assessed, by immunohistochemistry, the microvessel density in the synovium of these arthritides and in normal controls, in relation to the expression of the angiogenic factors vascular endothelial growth factor (VEGF) and platelet-derived endothelial cell growth factor (PD-ECGF) and the apoptosis-related proteins bcl-2 and p53. More importantly, using the novel 11B5 MAb, the activated "VEGF/flk-1(KDR)-receptor" microvessel density was assessed. VEGF expression in fibroblasts was diffuse in both RA and OA. Diffuse PD-ECGF expression of fibroblasts was noted in all cases of RA, while fibroblast reactivity was focal in the OA material. The standard microvessel density (sMVD), as assessed with the anti-CD31 monoclonal antibody (MAb), was higher in RA (64+/-12) and in OA (65+/-16) than in normal tissues (52+/-8; p=0.008 and 0.0004, respectively). The activated microvessel density (aMVD), assessed with the 11B5 MAb, was significantly higher in RA (29+/-10) than in OA (17+/-4; p<0.0001) and than in normal tissues (14+/-2; p<0.0001). The "activation ratio" (aMVD/sMVD) was statistically higher in RA (0.46+/-0.17) than in OA and normal synovial tissues, the latter two having a similar ratio (0.28+/-0.08 and 0.26+/-0.03, respectively). Cytoplasmic bcl-2 expression was frequent in the synovial cells of OA, but rare in RA. Nuclear p53 protein accumulation was never observed. It is suggested that the angiogenic pathway VEGF/flk-1(KDR) may play an important role in the pathogenesis of RA and OA. Thus, failure of VEGF/flk-1(KDR) activation, in the presence of increased VEGF expression, may indicate a synovium with an impaired capacity to establish a viable vasculature, consistent with the degenerative nature of OA. On the other hand, the activated angiogenesis in RA shows a functional, still pathologically up-regulated VEGF/flk-1(KDR) pathway. Whether restoration of an impaired VEGF/flk-1(KDR) pathway in OA, or inhibition of this in RA, would prove of therapeutic importance requires further investigation.
Collapse
Affiliation(s)
- A Giatromanolaki
- Department of Pathology, Democritus University of Thrace, P.O. Box 12, Alexandroupolis 68100, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Katagiri M, Hakeda Y, Chikazu D, Ogasawara T, Takato T, Kumegawa M, Nakamura K, Kawaguchi H. Mechanism of stimulation of osteoclastic bone resorption through Gas6/Tyro 3, a receptor tyrosine kinase signaling, in mouse osteoclasts. J Biol Chem 2001; 276:7376-82. [PMID: 11084030 DOI: 10.1074/jbc.m007393200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The signaling through receptor tyrosine kinases expressed on mature osteoclasts has recently been suggested to be involved in osteoclastic bone resorption. This study investigated the mechanism and the possible physiological relevance of Gas6/Tyro 3, a receptor tyrosine kinase signaling pathway in osteoclasts in stimulating osteoclastic bone resorption using several mouse culture systems. Gas6, expressed ubiquitously in bone cells, did not affect the differentiation or the survival of osteoclasts, but stimulated osteoclast function to form resorbed pits on a dentine slice. The expression of its receptor, Tyro 3, was seen only in mature osteoclasts among bone cells. Gas6 up-regulated the phosphorylation of cellular proteins including p42/p44 mitogen-activated protein kinase (MAPK), but not p38 or c-Jun N-terminal kinase MAPK, and increased the kinase activity of immunoprecipitated Tyro 3 in isolated osteoclasts. The ability of Gas6 to stimulate pit formation resorbed by osteoclasts was abrogated by PD98059, a specific inhibitor of p42/p44 MAPK. In addition, the Gas6 mRNA level in bone marrow was up-regulated by ovariectomy and was reduced by estrogen replacement. These results strongly suggest that Gas6 acts directly on mature osteoclasts through activation of Tyro 3 and p42/p44 MAPK, possibly contributing to the bone loss by estrogen deficiency.
Collapse
Affiliation(s)
- M Katagiri
- Departments of Orthopaedic Surgery and Oral and Maxillofacial Surgery, Graduate School of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Angelillo-Scherrer A, de Frutos P, Aparicio C, Melis E, Savi P, Lupu F, Arnout J, Dewerchin M, Hoylaerts M, Herbert J, Collen D, Dahlbäck B, Carmeliet P. Deficiency or inhibition of Gas6 causes platelet dysfunction and protects mice against thrombosis. Nat Med 2001; 7:215-21. [PMID: 11175853 DOI: 10.1038/84667] [Citation(s) in RCA: 320] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The growth arrest-specific gene 6 product (Gas6) is a secreted protein related to the anticoagulant protein S but its role in hemostasis is unknown. Here we show that inactivation of the Gas6 gene prevented venous and arterial thrombosis in mice, and protected against fatal collagen/epinephrine-induced thrombo embolism. Gas6-/- mice did not, however, suffer spontaneous bleeding and had normal bleeding after tail clipping. In addition, we found that Gas6 antibodies inhibited platelet aggregation in vitro and protected mice against fatal thrombo embolism without causing bleeding in vivo. Gas6 amplified platelet aggregation and secretion in response to known agonists. Platelet dysfunction in Gas6-/- mice resembled that of patients with platelet signaling transduction defects. Thus, Gas6 is a platelet-response amplifier that plays a significant role in thrombosis. These findings warrant further evaluation of the possible therapeutic use of Gas6 inhibition for prevention of thrombosis.
Collapse
Affiliation(s)
- A Angelillo-Scherrer
- The Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|