51
|
Karila D, Freret T, Bouet V, Boulouard M, Dallemagne P, Rochais C. Therapeutic Potential of 5-HT6 Receptor Agonists. J Med Chem 2015; 58:7901-12. [PMID: 26099069 DOI: 10.1021/acs.jmedchem.5b00179] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Given its predominant expression in the central nervous system (CNS), 5-hydroxytryptamine (5-HT: serotonin) subtype 6 receptor (5-HT6R) has been considered as a valuable target for the development of CNS drugs with limited side effects. After 2 decades of intense research, numerous selective ligands have been developed to target this receptor; this holds potential interest for the treatment of neuropathological disorders. In fact, some agents (mainly antagonists) are currently undergoing clinical trial. More recently, a series of potent and selective agonists have been developed, and preclinical studies have been conducted that suggest the therapeutic interest of 5-HT6R agonists. This review details the medicinal chemistry of these agonists, highlights their activities, and discusses their potential for treating cognitive issues associated with Alzheimer's disease (AD), depression, or obesity. Surprisingly, some studies have shown that both 5-HT6R agonists and antagonists exert similar procognitive activities. This article summarizes the hypotheses that could explain this paradox.
Collapse
Affiliation(s)
- Delphine Karila
- UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Université de Caen Basse-Normandie , F-14032 Caen, France
| | - Thomas Freret
- UNICAEN, GMPc (Groupe Mémoire et Plasticité Comportementale), Université de Caen Basse-Normandie , F-14032 Caen, France
| | - Valentine Bouet
- UNICAEN, GMPc (Groupe Mémoire et Plasticité Comportementale), Université de Caen Basse-Normandie , F-14032 Caen, France
| | - Michel Boulouard
- UNICAEN, GMPc (Groupe Mémoire et Plasticité Comportementale), Université de Caen Basse-Normandie , F-14032 Caen, France
| | - Patrick Dallemagne
- UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Université de Caen Basse-Normandie , F-14032 Caen, France
| | - Christophe Rochais
- UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Université de Caen Basse-Normandie , F-14032 Caen, France
| |
Collapse
|
52
|
Borsini F, Bordi F, Poggi A, Di Matteo V. Effects of ST1936, a selective serotonin-6 agonist, on electrical activity of putative mesencephalic dopaminergic neurons in the rat brain. J Psychopharmacol 2015; 29:802-11. [PMID: 25735994 DOI: 10.1177/0269881115573804] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The serotonin-6 (5-HT6) receptor is the most recently discovered serotonin receptor, and it represents an increasingly promising target for improving cognition in both normal and disease states. Recently, a new selective 5-HT6 receptor agonist, 2-(5 chloro-2-methyl-1H-indol-3-yl)-N,N-dimethylethanamine (ST1936), with nanomolar affinity for 5-HT6 receptors was described. We performed in-vivo electrophysiological studies to investigate the physiological role of 5-HT6 receptors in the control of the function of the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA). Extracellular single-unit recordings were performed from putative dopamine-containing neurons in the SNc and VTA of anesthetised rats. In the SNc, acute systemic administration of ST1936 had no effects on basal firing activity of these dopamine neurons; however, in the VTA, ST1936 induced either dose-related increases (45% of cells) or decreases in basal activity of these dopaminergic neurons. Local application of ST1936 into the VTA caused excitation in all of the dopamine neurons, but had no effects on non-dopamine VTA neurons. Both effects of systemic and microiontophoretic ST1936 were completely reversed by the potent and selective 5-HT6 receptor antagonist 5-chloro-N-(4-methoxy-3-piperazin-1-ylphenyl)-3-methyl-2- benzothiophene-sulfonamide (SB271046). Systemic application of another 5-HT6 agonist, 2-(1-{6-chloroimidazo[2,1-b] [1,3]thiazole-5-sulfonyl}-1H-indol-3-yl)ethan-1-amine (WAY-181187), induced dose-dependent inhibition of these VTA dopaminergic neurons. ST1936 and WAY-181187 appear to have different effects on these VTA dopaminergic neurons, potentially due to different mechanisms of action or to the complexity of 5-HT6 receptor functions. Our data demonstrate the need for further investigations into the use of 5-HT6 receptor agonists to control cognitive disfunction, such as in schizophrenia and depression.
Collapse
Affiliation(s)
- Franco Borsini
- Sigma-Tau Industrie Farmaceutiche Riunite SpA, Pomezia, Roma, Italy
| | - Fabio Bordi
- Sigma-Tau Industrie Farmaceutiche Riunite SpA, Pomezia, Roma, Italy
| | - Andreina Poggi
- Fondazione 'Mario Negri' Sud, Santa Maria Imbaro, Chieti, Italy
| | | |
Collapse
|
53
|
Asaoka N, Nagayasu K, Nishitani N, Yamashiro M, Shirakawa H, Nakagawa T, Kaneko S. Olanzapine augments the effect of selective serotonin reuptake inhibitors by suppressing GABAergic inhibition via antagonism of 5-HT₆ receptors in the dorsal raphe nucleus. Neuropharmacology 2015; 95:261-8. [PMID: 25863120 DOI: 10.1016/j.neuropharm.2015.03.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 12/18/2022]
Abstract
The combination of the selective serotonin reuptake inhibitors (SSRIs) and atypical antipsychotic drugs shows better therapeutic efficacy than SSRI monotherapy in the treatment of depression. However, the underlying mechanisms responsible for the augmenting effects of olanzapine are not fully understood. Here, we report that olanzapine enhances the SSRI-induced increase in extracellular serotonin (5-HT) levels and antidepressant-like effects by inhibiting GABAergic neurons through 5-HT6 receptor antagonism in the dorsal raphe nucleus (DRN). In organotypic raphe slice cultures, treatment with olanzapine (1-100 μM) enhanced the increase in extracellular 5-HT levels in the presence of fluoxetine (10 μM) or citalopram (1 μM). The enhancing effect of olanzapine was not further augmented by the GABAA receptor antagonist bicuculline. Electrophysiological analysis revealed that olanzapine (50 μM) decreased the firing frequency of GABAergic neurons in acute DRN slices. Among many serotonergic agents, the 5-HT6 receptor antagonist SB399885 (1-100 μM) mimicked the effects of olanzapine by enhancing the SSRI-induced increase in extracellular 5-HT levels, which was not further augmented by bicuculline or olanzapine. SB399885 (50 μM) also decreased the firing frequency of GABAergic neurons in the DRN. In addition, an intraperitoneal administration of SB399885 (10 mg/kg) to mice significantly enhanced the antidepressant-like effect of a subeffective dose of citalopram (3 mg/kg) in the tail-suspension test. These results suggest that olanzapine decreases local inhibitory GABAergic tone in the DRN through antagonism of 5-HT6 receptors, thereby increasing the activity of at least part of serotonergic neurons, which may contribute to the augmentation of the efficacy of SSRIs.
Collapse
Affiliation(s)
- Nozomi Asaoka
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Naoya Nishitani
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Mayumi Yamashiro
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan.
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
54
|
Darmon M, Al Awabdh S, Emerit MB, Masson J. Insights into Serotonin Receptor Trafficking: Cell Membrane Targeting and Internalization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:97-126. [PMID: 26055056 DOI: 10.1016/bs.pmbts.2015.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Serotonin receptors (5-HTRs) mediate both central and peripheral control on numerous physiological functions such as sleep/wake cycle, thermoregulation, food intake, nociception, locomotion, sexual behavior, gastrointestinal motility, blood coagulation, and cardiovascular homeostasis. Six families of the G-protein-coupled receptors comprise most of serotonin receptors besides the conserved 5-HT3R Cys-loop type which belongs to the family of Cys-loop ligand-gated cation channel receptors. Many of these receptors are targets of pharmaceutical drugs, justifying the importance for elucidating their coupling, signaling and functioning. Recently, special interest has been focused on their trafficking inside cell lines or neurons in conjunction with their interaction with partner proteins. In this review, we describe the trafficking of 5-HTRs including their internalization, desensitization, or addressing to the plasma membrane depending on specific mechanisms which are peculiar for each class of serotonin receptor.
Collapse
Affiliation(s)
- Michèle Darmon
- INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France; Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Sana Al Awabdh
- INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France; Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Michel-Boris Emerit
- INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France; Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Justine Masson
- INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France; Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
55
|
NIROGI RAMAKRISHNAVS, BADANGE RAJESHKUMAR, KANDUKURI KIRANKUMAR, KHAGGA MUKKANTI. [3-[(1-Methylpiperidin-4-yl) methyl] arylsulfonyl]-1H-indoles: Synthesis, SAR and biological evaluation as a novel class of 5-HT6 Receptor Antagonists. J CHEM SCI 2015. [DOI: 10.1007/s12039-015-0800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
56
|
Oostland M, Buijink MR, Teunisse GM, von Oerthel L, Smidt MP, van Hooft JA. Distinct temporal expression of 5-HT(1A) and 5-HT(2A) receptors on cerebellar granule cells in mice. THE CEREBELLUM 2015; 13:491-500. [PMID: 24788088 PMCID: PMC4077297 DOI: 10.1007/s12311-014-0565-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Serotonin plays an important role of controlling the physiology of the cerebellum. However, serotonin receptor expression has not been fully studied in the developing cerebellum. We have recently shown that cerebellar granule cells transiently express 5-HT3 receptors. In the present study, we investigate expression of 5-HT1 and 5-HT2 receptors in the mouse cerebellum both during postnatal development and in juvenile mice. Here, we show for the first time that 5-HT1A and 5-HT2A receptors are present on cerebellar granule cells with a distinct temporal expression pattern: 5-HT1A receptors are expressed only during the first 2 weeks, while 5-HT2A receptor expression persists until at least 8 weeks after birth. Because of its prolonged expression pattern, we investigated the electrophysiological properties of the 5-HT2A receptor. 5-HT2A receptors expressed by cerebellar granule cells promote stability by reducing variability of the synaptic response, and they modulate the paired-pulse ratio of the parallel fibre-Purkinje cell synapse. Furthermore, pharmacological block of 5-HT2A receptors enhances short-term synaptic plasticity at the parallel fibre-Purkinje cell synapse. We thus show a novel role for serotonin in controlling function of the cerebellum via 5-HT2A receptors expressed by cerebellar granule cells.
Collapse
Affiliation(s)
- Marlies Oostland
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, P.O. box 94232, 1090 GE, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
57
|
Pehrson AL, Sanchez C. Altered γ-aminobutyric acid neurotransmission in major depressive disorder: a critical review of the supporting evidence and the influence of serotonergic antidepressants. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:603-24. [PMID: 25653499 PMCID: PMC4307650 DOI: 10.2147/dddt.s62912] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Evidence suggesting that central nervous system γ-aminobutyric acid (GABA) concentrations are reduced in patients with major depressive disorder (MDD) has been present since at least 1980, and this idea has recently gained support from more recent magnetic resonance spectroscopy data. These observations have led to the assumption that MDD’s underlying etiology is tied to an overall reduction in GABA-mediated inhibitory neurotransmission. In this paper, we review the mechanisms that govern GABA and glutamate concentrations in the brain, and provide a comprehensive and critical evaluation of the clinical data supporting reduced GABA neurotransmission in MDD. This review includes an evaluation of magnetic resonance spectroscopy data, as well as data on the expression and function of the GABA-synthesizing enzyme glutamic acid decarboxylase, GABA neuron-specific cell markers, such as parvalbumin, calretinin and calbindin, and the GABAA and GABAB receptors in clinical MDD populations. We explore a potential role for glial pathology in MDD-related reductions in GABA concentrations, and evidence of a connection between neurosteroids, GABA neurotransmission, and hormone-related mood disorders. Additionally, we investigate the effects of GABAergic pharmacological agents on mood, and demonstrate that these compounds have complex effects that do not universally support the idea that reduced GABA neurotransmission is at the root of MDD. Finally, we discuss the connections between serotonergic and GABAergic neurotransmission, and show that two serotonin-focused antidepressants – the selective serotonin-reuptake inhibitor fluoxetine and the multimodal antidepressant vortioxetine – modulate GABA neurotransmission in opposing ways, despite both being effective MDD treatments. Altogether, this review demonstrates that there are large gaps in our understanding of the relationship between GABA physiology and MDD, which must be remedied with more data from well-controlled empirical studies. In conclusion, this review suggests that the simplistic notion that MDD is caused by reduced GABA neurotransmission must be discarded in favor of a more nuanced and complex model of the role of inhibitory neurotransmission in MDD.
Collapse
Affiliation(s)
- Alan L Pehrson
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Paramus, NJ, USA
| | - Connie Sanchez
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Paramus, NJ, USA
| |
Collapse
|
58
|
Thur KE, Nelson AJD, Cassaday HJ. Ro 04-6790-induced cognitive enhancement: no effect in trace conditioning and novel object recognition procedures in adult male Wistar rats. Pharmacol Biochem Behav 2014; 127:42-8. [PMID: 25450117 PMCID: PMC4258611 DOI: 10.1016/j.pbb.2014.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/10/2014] [Accepted: 10/19/2014] [Indexed: 12/05/2022]
Abstract
The evidence for cognitively enhancing effects of 5-hydroxytryptamine6 (5-HT6) receptor antagonists such as Ro 04-6790 is inconsistent and seems to depend on the behavioral test variant in use. Trace conditioning holds promise as a behavioral assay for hippocampus-dependent working memory function. Accordingly, Experiment 1 assessed the effect of Ro 04-6790 (5 and 10mg/kg i.p.) on associating a noise conditioned stimulus paired with foot shock (unconditioned stimulus) at a 3 or 30s trace interval in adult male Wistar rats. Contextual conditioning was measured as suppression to the contextual cues provided by the experimental chambers and as suppression to a temporally extended light background stimulus which provided an experimental context. Experiment 2 assessed the effect of Ro 04-6790 (5 and 10mg/kg i.p.) on recognition memory as tested by the exploration of novel relative to familiar objects in an open arena. In Experiment 1, Ro 04-6790 (5 and 10mg/kg) was without effect on trace and contextual conditioning. In Experiment 2, there was no indication of the expected improvement under Ro 04-6790 at the same doses previously found to enhance recognition memory as measured in tests of novel object exploration. Thus, there was no evidence that treatment with the 5-HT6 receptor antagonist Ro 04-6790 acted as a cognitive enhancer in either trace conditioning or object recognition procedures. We cannot exclude the possibility that the experimental procedures used in the present study would have been sensitive to the cognitive enhancing effects of Ro 04-6790 in a different dose range, behavioral test variant, or in a different strain of rat. Nonetheless the drug treatment was not ineffective in that object exploration was reduced under 10mg/kg Ro 04-6790.
Collapse
Affiliation(s)
- K E Thur
- School of Psychology, University of Nottingham, Nottingham, UK
| | - A J D Nelson
- School of Psychology, University of Nottingham, Nottingham, UK
| | - H J Cassaday
- School of Psychology, University of Nottingham, Nottingham, UK.
| |
Collapse
|
59
|
Becker G, Colomb J, Sgambato-Faure V, Tremblay L, Billard T, Zimmer L. Preclinical evaluation of [18F]2FNQ1P as the first fluorinated serotonin 5-HT6 radioligand for PET imaging. Eur J Nucl Med Mol Imaging 2014; 42:495-502. [DOI: 10.1007/s00259-014-2936-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/03/2014] [Indexed: 10/24/2022]
|
60
|
Jastrzębska-Więsek M, Siwek A, Partyka A, Kubacka M, Mogilski S, Wasik A, Kołaczkowski M, Wesołowska A. Pharmacological evaluation of the anxiolytic-like effects of EMD 386088, a partial 5-HT6 receptor agonist, in the rat elevated plus-maze and Vogel conflict tests. Neuropharmacology 2014; 85:253-62. [DOI: 10.1016/j.neuropharm.2014.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/19/2014] [Accepted: 05/21/2014] [Indexed: 11/24/2022]
|
61
|
Kim HJ, Kang S, Kim HJ, Choi SH, Shin S, Lee HH, Rhim H, Shin KH. Effect of acute and chronic electroconvulsive shock on 5-hydroxytrypamine 6 receptor immunoreactivity in rat hippocampus. Exp Neurobiol 2014; 23:231-7. [PMID: 25258570 PMCID: PMC4174614 DOI: 10.5607/en.2014.23.3.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 11/30/2022] Open
Abstract
Electroconvulsive shock (ECS) induces not only an antidepressant effect but also adverse effects such as amnesia. One potential mechanism underlying both the antidepressant and amnesia effect of ECS may involve the regulation of serotonin (5-hydroxytryptamine) 6 (5-HT6) receptor, but less is known about the effects of acute ECS on the changes in 5-HT6 receptor expression in the hippocampus. In addition, as regulation of 5-HT receptor expression is influenced by the number of ECS treatment and by interval between ECS treatment and sacrifice, it is probable that magnitude and time-dependent changes in 5-HT6 receptor expression could be influenced by repeated ECS exposure. To explore this possibility, we observed and compared the changes of 5-HT6 receptor immunoreactivity (5-HT6 IR) in rat hippocampus at 1, 8, 24, or 72 h after the treatment with either a single ECS (acute ECS) or daily ECS for 10 days (chronic ECS). We found that acute ECS increased 5-HT6 IR in the CA1, CA3, and granule cell layer of hippocampus, reaching peak levels at 8 h and returning to basal levels 72 h later. The magnitude and time-dependent changes in 5-HT6 IR observed after acute ECS were not affected by chronic ECS. These results demonstrate that both acute and chronic ECS transiently increase the 5-HT6 IR in rat hippocampus, and suggest that the magnitude and time-dependent changes in 5-HT6 IR in the hippocampus appear not to be influenced by repeated ECS treatment.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul 136-705, Korea
| | - Seungwoo Kang
- Department of Pharmacology, Korea University College of Medicine, Seoul 136-705, Korea
| | - Hyun Ju Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul 136-705, Korea
| | - Sun-Hye Choi
- Department of Pharmacology, Korea University College of Medicine, Seoul 136-705, Korea
| | - Seungkeun Shin
- Department of Pharmacology, Korea University College of Medicine, Seoul 136-705, Korea
| | - Hyung Ha Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul 136-705, Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Kyung Ho Shin
- Department of Pharmacology, Korea University College of Medicine, Seoul 136-705, Korea
| |
Collapse
|
62
|
Wang L, Lv Y, Deng W, Peng X, Xiao Z, Xi Z, Chen G, Wang X. 5-HT6 Receptor Recruitment of mTOR Modulates Seizure Activity in Epilepsy. Mol Neurobiol 2014; 51:1292-9. [DOI: 10.1007/s12035-014-8806-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/30/2014] [Indexed: 11/29/2022]
|
63
|
Benhamú B, Martín-Fontecha M, Vázquez-Villa H, Pardo L, López-Rodríguez ML. Serotonin 5-HT6 Receptor Antagonists for the Treatment of Cognitive Deficiency in Alzheimer’s Disease. J Med Chem 2014; 57:7160-81. [DOI: 10.1021/jm5003952] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Bellinda Benhamú
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Mar Martín-Fontecha
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Henar Vázquez-Villa
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Leonardo Pardo
- Laboratori
de Medicina Computacional, Unitat de Bioestadística, Facultat
de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | - María L. López-Rodríguez
- Departamento
de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|
64
|
Miguelez C, Morera-Herreras T, Torrecilla M, Ruiz-Ortega JA, Ugedo L. Interaction between the 5-HT system and the basal ganglia: functional implication and therapeutic perspective in Parkinson's disease. Front Neural Circuits 2014; 8:21. [PMID: 24672433 PMCID: PMC3955837 DOI: 10.3389/fncir.2014.00021] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/27/2014] [Indexed: 01/15/2023] Open
Abstract
The neurotransmitter serotonin (5-HT) has a multifaceted function in the modulation of information processing through the activation of multiple receptor families, including G-protein-coupled receptor subtypes (5-HT1, 5-HT2, 5-HT4-7) and ligand-gated ion channels (5-HT3). The largest population of serotonergic neurons is located in the midbrain, specifically in the raphe nuclei. Although the medial and dorsal raphe nucleus (DRN) share common projecting areas, in the basal ganglia (BG) nuclei serotonergic innervations come mainly from the DRN. The BG are a highly organized network of subcortical nuclei composed of the striatum (caudate and putamen), subthalamic nucleus (STN), internal and external globus pallidus (or entopeduncular nucleus in rodents, GPi/EP and GPe) and substantia nigra (pars compacta, SNc, and pars reticulata, SNr). The BG are part of the cortico-BG-thalamic circuits, which play a role in many functions like motor control, emotion, and cognition and are critically involved in diseases such as Parkinson's disease (PD). This review provides an overview of serotonergic modulation of the BG at the functional level and a discussion of how this interaction may be relevant to treating PD and the motor complications induced by chronic treatment with L-DOPA.
Collapse
Affiliation(s)
- Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain ; Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU Vitoria-Gasteiz, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| | - Maria Torrecilla
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| | - Jose A Ruiz-Ortega
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain ; Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU Vitoria-Gasteiz, Spain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| |
Collapse
|
65
|
Geldenhuys WJ, Van der Schyf CJ. The serotonin 5-HT6receptor: a viable drug target for treating cognitive deficits in Alzheimer’s disease. Expert Rev Neurother 2014; 9:1073-85. [DOI: 10.1586/ern.09.51] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
66
|
Fijał K, Popik P, Nikiforuk A. Co-administration of 5-HT6 receptor antagonists with clozapine, risperidone, and a 5-HT2A receptor antagonist: effects on prepulse inhibition in rats. Psychopharmacology (Berl) 2014; 231:269-81. [PMID: 23954911 PMCID: PMC3889519 DOI: 10.1007/s00213-013-3234-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 07/28/2013] [Indexed: 11/29/2022]
Abstract
RATIONALE Some novel antipsychotics manifest antagonistic activity at serotonin-6 receptors; however, little is known about the role of 5-HT6 receptors in ameliorating sensory gating deficits. OBJECTIVE We evaluated the effects of the combined administration of the 5-HT6 receptor antagonist SB 271046 with clozapine and haloperidol, as well as the co-administration of SB 271046 or SB 399885 with risperidone and the 5-HT2A antagonist M100907, to overcome the deficits induced by MK-801 in the prepulse inhibition (PPI) test. RESULTS MK-801 (0.1 mg/kg) produced reliable PPI deficits. Administration of SB 271046 (6 and 9 mg/kg), SB 399885 (3 and 6 mg/kg), clozapine (2.5 mg/kg), haloperidol (0.1 and 0.2 mg/kg), risperidone (0.25-1 mg/kg), and M100907 (0.5 and 1 mg/kg) did not affect the MK-801-induced deficits, but the administration of clozapine (5 mg/kg) did reverse the effects of MK-801. In MK-801-treated rats, the co-administration of inactive doses of clozapine (2.5 mg/kg) and SB 271046 (6 mg/kg) reversed the PPI impairments compared to animals that were administered inactive doses of either clozapine or SB 271046 alone. Co-administration of risperidone (1 mg/kg) or M100907 (0.5 mg/kg) with SB 271046 (6 mg/kg) or SB 399885 (3 mg/kg) also attenuated the MK-801-induced PPI deficits. In contrast, joint administration of haloperidol and SB 271046 had no effect on the PPI deficit. CONCLUSION The present results suggest that the 5-HT6 receptors may play adjunctive roles in antipsychotic drug action, and that the combination of 5-HT2A and 5-HT6 antagonism may represent an important element in the pharmacological profile of antipsychotic drugs.
Collapse
Affiliation(s)
- Katarzyna Fijał
- Department of Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Piotr Popik
- Department of Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Agnieszka Nikiforuk
- Department of Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| |
Collapse
|
67
|
Why does serotonergic activity drastically decrease during REM sleep? Med Hypotheses 2013; 81:734-7. [DOI: 10.1016/j.mehy.2013.07.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/19/2013] [Accepted: 07/21/2013] [Indexed: 11/20/2022]
|
68
|
Oostland M, van Hooft J. The role of serotonin in cerebellar development. Neuroscience 2013; 248:201-12. [DOI: 10.1016/j.neuroscience.2013.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 01/09/2023]
|
69
|
Sato K. Disruption of spine homeostasis causes depression. Med Hypotheses 2013; 81:5-9. [DOI: 10.1016/j.mehy.2013.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/12/2013] [Accepted: 03/17/2013] [Indexed: 12/18/2022]
|
70
|
The serotonergic system in motor and non-motor manifestations of Parkinson’s disease. Exp Brain Res 2013; 230:463-76. [DOI: 10.1007/s00221-013-3621-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/10/2013] [Indexed: 12/16/2022]
|
71
|
Vitalis T, Ansorge MS, Dayer AG. Serotonin homeostasis and serotonin receptors as actors of cortical construction: special attention to the 5-HT3A and 5-HT6 receptor subtypes. Front Cell Neurosci 2013; 7:93. [PMID: 23801939 PMCID: PMC3686152 DOI: 10.3389/fncel.2013.00093] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/27/2013] [Indexed: 12/15/2022] Open
Abstract
Cortical circuits control higher-order cognitive processes and their function is highly dependent on their structure that emerges during development. The construction of cortical circuits involves the coordinated interplay between different types of cellular processes such as proliferation, migration, and differentiation of neural and glial cell subtypes. Among the multiple factors that regulate the assembly of cortical circuits, 5-HT is an important developmental signal that impacts on a broad diversity of cellular processes. 5-HT is detected at the onset of embryonic telencephalic formation and a variety of serotonergic receptors are dynamically expressed in the embryonic developing cortex in a region and cell-type specific manner. Among these receptors, the ionotropic 5-HT3A receptor and the metabotropic 5-HT6 receptor have recently been identified as novel serotonergic targets regulating different aspects of cortical construction including neuronal migration and dendritic differentiation. In this review, we focus on the developmental impact of serotonergic systems on the construction of cortical circuits and discuss their potential role in programming risk for human psychiatric disorders.
Collapse
Affiliation(s)
- Tania Vitalis
- Laboratoire de Neurobiologie, ESPCI ParisTech, Centre National de la Recherche Scientifique-UMR 7637 Paris, France
| | | | | |
Collapse
|
72
|
Maejima T, Masseck OA, Mark MD, Herlitze S. Modulation of firing and synaptic transmission of serotonergic neurons by intrinsic G protein-coupled receptors and ion channels. Front Integr Neurosci 2013; 7:40. [PMID: 23734105 PMCID: PMC3661940 DOI: 10.3389/fnint.2013.00040] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/03/2013] [Indexed: 11/13/2022] Open
Abstract
Serotonergic neurons project to virtually all regions of the central nervous system and are consequently involved in many critical physiological functions such as mood, sexual behavior, feeding, sleep/wake cycle, memory, cognition, blood pressure regulation, breathing, and reproductive success. Therefore, serotonin release and serotonergic neuronal activity have to be precisely controlled and modulated by interacting brain circuits to adapt to specific emotional and environmental states. We will review the current knowledge about G protein-coupled receptors and ion channels involved in the regulation of serotonergic system, how their regulation is modulating the intrinsic activity of serotonergic neurons and its transmitter release and will discuss the latest methods for controlling the modulation of serotonin release and intracellular signaling in serotonergic neurons in vitro and in vivo.
Collapse
Affiliation(s)
- Takashi Maejima
- Department of Zoology and Neurobiology, Ruhr-University Bochum Bochum, Germany
| | | | | | | |
Collapse
|
73
|
Monti JM, Jantos H, Schechter LE. The effects of systemic and local microinjection into the central nervous system of the selective serotonin 5-HT6 receptor agonist WAY-208466 on sleep and wakefulness in the rat. Behav Brain Res 2013; 249:65-74. [PMID: 23624323 DOI: 10.1016/j.bbr.2013.04.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 04/17/2013] [Indexed: 11/25/2022]
Abstract
The effects of WAY-208466, a selective 5-HT6 receptor agonist on spontaneous sleep were studied in adult rats implanted for chronic sleep recordings. Systemic administration of WAY-208466 during the light phase of the light-dark cycle significantly increased wakefulness (W) and reduced slow wave sleep (SWS), REM sleep (REMS) and the number of REMS periods. Pretreatment with the selective 5-HT6 receptor antagonist RO-399885 prevented the effects of the 5-HT6 receptor agonist on W, SWS and REMS. Direct infusion of WAY-208466 into the dorsal raphe nucleus, locus coeruleus, basal forebrain (horizontal limb of the diagonal band of Broca) or laterodorsal tegmental nucleus specifically decreased REMS without significantly altering W or SWS. In all instances the REMS suppression was dependent upon the reduction of REMS periods. The finding that WAY-208466 increases extracellular γ-aminobutyric acid (GABA) levels in the rat frontal cortex tends to suggest that the neurotransmitter could be involved in the 5-HT6 receptor agonist-induced disruption of the sleep-wake cycle. However, further studies are needed to resolve this issue.
Collapse
Affiliation(s)
- Jaime M Monti
- Department of Pharmacology and Therapeutics, School of Medicine Clinics Hospital. Montevideo 11600, Uruguay.
| | | | | |
Collapse
|
74
|
Abstract
During the past 20 years, the 5-HT6 receptor has received increasing attention and become a promising target for improving cognition. Several studies with structurally different compounds have shown that not only antagonists but also 5-HT6 receptor agonists improve learning and memory in animal models. A large number of publications describing the development of ligands for this receptor have come to light, and it is now quite evident that 5-HT6 receptors have great pharmaceutical potential in terms of related patents. However, 5-HT6 receptor functionality is much more complex than initially defined. According to the existing data, different cellular pathways may be activated, depending on the drug being used. This article reviews preclinical and clinical evidence of the effects that 5-HT6 receptor compounds have on cognition. In addition, the biochemical and neurochemical mechanisms of action through which 5-HT6 receptor compounds can influence cognition will be described. Overall, several 5-HT6-targeted compounds can reasonably be regarded as powerful drug candidates for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- María Javier Ramírez
- Department of Pharmacology and Department of Cellular and Molecular Neuropharmacology, Division of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Irunlarrea 1, 31080 Pamplona, Spain
| |
Collapse
|
75
|
Celada P, Puig MV, Artigas F. Serotonin modulation of cortical neurons and networks. Front Integr Neurosci 2013; 7:25. [PMID: 23626526 PMCID: PMC3630391 DOI: 10.3389/fnint.2013.00025] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/01/2013] [Indexed: 01/20/2023] Open
Abstract
The serotonergic pathways originating in the dorsal and median raphe nuclei (DR and MnR, respectively) are critically involved in cortical function. Serotonin (5-HT), acting on postsynaptic and presynaptic receptors, is involved in cognition, mood, impulse control and motor functions by (1) modulating the activity of different neuronal types, and (2) varying the release of other neurotransmitters, such as glutamate, GABA, acetylcholine and dopamine. Also, 5-HT seems to play an important role in cortical development. Of all cortical regions, the frontal lobe is the area most enriched in serotonergic axons and 5-HT receptors. 5-HT and selective receptor agonists modulate the excitability of cortical neurons and their discharge rate through the activation of several receptor subtypes, of which the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT3 subtypes play a major role. Little is known, however, on the role of other excitatory receptors moderately expressed in cortical areas, such as 5-HT2C, 5-HT4, 5-HT6, and 5-HT7. In vitro and in vivo studies suggest that 5-HT1A and 5-HT2A receptors are key players and exert opposite effects on the activity of pyramidal neurons in the medial prefrontal cortex (mPFC). The activation of 5-HT1A receptors in mPFC hyperpolarizes pyramidal neurons whereas that of 5-HT2A receptors results in neuronal depolarization, reduction of the afterhyperpolarization and increase of excitatory postsynaptic currents (EPSCs) and of discharge rate. 5-HT can also stimulate excitatory (5-HT2A and 5-HT3) and inhibitory (5-HT1A) receptors in GABA interneurons to modulate synaptic GABA inputs onto pyramidal neurons. Likewise, the pharmacological manipulation of various 5-HT receptors alters oscillatory activity in PFC, suggesting that 5-HT is also involved in the control of cortical network activity. A better understanding of the actions of 5-HT in PFC may help to develop treatments for mood and cognitive disorders associated with an abnormal function of the frontal lobe.
Collapse
Affiliation(s)
- Pau Celada
- Department of Neurochemistry and Neuropharmacology, Institut d' Investigacions Biomèdiques de Barcelona (CSIC), IDIBAPS Barcelona, Spain ; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) Madrid, Spain
| | | | | |
Collapse
|
76
|
Timurkaan S, Karan M, Aydın A, Gür F. Immunohistochemical localization of serotonin in the superior colliculus of porcupine (Hystrix cristata). QSCIENCE CONNECT 2013. [DOI: 10.5339/connect.2013.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
77
|
Hayat F, Yoo E, Rhim H, ParkChoo HY. Synthesis and Inhibition Effects on 5-HT6Receptor of Benzothiazole Derivatives. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.2.495] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
78
|
Ly S, Pishdari B, Lok LL, Hajos M, Kocsis B. Activation of 5-HT6 receptors modulates sleep-wake activity and hippocampal theta oscillation. ACS Chem Neurosci 2013; 4:191-9. [PMID: 23336058 DOI: 10.1021/cn300184t] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/10/2012] [Indexed: 01/20/2023] Open
Abstract
The modulatory role of 5-HT neurons and a number of different 5-HT receptor subtypes has been well documented in the regulation of sleep-wake cycles and hippocampal activity. A high level of 5-HT(6) receptor expression is present in the rat hippocampus. Further, hippocampal function has been shown to be modulated by both 5-HT(6) agonists and antagonists. In the current study, the potential involvement of 5-HT(6) receptors in the control of hippocampal theta rhythms and sleep-wake cycles has been investigated. Hippocampal activity was recorded by intracranial hippocampal electrodes both in anesthetized (n = 22) and in freely moving rats (n = 9). Theta rhythm was monitored in different sleep-wake states in freely moving rats and was elicited by stimulation of the brainstem reticular formation under anesthesia. Changes in theta frequency and power were analyzed before and after injection of the 5-HT(6) antagonist (SAM-531) and the 5-HT(6) agonist (EMD386088). In freely moving rats, EMD386088 suppressed sleep for several hours and significantly decreased theta peak frequency, while, in anesthetized rats, EMD386088 had no effect on theta power but significantly decreased theta frequency, which could be blocked by coadministration of SAM-531. SAM-531 alone did not change sleep-wake patterns and had no effect on theta parameters in both unanesthetized and anesthetized rats. Decreases in theta frequency induced by the 5-HT(6) receptor agonist correspond to previously described electrophysiological patterns shared by all anxiolytic drugs, and it is in line with its behavioral anxiolytic profile. The 5-HT(6) antagonist, however, failed to potentiate theta power, which is characteristic of many pro-cognitive substances, indicating that 5-HT(6) receptors might not tonically modulate hippocampal oscillations and sleep-wake patterns.
Collapse
Affiliation(s)
- Susanna Ly
- Department of Psychiatry, Beth Israel Deaconess
Medical Center, Harvard Medical School,
Boston, Massachusetts, United States
| | - Bano Pishdari
- Department of Psychiatry, Beth Israel Deaconess
Medical Center, Harvard Medical School,
Boston, Massachusetts, United States
| | - Ling Ling Lok
- Department of Psychiatry, Beth Israel Deaconess
Medical Center, Harvard Medical School,
Boston, Massachusetts, United States
| | - Mihaly Hajos
- Translational Neuropharmacology, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut,
United States
| | - Bernat Kocsis
- Department of Psychiatry, Beth Israel Deaconess
Medical Center, Harvard Medical School,
Boston, Massachusetts, United States
| |
Collapse
|
79
|
The role of the serotonergic system at the interface of aggression and suicide. Neuroscience 2013; 236:160-85. [PMID: 23333677 DOI: 10.1016/j.neuroscience.2013.01.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/01/2013] [Accepted: 01/05/2013] [Indexed: 02/07/2023]
Abstract
Alterations in serotonin (5-HT) neurochemistry have been implicated in the aetiology of all major neuropsychiatric disorders, ranging from schizophrenia to mood and anxiety-spectrum disorders. This review will focus on the multifaceted implications of 5-HT-ergic dysfunctions in the pathophysiology of aggressive and suicidal behaviours. After a brief overview of the anatomical distribution of the 5-HT-ergic system in the key brain areas that govern aggression and suicidal behaviours, the implication of 5-HT markers (5-HT receptors, transporter as well as synthetic and metabolic enzymes) in these conditions is discussed. In this regard, particular emphasis is placed on the integration of pharmacological and genetic evidence from animal studies with the findings of human experimental and genetic association studies. Traditional views postulated an inverse relationship between 5-HT and aggression and suicidal behaviours; however, ample evidence has shown that this perspective may be overly simplistic, and that such pathological manifestations may reflect alterations in 5-HT homoeostasis due to the interaction of genetic, environmental and gender-related factors, particularly during early critical developmental stages. The development of animal models that may capture the complexity of such interactions promises to afford a powerful tool to elucidate the pathophysiology of impulsive aggression and suicidability, and identify new effective therapies for these conditions.
Collapse
|
80
|
Marazziti D, Baroni S, Pirone A, Giannaccini G, Betti L, Testa G, Schmid L, Palego L, Borsini F, Bordi F, Piano I, Gargini C, Castagna M, Catena-Dell'osso M, Lucacchini A. Serotonin receptor of type 6 (5-HT6) in human prefrontal cortex and hippocampus post-mortem: an immunohistochemical and immunofluorescence study. Neurochem Int 2012; 62:182-8. [PMID: 23219521 DOI: 10.1016/j.neuint.2012.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/20/2012] [Accepted: 11/25/2012] [Indexed: 10/27/2022]
Abstract
Given the paucity of data on the distribution of serotonin (5-HT) receptors of type 6 (5-HT(6)) in the human brain, the aim of this study was to investigate their distribution in postmortem human prefrontal cortex, striatum and hippocampus by either immunohistochemical or immunofluorescence techniques. The brain samples were obtained from 6 subjects who had died for causes not involving primarily or secondarily the CNS. The 5-HT(6) receptor distribution was explored by the [(125)I]SB-258585 binding to brain membranes followed by immunohistochemical and immunofluorescence evaluations. A specific [(125)I]SB-258585 binding was detected in all the regions under investigation, whilst the content in the hippocampus and cortex being about 10-30 times lower than in the striatum. Immunohistochemistry and double-label immunofluorescence microscopy experiments, carried out in the prefrontal cortex and hippocampus only, since data in the striatum were already published, showed the presence of 5-HT(6) receptors in both pyramidal and glial cells of prefrontal cortex, while positive cells were mainly pyramidal neurons in the hippocampus. The heterogeneous distribution of 5-HT(6) receptors provides a preliminary explanation of how they might regulate different functions in different brain areas, such as, perhaps, brain trophism in the cortex and neuronal firing in the hippocampus. This study, taking into account all the limitations due to the postmortem model used, represents the starting point to explore the 5-HT(6) receptor functionality and its sub-cellular distribution.
Collapse
Affiliation(s)
- Donatella Marazziti
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, University of Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Nirogi RV, Badange R, Kambhampati R, Chindhe A, Deshpande AD, Tiriveedhi V, Kandikere V, Muddana N, Abraham R, Khagga M. Design, synthesis and pharmacological evaluation of 4-(piperazin-1-yl methyl)-N1-arylsulfonyl indole derivatives as 5-HT6 receptor ligands. Bioorg Med Chem Lett 2012; 22:7431-5. [DOI: 10.1016/j.bmcl.2012.10.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/18/2012] [Accepted: 10/11/2012] [Indexed: 10/27/2022]
|
82
|
Valentini V, Piras G, De Luca MA, Perra V, Bordi F, Borsini F, Frau R, Di Chiara G. Evidence for a role of a dopamine/5-HT6 receptor interaction in cocaine reinforcement. Neuropharmacology 2012; 65:58-64. [PMID: 22982249 DOI: 10.1016/j.neuropharm.2012.08.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 11/29/2022]
Abstract
The putative 5-HT6 receptor agonist ST1936 has been shown to increase extracellular dopamine (DA) in the n.accumbens (NAc) shell and in the medial prefrontal cortex (PFCX). These observations suggest that 5-HT6 receptors modulate DA transmission in mesolimbic and mesocortical terminal DA areas. To investigate the behavioral counterpart of this interaction we studied in rats 1) the ability of ST1936 to maintain i.v. self-administration in fixed ratio (FR) and progressive ratio (PR) schedules of reinforcement; 2) the effect of 5-HT6 receptor blockade on cocaine stimulated overflow of DA in dialysates from the PFCX and from the NAc shell and on cocaine i.v. self-administration. ST1936 was i.v. self-administered at unitary doses of 0.5-1 mg/kg on an FR1 and PR schedule of reinforcement, with breaking point of about 4. Pretreatment with the 5-HT6 antagonist SB271046 reduced by about 80% responding for ST1936. SB271046 also reduced cocaine-induced increase of dialysate DA in the NAc shell but not in the PFCX and impaired i.v. cocaine self-administration. These observations indicate that ST1936 behaves as a weak reinforcer and suggest that 5-HT6 receptors play a role in cocaine reinforcement via their facilitatory interaction with DA projections to the NAc shell. This novel 5-HT/DA interaction might provide the basis for a new pharmacotherapeutic strategy of cocaine addiction.
Collapse
Affiliation(s)
- V Valentini
- Department of Biological Sciences, University of Cagliari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Kobayashi K, Haneda E, Higuchi M, Suhara T, Suzuki H. Chronic fluoxetine selectively upregulates dopamine D₁-like receptors in the hippocampus. Neuropsychopharmacology 2012; 37:1500-8. [PMID: 22278095 PMCID: PMC3327854 DOI: 10.1038/npp.2011.335] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The dentate gyrus of the hippocampus has been implicated in mechanisms of action of selective serotonin reuptake inhibitors (SSRIs). We have recently demonstrated that the SSRI fluoxetine can reverse the state of maturation of the adult dentate granule cells and enhances serotonin 5-HT₄ receptor-mediated synaptic potentiation at the synapses formed by their mossy fiber axons. Here, we show that fluoxetine can induce long-lasting enhancement of dopaminergic modulation at the mossy fiber synapse. Synaptic responses arising from the mossy fiber-CA3 pyramidal cell synapse were recorded using acute mouse hippocampal slices. Dopamine potentiates mossy fiber synaptic transmission by activating D₁-like receptors. Chronic fluoxetine treatment induced a prominent increase in the magnitude of dopamine-induced synaptic potentiation, and this effect was maintained at least up to 1 month after withdrawal of fluoxetine. Quantitative autoradiography revealed that binding of the D₁-like receptor ligand [³H]SCH23390 was selectively increased in the dentate gyrus and along the mossy fiber in fluoxetine-treated mice. However, binding of the 5-HT₄ receptor ligand [³H]GR113808 was not significantly changed. These results suggest that chronic fluoxetine enhanced the dopaminergic modulation at least in part by upregulating expression of D₁-like receptors, while the enhanced serotonergic modulation may be mediated by modifications of downstream signaling pathways. These enhanced monoaminergic modulations would greatly increase excitatory drive to the hippocampal circuit through the dentate gyrus. The highly localized upregulation of D₁-like receptors further supports the importance of the dentate gyrus in the mechanism of action of SSRIs.
Collapse
Affiliation(s)
- Katsunori Kobayashi
- Department of Pharmacology, Nippon Medical School, Sendagi, Bunkyo-ku, Tokyo, Japan.
| | - Eisuke Haneda
- Department of Pharmacology, Nippon Medical School, Sendagi, Bunkyo-ku, Tokyo, Japan
| | - Makoto Higuchi
- Molecular Neuroimaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba, Japan
| | - Tetsuya Suhara
- Molecular Neuroimaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Nippon Medical School, Sendagi, Bunkyo-ku, Tokyo, Japan,Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Saitama, Japan
| |
Collapse
|
84
|
Synthesis and biological evaluation of benzoisothiazole derivatives possessing N,N-dimethylformimidamide group as 5-HT₆ receptor antagonists. Bioorg Med Chem 2012; 20:2707-12. [PMID: 22405919 DOI: 10.1016/j.bmc.2012.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/07/2012] [Accepted: 02/07/2012] [Indexed: 11/23/2022]
Abstract
A series of novel N,N-dimethyl-N'-(5-(Ar-sulfonamido) benzo[d]isothiazol-3-yl)formimidamides was designed and synthesized as 5-HT(6) ligands. Here N,N-dimethyl formimidamides was used as a replacement for an aminoethyl moiety. In vitro functional assays demonstrated compounds 9b and 9i significantly inhibited the 5-HT-induced Ca(2+) increases (9b; IC(50)=0.36 μM and 9i; IC(50)=0.44 μM), indicating that 9b and 9i were potent 5-HT(6) receptor antagonists. Compounds 9i also showed good selectivity on the 5-HT(6) over 5-HT(4) and 5-HT(7) receptors.
Collapse
|
85
|
Gerber R, Oberholzer M, Frech CM. Cyanation of Aryl Bromides with K4[Fe(CN)6] Catalyzed by Dichloro[bis{1-(dicyclohexylphosphanyl)piperidine}]palladium, a Molecular Source of Nanoparticles, and the Reactions Involved in the Catalyst-Deactivation Processes. Chemistry 2012; 18:2978-86. [PMID: 22298440 DOI: 10.1002/chem.201102936] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Indexed: 11/12/2022]
Affiliation(s)
- Roman Gerber
- Department of Inorganic Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | | | | |
Collapse
|
86
|
Tripathy R, McHugh RJ, Bacon ER, Salvino JM, Morton GC, Aimone LD, Huang Z, Mathiasen JR, DiCamillo A, Huffman MJ, McKenna BA, Kopec K, Lu LD, Qian J, Angeles TS, Connors T, Spais C, Holskin B, Duzic E, Schaffhauser H, Rossé GC. Discovery of 7-arylsulfonyl-1,2,3,4, 4a,9a-hexahydro-benzo[4,5]furo[2,3-c]pyridines: Identification of a potent and selective 5-HT6 receptor antagonist showing activity in rat social recognition test. Bioorg Med Chem Lett 2012; 22:1421-6. [DOI: 10.1016/j.bmcl.2011.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 01/01/2023]
|
87
|
Witten L, Bang-Andersen B, Nielsen SM, Miller S, Christoffersen CT, Stensbøl TB, Brennum LT, Arnt J. Characterization of [3H]Lu AE60157 ([3H]8-(4-methylpiperazin-1-yl)-3-phenylsulfonylquinoline) binding to 5-hydroxytryptamine6 (5-HT6) receptors in vivo. Eur J Pharmacol 2012; 676:6-11. [DOI: 10.1016/j.ejphar.2011.11.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 11/06/2011] [Accepted: 11/10/2011] [Indexed: 10/14/2022]
|
88
|
Distribution of Serotonin Receptor of Type 6 (5-HT6) in Human Brain Post-mortem. A Pharmacology, Autoradiography and Immunohistochemistry Study. Neurochem Res 2012; 37:920-7. [DOI: 10.1007/s11064-011-0684-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 12/14/2011] [Accepted: 12/21/2011] [Indexed: 11/25/2022]
|
89
|
Pratt WE, Schall MA, Choi E. Selective serotonin receptor stimulation of the medial nucleus accumbens differentially affects appetitive motivation for food on a progressive ratio schedule of reinforcement. Neurosci Lett 2012; 511:84-8. [PMID: 22306095 DOI: 10.1016/j.neulet.2012.01.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 11/19/2022]
Abstract
Previously, we reported that stimulation of selective serotonin (5-HT) receptor subtypes in the nucleus accumbens shell differentially affected consumption of freely available food. Specifically, activation of 5-HT(6) receptors caused a dose-dependent increase in food intake, while the stimulation of 5-HT(1/7) receptor subtypes decreased feeding [34]. The current experiments tested whether similar pharmacological activation of nucleus accumbens serotonin receptors would also affect appetitive motivation, as measured by the amount of effort non-deprived rats exerted to earn sugar reinforcement. Rats were trained to lever press for sugar pellets on a progressive ratio 2 schedule of reinforcement. Across multiple treatment days, three separate groups (N=8-10) received bilateral infusions of the 5-HT(6) agonist EMD 386088 (at 0.0, 1.0 and 4.0 μg/0.5 μl/side), the 5-HT(1/7) agonist 5-CT (at 0, 0.5, 1.0, or 4.0 μg/0.5 μl/side), or the 5-HT(2C) agonist RO 60-0175 fumarate (at 0, 2.0, or 5.0 μg/0.5 μl/side) into the anterior medial nucleus accumbens prior to a 1-h progressive ratio session. Stimulation of 5-HT(6) receptors caused a dose-dependent increase in motivation as assessed by break point, reinforcers earned, and total active lever presses. Stimulation of 5-HT(1/7) receptors increased lever pressing at the 0.5 μg dose of 5-CT, but inhibited lever presses and break point at 4.0 μg/side. Injection of the 5-HT(2C) agonist had no effect on motivation within the task. Collectively, these experiments suggest that, in addition to their role in modulating food consumption, nucleus accumbens 5-HT(6) and 5-HT(1/7) receptors also differentially regulate the appetitive components of food-directed motivation.
Collapse
Affiliation(s)
- Wayne E Pratt
- Department of Psychology, Wake Forest University, Winston-Salem, NC 27109, USA.
| | | | | |
Collapse
|
90
|
Homberg JR. Serotonin and decision making processes. Neurosci Biobehav Rev 2012; 36:218-36. [DOI: 10.1016/j.neubiorev.2011.06.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 05/27/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
|
91
|
Hirano K, Searle KL, Nasir S, Aw CC, Browne ER, Rutter AR. In vivo 5-HT6 receptor occupancy by antipsychotic drugs in the rat brain. Neurosci Lett 2011; 503:240-3. [DOI: 10.1016/j.neulet.2011.08.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/12/2011] [Accepted: 08/21/2011] [Indexed: 11/24/2022]
|
92
|
Scheggi S, Marchese G, Borsini F, Bordi F, De Montis MG. Effects of the 5-HT6 receptor agonist ST 1936 on depression- and anhedonia-like experimental models. Behav Brain Res 2011; 224:35-43. [DOI: 10.1016/j.bbr.2011.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/20/2011] [Accepted: 05/22/2011] [Indexed: 01/01/2023]
|
93
|
Liem-Moolenaar M, Rad M, Zamuner S, Cohen AF, Lemme F, Franson KL, van Gerven JMA, Pich EM. Central nervous system effects of the interaction between risperidone (single dose) and the 5-HT6 antagonist SB742457 (repeated doses) in healthy men. Br J Clin Pharmacol 2011; 71:907-16. [PMID: 21223356 DOI: 10.1111/j.1365-2125.2011.03902.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • Several lines of evidence suggest a possible role of 5-HT(6) receptor antagonists in dementia or cognitive dysfunction of schizophrenia. SB-742457 is a potent 5-HT(6) antagonist and has shown efficacy in different animal models of cognitive impairment. It is currently in development as a cognitive enhancer. Risperidone, commonly used to control agitation and psychotic features in both schizophrenia and Alzheimer's disease, is a D(2)/5-HT(2A ) antagonist with low affinity for 5-HT(6) receptors and limited effects on cognitive parameters. WHAT THIS STUDY ADDS • As the combination of risperidone and SB-742457 may constitute a reasonable combination in cognitively impaired patients, pharmacodynamic interaction effects were investigated in this study. The only significant drug-drug interaction was a small increase of electroencephalogram (EEG) alpha and beta bands, which might suggest mild arousing activity of SB-742457 on the central nervous system-depressant effects of risperidone. The clinical relevance of these findings in patients remains to be established. Additionally, this study provided an extensive multidimensional pharmacodynamic profile of risperidone in healthy volunteers, showing that this antipsychotic suppresses motor performance (eye-hand coordination, finger tapping and postural stability), alertness, memory and neurophysiological functions (saccadic eye movements and EEG power spectrum). AIM Several lines of evidence suggest a possible role of 5-HT(6 ) receptor antagonists in cognitive dysfunction of schizophrenia. Atypical antipsychotics, such as risperidone, are currently used in these disorders. Therefore, the pharmacological interactions between the 5-HT(6) antagonist SB-742457 and risperidone were investigated in the light of possible co-medication. METHODS A randomized, double-blind, two-way crossover design was used to study the interaction between multiple doses SB-742457 50 mg and a single dose risperidone 2 mg in 18 healthy subjects. RESULTS Treatment was well tolerated. The most common adverse event was somnolence in 83% during the combination vs. 50% of subjects after risperidone, 32% after placebo and 11% after SB-742457. Combination treatment produced a statistically significant increase in the maximum plasma concentration of risperidone and had no effect on SB-742457 pharmacokinetics. Risperidone decreased saccadic peak velocity, finger tapping, adaptive tracking, subjective alertness, delayed word recognition and body sway and increased electroencephalogram (EEG) theta power and prolactin. The only pharmacodynamic interaction of risperidone and SB-742457 was an increase of absolute EEG alpha (ratio = 1.25, 95% CI = 1.11, 1.40, P= 0.0004) and beta power (ratio = 1.14, 95% CI = 1.03, 1.27, P= 0.016). No significant effects of SB-742457 alone were found. CONCLUSION The pharmacokinetic interactions between SB-742457 and risperidone detected in this study were not clinically relevant. The increase in EEG alpha and beta power is incompatible with enhanced risperidone activity, but could point to mild arousing effects of the combination. Most pharmacodynamic changes of risperidone are consistent with previously reported data. The potential cognitive effects of SB-742457 remain to be established.
Collapse
|
94
|
Tassone A, Madeo G, Schirinzi T, Vita D, Puglisi F, Ponterio G, Borsini F, Pisani A, Bonsi P. Activation of 5-HT6 receptors inhibits corticostriatal glutamatergic transmission. Neuropharmacology 2011; 61:632-7. [DOI: 10.1016/j.neuropharm.2011.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 04/14/2011] [Accepted: 05/08/2011] [Indexed: 11/29/2022]
|
95
|
Da Silva Costa-Aze V, Dauphin F, Boulouard M. Serotonin 5-HT6 receptor blockade reverses the age-related deficits of recognition memory and working memory in mice. Behav Brain Res 2011; 222:134-40. [DOI: 10.1016/j.bbr.2011.03.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 03/14/2011] [Accepted: 03/18/2011] [Indexed: 01/29/2023]
|
96
|
Abstract
Mounting evidence accumulated over the past few years indicates that the neurotransmitter serotonin plays a significant role in cognition. As a drug target, serotonin receptors have received notable attention due in particular to the role of several serotonin-receptor subclasses in cognition and memory. The intimate anatomical and neurochemical association of the serotonergic system with brain areas that regulate memory and learning has directed current drug discovery programmes to focus on this system as a major therapeutic drug target. Thus far, none of these programmes has yielded unambiguous data that suggest that any of the new drug entities possesses disease-modifying properties, and significantly more research in this promising area of investigation is required. Compounds are currently being investigated for activity against serotonin 5-HT(1), 5-HT(4) and 5-HT(6) receptors. This review concludes that most work done in the development of selective serotonin receptor ligands is in the pre-clinical or early clinical phase. Also, while many of these compounds will likely find application as adjuvant therapy in the symptomatic treatment of Alzheimer's disease, there are currently only a few drug entities with activity against serotonin receptors that may offer the potential to alter the progression of the disease.
Collapse
Affiliation(s)
- Werner J Geldenhuys
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, USA
| | | |
Collapse
|
97
|
The 5-HT6 serotonin receptor antagonist SB-271046 attenuates the development and expression of nicotine-induced locomotor sensitisation in Wistar rats. Neuropharmacology 2011; 61:451-7. [DOI: 10.1016/j.neuropharm.2011.01.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 01/07/2011] [Accepted: 01/26/2011] [Indexed: 11/22/2022]
|
98
|
Liu F, Majo VJ, Prabhakaran J, Milak MS, John Mann J, Parsey RV, Kumar JSD. Synthesis and in vivo evaluation of [O-methyl-11C] N-[3,5-dichloro-2-(methoxy)phenyl]-4-(methoxy)-3-(1-piperazinyl)benzenesulfonamide as an imaging probe for 5-HT6 receptors. Bioorg Med Chem 2011; 19:5255-9. [PMID: 21821420 DOI: 10.1016/j.bmc.2011.06.090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/10/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
The serotonin receptor 6 (5-HT(6)) is implicated in the pathophysiology of cognitive diseases, schizophrenia, anxiety and obesity and in vivo studies of this receptor would be of value for studying the pathophysiology of these disorders. Therefore, N-[3,5-dichloro-2-(methoxy)phenyl]-4-(methoxy)-3-(1-piperazinyl)benzenesulfonamide (SB399885), a selective and high affinity (pK(i)=9.11) 5-HT(6) antagonist, has been radiolabeled with carbon-11 by O-methylation of the corresponding desmethyl analogue with [(11)C]MeOTf in order to determine the suitability of [(11)C]SB399885 to quantify 5-HT(6)R in living brain using PET. Desmethyl-SB399885 was prepared, starting from 1-(2-methoxyphenyl) piperazine hydrochloride, in excellent yield. The yield obtained for radiolabeling of [(11)C]SB399885 was 30±5% (EOS) and the total synthesis time was 30min at EOB. PET studies with [(11)C]SB399885 in baboon showed fast uptake followed by rapid clearance in the brain. Highest uptake of radioactivity of [(11)C]SB399885 in baboon brain were found in temporal cortex, parahippocampal gyrus, pareital cortex, amygdala, and hippocampus. Poor brain entry and inconsistent brain uptake of [(11)C]SB399885 compared to known 5-HT(6)R distribution limits its usefulness for the in vivo quantification of 5-HT(6)R with PET.
Collapse
Affiliation(s)
- Fei Liu
- Division of Substance Abuse, Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Huot P, Fox SH, Brotchie JM. The serotonergic system in Parkinson's disease. Prog Neurobiol 2011; 95:163-212. [PMID: 21878363 DOI: 10.1016/j.pneurobio.2011.08.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/05/2011] [Accepted: 08/15/2011] [Indexed: 01/23/2023]
Abstract
Although the cardinal manifestations of Parkinson's disease (PD) are attributed to a decline in dopamine levels in the striatum, a breadth of non-motor features and treatment-related complications in which the serotonergic system plays a pivotal role are increasingly recognised. Serotonin (5-HT)-mediated neurotransmission is altered in PD and the roles of the different 5-HT receptor subtypes in disease manifestations have been investigated. The aims of this article are to summarise and discuss all published preclinical and clinical studies that have investigated the serotonergic system in PD and related animal models, in order to recapitulate the state of the current knowledge and to identify areas that need further research and understanding.
Collapse
Affiliation(s)
- Philippe Huot
- Toronto Western Research Institute, MCL 11-419, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, Ontario, Canada M5T 2S8
| | | | | |
Collapse
|
100
|
Riccioni T, Bordi F, Minetti P, Spadoni G, Yun HM, Im BH, Tarzia G, Rhim H, Borsini F. ST1936 stimulates cAMP, Ca2+, ERK1/2 and Fyn kinase through a full activation of cloned human 5-HT6 receptors. Eur J Pharmacol 2011; 661:8-14. [PMID: 21549693 DOI: 10.1016/j.ejphar.2011.04.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/11/2011] [Accepted: 04/14/2011] [Indexed: 11/16/2022]
Abstract
5-HT(6) receptor is one of the most recently cloned serotonin receptors, and it might play important roles in Alzheimer's disease, depression, and learning and memory disorders. Availability of only very few 5-HT(6) receptor agonists, however, does not allow examining their contribution in psychopharmacological processes. Therefore, a new 5-HT(6) receptor agonist, ST1936, was synthesized. ST1936 binds to human 5-HT(6) receptors with good affinity (K(i)=28.8 nM). ST1936 also exhibited some moderate binding affinity for 5HT(2B), 5HT(1A), 5HT(7) receptors and adrenergic α receptors. ST1936 behaved as a full 5-HT(6) agonist on cloned cells and was able to increase Ca(2+) concentration, phosphorylation of Fyn kinase, and regulate the activation of ERK1/2 that is a downstream target of Fyn kinase. These effects were completely antagonized by two 5-HT(6) receptor antagonists, SB271046 and SB258585. The other 5-HT(6) receptor agonist, WAY181187 also increased Fyn kinase activity. These results suggest that both ST1936 and WAY181187 mediate 5-HT(6) receptor-dependent signal pathways, such as cAMP, Fyn and ERK1/2 kinase, as specific agonists.
Collapse
Affiliation(s)
- Teresa Riccioni
- Sigma-tau Industrie Farmaceutiche Riunite S.p.A., Pomezia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|