51
|
Akiba Y, Ghayouri S, Takeuchi T, Mizumori M, Guth PH, Engel E, Swenson ER, Kaunitz JD. Carbonic anhydrases and mucosal vanilloid receptors help mediate the hyperemic response to luminal CO2 in rat duodenum. Gastroenterology 2006; 131:142-52. [PMID: 16831598 DOI: 10.1053/j.gastro.2006.04.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 04/07/2006] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS The duodenal mucosa is exposed to PCO(2) >200 mm Hg due to the luminal mixture of gastric acid with secreted bicarbonate, which augments mucosal protective mechanisms. We examined the hyperemic response to elevated luminal PCO(2) in the duodenum of anesthetized rats luminally exposed to high CO(2) saline to help elucidate luminal acid-sensing mechanisms. METHODS Blood flow was measured by laser Doppler, and intracellular pH of epithelial cells by measured by ratio microimaging. The permeant carbonic anhydrase (CA) inhibitor methazolamide, relatively impermeant CA inhibitor benzolamide, vanilloid receptor antagonist capsazepine, or sodium-hydrogen exchanger 1 (NHE-1) inhibitor dimethyl amiloride were perfused with or without the high CO(2) solution. RESULTS The high CO(2) solution increased duodenal blood flow, which was abolished by pretreatment with methazolamide or capsazepine or by dimethyl amiloride coperfusion. Sensory denervation with capsaicin also abolished the CO(2) effects. Benzolamide dose-dependently inhibited CO(2)-induced hyperemia and at 100 nmol/L inhibited CO(2)-induced intracellular acidification. The membrane-bound CA isoforms IV, IX, XII, and XIV and cytosolic CA II and the vanilloid receptor 1 (TRPV1) were expressed in duodenum and stomach. Dorsal root ganglion and nodose ganglion expressed all isoforms except for CA IX. CONCLUSIONS The duodenal hyperemic response to luminal CO(2) is dependent on cytosolic and membrane-bound CA isoforms, NHE-1, and TRPV1. CO(2)-induced intracellular acidification was inhibited by selective extracellular CA inhibition, suggesting that CO(2) diffusion across the epithelial apical membrane is mediated by extracellular CA. NHE-1 activation preceding TRPV1 stimulation suggests that luminal CO(2) is sensed as H(+) in the subepithelium.
Collapse
Affiliation(s)
- Yasutada Akiba
- Department of Medicine, School of Medicine, University of California Los Angeles, USA
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Horie S, Michael GJ, Priestley JV. Co-localization of TRPV1-expressing nerve fibers with calcitonin-gene-related peptide and substance P in fundus of rat stomach. Inflammopharmacology 2006; 13:127-37. [PMID: 16259734 DOI: 10.1163/156856005774423854] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The localization of vanilloid receptor TRPV1 was studied in rat gastric fundus by an immunohistochemical technique. Numerous TRPV1-immunoreactive nerve fibers were found around arterioles in the submucosal layer. A large number of the nerve fibers were also seen in the smooth muscle layer and in the myenteric nerve plexus, but the cell bodies could not be found. TRPV1 nerve fibers within the circular muscle layers were running parallel to the muscle fibers. Virtually all TRPV1 axons were immunoreactive for calcitonin-gene-related peptide (CGRP), with particularly extensive double labeling seen in axons of the submucosa around blood vessels. TRPV1 nerve fibers containing substance P were found running in longitudinal muscle and circular muscle. The TRPV1 axons seem to be predominantly extrinsic and contain CGRP and substance P in gastric fundus. TRPV1 neurons are thought to be sensory afferent neurons that operate to maintain gastric motility and blood flow.
Collapse
Affiliation(s)
- Syunji Horie
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | | | | |
Collapse
|
53
|
Bobryshev P, Bagaeva T, Filaretova L. Gastroprotective action of glucocorticoid hormones in rats with desensitization of capsaicin-sensitive sensory neurons. Inflammopharmacology 2006; 13:217-28. [PMID: 16259741 DOI: 10.1163/156856005774423782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability of glucocorticoid hormones to protect gastric mucosa during desensitization of capsaicin-sensitive afferent neurons has been investigated in rats. Functional ablation of the afferent neurons was performed by pre-treatment with neurotoxic doses of capsaicin (100 mg/kg s.c.). After 1 week of recovery, capsaicin-desensitized, as well as control rats were adrenalectomized or sham-operated. Seven days later, indomethacin at an ulcerogenic dose (35 mg/kg s.c.) was given to each group of rats. One half of adrenalectomized capsaicin-pre-treated rats were injected by corticosterone for replacement (4 mg/kg s.c., 15 min before indomethacin). Gastric lesions, plasma corticosterone and blood glucose levels were estimated 4 h after indomethacin administration. Indomethacin caused gastric erosions that were aggravated by adrenalectomy or desensitization of capsaicin-sensitive afferent neurons approximately with the same extension. Combination of adrenalectomy with the sensory desensitization profoundly potentiated the effect of sensory desensitization alone on indomethacin-induced gastric erosions: the mean gastric erosion area was increased approximately 10-fold. Corticosterone replacement completely prevented this profound effect of adrenalectomy. The results suggest a pivotal role of glucocorticoid hormones in the maintenance of gastric mucosal integrity in the case of impaired gastroprotective mechanisms provided by PGs and capsaicin-sensitive sensory neurons.
Collapse
Affiliation(s)
- P Bobryshev
- Laboratory of Experimental Endocrinology, Pavlov Institute of Physiology, Russian Academy of Sciences, nab. Makarova, 6, St. Petersburg 199034, Russia
| | | | | |
Collapse
|
54
|
Nakagiri A, Fukushima K, Kato S, Takeuchi K. Less irritative action of wine and Japanese sake in rat stomachs: a comparative study with ethanol. Dig Dis Sci 2006; 51:289-97. [PMID: 16534671 DOI: 10.1007/s10620-006-3127-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 12/03/2004] [Indexed: 12/09/2022]
Abstract
The ingestion of alcohol, especially in excess, causes acute gastric lesions and gastritis in humans, yet the mucosal irritative action of alcoholic beverages remains largely unknown. We examined the mucosal irritative action of whiskey, wine and Japanese sake in the rat stomach both ex vivo and in vitro, in comparison with ethanol. Under urethane anesthesia, a rat stomach was mounted in an ex vivo chamber, then superfused with saline, and the transmucosal potential difference (PD) was measured. After the basal PD had stabilized, the mucosa was exposed for 30 min to 2 ml of 15% ethanol, whiskey (containing 15% ethanol), white wine, or Japanese sake (the ethanol concentration of the latter two is 12-15%). In the in vitro study, rat epithelial cells (RGM1) were treated with the alcoholic beverages for 5 min, and the cell viability was determined with crystal violet. Ethanol or whiskey applied to the chamber caused a decrease in PD, while wine or Japanese sake did not. Histologically, surface epithelial damage was observed after exposure to both ethanol and whiskey, yet no damage was induced by white wine and Japanese sake. Likewise, both ethanol and whiskey markedly reduced the viability of RGM1 cells after 5 min of incubation, while neither white wine nor Japanese sake had any effect. In addition, supplementation of glucose significantly prevented the reduction in both PD and cell viability caused by ethanol. These results suggest that the mucosal irritative action of Japanese sake and white wine is much less pronounced than that of ethanol or whiskey and that the less damaging action of Japanese sake and white wine may be, at least partly, accounted for by the glucose contained in these alcoholic beverages.
Collapse
Affiliation(s)
- Akari Nakagiri
- Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi, Yamashina, Japan
| | | | | | | |
Collapse
|
55
|
Bevan S. Chapter 7 TRP Channels as Thermosensors. CURRENT TOPICS IN MEMBRANES 2006. [DOI: 10.1016/s1063-5823(06)57006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
56
|
Montrose MH, Akiba Y, Takeuchi K, Kaunitz JD. Gastroduodenal Mucosal Defense. PHYSIOLOGY OF THE GASTROINTESTINAL TRACT 2006:1259-1291. [DOI: 10.1016/b978-012088394-3/50053-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
57
|
Lo YC, Yang YC, Wu IC, Kuo FC, Liu CM, Wang HW, Kuo CH, Wu JY, Wu DC. Capsaicin-induced cell death in a human gastric adenocarcinoma cell line. World J Gastroenterol 2005; 11:6254-7. [PMID: 16419151 PMCID: PMC4320326 DOI: 10.3748/wjg.v11.i40.6254] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: Capsaicin, a pungent ingredient found in red pepper, has long been used in spices, food additives, and drugs. Cell death induced by the binding of capsaicin was examined in a human gastric adenocarcinoma cell line (AGS cells).
METHODS: By using XTT-based cytotoxicity assay, flow cytometry using the TUNEL method, and quantitation of DNA fragmentation, both cell death and DNA fragmentation were detected in AGS cells treated with capsaicin. By using Western blotting methods, capsaicin reduced the expression of Bcl-2, the antiapoptotic protein, in AGS cells in a concentration-dependent manner.
RESULTS: After incubation of AGS cells with capsaicin for 24 h, cell viability decreased significantly in a dose-dependent manner. After incubation of AGS cells with capsaicin for 24 h, apoptotic bodies also significantly increased, and were again correlated with the dose of capsaicin. When the concentration of capsaicin was 1 mmol/L, the amount of DNA fragments also increased. Similar results were also in the lower traces.
CONCLUSION: These results suggest that capsaicin-induced cell death might be via a Bcl-2 sensitive apoptotic pathway. Therefore, capsaicin might induce protection from gastric cancer.
Collapse
Affiliation(s)
- Yi-Ching Lo
- Department and Graduate Institute of Pharmacology, Kaohsiung Medical University, 807 Taiwan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Lyall V, Heck GL, Phan THT, Mummalaneni S, Malik SA, Vinnikova AK, Desimone JA. Ethanol modulates the VR-1 variant amiloride-insensitive salt taste receptor. II. Effect on chorda tympani salt responses. ACTA ACUST UNITED AC 2005; 125:587-600. [PMID: 15928404 PMCID: PMC2234074 DOI: 10.1085/jgp.200509264] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The effect of ethanol on the amiloride- and benzamil (Bz)-insensitive salt taste receptor was investigated by direct measurement of intracellular Na+ activity ([Na+]i) using fluorescence imaging in polarized fungiform taste receptor cells (TRCs) and by chorda tympani (CT) taste nerve recordings. CT responses to KCl and NaCl were recorded in Sprague-Dawley rats, and in wild-type (WT) and vanilloid receptor-1 (VR-1) knockout mice (KO). CT responses were monitored in the presence of Bz, a specific blocker of the epithelial Na+ channel (ENaC). CT responses were also recorded in the presence of agonists (resiniferatoxin and elevated temperature) and antagonists (capsazepine and SB-366791) of VR-1 that similarly modulate the Bz-insensitive VR-1 variant salt taste receptor. In the absence of mineral salts, ethanol induced a transient decrease in TRC volume and elicited only transient phasic CT responses. In the presence of mineral salts, ethanol increased the apical cation flux in TRCs without a change in volume, increased transepithelial electrical resistance across the tongue, and elicited CT responses that were similar to salt responses, consisting of both a phasic component and a sustained tonic component. At concentrations <50%, ethanol enhanced responses to KCl and NaCl, while at ethanol concentrations >50%, those CT responses were inhibited. Resiniferatoxin and elevated temperature increased the sensitivity of the CT response to ethanol in salt-containing media, and SB-366791 inhibited the effect of ethanol, resiniferatoxin, and elevated temperature on the CT responses to mineral salts. VR-1 KO mice demonstrated no Bz-insensitive CT response to NaCl and no sensitivity to ethanol. We conclude that ethanol increases salt taste sensitivity by its direct action on the Bz-insensitive VR-1 variant salt taste receptor.
Collapse
Affiliation(s)
- Vijay Lyall
- Department of Physiology, Division of Nephrology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | | | | | | | | | | | |
Collapse
|
59
|
Faussone-Pellegrini MS, Taddei A, Bizzoco E, Lazzeri M, Vannucchi MG, Bechi P. Distribution of the vanilloid (capsaicin) receptor type 1 in the human stomach. Histochem Cell Biol 2005; 124:61-8. [PMID: 16041554 DOI: 10.1007/s00418-005-0025-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2005] [Indexed: 02/08/2023]
Abstract
Vanilloid receptor type 1 (TRPV1) is expressed in a capsaicin-sensitive and peptide-containing sub-population of primary sensory nerves that in the rat stomach seems involved in regulation of chlorhydropeptic secretion and gastroprotection. Our aim was to identify which cell types express TRPV1 in the human stomach in order to gain a better insight in the role of this receptor in the regulation of HCl secretion. Immunohistochemistry, by using three different commercially available anti-capsaicin antibodies, in situ hybridisation and Western blot analysis were performed on fragments surgically obtained from the gastric body on the large curvature. TRPV1 labelling was found in the parietal cells at the level of intra-cytoplasmatic granules matching mitochondrial features and distribution. Immunolabelled neurons and nerve fibres were also seen, the latter numerous in the submucosa and mucosa and often ending close to the parietal cells. TRPV1 presence was confirmed by Western blot analysis and in situ hybridisation. TRPV1 presence in nerve structures and parietal cells suggests the possibility of a combined effect of both neuronal and epithelial TRPV1 on chlorhydropeptic secretion. The presumed TRPV1 mitochondrial location inside parietal cells is in favour of the existence of a local pathway of auto-regulation of HCl secretion. Therefore, TRPV1 might modulate chlorhydropeptic secretion in the human stomach through more complex pathways than previously thought.
Collapse
|
60
|
Kechagias S, Botella S, Petersson F, Borch K, Ericson AC. Expression of vanilloid receptor-1 in epithelial cells of human antral gastric mucosa. Scand J Gastroenterol 2005; 40:775-82. [PMID: 16118913 DOI: 10.1080/00365520510015782] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Capsaicin, which acts by binding to the vanilloid receptor-1 (VR1), has been shown to give protection against gastric mucosal injury and to enhance healing of gastric ulcers. Although VR1 has recently been reported to be present in non-neural tissues, it is primarily considered to be expressed in nociceptor sensory neurons of small diameter. The aim of the present study was to evaluate the distribution of VR1 immunoreactivity in the normal human gastric mucosa. MATERIALS AND METHODS Ten volunteers underwent gastroscopy and biopsies were obtained from the corpus and the antrum. The specimens were labelled immunohistochemically using polyclonal goat anti-VR1 and evaluated at the light- and electronmicroscopic level. Moreover, post-embedding immunogold labelling was performed and subsequently analysed at the electronmicroscopic level. RESULTS In the antrum, VR1 immunoreactivity was located in epithelial cells that fulfilled the criteria of endocrine cells of the "open type". These cells were located primarily in the neck region of the antral glands and the labelling was concentrated on the microvilli of these cells. At the ultrastructural level, round granulae with differences in electron density were identified in the basal compartment of the labelled cells. VR1 immunoreactivity was also identified in axon-like structures that were located in the lamina propria, often in close vicinity of vessels, in the corpus as well as in the antrum. CONCLUSIONS VR1-immunoreactivity was evident in antral epithelial cells exhibiting characteristics of endocrine-like cells. This may indicate that the gastroprotective effects of capsaicin, which hitherto have been attributed to primary afferent neurons, at least partly may be explained by an action on specific epithelial cells in the antrum.
Collapse
Affiliation(s)
- Stergios Kechagias
- Division of Internal Medicine, Department of Medicine and Care, University Hospital, Linköping, Sweden
| | | | | | | | | |
Collapse
|
61
|
Nagy I, Sántha P, Jancsó G, Urbán L. The role of the vanilloid (capsaicin) receptor (TRPV1) in physiology and pathology. Eur J Pharmacol 2005; 500:351-69. [PMID: 15464045 DOI: 10.1016/j.ejphar.2004.07.037] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 02/06/2023]
Abstract
The cloning of the vanilloid receptor 1 opened a floodgate for discoveries regarding the function of this complex molecule. It has been found that, in addition to heat, protons and vanilloids, this receptor also responds to various endogenous ligands. Furthermore, it has been also emerged that, through associations with other molecules, the vanilloid receptor 1 plays an important role in the integration of various stimuli and modulation of cellular excitability. Although, originally, the vanilloid receptor 1 was associated with nociceptive primary afferent fibres, it has been gradually revealed that it is broadly expressed in the brain, epidermis and visceral cells. The expression pattern of the vanilloid receptor 1 indicates that it could be involved in various physiological functions and in the pathomechanisms of diverse diseases. Here, we summarise the molecular, pharmacological and physiological characteristics, and putative functions, of the vanilloid receptor 1, and discuss the therapeutic potential of this molecule.
Collapse
Affiliation(s)
- István Nagy
- Department of Anaesthetics and Intensive Care, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, United Kingdom.
| | | | | | | |
Collapse
|
62
|
Lyall V, Heck GL, Phan THT, Mummalaneni S, Malik SA, Vinnikova AK, DeSimone JA. Ethanol modulates the VR-1 variant amiloride-insensitive salt taste receptor. I. Effect on TRC volume and Na+ flux. J Gen Physiol 2005; 125:569-85. [PMID: 15928403 PMCID: PMC2234079 DOI: 10.1085/jgp.200409213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 05/04/2005] [Indexed: 01/06/2023] Open
Abstract
The effect of ethanol on the amiloride- and benzamil (Bz)-insensitive salt taste receptor was investigated by the measurement of intracellular Na(+) activity ([Na(+)](i)) in polarized rat fungiform taste receptor cells (TRCs) using fluorescence imaging and by chorda tympani (CT) taste nerve recordings. CT responses were monitored during lingual stimulation with ethanol solutions containing NaCl or KCl. CT responses were recorded in the presence of Bz (a specific blocker of the epithelial Na(+) channel [ENaC]) or the vanilloid receptor-1 (VR-1) antagonists capsazepine or SB-366791, which also block the Bz-insensitive salt taste receptor, a VR-1 variant. CT responses were recorded at 23 degrees C or 42 degrees C (a temperature at which the VR-1 variant salt taste receptor activity is maximally enhanced). In the absence of permeable cations, ethanol induced a transient decrease in TRC volume, and stimulating the tongue with ethanol solutions without added salt elicited only transient phasic CT responses that were insensitive to elevated temperature or SB-366791. Preshrinking TRCs in vivo with hypertonic mannitol (0.5 M) attenuated the magnitude of the phasic CT response, indicating that in the absence of mineral salts, transient phasic CT responses are related to the ethanol-induced osmotic shrinkage of TRCs. In the presence of mineral salts, ethanol increased the Bz-insensitive apical cation flux in TRCs without a change in cell volume, increased transepithelial electrical resistance across the tongue, and elicited CT responses that were similar to salt responses, consisting of both a transient phasic component and a sustained tonic component. Ethanol increased the Bz-insensitive NaCl CT response. This effect was further enhanced by elevating the temperature from 23 degrees C to 42 degrees C, and was blocked by SB-366791. We conclude that in the presence of mineral salts, ethanol modulates the Bz-insensitive VR-1 variant salt taste receptor.
Collapse
Affiliation(s)
- Vijay Lyall
- Department of Physiology, Division of Nephrology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | | | | | | | | | | | |
Collapse
|
63
|
|
64
|
Stanoeva E, He W, De Kimpe N. Natural and synthetic cage compounds incorporating the 2,9,10-trioxatricyclo[4.3.1.03,8]decane type moiety. Bioorg Med Chem 2005; 13:17-28. [PMID: 15582448 DOI: 10.1016/j.bmc.2004.07.070] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Revised: 05/05/2004] [Accepted: 07/02/2004] [Indexed: 11/20/2022]
Abstract
The 2,9,10-trioxatricyclo[4.3.1.0(3,8)]decane moiety is a tetracyclic cage-like orthoester incorporated in the structure of a series of daphnane derivatives such as resiniferatoxin (RTX), kirkinine, synaptolepis factors, huratoxin etc., exhibiting various biological activities. The approaches to the preparation of cage-like orthoesters starting from partially acylated or unmodified 1,2,4-trihydroxycyclohexane moieties built onto natural as well as synthetic compounds are discussed. Orthoester derivatives of RTX analogs, Ceverathrum alkaloids, myoinositol and pyranoses are included. Stereochemical requirements to the formation of the orthoester unit are discussed. The biological activity of different compounds containing the cage-like orthoester structural fragment is given. The literature is reviewed till 2004.
Collapse
Affiliation(s)
- Elena Stanoeva
- Department of Organic Chemistry, Faculty of Agricultural and Applied Biological Sciences, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
65
|
|
66
|
Akiba Y, Kato S, Katsube KI, Nakamura M, Takeuchi K, Ishii H, Hibi T. Transient receptor potential vanilloid subfamily 1 expressed in pancreatic islet beta cells modulates insulin secretion in rats. Biochem Biophys Res Commun 2004; 321:219-25. [PMID: 15358238 DOI: 10.1016/j.bbrc.2004.06.149] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Indexed: 10/26/2022]
Abstract
Capsaicin-sensitive afferent neurons including transient receptor potential vanilloid subfamily 1, TRPV1, and neurohormonal peptides participate in the physiological regulation of pancreatic endocrine. However, the direct effect of capsaicin on insulin secretion remains unknown. Our present study showed that TRPV1 is expressed in islet beta cells as well as in neurons in rat pancreas, and also in rat beta cell lines, RIN and INS1. Capsaicin (10(-11)-10(-9) M) dose-dependently increased insulin secretion from RIN cells, and this effect was inhibited by either a TRPV1 inhibitor capsazepine or EDTA. Systemic capsaicin (10 mg/kg, s.c.) increased plasma insulin level 1 h after the treatment. We demonstrated for the first time that TRPV1 is functionally expressed in rat islet beta cells and plays a role in insulin secretion as a calcium channel. This study may account for the influences of capsaicin on the food intake and energy consumption as well as on the pathophysiological regulation of pancreatic endocrine.
Collapse
Affiliation(s)
- Yasutada Akiba
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
67
|
Amantini C, Mosca M, Lucciarini R, Perfumi M, Morrone S, Piccoli M, Santoni G. Distinct thymocyte subsets express the vanilloid receptor VR1 that mediates capsaicin-induced apoptotic cell death. Cell Death Differ 2004; 11:1342-56. [PMID: 15459754 DOI: 10.1038/sj.cdd.4401506] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Herein, we provide the first evidence on the capsaicin (CPS) receptor vanilloid receptor type-1 (VR1) by rat thymocytes, and its involvement in CPS-induced apoptosis. VR1 mRNA was identified by quantitative RT-PCR in CD5(+) thymocytes. By immunofluorescence and flow cytometry, we found that a substantial portion of CD5+ thymocytes, namely CD4+ and double negative (DN) cell subsets, express VR1 that was present on plasma membrane on discrete spots. By Western blot, VR1 protein was identified as a single band of 95 kDa. We also described that CPS could trigger two distinct pathways of thymocyte death, namely apoptosis and necrosis depending on the dose of CPS exposure. CPS-induced apoptosis involved intracellular free calcium (Ca2+) influx, phosphatidylserine exposure, mitochondrial permeability transmembrane pore (PTP) opening and mitochondrial transmembrane potential (Delta Psi m) dissipation leading to cytochrome c release, activation of caspase-9 and -3 and oligonucleosomal DNA fragmentation. VR1 was functionally implicated in these events as they were completely abrogated by the VR1 antagonist, capsazepine (CPZ). Finally, we demonstrated that VR1 expression on distinct thymocytes was associated with the selective ability of CPS to trigger DNA fragmentation in VR1+ CD4+ and DN thymocytes. Overall, our results suggest that the expression of VR1 on thymocytes may function as a sensor of harmful stimuli present in the thymic environment.
Collapse
Affiliation(s)
- C Amantini
- Department of Pharmacological Sciences and Experimental Medicine, University of Camerino, Camerino, Italy
| | | | | | | | | | | | | |
Collapse
|
68
|
Holzer P. TRPV1 and the gut: from a tasty receptor for a painful vanilloid to a key player in hyperalgesia. Eur J Pharmacol 2004; 500:231-41. [PMID: 15464036 DOI: 10.1016/j.ejphar.2004.07.028] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 12/26/2022]
Abstract
Capsaicin, the pungent ingredient in red pepper, has been used since ancient times as a spice, despite the burning sensation associated with its intake. More than 50 years ago, Nikolaus Jancso discovered that capsaicin can selectively stimulate nociceptive primary afferent neurons. The ensuing research established that the neuropharmacological properties of capsaicin are due to its activation of the transient receptor potential ion channel of the vanilloid type 1 (TRPV1). Expressed by primary afferent neurons innervating the gut and other organs, TRPV1 is gated not only by vanilloids such as capsaicin, but also by noxious heat, acidosis and intracellular lipid mediators such as anandamide and lipoxygenase products. Importantly, TRPV1 can be sensitized by acidosis and activation of various pro-algesic pathways. Upregulation of TRPV1 in inflammatory bowel disease and the beneficial effect of TRPV1 downregulation in functional dyspepsia and irritable bladder make this polymodal nociceptor an attractive target of novel therapies for chronic abdominal pain.
Collapse
Affiliation(s)
- Peter Holzer
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
69
|
Geppetti P, Trevisani M. Activation and sensitisation of the vanilloid receptor: role in gastrointestinal inflammation and function. Br J Pharmacol 2004; 141:1313-20. [PMID: 15051629 PMCID: PMC1574908 DOI: 10.1038/sj.bjp.0705768] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The exquisite specific excitatory and desensitising actions of capsaicin on a subpopulation of primary sensory neurons have been instrumental in identifying the roles of these neurons in nociception, reflex responses and neurogenic inflammation. Structure activity studies with capsaicin-like molecules have suggested that a "receptor" should mediate the effects of capsaicin on sensory neurons. The cloning of the vanilloid receptor-1 (VR1) has confirmed this hypothesis. VR1 (TRPV1) belongs to the transient receptor potential (TRP) family of channels, and its activation by various xenobiotics, noxious temperature, extracellular low pH and high concentration of certain lipid derivatives results in cation influx and sensory nerve terminal excitation. TRPV1 may dimerise or form tetramers or heteromers with PLC-gamma and TrkA or even with other TRPs. TRPV1 is markedly upregulated and/or "sensitised" under inflammatory conditions via protein kinase C-epsilon-, cAMP-dependent PK- and PLC-gamma-dependent pathways or by exposure to dietary agents as ethanol. TRPV1 is expressed on sensory neurons distributed in all the regions of the gastrointestinal tract in myenteric ganglia, muscle layer and mucosa. There is evidence of TRPV1 expression also in epithelial cells of the gastrointestinal tract. High expression of TRPV1 has been detected in several inflammatory diseases of the colon and ileum, whereas neuropeptides released upon sensory nerve stimulation triggered by TRPV1 activation seem to play a role in intestinal motility disorders. TRPV1 antagonists, which will soon be available for clinical testing, may undergo scrutiny for the treatment of inflammatory diseases of the gut.
Collapse
Affiliation(s)
- Pierangelo Geppetti
- Department of Critical Care Medicine and Surgery, Clinical Pharmacology Unit, University of Florence, Viale Pieraccini 6, Florence 50139, Italy.
| | | |
Collapse
|