51
|
Land SC, Rae C. iNOS initiates and sustains metabolic arrest in hypoxic lung adenocarcinoma cells: mechanism of cell survival in solid tumor core. Am J Physiol Cell Physiol 2005; 289:C918-33. [PMID: 15901597 DOI: 10.1152/ajpcell.00476.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nitric oxide (NO) modulates cellular metabolism by competitively inhibiting the reduction of O2 at respiratory complex IV. The aim of this study was to determine whether this effect could enhance cell survival in the hypoxic solid tumor core by inducing a state of metabolic arrest in cancer cells. Mitochondria from human alveolar type II-like adenocarcinoma (A549) cells showed a fourfold increase in NO-sensitive 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM) fluorescence and sixfold increase in Ca2+-insensitive NO synthase (NOS) activity during equilibration from Po2s of 100-->23 mmHg, which was abolished by N(omega)-nitro-L-arginine methyl ester-HCl (L-NAME) and the inducible NOS (iNOS) inhibitor, N6-(1-iminoethyl)-L-lysine dihydrochloride (L-NIL). Similarly, cytosolic and compartmented DAF-FM fluorescence increased in intact cells during a transition between ambient Po2 and 23 mmHg and was abolished by transfection with iNOS antisense oligonucleotides (AS-ODN). In parallel, mitochondrial membrane potential (deltapsi(m)), measured using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolo-carbocyanine iodide (JC-1), decreased to a lower steady state in hypoxia without change in glycolytic rate, adenylate energy charge, or cell viability. However, L-NAME or iNOS AS-ODN treatment maintained deltapsi(m) at normoxic levels irrespective of hypoxia and caused a marked activation of glycolysis, destabilization energy charge, and cell death. Comparison with other cancer-derived (H441) or native tissue-derived (human bronchial epithelial; alveolar type II) lung epithelial cells revealed that the hypoxic suppression of deltapsi(m) was common to cells that expressed iNOS. The controlled dissipation of deltapsi(m), absence of an overt glycolytic activation, and conservation of viability suggest that A549 cells enter a state of metabolic suppression in hypoxia, which inherently depends on the activation of iNOS as Po2 falls.
Collapse
Affiliation(s)
- S C Land
- Division of Maternal and Child Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom.
| | | |
Collapse
|
52
|
Azqueta A, Pachón G, Cascante M, Creppy EE, López de Cerain A. DNA damage induced by a quinoxaline 1,4-di-N-oxide derivative (hypoxic selective agent) in Caco-2 cells evaluated by the comet assay. Mutagenesis 2005; 20:165-71. [PMID: 15817574 DOI: 10.1093/mutage/gei023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The DNA damage induced by 7-chloro-3-[[(N,N-dimethylamino)propyl]amino]-2-quinoxalinecarbonitrile 1,4-di-N-oxide hydrochloride (Q-85 HCl) in Caco-2 cells under hypoxic and well-oxygenated conditions has been studied by using the comet assay. This compound has shown a good in vitro profile of high selective toxicity in hypoxia, but its mechanism of action is unknown. The DNA damage has been evaluated by performing the comet assay after a 2-h treatment with Q-85 HCl (0.1, 0.2, 0.4 microM in hypoxia; 20, 40 microM in well-oxygenated conditions). The number of cells in apoptosis has also been assessed by flow cytometry analysis of Annexin V-FITC staining. The capability of the cells to repair the DNA damage and the proliferation rate was evaluated at different times after the treatment (24-168 h). Under hypoxic conditions, a clear dose-dependent increase in the number of nuclei with a comet was observed (comet score: 132 +/- 13, 343 +/- 30 and 399 +/- 1; control comet score: 42 +/- 14). Under well-oxygenated conditions, the number of nuclei with comet increased significantly with respect to the control (comet score: 273 +/- 14 and 312 +/- 9; control comet score: 27 +/- 4). Cells in apoptosis were not detected by the comet assay nor by flow cytometry. The recovery from DNA damage was time- and concentration-dependent in hypoxia (cells treated with the highest concentration still showed DNA damage after 72 h) and rather time-dependent in well-oxygenated conditions (DNA was completely repaired after 24 h). In conclusion, Q-85 HCl acts by DNA damage and not only the reduced intermediate is genotoxic but also some other derivatives and Q-85 HCl itself may be acting.
Collapse
Affiliation(s)
- Amaia Azqueta
- Centro de Investigación en Farmacobiología Aplicada, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
| | | | | | | | | |
Collapse
|
53
|
Menon C, Fraker DL. Tumor oxygenation status as a prognostic marker. Cancer Lett 2005; 221:225-35. [PMID: 15808408 DOI: 10.1016/j.canlet.2004.06.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 06/20/2004] [Indexed: 11/16/2022]
Abstract
Tumor oxygenation status is an independent prognostic indicator in cancer because it influences tumor progression and treatment outcome. Its quantitative value is determined by a number of tumor vascular parameters such as microvascular density, blood flow, blood volume, blood oxygen saturation, tumor tissue pO2, and resistance to oxygen diffusion within the tumor. Over the past several years, considerable time and effort have been invested into developing techniques to effectively and reliably measure the oxygenation status of a tumor. The measurement and interpretation of data obtained with currently available methods is complicated by the heterogeneity in tumor oxygenation. Currently available techniques can be broadly classified into direct invasive methods, direct non-invasive methods, and measurement of surrogate endogenous markers of tumor oxygenation. Of these methods, the Eppendorf pO2 histograph is considered the 'gold standard' and even so has several limitations. Given the importance of tumor oxygenation status in therapy and in predicting disease progression, it is imperative that reliable, globally usable, and technically simplistic methods be developed to yield a consistent, comprehensive, and reliable profile of tumor oxygenation. Until newer more reliable techniques are developed, existing independent techniques or appropriate combinations of techniques should be optimized and validated using known endpoints in tumor oxygenation status and/or treatment outcomes.
Collapse
Affiliation(s)
- Chandrakala Menon
- Division of Surgical Oncology, Department of Surgery, University of Pennsylvania, 4th Floor Silverstein Building, 3400 Spruce Street, Philadelphia, PA, USA
| | | |
Collapse
|
54
|
Guppy M, Brunner S, Buchanan M. Metabolic depression: a response of cancer cells to hypoxia? Comp Biochem Physiol B Biochem Mol Biol 2005; 140:233-9. [PMID: 15649770 DOI: 10.1016/j.cbpc.2004.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 10/08/2004] [Accepted: 10/12/2004] [Indexed: 10/26/2022]
Abstract
Hypoxic tumours have the worst prognosis because they are the most aggressive and the most likely to metastasize. This may be because these aggressive cancers have a hypoxic core which generates signals that activate angiogenesis which enables the supply of nutrients and oxygen to a rapidly growing outer oxidative shell. The hypoxic core is a crucial element of this hypothesis, as is the fact that the cells in the hypoxic core are inherently adapted to survive hypoxia. We reasoned therefore that cancer cells exposed to hypoxia/anoxia should show the hallmarks of adaptation to hypoxia/anoxia, i.e. a down-regulation of protein synthesis and a reverse Pasteur effect. We tested this hypothesis in transformed (MCF-7) and normal (HME) human mammary epithelial cells, by exposing both cell types to a range of oxygen concentrations, including anoxia. We find that indeed protein synthesis is down-regulated in the MCF-7, but not in the HME cells in response to anoxia. The data on glycolysis are not as clear-cut, but in the light of similar previous measurements on hypoxia-tolerant animals, is still consistent with the hypothesis.
Collapse
Affiliation(s)
- Michael Guppy
- Biochemistry and Molecular Biology, School of Biomedical and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | | | | |
Collapse
|
55
|
Angeles-Boza AM, Bradley PM, Fu PKL, Wicke SE, Bacsa J, Dunbar KR, Turro C. DNA binding and photocleavage in vitro by new dirhodium(II) dppz complexes: correlation to cytotoxicity and photocytotoxicity. Inorg Chem 2005; 43:8510-9. [PMID: 15606200 DOI: 10.1021/ic049091h] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two new dirhodium(II) complexes possessing the intercalating dppz ligand (dppz = dipyrido[3,2-a:2',3'-c]phenazine), cis-[Rh(2)(mu-O(2)CCH(3))(2)(dppz)(eta(1)-O(2)CCH(3))(CH(3)OH)](+) (1) and cis-[Rh(2)(mu-O(2)CCH(3))(2)(dppz)(2)](2+) (2), were synthesized and characterized as potential agents for photochemotherapy. Various techniques show that 1 binds to DNA through intercalation, although some aggregation of the complex on the DNA surface is also present. In contrast, 2 does not intercalate between the DNA bases; however, strong hypochromic behavior is observed in the presence of DNA, which can be attributed to intermolecular pi-stacking of 2 enhanced by the polyanion. The apparent DNA binding constants determined using optical titrations are compared to those from dialysis experiments. Both complexes photocleave pUC18 plasmid in vitro under irradiation with visible light (lambda(irr) >or= 395 nm, 15 min), resulting in the nicked, circular form. Greater photocleavage is observed for 1 relative to 2, which may be due to the ability of 1 to intercalate between the DNA bases. The cytotoxicity toward human skin cells (Hs-27) measured as the concentration at which 50% cell death is recorded, LC(50), was found to be 135 +/- 8 microM for 2 in the dark (30 min), which is significantly lower than those of 1 (LC(50) = 27 +/- 2 microM) and Rh(2)(O(2)CCH(3))(4) (LC(50) = 15 +/- 2 microM). Irradiation of cell cultures containing 1 and Rh(2)(O(2)CCH(3))(4) with visible light (400-700 nm, 30 min) has little effect on their cytotoxicity, with LC(50) values of 21 +/- 3 and 13 +/- 2 microM, respectively. Interestingly, a 3.4-fold increase in the toxicity of 2 is observed when the cell cultures are irradiated (400-700 nm, 30 min), resulting in LC(50) = 39 +/- 1 microM. The greater toxicity of 1 compared to 2 in the dark may be related to the ability of the former compound to intercalate between the DNA bases. The lower cytotoxicity of 2, together with its significantly greater photocytotoxicity, makes this complex a potential agent for photodynamic therapy (PDT). These results suggest that intercalation or strong DNA binding may not be a desirable property of a potential PDT agent.
Collapse
|
56
|
Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P. Inhibition of Glycolysis in Cancer Cells: A Novel Strategy to Overcome Drug Resistance Associated with Mitochondrial Respiratory Defect and Hypoxia. Cancer Res 2005. [DOI: 10.1158/0008-5472.613.65.2] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Cancer cells generally exhibit increased glycolysis for ATP generation (the Warburg effect) due in part to mitochondrial respiration injury and hypoxia, which are frequently associated with resistance to therapeutic agents. Here, we report that inhibition of glycolysis severely depletes ATP in cancer cells, especially in clones of cancer cells with mitochondrial respiration defects, and leads to rapid dephosphorylation of the glycolysis-apoptosis integrating molecule BAD at Ser112, relocalization of BAX to mitochondria, and massive cell death. Importantly, inhibition of glycolysis effectively kills colon cancer cells and lymphoma cells in a hypoxic environment in which the cancer cells exhibit high glycolytic activity and decreased sensitivity to common anticancer agents. Depletion of ATP by glycolytic inhibition also potently induced apoptosis in multidrug-resistant cells, suggesting that deprivation of cellular energy supply may be an effective way to overcome multidrug resistance. Our study shows a promising therapeutic strategy to effectively kill cancer cells and overcome drug resistance. Because the Warburg effect and hypoxia are frequently seen in human cancers, these findings may have broad clinical implications.
Collapse
Affiliation(s)
- Rui-hua Xu
- 1Molecular Pathology and Departments of
- 3Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China; and
| | | | - Yan Zhou
- 1Molecular Pathology and Departments of
| | | | - Li Feng
- 1Molecular Pathology and Departments of
| | - Kapil N. Bhalla
- 4Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Michael J. Keating
- 2Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|
57
|
Nylund G, Nordgren S, Delbro DS. Expression of P2Y2 purinoceptors in MCG 101 murine sarcoma cells, and HT-29 human colon carcinoma cells. Auton Neurosci 2004; 112:69-79. [PMID: 15233932 DOI: 10.1016/j.autneu.2004.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 04/15/2004] [Accepted: 04/16/2004] [Indexed: 11/19/2022]
Abstract
We investigated how agonists at purinoceptors may affect tumour cell metabolism. This was investigated in vitro in tumour cell lines by microphysiometry, which method monitors extracellular acidification rate (ECAR), on-line. The cell lines investigated were the murine sarcoma, MCG 101, and the human colon cancer, HT-29. In MCG 101, adenosine-5'-triphosphate (ATP) or uridine-5'-triphosphate (UTP) caused a concentration-dependent increase in ECAR, most likely due to the ligation of P2Y(2) receptors, which response was blocked by suramin. In HT-29, ATP or UTP elicited a concentration-dependent, biphasic change in ECAR (increase/decrease). The pharmacological analysis suggests the involvement of P2Y(2) receptors, although other P2 receptor subtypes cannot be entirely excluded. This biphasic response to UTP or ATP was resistant to suramin. The expression of P2Y(2) receptors was demonstrated in both cell lines by immunocytochemistry and Western blot. The current study, thus, shows the functional and morphological expression of a purinoceptor subtype with partly different effects on metabolism in two different tumour cell lines.
Collapse
Affiliation(s)
- Gunnar Nylund
- Department of Surgery, Institute of Surgical Sciences, Sahlgrenska University Hospital, SE-413 45 Göteborg, Sweden
| | | | | |
Collapse
|
58
|
Zhang Q, Zhang ZF, Rao JY, Sato JD, Brown J, Messadi DV, Le AD. Treatment with siRNA and antisense oligonucleotides targeted to HIF-1alpha induced apoptosis in human tongue squamous cell carcinomas. Int J Cancer 2004; 111:849-57. [PMID: 15300796 DOI: 10.1002/ijc.20334] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Overexpression of hypoxia inducible factor-1alpha (HIF-1alpha) in cancers has been correlated to a more aggressive tumor phenotype. We investigated the effect of HIF-1alpha knockout on the in vitro survival and death of human tongue squamous cell carcinomas (SCC-4 and SCC-9). Under normoxic condition, a basal level of HIF-1alpha protein was constitutively expressed in SCC-9 cells, albeit an undetectable level of HIF-1alpha messages. Exposure to hypoxia induced only a transient increase in mRNA transcript but a prolonged elevation of HIF-1alpha protein and its immediate downstream target gene product, VEGF. Under normoxic or hypoxic conditions, treatment of SCC-9 cells with AS-HIF-1alpha ODN suppressed both constitutive and hypoxia-induced HIF-1alpha expression at both mRNA and protein levels. Knockout of HIF-1alpha gene expression via either AS-HIF-1alpha ODN or siRNA (siRNAHIF-1alpha) treatment resulted in inhibition of cell proliferation and induced apoptosis in SCC-4 and SCC-9 cells. We also demonstrated that exposure of SCC-9 cells to hypoxia led to a time-dependent increase in the expression of bcl-2 and IAP-2, but not p53. The attenuated levels of bcl-2 and IAP-2, and the enhanced activity of caspase-3 after treatment with AS-HIF-1alpha ODN may contribute partly to the effects of HIF-1alpha blockade on SCC-9 cell death. Collectively, our data suggest that a constitutive or hypoxia-induced expression of HIF-1alpha in SCC-9 and SCC-4 cells is sufficient to confer target genes expression essential for tumor proliferation and survival. As a result, interfering with HIF-1alpha pathways by antisense or siRNA strategy may provide a therapeutic target for human tongue squamous cell carcinomas.
Collapse
Affiliation(s)
- Qunzhou Zhang
- Department of Oral & Maxillofacial Surgery, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
Intense investigation into the molecular basis of angiogenesis is rapidly revealing novel signaling pathways involved in the generation of new vasculature. These range from elucidation of the mechanism by which hypoxia initiates expression of a proangiogenic gene repertoire via the hypoxia-inducible transcription factors (HIFs) to molecular pathways involved in extra- and intracellular signaling during new vessel formation. Extracellular pathways include those of the Notch/delta, ephrin/Eph receptor and roundabout/slit families, and intracellular pathway members of the hedgehog and sprouty families. The involvement of these pathways in angiogenesis is discussed, together with some comments on recently identified targets in the vasculature that present new therapeutic opportunities.
Collapse
Affiliation(s)
- Roy Bicknell
- Cancer Research U.K. Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.
| | | |
Collapse
|
60
|
Kaufman B, Scharf O, Arbeit J, Ashcroft M, Brown JM, Bruick RK, Chapman JD, Evans SM, Giaccia AJ, Harris AL, Huang E, Johnson R, Kaelin W, Koch CJ, Maxwell P, Mitchell J, Neckers L, Powis G, Rajendran J, Semenza GL, Simons J, Storkebaum E, Welch MJ, Whitelaw M, Melillo G, Ivy SP. Proceedings of the Oxygen Homeostasis/Hypoxia Meeting: Fig. 1. Cancer Res 2004; 64:3350-6. [PMID: 15126380 DOI: 10.1158/0008-5472.can-03-2611] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
61
|
Ronimus RS, Morgan HW. Cloning and biochemical characterization of a novel mouse ADP-dependent glucokinase. Biochem Biophys Res Commun 2004; 315:652-8. [PMID: 14975750 DOI: 10.1016/j.bbrc.2004.01.103] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Indexed: 11/20/2022]
Abstract
Glycolysis, the catabolism of glucose to pyruvate, is an iconic central metabolic pathway and often used as a paradigm for explaining the general principles of the regulation/control of cellular metabolism. The ubiquitous mammalian ATP-dependent hexokinases I-III and hexokinase IV, also termed glucokinase, initiate the process by phosphorylating glucose to glucose-6-phosphate. Despite glycolysis having been studied extensively for over 70 years and the last new mammalian ATP-dependent hexokinase isotype having been described in the 1960s, we report here the biochemical characterization of a recombinant ADP-dependent glucokinase cloned from a full-length Mus musculus cDNA, identified by sequence analysis. The recombinant enzyme is quite specific for glucose, is monomeric, has an apparent Km for glucose and ADP of 96 and 280 microM, respectively, and is inhibited by both high concentrations of glucose and AMP. The metabolic role of this enzyme in cells would be dependent on the relative level of its activity to those of the ATP-dependent hexokinases. The greatest advantage of an ADP-GK would clearly be during ischemia/hypoxia, clinically relevant conditions in multiple major disease states, by decreasing the priming cost for the phosphorylation of glucose, saving ATP.
Collapse
Affiliation(s)
- Ron S Ronimus
- Biological Sciences, University of Waikato, Hamilton, Private Bag 3105, New Zealand.
| | | |
Collapse
|
62
|
Bradley PM, Angeles-Boza AM, Dunbar KR, Turro C. Direct DNA Photocleavage by a New Intercalating Dirhodium(II/II) Complex: Comparison to Rh2(μ-O2CCH3)4. Inorg Chem 2004; 43:2450-2. [PMID: 15074956 DOI: 10.1021/ic035424j] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transition metal complexes possessing the intercalating dppz ligand (dppz = dipyrido[3,2-a:2',3'-c]phenazine) typically bind ds-DNA through intercalation (K(b) approximately 10(5)-10(6) M(-1)), and DNA photocleavage by these complexes with visible light proceeds through the generation of a reactive oxygen species. The DNA binding and photocleavage by [Rh(2)(mu-O(2)CCH(3))(2)(eta(1)-O(2)CCH(3))(CH(3)OH)(dppz)](+) (2) is reported and compared to that of Rh(2)(mu-O(2)CCH(3))(4) (1). Spectral changes and an increase in viscosity provide evidence for the intercalation of 2 to double stranded DNA with K(b) = 1.8 x 10(5) M(-1). DNA photocleavage by 2 is observed upon irradiation with lambda(irr) > 395 nm both in air and deoxygenated solution. DNA photocleavage is not observed for 1 or free dppz ligand under these irradiation conditions. The coupling of a single dppz ligand to a dirhodium(II/II) bimetallic core in 2 provides a means to access oxygen-independent DNA photocleavage with visible light.
Collapse
Affiliation(s)
- Patricia M Bradley
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
63
|
Abstract
The concept of a glycolytic cancer cell was introduced by Warburg over 70 years ago. This perception has since become the rationale that drives a considerable proportion of basic research on cancer, and it influences the current strategies for the diagnosis, monitoring, and treatment of cancer. Here we review the data from the last 40 years on this issue. We conclude that there is no evidence that cancer cells are inherently glycolytic, but that some tumours might indeed be glycolytic in vivo as a result of their hypoxic environment.
Collapse
Affiliation(s)
- Xin Lin Zu
- Biochemistry and Molecular Biology, School of Biochemical and Chemical Science, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | | |
Collapse
|
64
|
Zhang Q, Wu Y, Ann DK, Messadi DV, Tuan TL, Kelly AP, Bertolami CN, Le AD. Mechanisms of Hypoxic Regulation of Plasminogen Activator Inhibitor-1 Gene Expression in Keloid Fibroblasts. J Invest Dermatol 2003; 121:1005-12. [PMID: 14708599 DOI: 10.1046/j.1523-1747.2003.12564.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Keloids are an excessive accumulation of extracellular matrix. Although numerous studies have shown elevated plasminogen activator inhibitor-1 (PAI-1) levels in keloid fibroblasts compared with those of normal skin. Their specific mechanisms involved in the differential expression of PAI-1 in these cell types. In this study, the upregulation of PAI-1 expression is demonstrated in keloid tissues and their derived dermal fibroblasts, attesting to the persistence, if any, of fundamental differences between in vivo and in vitro paradigms. We further examined the mechanisms involved in hypoxia-induced regulation of PAI-1 gene in dermal fibroblast derived from keloid lesions and associated clinically normal peripheral skins from the same patient. Primary cultures were exposed to an environmental hypoxia or desferroxamine. We found that the hypoxia-induced elevation of PAI-1 gene appears to be regulated at both transcriptional and post-transcriptional levels in keloid fibroblasts. Furthermore, our results showed a consistent elevation of HIF-1alpha protein level in keloid tissues compared with their normal peripheral skin controls, implying a potential role as a biomarker for local skin hypoxia. Treatment with antisense oligonucleotides against hypoxia-inducible factor 1alpha (HIF-1alpha) led to the downregulation of steady-state levels of PAI-1 mRNA under both normoxic and hypoxic conditions. Conceivably, our results suggest that HIF-1alpha may be a novel therapeutic target to modulate the scar fibrosis process.
Collapse
Affiliation(s)
- Qunzhou Zhang
- Department of Oral and Maxillofacial Surgery, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059, USA
| | | | | | | | | | | | | | | |
Collapse
|