51
|
Fernandez HH, Chen JJ. Monamine oxidase inhibitors: current and emerging agents for Parkinson disease. Clin Neuropharmacol 2007; 30:150-68. [PMID: 17545750 DOI: 10.1097/01.wnf.0000240956.49315.be] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Monoamine oxidase type B (MAO-B) is the predominant isoform responsible for the metabolic breakdown of dopamine in the brain. Selective inhibition of brain MAO-B results in elevation of synaptosomal dopamine concentrations. Data have been reported regarding the selective MAO-B inhibitors, rasagiline and selegiline, for the symptomatic treatment of Parkinson disease (PD). Selegiline has demonstrated efficacy as monotherapy in patients with early PD (Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism study), but evidence of selegiline efficacy as adjunctive treatment in levodopa-treated PD patients with motor fluctuations is equivocal. A new formulation of selegiline (Zydis selegiline) has been evaluated in 2 small, placebo-controlled studies as adjunctive therapy to levodopa. The Zydis formulation allows pregastric absorption of selegiline, minimizing first-pass metabolism, and thereby increasing selegiline bioavailability and reducing the concentration of amphetamine metabolites. Rasagiline is a selective, second-generation, irreversible MAO-B inhibitor, with at least 5 times the potency of selegiline in vitro and in animal models. Rasagiline has demonstrated efficacy in 1 large, randomized, double-blind, placebo-controlled trial (TVP-1012 in Early Monotherapy for Parkinson's Disease Outpatients) as initial monotherapy in patients with early PD, and in 2 large, controlled trials (Parkinson's Rasagiline: Efficacy and Safety in the Treatment of "Off," Lasting Effect in Adjunct Therapy With Rasagiline Given Once Daily) as adjunctive treatment in levodopa-treated PD patients with motor fluctuations. Unlike selegiline, rasagiline is an aminoindan derivative with no amphetamine metabolites. A randomized clinical trial is underway to confirm preclinical and preliminary clinical data suggesting rasagiline has disease-modifying effects.
Collapse
Affiliation(s)
- Hubert H Fernandez
- Movement Disorders Center, Department of Neurology, McKnight Brain Institute/University of Florida, Gainesville, FL 32610, USA.
| | | |
Collapse
|
52
|
Abstract
BACKGROUND Levodopa, in combination with a dopa decarboxylase inhibitor, provides the greatest symptomatic benefit with the fewest short-term side effects in the treatment of Parkinson disease (PD). However, the disease continues to progress, and the long-term use of levodopa is associated with the development of motor fluctuations and dyskinesias. REVIEW SUMMARY Alternatives to the use of levodopa in early PD include monoamine oxidase B (MAO-B) inhibitors, dopamine agonists, and amantadine. Although no medication has been proven to slow the progression of Parkinson disease, preclinical studies have demonstrated neuroprotective effects of MAO-B inhibitors, and a recent study of rasagiline found that PD patients treated with rasagiline for 12 months experienced less progression of symptoms than patients treated with placebo for 6 months followed by rasagiline for 6 months. Several clinical trials have demonstrated that the initial use of a dopamine agonist to which levodopa can be added is associated with fewer motor complications than treatment with levodopa alone. In addition, preclinical studies suggest that adjunctive use of the catechol-O-methyltransferase (COMT) inhibitor entacapone when levodopa is first introduced may be associated with fewer motor complications than treatment with levodopa alone. CONCLUSION Treatment of early PD with an MAO-B inhibitor, dopamine agonist, or amantadine, may provide useful alternatives to treatment with levodopa. Adding entacapone at the initiation of levodopa therapy may reduce the development of motor complications. Long-term studies are required to evaluate the potential long-term benefits of these treatment strategies.
Collapse
Affiliation(s)
- Robert A Hauser
- Department of Neurology, Parkinson's Disease and Movement Disorders Center, University of South Florida and Tampa General Healthcare, Tampa, Florida 33606, USA.
| | | |
Collapse
|
53
|
Guay DRP. Rasagiline (TVP-1012): a new selective monoamine oxidase inhibitor for Parkinson's disease. ACTA ACUST UNITED AC 2007; 4:330-46. [PMID: 17296539 DOI: 10.1016/j.amjopharm.2006.12.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2006] [Indexed: 01/01/2023]
Abstract
OBJECTIVE This article reviews the chemistry, pharmacodynamics, pharmacokinetics, clinical efficacy, tolerability, drug-interaction potential, indications, dosing, and potential role of rasagiline mesylate, a new selective monoamine oxidase (MAO) type B (MAO-B) inhibitor, in the treatment of Parkinson's disease. METHODS A MEDLINE/PUBMED search (1986 through September 2006) was conducted to identify studies involving rasagiline written in English. Additional references were obtained from the bibliographies of these studies. All studies evaluating any aspect of rasagiline, including in vitro, in vivo (animal), and human studies, were reviewed. RESULTS Rasagiline mesylate was developed with the goal of producing a selective MAO-B inhibitor that is not metabolized to (presumed) toxic metabolites (eg, amphetamine and methamphetamine, which are byproducts of the metabolism of selegiline, another selective MAO-B inhibitor). In vitro and in vivo data have confirmed the drug's selectivity for MAO-B. Rasagiline is almost completely eliminated by oxidative metabolism (catalyzed by cytochrome P-450 [CYP] isozyme 1A2) followed by renal excretion of conjugated parent compound and metabolites. Drug clearance is sufficiently slow to allow once-daily dosing. Several studies have documented its efficacy as monotherapy for early-stage disease and as adjunctive therapy in L-dopa recipients with motor fluctuations. As monotherapy, rasagiline is well tolerated with an adverse-effect profile similar to that of placebo. As adjunctive therapy, it exhibits the expected adverse effects of dopamine excess, which can be ameliorated by reducing the L-dopa dosage. CYP1A2 inhibitors slow the elimination of rasagiline and mandate dosage reduction. Hepatic impairment has an analogous effect. The recommended dosage regimens for monotherapy and adjunctive therapy are 1 and 0.5 mg PO QD, respectively. CONCLUSIONS Despite the well-documented selectivity of rasagiline, the manufacturer recommends virtually all of the dietary (vis-à-vis tyramine) and drug restrictions of the nonselective MAO inhibitors. Although useful, selective MAO-B inhibitors have a limited role in Parkinson's disease. Of greater interest is the potential neuroprotective effect of rasagiline and its major metabolite, 1(R)-aminoindan, which may have great utility in a wide variety of neurodegenerative disorders of aging. In addition, bifunctional molecules combining selective MAO-B inhibition (based on the active moiety of rasagiline) with acetylcholinesterase inhibition or iron chelation may eventually be useful in Alzheimer's disease.
Collapse
Affiliation(s)
- David R P Guay
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
54
|
Shoham S, Bejar C, Kovalev E, Schorer-Apelbaum D, Weinstock M. Ladostigil prevents gliosis, oxidative–nitrative stress and memory deficits induced by intracerebroventricular injection of streptozotocin in rats. Neuropharmacology 2007; 52:836-43. [PMID: 17123555 DOI: 10.1016/j.neuropharm.2006.10.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 10/04/2006] [Accepted: 10/05/2006] [Indexed: 11/20/2022]
Abstract
Glial activation and oxidative-nitrative stress occur at an early stage in Alzheimer's disease (AD). In a rat model of AD, deficits in cerebral glucose utilization and memory were seen 3-4 weeks after intracerebroventricular (icv) injection of streptozotocin (STZ). This study examined whether icv STZ induced glial activation and oxidative-nitrative stress preceded the memory deficits and whether they could be prevented by ladostigil a novel drug, a cholinesterase and monoamine oxidase inhibitor with neuroprotective activity. One week after STZ injection activated microglia and astrocytes were seen in the cortex, around the cannula penetration area, in the hippocampal CA1 region, corpus callosum, medial and lateral septum. The activated astrocytes showed a significant increase in nitrotyrosine immunoreactivity, a measure of oxidative-nitrative stress. Only 3 weeks later were deficits in episodic (object recognition test) and spatial memory (place recognition) seen in STZ-injected rats. Daily oral administrations of ladostigil (1mg/kg) for 1 week, before and after STZ prevented the glial changes, increase in nitrotyrosine immunoreactivity and memory deficits. Taken together the data support the role of glial activation and oxidative-nitrative stress in discrete brain areas in the aetiology of memory deficits and indicate a potential mechanism for their prevention by drug treatment.
Collapse
Affiliation(s)
- Shai Shoham
- Research Department, Herzog Hospital, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
55
|
Speiser Z, Mayk A, Litinetsky L, Fine T, Nyska A, Blaugrund E, Cohen S. Rasagiline is neuroprotective in an experimental model of brain ischemia in the rat. J Neural Transm (Vienna) 2006; 114:595-605. [PMID: 17177075 DOI: 10.1007/s00702-006-0612-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 11/20/2006] [Indexed: 10/23/2022]
Abstract
The neuroprotective effects of intravenous rasagiline were investigated in a rat model of stroke. Middle cerebral artery (MCA) occlusion was performed in male rats and the short- (neurological severity score [NSS], infarct size), intermediate- (cognition) and long-term (necrotic area) effects were assessed. A bolus (3 mg/kg) of rasagiline followed by a 3-h infusion (3 mg/kg/h), initiated immediately after MCA occlusion, reduced infarct size by 48.6% and NSS by 32.7% relative to saline treatment. Cognitive function, tested in a water maze 2-3 weeks after occlusion, also significantly improved compared with saline-treated controls. Necrotic brain area was 35-50% smaller with rasagiline than with saline following a single bolus dose. The single bolus rasagiline dose was as effective as a rasagiline bolus followed by rasagiline infusion in short-term outcomes. The neuroprotective effect of rasagiline was fully reproducible when administered at 2 h following occlusion but not after 4 h.
Collapse
Affiliation(s)
- Z Speiser
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel.
| | | | | | | | | | | | | |
Collapse
|
56
|
Archer T, Beninger RJ. Movement disorders: neurodevelopment and neurobehavioural expression. J Neural Transm (Vienna) 2006; 114:XXXIII-XLI. [PMID: 17024325 DOI: 10.1007/s00702-006-0572-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 07/31/2006] [Indexed: 12/15/2022]
Abstract
Braak and co-workers have recently shown that movement disorders such as Parkinson's disease develop progressively over years with early neuronal losses in brainstem regions caudal to the substantia nigra. The relevance of this finding to notions of comorbidity between movement disorders and psychiatric symptoms was recognised at the recent meeting concerning, "Implications of Comorbidity for the Etiology and Treatment of Neuropsychiatric Disorders" held in Oct. 2005 in Mazagon, Spain. The identification of stages in the early development of neurodegenerative disorders appeared to unify multiple, diverse findings. These included: novel therapeutic innovations for Parkinson's disease, Alzheimer's disease and depression in the aged; the neurochemical ontogeny of drug-induced oral dyskinesias; the types of chemical agents abused in neuropsychiatric states; postnatal iron overload effects upon the functional and interactive role of dopaminergic and noradrenergic pathways that contribute to the expression of movement disorders; and the spectrum of motor symptoms expressed in schizophrenia and attention deficit hyperactivity disorder and the eventual treatment of these disorders. A continued focus on a number of neuropsychiatric diseases as progressive disorders may lead to further advances in understanding their etiology and in developing better therapeutics.
Collapse
Affiliation(s)
- T Archer
- Department of Psychology, University of Göteborg, Göteborg, Sweden.
| | | |
Collapse
|
57
|
Youdim MBH, Amit T, Bar-Am O, Weinreb O, Yogev-Falach M. Implications of co-morbidity for etiology and treatment of neurodegenerative diseases with multifunctional neuroprotective-neurorescue drugs; ladostigil. Neurotox Res 2006; 10:181-92. [PMID: 17197368 DOI: 10.1007/bf03033355] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The recent therapeutic approach in which drug candidates are designed to possess diverse pharmacological properties and act on multiple targets has stimulated the development of several multifunction drugs. These include ladostigil (TV3326) [(N-propargyl-(3R) aminoindan-5yl)-ethyl methyl carbamate], which combines the pharmacophore-neuroprotective effects of rasagiline, a selective monoamine oxidase (MAO)-B inhibitor, with the cholinesterase (ChE) inhibitory activity of rivastigmine or iron chelating moiety such as M30. In the case of M30 the pharmacophore of brain permeable iron chelator VK-28 plus the MAO inhibitor-neuroprotective propargylamine moiety of rasagiline are combined in a single molecule as a potential treatment for Alzheimer's disease, Lewy body disease, and Parkinson's disease with dementia. Here, we discuss the activities of ladostigil in terms of its cholinesterase cognitive enhancing potential, antiParkinson, antidepressant, neuroprotection and APP (amyloid precursor protein) processing potential. One major attribute of ladostigil is its neuroprotective activity in neuronal cell cultures and in vivo. Employing an apoptotic model of neuroblastoma SK-N-SH cells, the molecular mechanism of its neuroprotective activity has been determined. The current studies show that ladostigil significantly decreased apoptosis via inhibition of the cleavage and prevention of caspase-3 activation through a mechanism related to regulation of the Bcl-2 family proteins, resulting in reduced levels of Bad and Bax and induced levels of Bcl-2. In addition, ladostigil elevated the levels of pPKC(pan). We have also followed the regulation of APP processing and found that ladostigil markedly decreased apoptotic-induced levels of holo-APP, as well as stimulated the release of the non-amyloidogenic soluble APP (sAPPalpha) into the conditioned medium via a established protein kinsae C-MAPkinase dependent pathway. Similar to ladostigil, its S-isomer, TV3279, which is a ChE inhibitor lacking MAO inhibitory activity, exerted similar neuroprotective properties and APP processing, suggesting that the mode of action is independent of MAO inhibition. These effects were shown to reside in the propargylamine moiety. These findings indicate that the dual actions of the anti-apoptotic-neuroprotective activity and the ability to modulate APP processing, could make ladostigil a potentially valuable drug for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Technion-Rappaport Family Faculty of Medicine, Eve Topf and NPF Centers for Neurodegenerative Diseases Department of Pharmacology Haifa, Israel.
| | | | | | | | | |
Collapse
|
58
|
Youdim MBH, Edmondson D, Tipton KF. The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 2006; 7:295-309. [PMID: 16552415 DOI: 10.1038/nrn1883] [Citation(s) in RCA: 961] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Monoamine oxidase inhibitors were among the first antidepressants to be discovered and have long been used as such. It now seems that many of these agents might have therapeutic value in several common neurodegenerative conditions, independently of their inhibition of monoamine oxidase activity. However, many claims and some counter-claims have been made about the physiological importance of these enzymes and the potential of their inhibitors. We evaluate these arguments in the light of what we know, and still have to learn, of the structure, function and genetics of the monoamine oxidases and the disparate actions of their inhibitors.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Technion-Rappaport Family Faculty of Medicine, Eve Topf and US National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases.
| | | | | |
Collapse
|
59
|
Chen JJ, Ly AV. Rasagiline: A second-generation monoamine oxidase type-B inhibitor for the treatment of Parkinson's disease. Am J Health Syst Pharm 2006; 63:915-28. [PMID: 16675649 DOI: 10.2146/ajhp050395] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE The pharmacology, pharmacokinetics, clinical efficacy, and safety of rasagiline are reviewed. SUMMARY Rasagiline is a novel, investigational propargylamine that irreversibly and selectively inhibits monoamine oxidase type B (MAO-B). Rasagiline demonstrates complete and selective inhibition of MAO-B and is at least five times more potent than selegiline. Unlike selegiline, which is metabolized to amphetamine derivatives, rasagiline is biotransformed to the nonamphetamine compound aminoindan. Clinical studies have revealed that rasagiline is associated with improved outcomes in patients with early Parkinson's disease (PD) and also reduces "off" time in patients with moderate to advanced PD with motor fluctuations. Rasagiline is rapidly absorbed by the gastrointestinal tract and readily crosses the blood-brain barrier. The optimal therapeutic dosage is 0.5-1 mg administered orally once daily. Rasagiline appears to be well tolerated, although elderly patients may be more prone to treatment-emergent adverse cardiovascular and psychiatric effects. At the recommended therapeutic dosage of up to 1 mg once daily, tyramine restriction is unnecessary. In addition to MAO-B inhibition, rasagiline has demonstrated neuroprotective properties in experimental laboratory models. The mechanisms whereby rasagiline exerts neuroprotective effects are multifactorial and include upregulation of cellular antioxidant activity and antiapoptotic factors. CONCLUSION Rasagiline is an investigational selective and irreversible inhibitor of MAO-B that has demonstrated efficacy and safety for the treatment of PD. Whether rasagiline is associated with clinically significant neuroprotection is the subject of ongoing clinical trials.
Collapse
Affiliation(s)
- Jack J Chen
- School of Pharmacy, Loma Linda University, 11262 Campus Street, Loma Linda, CA 92350, USA.
| | | |
Collapse
|
60
|
Weinreb O, Amit T, Bar-Am O, Sagi Y, Mandel S, Youdim MBH. Involvement of multiple survival signal transduction pathways in the neuroprotective, neurorescue and APP processing activity of rasagiline and its propargyl moiety. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2006:457-65. [PMID: 17017568 DOI: 10.1007/978-3-211-45295-0_69] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Our recent studies aimed to elucidate the molecular and biochemical mechanism of actions of the novel anti-Parkinson's drug, rasagiline, an irreversible and selective monoamine oxidase (MAO)-B inhibitor and its propargyl moiety, propargylamine. In cell death models induced by serum withdrawal in rat PC12 cells and human SH-SY5Y neuroblastoma cells, both rasagiline and propargylamine exerted neuroprotective and neurorescue activities via multiple survival pathways, including: stimulation of protein kinase C (PKC) phosphorylation; up-regulation of protein and gene levels of PKCalpha, PKCepsilon and the anti-apoptotic Bcl-2, Bcl-xL, and Bcl-w; and up-regulation of the neurotrophic factors, BDNF and GDNF mRNAs. Rasagiline and propargylamine inhibited the cleavage and subsequent activation of pro-caspase-3 and poly ADP-ribose polymerase. Additionally, these compounds significantly down-regulated PKCgamma mRNA and decreased the level of the pro-apoptotic proteins, Bax, Bad, Bim and H2A.X. Rasagiline and propargylamine both regulated amyloid precursor protein (APP) processing towards the non-amyloidogenic pathway. These structure-activity studies have provided evidence that propargylamine promoted neuronal survival via neuroprotective/neurorescue pathways similar to that of rasagiline. In addition, recent study demonstrated that chronic low doses of rasagiline administered to mice subsequently to 1 methyl-4 phenyl 1,2,3,6 tetrahydropyridine (MPTP), rescued dopaminergic neurons in the substantia nigra pars compacta via activation of the Ras-PI3K-Akt survival pathway, suggesting that rasagiline may possess a disease modifying activity.
Collapse
Affiliation(s)
- O Weinreb
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research, Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, Haifa, Israel.
| | | | | | | | | | | |
Collapse
|
61
|
Blandini F. Neuroprotection by rasagiline: a new therapeutic approach to Parkinson's disease? CNS DRUG REVIEWS 2005; 11:183-94. [PMID: 16007239 PMCID: PMC6741719 DOI: 10.1111/j.1527-3458.2005.tb00269.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuronal death in Parkinson's disease (PD) may originate from the reciprocal interactions of a restricted number of conditions, such as mitochondrial defects, oxidative stress and protein mishandling, which would favor a state of apoptotic cell death in the nigrostriatal pathway. The search for pharmacological treatments able to counteract the nigrostriatal degeneration, possibly by interfering with these phenomena, has recently raised considerable interest in rasagiline [R(+)-N-propargyl-1-aminoindan], a potent, selective, and irreversible inhibitor of monoamine oxidase B (MAO-B). Rasagiline, like selegiline, is a propargylamine, but is approximately 10 times more potent. Unlike selegiline, rasagiline is not metabolized to amphetamine and/or methamphetamine and is devoid of sympathomimetic activity. Numerous experimental studies, conducted both in vitro and in vivo, have shown that rasagiline possesses significant protective properties on neuronal populations. The pro-survival effects of the drug appear to be linked to its propargyl moiety, rather than to the inhibitory effect on MAO-B. Rasagiline's major metabolite, aminoindan--which possesses intrinsic neuroprotective activity--may also contribute to the beneficial effects of the parent compound. Rasagiline has been recently evaluated in early PD patients, with results that are consistent with slowing the progression of the disease. Therefore, the neuroprotective activity shown by the drug under experimental conditions may be reflected in the clinic, thus providing new perspectives for the treatment of PD.
Collapse
Affiliation(s)
- Fabio Blandini
- Laboratory of Functional Neurochemistry, IRCCS Neurological Institute C. Mondino, Via Mondino, 2 27100 Pavia, Italy.
| |
Collapse
|
62
|
Zheng H, Gal S, Weiner LM, Bar-Am O, Warshawsky A, Fridkin M, Youdim MBH. Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases: in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition. J Neurochem 2005; 95:68-78. [PMID: 16181413 DOI: 10.1111/j.1471-4159.2005.03340.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Iron-dependent oxidative stress, elevated levels of iron and of monoamine oxidase (MAO)-B activity, and depletion of antioxidants in the brain may be major pathogenic factors in Parkinson's disease, Alzheimer's disease and related neurodegenerative diseases. Accordingly, iron chelators, antioxidants and MAO-B inhibitors have shown efficacy in a variety of cellular and animal models of CNS injury. In searching for novel antioxidant iron chelators with potential MAO-B inhibitory activity, a series of new iron chelators has been designed, synthesized and investigated. In this study, the novel chelators were further examined for their activity as antioxidants, MAO-B inhibitors and neuroprotective agents in vitro. Three of the selected chelators (M30, HLA20 and M32) were the most effective in inhibiting iron-dependent lipid peroxidation in rat brain homogenates with IC50 values (12-16 microM), which is comparable with that of desferal, a prototype iron chelator that is not has orally active. Their antioxidant activities were further confirmed using electron paramagnetic resonance spectroscopy. In PC12 cell culture, the three novel chelators at 0.1 microM were able to attenuate cell death induced by serum deprivation and by 6-hydroxydopamine. M30 possessing propargyl, the MAO inhibitory moiety of the anti-Parkinson drug rasagiline, displayed greater neuroprotective potency than that of rasagiline. In addition, in vitro, M30 was a highly potent non-selective MAO-A and MAO-B inhibitor (IC50 < 0.1 microM). However, HLA20 was more selective for MAO-B but had poor MAO inhibition, with an IC50 value of 64.2 microM. The data suggest that M30 and HLA20 might serve as leads in developing drugs with multifunctional activities for the treatment of various neurodegenerative disorders.
Collapse
Affiliation(s)
- Hailin Zheng
- Department of Organic Chemistry and Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
63
|
Gal S, Zheng H, Fridkin M, Youdim MBH. Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. In vivo selective brain monoamine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion. J Neurochem 2005; 95:79-88. [PMID: 16181414 DOI: 10.1111/j.1471-4159.2005.03341.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Several multifunctional iron chelators have been synthesized from hydroxyquinoline pharmacophore of the iron chelator, VK-28, possessing the monoamine oxidase (MAO) and neuroprotective N-propargylamine moiety. They have iron chelating potency similar to desferal. M30 is a potent irreversible rat brain mitochondrial MAO-A and -B inhibitor in vitro (IC50, MAO-A, 0.037 +/- 0.02; MAO-B, 0.057 +/- 0.01). Acute (1-5 mg/kg) and chronic [5-10 mg/kg intraperitoneally (i.p.) or orally (p.o.) once daily for 14 days]in vivo studies have shown M30 to be a potent brain selective (striatum, hippocampus and cerebellum) MAO-A and -B inhibitor. It has little effects on the enzyme activities of the liver and small intestine. Its N-desmethylated derivative, M30A is significantly less active. Acute and chronic treatment with M30 results in increased levels of dopamine (DA), serotonin(5-HT), noradrenaline (NA) and decreases in DOPAC (dihydroxyphenylacetic acid), HVA (homovanillic acid) and 5-HIAA (5-hydroxyindole acetic acid) as determined in striatum and hypothalamus. In the mouse MPTP (N-methy-4-phenyl-1,2,3,6-tetrahydropyridine) model of Parkinson's disease (PD) it attenuates the DA depleting action of the neurotoxin and increases striatal levels of DA, 5-HT and NA, while decreasing their metabolites. As DA is equally well metabolized by MAO-A and -B, it is expected that M30 would have a greater DA neurotransmission potentiation in PD than selective MAO-B inhibitors, for which it is being developed, as MAO-B inhibitors do not alter brain dopamine.
Collapse
Affiliation(s)
- Shunit Gal
- Eve Topf and US National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases, Technion-Rappaport Family Faculty of Medicine and Department of Pharmacology, Haifa, Israel
| | | | | | | |
Collapse
|
64
|
Bar-Am O, Weinreb O, Amit T, Youdim MBH. Regulation of Bcl-2 family proteins, neurotrophic factors, and APP processing in the neurorescue activity of propargylamine. FASEB J 2005; 19:1899-901. [PMID: 16148027 DOI: 10.1096/fj.05-3794fje] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The anti-Parkinson drug, rasagiline (N-propargyl-(1R)-aminoindan) promotes neuronal survival, via neuroprotective activity related to its propargyl moiety (propargylamine). We have investigated the neurorescue effects of propargylamine, in a progressive neuronal death model, induced by long-term serum deprivation in human SH-SY5Y neuroblastoma cells. Propargylamine (0.1-10 microM) dose-dependently reduced the levels of the early apoptosis-associated phosphorylated protein, H2A-X (ser 139), as well as decreased the cleavage of caspase-3 and its substrate poly-ADP ribose polymerase (PARP). In addition, the compound markedly reversed the apoptotic effects induced by long-term serum withdrawal, including down-regulation of the antiapoptotic protein, Bcl-2, as well as up-regulation of the proapoptotic proteins, Bax, Bad, and Bim. Real-time RT-PCR demonstrated that propargylamine elevated gene expression levels of Bcl-2, and the neurotrophic factors glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) and reduced Bax gene expression. Serum deprivation increased mRNA and protein levels of holo-amyloid precursor protein (APP), which was markedly decreased by propargylamine. This was accompanied by inducing the release of the nonamyloidogenic alpha-secretase form of soluble APP (sAPPalpha) into the medium. Similar effects on cell survival and APP regulation/processing were demonstrated for rasagiline. These results indicate that both rasagiline and propargylamine possess neurorescue activity, associated with regulation of Bcl-2 family proteins, neurotrophic factors, and APP metabolism.
Collapse
Affiliation(s)
- Orit Bar-Am
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research, and Department of Pharmacology, Rappaport Family Research Institute, Technion-Faculty of Medicine, Haifa, Israel
| | | | | | | |
Collapse
|
65
|
Zheng H, Weiner LM, Bar-Am O, Epsztejn S, Cabantchik ZI, Warshawsky A, Youdim MBH, Fridkin M. Design, synthesis, and evaluation of novel bifunctional iron-chelators as potential agents for neuroprotection in Alzheimer's, Parkinson's, and other neurodegenerative diseases. Bioorg Med Chem 2005; 13:773-83. [PMID: 15653345 DOI: 10.1016/j.bmc.2004.10.037] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 10/18/2004] [Accepted: 10/18/2004] [Indexed: 11/18/2022]
Abstract
Several novel antioxidant-iron chelators bearing 8-hydroxyoxyquinoline moiety were synthesized, and various properties related to their iron chelation, and neuroprotective action were investigated. All the chelators exhibited strong iron(III) chelating and high antioxidant properties. Chelator 9 (HLA20), having good permeability into K562 cells and moderate selective MAO-B inhibitory activity (IC50 110 microM), displayed the hightest protective effects against differentiated P19 cell death induced by 6-hydroxydopamine. EPR studies suggested that Chelator 9 also act as radical scavenger to directly scavenge hydroxyl radical.
Collapse
Affiliation(s)
- Hailin Zheng
- Department of Organic Chemistry and Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Youdim MBH, Buccafusco JJ. Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol Sci 2005; 26:27-35. [PMID: 15629202 DOI: 10.1016/j.tips.2004.11.007] [Citation(s) in RCA: 279] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Individuals with neurodegenerative diseases such as Parkinson's disease or Alzheimer's disease are benefiting from drugs developed to act on a single molecular target. However, current pharmacological approaches are limited in their ability to modify significantly the course of the disease, and offer incomplete and transient benefit to patients. New therapeutic strategies comprise drug candidates designed specifically to act on multiple neural and biochemical targets for the treatment of cognition impairment, motor dysfunction, depression and neurodegeneration. Examples include the development of single molecular entities that combine two or more of the following properties: (i) cholinesterase inhibition; (ii) activation or inhibition of specific subtypes of acetylcholine receptors or alpha-adrenoceptors; (iii) anti-inflammatory activity; (iv) monoamine oxidase inhibition; (v) catechol-O-methyl transferase inhibition; (vi) nitric oxide production; (vii) neuroprotection; (viii) anti-apoptotic activity; and (ix) activation of mitochondrial-dependent cell-survival genes and proteins. These bi- or multi-functional compounds might provide greater symptomatic efficacy, and better utility as potential neuroprotective disease-modifying drugs.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Eve Topf and US National Parkinson Foundation, Centers of Excellence for Neurodegenerative Diseases Research, Technion-Rappaport Faculty of Medicine and Department of Pharmacology, Haifa 31096, Israel.
| | | |
Collapse
|
67
|
Chen JJ, Swope DM. Clinical pharmacology of rasagiline: a novel, second-generation propargylamine for the treatment of Parkinson disease. J Clin Pharmacol 2005; 45:878-94. [PMID: 16027398 DOI: 10.1177/0091270005277935] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rasagiline is a novel second-generation propargylamine that irreversibly and selectively inhibits monoamine oxidase type B (MAO-B). For the management of Parkinson disease (PD), rasagiline is efficacious across the span of PD stages ranging from monotherapy in early disease to adjunctive treatment in patients with advancing disease and motor fluctuations. Rasagiline completely and selectively inhibits MAO-B with a potency 5 to 10 times greater than selegiline. Unlike the prototype propargylamine selegiline, which is metabolized to amphetamine derivatives, rasagiline is biotransformed to aminoindan, a non-amphetamine compound. Rasagiline is well tolerated with infrequent cardiovascular or psychiatric side effects, and at the recommended therapeutic dose of up to 1 mg once daily, tyramine restriction is unnecessary. In addition to MAO-B inhibition, the propargylamine chain also confers dose-related antioxidant and antiapoptotic effects, which have been associated with neuroprotection in multiple experimental models. Thus, in addition to symptomatic benefits, rasagiline offers the promise of clinically relevant neuroprotection.
Collapse
Affiliation(s)
- Jack J Chen
- Movement Disorders Center, Loma Linda University, Loma Linda, CA, USA
| | | |
Collapse
|
68
|
Mandel S, Weinreb O, Amit T, Youdim MBH. Mechanism of neuroprotective action of the anti-Parkinson drug rasagiline and its derivatives. ACTA ACUST UNITED AC 2005; 48:379-87. [PMID: 15850677 DOI: 10.1016/j.brainresrev.2004.12.027] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 12/09/2004] [Indexed: 01/01/2023]
Abstract
The mitochondria are directly involved in cell survival and death. Drugs that protect mitochondria viability and prevent apoptotic cascade mechanisms involved in mitochondrial permeability transition pore (MPTp) will be cytoprotective. Rasagiline (N-propargyl-1R-aminoindan) is a novel, highly potent irreversible monoamine oxidase (MAO) B inhibitor, anti-Parkinson drug. Unlike selegiline, rasagiline is not derived from amphetamine, is not metabolized to neurotoxic l-methamphetamine derivative, nor does it have sympathomimetic activity. Rasagiline is effective as monotherapy or adjunct to L-dopa for patients with early and late Parkinson's disease (PD), and adverse events do not occur with greater frequency in subjects receiving rasagiline than those on placebo. Controlled studies indicate that it might have a disease-modifying effect in PD that may be related to neuroprotection. Its S-isomer, TVP1022, is a relatively inactive MAO inhibitor. However, both drugs have similar neuroprotective activities in neuronal cell cultures in response to various neurotoxins and in vivo (global ischemia, neurotrauma, head injury, anoxia, etc.), indicating that MAO inhibition is not a pre-requisite for neuroprotection. Structure activity studies have shown that the neuroprotective activity is associated with the propargyl moiety of rasagiline which protects mitochondrial viability and MPTp by activating Bcl-2 and protein kinase C (PKC), and down regulating pro-apoptotic FAS and Bax. Rasagiline and its derivatives also process amyloid precursor protein (APP) to the neuroprotective-neurotrophic soluble APP alpha (sAPPalpha) by PKC and MAP kinase-dependent activation of alpha-secretase. The neuroprotective activity of propargylamine has led us to develop novel bifunctional neuroprotective iron-chelating MAO-inhibiting drugs possessing propargyl moiety for the treatment of other neurodegenerative diseases.
Collapse
Affiliation(s)
- Silvia Mandel
- Eve Topf and NPF Centers of Excellence for Neurodegenerative Diseases Research, Israel
| | | | | | | |
Collapse
|
69
|
Youdim MBH, Fridkin M, Zheng H. Bifunctional drug derivatives of MAO-B inhibitor rasagiline and iron chelator VK-28 as a more effective approach to treatment of brain ageing and ageing neurodegenerative diseases. Mech Ageing Dev 2005; 126:317-26. [PMID: 15621213 DOI: 10.1016/j.mad.2004.08.023] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Degeneration of nigrostriatal dopamine neurons and cholinergic cortical neurones are the main pathological features of Parkinson's disease (PD) and for the cognitive deficit in dementia of the Alzheimer' type (AD) and in dementia with Lewy bodies (DLB), respectively. Many PD and DLB subjects have dementia and depression resulting from possible degeneration of cholinergic and noradrenergic and serotonergic neurons. On the other hand, AD patients may also develop extrapyramidal features as well as depression. In both PD and AD there is, respectively, accumulation of iron within the melanin containing dopamine neurons of pars compacta and with in the plaques and tangle. It has been suggested that iron accumulation may contribute to the oxidative stress induced apoptosis reported in both diseases. This may result from increased glia hydrogen peroxide producing monoamine oxidase (MAO) activity that can generate of reactive hydroxyl radical formed from interaction of iron and hydrogen peroxide. We have therefore prepared a series of novel bifunctional drugs from the neuroprotective-antiapoptotic antiparkinson monoamine oxidase B inhibitor, rasagiline, by introducing a carbamate cholinesterase (ChE) inhibitory moiety into it. Ladostigil (TV-3326, N-propargyl-3R-aminoindan-5yl)-ethyl methylcarbamate), has both ChE and MAO-AB inhibitory activity, as potential treatment of AD and DLB or PD subjects with dementia Being a brain selective MAO-AB inhibitor it has limited potentiation of the pressor response to oral tyramine and exhibits antidepressant activity similar to classical non-selective MAO inhibitor antidepressants by increasing brain serotonin and noradrenaline. Ladostigil inhibits brain acetyl and butyrylcholinesterase in rats and antagonizes scopolamine-induced inhibition of spatial learning. Ladostigil like MAO-B inhibitor it prevents MPTP Parkinsonism in mice model and retains the in vitro and in vivo neuroprotective activity of rasagiline. Ladostigil, rasagiline and other propargylamines have been demonstrated to have neuroprotective activity in several in vitro and in vivo models, which have been shown be associated with propargylamines moiety, since propargylamines itself possess these properties. The mechanism of neuroprotective activity has been attributed to the ability of propargylamines-inducing the antiapoptotic family proteins Bcl-2 and Bcl-xl, while decreasing Bad and Bax and preventing opening of mitochondrial permeability transition pore. Iron accumulates in brain regions associated with neurodegenerative diseases of PD, AD, amyotrophic lateral sclerosis and Huntington disease. It is thought to be involved in Fenton chemistry oxidative stress observed in these diseases. The neuroprotective activity of propargylamines led us to develop several novel bifunctional iron chelator from our prototype brain permeable iron chelators, VK-28, possessing propargylamine moiety (HLA-20, M30 and M30A) to iron out iron from the brain. These compounds have been shown to have iron chelating and monoamine oxidase A and B selective brain inhibitory and neuroprotective-antiapoptotic actions.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Eve Topf and US National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Technion Faculty of Medicine, Efron St., PO Box 9697, Haifa 31096, Israel.
| | | | | |
Collapse
|
70
|
Stern MB, Marek KL, Friedman J, Hauser RA, LeWitt PA, Tarsy D, Olanow CW. Double-blind, randomized, controlled trial of rasagiline as monotherapy in early Parkinson's disease patients. Mov Disord 2004; 19:916-23. [PMID: 15300656 DOI: 10.1002/mds.20145] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rasagiline (N-propargyl-1(R)-aminoindan) mesylate is a potent, selective, and irreversible monoamine oxidase-B inhibitor. This study was designed to evaluate the safety, tolerability, and preliminary efficacy of rasagiline monotherapy in early Parkinson's disease (PD) patients not receiving levodopa. The study was performed as a multicenter, parallel-group, double-blind, randomized, placebo-controlled, 10-week study. Fifty-six PD patients were randomly assigned to rasagiline mesylate 1, 2, or 4 mg once daily, or placebo. A 3-week dose-escalation period was followed by a 7-week maintenance phase. At week 10, the mean (+/-SE) changes from baseline in total Unified Parkinson's Disease Rating Scale (UPDRS) score were -1.8 (+/-1.3), -3.6 (+/-1.7), -3.6 (+/-1.2), and -0.5 (+/-0.8) in the rasagiline 1, 2, and 4 mg/day and placebo groups, respectively. Analysis of responders showed that 28% of patients (12 of 43) receiving rasagiline had an improvement in total UPDRS score of greater than 30%, compared with none of the patients receiving placebo (P < 0.05, Fisher's exact test). The frequency and types of adverse events reported by rasagiline-treated and placebo-treated patients were similar. These results suggest that rasagiline monotherapy is well tolerated and efficacious in early PD.
Collapse
|
71
|
Thébault JJ, Guillaume M, Levy R. Tolerability, Safety, Pharmacodynamics, and Pharmacokinetics of Rasagiline: A Potent, Selective, and Irreversible Monoamine Oxidase Type B Inhibitor. Pharmacotherapy 2004; 24:1295-305. [PMID: 15628826 DOI: 10.1592/phco.24.14.1295.43156] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
STUDY OBJECTIVE To investigate the tolerability, safety, pharmacodynamics, and pharmacokinetics of rasagiline after once-daily oral administration of single or repeated doses. DESIGN A randomized, double-blind, placebo-controlled, three-way, single-dose study and a randomized, double-blind, placebo-controlled, repeated-dose study. SETTING Clinical research center in France. SUBJECTS Healthy male volunteers aged 18-40 years (12 in the single-dose study, 24 in the repeated-dose study). INTERVENTION In the single-dose study, subjects received, in a randomized sequence, single doses of placebo, rasagiline 1 mg, and rasagiline 5 mg; or placebo, rasagiline 2 mg, and rasagiline 10 mg. Six subjects received an additional single dose of rasagiline 20 mg. There was a 2-week washout period between each dose. In the repeated-dose study, subjects were randomized to receive rasagiline 2 mg, 5 mg, or 10 mg, or placebo once/day for 10 days. MEASUREMENTS AND MAIN RESULTS To assess tolerability and safety, patients underwent physical examinations, vital sign measurements, 12-lead electrocardiograms, clinical laboratory testing, and bleeding time studies. To determine platelet monoamine oxidase type B (MAO-B) activity and rasagiline pharmacokinetics, blood and urine samples were taken. In the single-dose study, rasagiline 1-20 mg was well tolerated. Each dose significantly inhibited platelet MAO-B activity. In the repeated-dose study, all doses of rasagiline were well tolerated; almost full inhibition of platelet MAO-B activity was achieved with each rasagiline dose. CONCLUSION Rasagiline is well tolerated at doses up to 20 mg once/day and is a potent inhibitor of platelet MAO-B in humans.
Collapse
|
72
|
Weinreb O, Bar-Am O, Amit T, Chillag-Talmor O, Youdim MBH. Neuroprotection via pro‐survival protein kinase C isoforms associated with Bcl‐2 family members. FASEB J 2004; 18:1471-3. [PMID: 15247150 DOI: 10.1096/fj.04-1916fje] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study provides new insights into neuroprotection involving interaction of protein kinase C (PKC) pathway with Bcl-2 family proteins. Using a model of serum deprivation, we investigated the mechanism by which the anti-Parkinson/monoamine oxidase (MAO)-B inhibitor drug, rasagiline, exerts its neuroprotective effect in rat pheochromocytoma PC12 cells. Here, we report that rasagiline (0.1-10 microM) decreased apoptosis via multiple protection mechanisms, including the stimulation of PKC phosphorylation; up-regulation of PKCalpha and PKC mRNAs, induction of Bcl-xL, Bcl-w, and brain-derived neurotrophic factor (BDNF) mRNAs; and down-regulation of Bad and Bax mRNAs. Moreover, rasagiline inhibited the cleavage and activation of procaspase-3 and poly (ADP-ribose) polymerase (PARP), whereas the PKC inhibitor, GF109203X, reversed these actions. Similarly, rasagiline decreased serum-free-induced levels of the important regulator of cell death, Bad, which was also blocked by GF109203X, indicating the involvement of PKC in rasagiline-induced cell survival. Furthermore, these studies have established that PKC- and Bcl-2-dependent neuroprotective activity of rasagiline is dependent on its propargyl moiety, because propargylamine had similar effects with the same potency.
Collapse
Affiliation(s)
- Orly Weinreb
- Eve Topf and Rappaport Family Research Institute, Technion-Faculty of Medicine, Haifa, Israel
| | | | | | | | | |
Collapse
|
73
|
Seymour CB, Mothersill C, Mooney R, Moriarty M, Tipton KF. Monoamine oxidase inhibitors l-deprenyl and clorgyline protect nonmalignant human cells from ionising radiation and chemotherapy toxicity. Br J Cancer 2004; 89:1979-86. [PMID: 14612913 PMCID: PMC2394440 DOI: 10.1038/sj.bjc.6601361] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
l-Deprenyl (R-(−)-deprenyl, selegiline) is an inhibitor of monoamine oxidase-B (MAO-B) that is known to protect nerve cells from a variety of chemical and physical insults. As apoptosis is a common mechanism of radiation-induced cell death, the effect of l-deprenyl on the survival of cultured cells and tissue explants was studied following exposure to gamma radiation. The results obtained were compared with the effects of the less-selective MAO-B inhibitor pargyline and the MAO-A inhibitor clorgyline. l-Deprenyl at a concentration of 10−9 M protected the nontumorigenic cell line (HaCaT) and normal human urothelial explants from the effects of cobalt-60 gamma radiation, but did not protect tumorigenic human cell lines HaCaT-ras, HPV-transfected human keratinocytes (HPV-G cells), or PC3. Human bladder carcinoma explants were not protected. Clorgyline showed a smaller protective effect of normal cells, whereas pargyline had no effect. Radiation-induced delayed effects (genomic instability measured as delayed cell death) were prevented in normal cells by l-deprenyl but, interestingly, deprenyl appeared to increase the amount of delayed death in the tumorigenic cell lines. Studies using l-deprenyl prior to the exposure of nonmalignant cells to cisplatin showed that cell death due to this agent was also reduced. Treatment of cultures of nontumorigenic cells with l-deprenyl or clorgyline significantly increased the levels of the protein Bcl-2 following irradiation, but there was no such effect on the already-elevated levels of this protein in the tumour samples. Since the Bcl-2 has been shown to be an inhibitor of apoptosis or programmed cell death, this would imply that the protective effects of l-deprenyl and clorgyline involve activation of antiapoptotic pathways within the normal cell. This hypothesis is supported by data showing reduced levels of apoptosis in HaCAT cells and in normal bladder explant cultures following treatment with l-deprenyl.
Collapse
Affiliation(s)
- C B Seymour
- Radiation and Environmental Science Centre, Dublin Institute of Technology, Kevin St, Dublin 8, Ireland
- St Luke's Institute for Cancer Research, Rathgar, Dublin 6, Ireland
| | - C Mothersill
- Radiation and Environmental Science Centre, Dublin Institute of Technology, Kevin St, Dublin 8, Ireland
- St Luke's Institute for Cancer Research, Rathgar, Dublin 6, Ireland
- Dept Medical Physics & Applied Radiation Science, McMaster University, West Main Street, Hamilton Ontario, Canada, L8S 4K1. E-mail:
| | - R Mooney
- Radiation and Environmental Science Centre, Dublin Institute of Technology, Kevin St, Dublin 8, Ireland
| | - M Moriarty
- St Luke's Institute for Cancer Research, Rathgar, Dublin 6, Ireland
| | - K F Tipton
- Department of Biochemistry, Trinity College, Dublin 2, Ireland
| |
Collapse
|
74
|
Youdim MBH, Bar Am O, Yogev-Falach M, Weinreb O, Maruyama W, Naoi M, Amit T. Rasagiline: Neurodegeneration, neuroprotection, and mitochondrial permeability transition. J Neurosci Res 2004; 79:172-9. [PMID: 15573406 DOI: 10.1002/jnr.20350] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondria are involved directly in cell survival and death. The assumption has been made that drugs that protect mitochondrial viability and prevent apoptotic cascade-induced mitochondrial permeability transition pore (MPTp) opening will be cytoprotective. Rasagiline (N-propargyl-1R-aminoindan) is a novel, highly potent irreversible monoamine oxidase (MAO) B inhibitor anti-Parkinson drug. Unlike selegiline, it is not derived from amphetamine, and is not metabolized to neurotoxic L-methamphetamine derivative. In addition, it does not have sympathomimetic activity. Rasagiline is effective as monotherapy or adjunct to levodopa for patients with early and late Parkinson's disease (PD) and adverse events do not occur with greater frequency in subjects receiving rasagiline than in those on placebo. Phase III controlled studies indicate that it might have a disease-modifying effect in PD that may be related to its neuroprotective activity. Its S isomer, TVP1022, is more than 1,000 times less potent as an MAO inhibitor. Both drugs, however, have neuroprotective activity in neuronal cell cultures in response to various neurotoxins, and in vivo in response to global ischemia, neurotrauma, head injury, anoxia, etc., indicating that MAO inhibition is not a prerequisite for neuroprotection. Their neuroprotective effect has been demonstrated to be associated directly with the propargylamine moiety, which protects mitochondrial viability and MTPp by activating Bcl-2 and protein kinase C (PKC) and by downregulating the proapoptotic FAS and Bax protein families. Rasagiline and its derivatives also process amyloid precursor protein (APP) to the neuroprotective, neurotrophic, soluble APP alpha (sAPPalpha) by PKC- and MAP kinase-dependent activation of alpha-secretase. The identification of the propargylamine moiety as the neuroprotective component of rasagiline has led us to development of novel bifunctional anti-Alzheimer drugs (ladostigil) possessing cholinesterase and brain-selective MAO inhibitory activity and a similar neuroprotective mechanism of action.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Technion-Faculty of Medicine, 31096 Haifa, Israel.
| | | | | | | | | | | | | |
Collapse
|
75
|
Mandel S, Grünblatt E, Riederer P, Gerlach M, Levites Y, Youdim MBH. Neuroprotective strategies in Parkinson's disease : an update on progress. CNS Drugs 2003; 17:729-62. [PMID: 12873156 DOI: 10.2165/00023210-200317100-00004] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In spite of the extensive studies performed on postmortem substantia nigra from Parkinson's disease patients, the aetiology of the disease has not yet been established. Nevertheless, these studies have demonstrated that, at the time of death, a cascade of events had been initiated that may contribute to the demise of the melanin-containing nigro-striatal dopamine neurons. These events include increased levels of iron and monoamine oxidase (MAO)-B activity, oxidative stress, inflammatory processes, glutamatergic excitotoxicity, nitric oxide synthesis, abnormal protein folding and aggregation, reduced expression of trophic factors, depletion of endogenous antioxidants such as reduced glutathione, and altered calcium homeostasis. To a large extent, the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA) animal models of Parkinson's disease confirm these findings. Furthermore, neuroprotection can be afforded in these models with iron chelators, radical scavenger antioxidants, MAO-B inhibitors, glutamate antagonists, nitric oxide synthase inhibitors, calcium channel antagonists and trophic factors. Despite the success obtained with animal models, clinical neuroprotection is much more difficult to accomplish. Although the negative studies obtained with the MAO-B inhibitor selegiline (deprenyl) and the antioxidant tocopherol (vitamin E) may have resulted from an inappropriate choice of drug (selegiline) or an inadequate dose (tocopherol), the niggling problem that still remains is why these drugs, and others, do work in animals while they fail in the clinic. One reason for this may be related to the fact that in normal human brains the number of dopaminergic neurons falls by around 3-5% every decade, while in Parkinson's disease this decline is greater. Brain autopsy studies have shown that by the time the disease is identified, some 70-75% of the dopamine-containing neurons have been lost. More sensitive reliable methods and clinical correlative markers are required to discern between confoundable symptomatic effects versus a possible neuroprotective action of drugs, namely, the ability to delay or forestall disease progression by protecting or rescuing the remaining dopamine neurons or even restoring those that have been lost.A number of other possibilities for the clinical failure of potential neuroprotectants also exist. First, the animal models of Parkinson's disease may not be totally reflective of the disease and, therefore, the chemical pathologies established in the animal models may not cause, or contribute to, the progression of the disease clinically. Second, because of the series of events occurring in neurodegeneration and our ignorance about which of these factors constitutes the primary event in the pathogenic process, a single drug may not be adequate to induce neuroprotection and, as a consequence, use of a cocktail of drugs may be more appropriate. The latter concept receives support from recent complementary DNA (cDNA) microarray gene expression studies, which show the existence of a gene cascade of events occurring in the nigrostriatal pathway of MPTP, 6-OHDA and methamphetamine animal models of Parkinson's disease. Even with the advent of powerful new tools such as genomics, proteomics, brain imaging, gene replacement therapy and knockout animal models, the desired end result of neuroprotection is still beyond our current capability.
Collapse
Affiliation(s)
- Silvia Mandel
- Department of Pharmacology, Technion - Faculty of Medicine, Eve Topf and US National Parkinson's Foundation Centers for Neurodegenerative Diseases, Bruce Rappaport Family Research Institute, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
76
|
Yogev-Falach M, Amit T, Bar-Am O, Youdim MBH. The importance of propargylamine moiety in the anti‐ Parkinson drug rasagiline and its derivatives for MAPK‐ dependent amyloid precursor protein processing. FASEB J 2003; 17:2325-7. [PMID: 14525944 DOI: 10.1096/fj.03-0078fje] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rasagiline [N-propargyl-(1R)-aminoindan] a highly potent selective irreversible monoamine oxidase (MAO)-B inhibitor exerts neuroprotective and antiapoptotic effects against a variety of insults in cell cultures and in vivo and has finished its phase III clinical trials for Parkinson's disease. In the present study, we show that rasagiline (1 and 10 microM) significantly protected rat PC12 cells against beta-amyloid (Abeta1-42) toxicity. In addition, rasagiline significantly increased (approximately threefold) the secretion of the nonamyloidogenic soluble form of the amyloid precursor protein (sAPPalpha) from SH-SY5Y neuroblastoma and PC12 cells. The increase of sAPPalpha was dose-dependent and was blocked by the hydroxamic acid-based metalloprotease inhibitor Ro31-9790 (100 microM), suggesting that the effect is mediated via alpha-secretase activity. Rasagiline-induced sAPPalpha release was significantly reduced by the inhibitors of protein kinase C (PKC), GF109203X, and ERK mitogen-activated protein kinase (MAPK) PD98059. Moreover, rasagiline dose dependently (0.1-10 microM) increased the phosphorylation of p44 and p42 MAPK, which was abolished by PD98059 (30 microM) and GF109203X (2.5 microM). By comparing the actions of rasagiline with those of its S-isomer TVP1022, which is not an MAO inhibitor, we have been able to demonstrate that MAO-B inhibition is not a prerequisite for either sAPPalpha-induced release or ERK phosphorylation. In addition, structure-activity relationship among rasagiline-related compounds suggests the crucial role of the propargyl moiety in these molecules, because propargylamine itself significantly induced the secretion of sAPPalpha and increased MAPK phosphorylation with similar potency to that of rasagiline and its derivatives.
Collapse
Affiliation(s)
- Merav Yogev-Falach
- Technion Faculty of Medicine, Eve Topf and NPF Centers for Neurodegenerative Diseases, Department of Pharmacology, Haifa, Israel
| | | | | | | |
Collapse
|
77
|
Youdim MBH, Amit T, Falach-Yogev M, Bar Am O, Maruyama W, Naoi M. The essentiality of Bcl-2, PKC and proteasome–ubiquitin complex activations in the neuroprotective-antiapoptotic action of the anti-Parkinson drug, rasagiline. Biochem Pharmacol 2003; 66:1635-41. [PMID: 14555244 DOI: 10.1016/s0006-2952(03)00535-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The anti-Parkinson drug, rasagiline, a irreversible propargyl possessing monoamine oxidase B inhibitor can protect neurons in vitro and in vivo from a variety of neurotoxic insults including SIN-1, glutamate, the parkinsonism inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, N-methyl-(R)-salsolinol and including beta amyloid protein. Recent studies have shown that rasagiline rapidly modulates intracellular signaling pathways involved in cell survival and death. Specifically rasagiline activates Bcl-2, Bcl-xl, protein kinase C (PKC) and reduces Bax in a variety of cells including PC-12 and neuroblastoma human dopamine derived SH-SY5Y cells. These enzymes play key roles in cellular events including modulation of apoptotic processes, neuronal plasticity and amyloid precursor protein processing. This pharmacological action of rasagiline is also associated with the prevention of the neurotoxin induced fall in mitochondrial membrane potential, opening of mitochondria permeability transition pore, activation of proteasome-ubiquitin complex, inhibition of cytochrome c release and prevention of caspase 3 activation, similar to the actions of cyclosporin A or Bcl-2 over expression in SH-SY5Y cells. Rasagiline and its various derivatives induces PKC dependent release of soluble amyloid precursor protein alpha and which is blocked by inhibitors of alpha-secretase, PKC and MAPK-dependent signaling. Structure-activity relationship with various propargyl containing derivatives of rasagiline including propargylamine itself has shown that the above described pharmacological action of these compounds resides in the propargylamine moiety. These results have provided a new understanding into the mechanism of neuroprotective actions of rasagiline and its anti-Alzheimer drug derivatives TV3326 and TV3279, which are relevant for therapy of Parkinson's disease, Alzheimer's disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Eve Topf and National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research, Department of Pharmacology, Technion-Faculty of Medicine, Efron Street, P.O. Box 9697, Haifa 31096, Israel.
| | | | | | | | | | | |
Collapse
|
78
|
Weinstock M, Gorodetsky E, Poltyrev T, Gross A, Sagi Y, Youdim M. A novel cholinesterase and brain-selective monoamine oxidase inhibitor for the treatment of dementia comorbid with depression and Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27:555-61. [PMID: 12787840 DOI: 10.1016/s0278-5846(03)00053-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Degeneration of cholinergic cortical neurons is one of the main reasons for the cognitive deficit in dementia of the Alzheimer type (AD) and in dementia with Lewy bodies (DLB). Many subjects with AD and DLB have extrapyramidal dysfunction and depression resulting from degeneration of dopaminergic, noradrenergic and serotoninergic neurons. We prepared a novel drug, TV-3326 (N-propargyl-3R-aminoindan-5yl)-ethyl methylcarbamate), with both cholinesterase (ChE) and monoamine oxidase (MAO) inhibitory activity, as potential treatment of AD and DLB. TV-3326 inhibits brain acetyl and butyrylcholinesterase (BuChE) in rats after oral doses of 10-100 mg/kg. After chronic but not acute treatment, it inhibits MAO-A and -B in the brain by more than 70% but has almost no effect on these enzymes in the small intestine in rats and rabbits. The brain selectivity results in minimal potentiation of the pressor response to oral tyramine. TV-3326 acts like other antidepressants in the forced swim test in rats, indicating a potential for antidepressant activity. Chronic treatment of mice with TV-3326 (26 mg/kg) prevents the destruction of nigrostriatal neurons by the neurotoxin MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). In addition to ChE and MAO inhibition, the propargylamine moiety of TV-3326 confers neuroprotective activity against cytotoxicity induced by ischemia and peroxynitrite in cultured neuronal cells that results from prevention of the fall in mitochondrial membrane potential and antiapoptotic activity. These unique multiple actions of TV-3326 make it a potentially useful drug for the treatment of dementia with Parkinsonian-like symptoms and depression.
Collapse
Affiliation(s)
- Marta Weinstock
- Department of Pharmacology, Hebrew University Hadassah School of Medicine, Ein Kerem, 91120, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
79
|
Maruyama W, Weinstock M, Youdim MBH, Nagai M, Naoi M. Anti-apoptotic action of anti-Alzheimer drug, TV3326 [(N-propargyl)-(3R)-aminoindan-5-yl]-ethyl methyl carbamate, a novel cholinesterase-monoamine oxidase inhibitor. Neurosci Lett 2003; 341:233-6. [PMID: 12697291 DOI: 10.1016/s0304-3940(03)00211-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The anti Parkinson drug, rasagiline [R-(+)-N-propargyl-1-aminoindan], an inhibitor of type B monoamine oxidase, has been shown to suppress apoptosis induced by neurotoxins and oxidative stress. A series of novel propargylaminoindans with a carbamate moiety to inhibit cholinesterase were developed from phamacophore of rasagiline to protect or rescue deteriorated neurons in Alzheimer's and Lewy Body disease and provide a beneficial effect on the cognitive deficits. Rasagiline analogues were found to protect dopaminergic SH-SY5Y cells against apoptosis induced by peroxynitrite donor. SIN-1. TV3326, [(N-propargyl)-(3R)-aminoindan-5-yl]-ethyl methyl carbamate, was as effective as rasagiline in preventing apoptosis, followed by its S-enantiomer, TV3279. The anti-apoptotic-neuroprotective activity was shown to reside in the propargylamine and not the carbamate moiety. This resulted in stabilization of the mitochondrial membrane potential, the collapse of which initiates the apoptotic cascade.
Collapse
Affiliation(s)
- Wakako Maruyama
- Laboratory of Biochemistry and Metabolism, Department of Basic Gerontology, National Institute for Longevity Sciences, Obu, Aichi, Japan
| | | | | | | | | |
Collapse
|
80
|
Tabakman R, Lecht S, Lazarovici P. Neuroprotection by monoamine oxidase B inhibitors: a therapeutic strategy for Parkinson's disease? Bioessays 2003; 26:80-90. [PMID: 14696044 DOI: 10.1002/bies.10378] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Parkinsonism (PD) is a neurodegenerative disorder of the brain resulting in dopamine deficiency caused by the progressive death of dopaminergic neurons. PD is characterized by a combination of rigidity, poverty of movement, tremor and postural instability. Selegiline is a selective and irreversible propargylamine type B monoamine oxidase (MAO-B) inhibitor. This drug, which inhibits dopamine metabolism, has been effectively used in the treatment of PD. However, its therapeutic effects are compromised by its many neurotoxic metabolites. To circumvent this obstacle, a novel MAO-B inhibitor, rasagiline, was developed. Paradoxically, the neuroprotective mechanism of propargylamines in different neuronal models appears to be independent of MAO-B inhibition. Recent investigations into the neuroprotective mechanism of propargylamines indicate that glyceraldehyde-3-phosphate dehydrogenase (GAPDH), MAO-B and/or other unknown proteins may represent pivotal proteins in the survival of the injured neurons. Delineation of the mechanism(s) involved in the neuroprotective effects exerted by MAO-B inhibitors may provide the key to preventive novel therapeutic modalities.
Collapse
Affiliation(s)
- Rinat Tabakman
- Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | |
Collapse
|
81
|
Finberg JPM, Youdim MBH. Pharmacological properties of the anti-Parkinson drug rasagiline; modification of endogenous brain amines, reserpine reversal, serotonergic and dopaminergic behaviours. Neuropharmacology 2002; 43:1110-8. [PMID: 12504917 DOI: 10.1016/s0028-3908(02)00216-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Rasagiline [N-propargyl-1R(+)-aminoindan; TVP1012] is a potent irreversible monoamine oxidase (MAO) inhibitor with selectivity for type B of the enzyme, which is being developed for treatment of Parkinson's disease. In this study we examined effects of rasagiline on CNS monoamine levels, modification of behavioural response to L-tryptophan, fluoxetine and L-DOPA, and reversal of reserpine syndrome. Reserpine-induced ptosis was reversed by rasagiline at doses above 2 mg x kg(-1) i.p., which inhibit MAO-A as well as MAO-B, but not at MAO-B-selective doses. However, combination of rasagiline (10 mg x kg(-1) i.p.) with L-DOPA or L-tryptophan (50 mg x kg(-1) i.p.), or rasagiline (10 mg x kg(-1) p.o.) with fluoxetine (10 mg x kg(-1) p.o.), did not induce the behavioural hyperactivity syndrome which is seen following inhibition of both MAO-A and MAO-B by tranylcypromine together with the monoamine precursors. Following oral administration, levels of noradrenaline (NA), 5-hydroxytryptamine (5-HT) and dopamine (DA) were unaffected in hippocampus and striatum after single doses of rasagiline up to 2 mg x kg(-1). Following chronic oral administration (21 days, one dose daily), levels of NA, 5-HT and DA in hippocampus and striatum were unaffected by rasagiline at doses up to 1 mg x kg(-1). Rasagiline does not modify CNS monoamine tissue levels or monoamine-induced behavioural syndromes at doses which selectively inhibit MAO-B but not MAO-A.
Collapse
Affiliation(s)
- John P M Finberg
- Pharmacology Department, Rappaport Family Faculty of Medicine, Technion, POB 9649, Haifa, Israel.
| | | |
Collapse
|
82
|
Weinstock M, Gorodetsky E, Wang RH, Gross A, Weinreb O, Youdim MBH. Limited potentiation of blood pressure response to oral tyramine by brain-selective monoamine oxidase A-B inhibitor, TV-3326 in conscious rabbits. Neuropharmacology 2002; 43:999-1005. [PMID: 12423669 DOI: 10.1016/s0028-3908(02)00176-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
TV-3326 is a novel cholinesterase inhibitor that produces irreversible brain-selective inhibition of monoamine oxidase (MAO)-A and B and has antidepressant-like activity in rats after chronic oral administration. This study determined whether TV-3326 would cause less potentiation than other irreversible MAO-inhibitors of the blood pressure (BP) response to oral tyramine in conscious rabbits. Dose-response curves were established for the increase in BP induced by tyramine (5-200 mg/kg) administered orally via a naso-pharyngeal tube. From these, the dose that increased BP by 30 mmHg (ED(30)) was computed for each rabbit before and after oral administration of clorgyline, 1 mg/kg for one week, tranylcypromine 10 mg/kg, once, moclobemide, 20 mg/kg 3 times and TV-3326, 26 mg/kg for 2 weeks. Clorgyline, tranylcypromine and TV-3326 inhibited brain MAO-A by 90%; the former two inhibited intestinal MAO-A by 85-97% but TV-3326 had no effect. Tranylcypromine and clorgyline produced 6 and 20-fold increases in the pressor response to tyramine while TV-3326, like moclobemide, only potentiated it 2-fold. If TV-3326 is found to produce as little potentiation of the tyramine response in human subjects, it may be a potentially useful therapeutic agent for the treatment of Alzheimer's disease with depression.
Collapse
Affiliation(s)
- M Weinstock
- Department of Pharmacology, Hebrew University, Hadassah Medical Centre, Ein Kerem, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
83
|
Yogev-Falach M, Amit T, Bar-Am O, Weinstock M, Youdim MBH. Involvement of MAP kinase in the regulation of amyloid precursor protein processing by novel cholinesterase inhibitors derived from rasagiline. FASEB J 2002; 16:1674-6. [PMID: 12206996 DOI: 10.1096/fj.02-0198fje] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Two novel neuroprotective cholinesterase (ChE) inhibitors, TV3326, (N-propargyl-(3R) aminoindan-5-yl)-ethyl methyl carbamate, and TV3279, (N-propargyl-(3S) aminoindan-5-yl)-ethyl methyl carbamate, were derived from rasagiline for the treatment of Alzheimer's disease (AD). TV3326 also inhibits monoamine oxidase (MAO)-A and -B, whereas its S-isomer, TV3279, lacks MAO inhibitory activity. The action of these drugs in the regulation of amyloid precursor protein (APP) processing, using rat PC12 and human SH-SY5Y neuroblastoma cells, was examined. Both isomers stimulated the release of the non-amyloidogenic a-secretase form of soluble APP (sAPPalpha) from these cell lines. The increases in sAPPalpha, induced by TV3326 and TV3279, were dose-dependent (0.1-100 mM) and blocked by the hydroxamic acid-based metalloprotease inhibitor, Ro31-9790, suggesting mediation via a-secretase activity. Using several signal transduction inhibitors, we identified the involvement of protein kinase C (PKC), mitogen-activated protein (MAP) kinase, and tyrosine kinase-dependent pathways in the enhancement of sAPPalpha release by TV3326 and TV3279. In addition, both drugs directly induced the phosphorylation of p44 and p42 MAP kinase, which was abolished by the specific inhibitors of MAP kinase activation, PD98059 and U0126. These data suggest a novel pharmacological mechanism whereby these ChE inhibitors regulate the secretory processes of APP via activation of the MAP kinase pathway.
Collapse
Affiliation(s)
- Merav Yogev-Falach
- Technion-Faculty of Medicine, Eve Topf and NPF Centers for Neurodegenerative Diseases Department of Pharmacology Haifa, Israel
| | | | | | | | | |
Collapse
|
84
|
Maruyama W, Akao Y, Carrillo MC, Kitani KI, Youdium MBH, Naoi M. Neuroprotection by propargylamines in Parkinson's disease: suppression of apoptosis and induction of prosurvival genes. Neurotoxicol Teratol 2002; 24:675-82. [PMID: 12200198 DOI: 10.1016/s0892-0362(02)00221-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In Parkinson's disease (PD), therapies to delay or suppress the progression of cell death in nigrostriatal dopamine neurons have been proposed by use of various agents. An inhibitor of type B monoamine oxidase (MAO-B), (-)deprenyl (selegiline), was reported to have neuroprotective activity, but clinical trials failed to confirm it. However, the animal and cellular models of PD proved that selegiline protects neurons from cell death. Among selegiline-related propargylamines, (R)(+)-N-propargyl-1-aminoindan (rasagiline) was the most effective to suppress the cell death in in vivo and in vitro experiments. In this paper, the mechanism of the neuroprotection by rasagiline was examined using human dopaminergic SH-SY5Y cells against cell death induced by an endogenous dopaminergic neurotoxin N-methyl(R)salsolinol (NM(R)Sal). NM(R)Sal induced apoptosis (but not necrosis) in SH-SY5Y cells, and the apoptotic cascade was initiated by mitochondrial permeability transition (PT) and activated by stepwise reactions. Rasagiline prevented the PT in mitochondria directly and also indirectly through induction of antiapoptotic Bcl-2 and a neurotrophic factor, glial cell line-derived neurotrophic factor (GDNF). Long-term administration of propargylamines to rats increased the activities of antioxidative enzymes superoxide dismutase (SOD) and catalase in the brain regions containing dopamine neurons. Rasagiline and related propargylamines may rescue degenerating dopamine neurons through inhibiting death signal transduction initiated by mitochondria PT.
Collapse
Affiliation(s)
- Wakako Maruyama
- Laboratory of Biochemistry and Metabolism, Department of Basic Gerontology, National Institute for Longevity Sciences, Obu, Aichi 474-8522, Japan.
| | | | | | | | | | | |
Collapse
|
85
|
Akao Y, Maruyama W, Yi H, Shamoto-Nagai M, Youdim MBH, Naoi M. An anti-Parkinson's disease drug, N-propargyl-1(R)-aminoindan (rasagiline), enhances expression of anti-apoptotic bcl-2 in human dopaminergic SH-SY5Y cells. Neurosci Lett 2002; 326:105-8. [PMID: 12057839 DOI: 10.1016/s0304-3940(02)00332-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Propargyl-1(R)-aminoindan (rasagiline) is now under phase III clinical trials for Parkinson's disease (PD), and it rescues dopamine neurons from cell death in animal and cellular models of PD. Recently, we proved that rasagiline protected dopaminergic SH-SY5Y cells against apoptosis induced by a dopaminergic neurotoxin, N-methyl(R)salsolinol, and the mechanism was clarified to be due to suppression of death signal transduction in mitochondria. In this paper, the effects of rasagiline on the levels of anti-apoptotic bcl-2 gene family were studied. Rasagiline increased the levels of bcl-2 and bcl-x(l) mRNA at 100-10 nM and 100-10 pM, but not the level of pro-apoptotic bax mRNA. Enhanced expression of bcl-2 family indicates the ability of rasagiline to adjust the apoptotic threshold and protect degenerating neurons in PD.
Collapse
Affiliation(s)
- Yukihiro Akao
- Gifu International Institute of Biotechnology, Mitake, Kani-gun, Gifu, Japan
| | | | | | | | | | | |
Collapse
|
86
|
Youdim MBH, Weinstock M. Novel neuroprotective anti-Alzheimer drugs with anti-depressant activity derived from the anti-Parkinson drug, rasagiline. Mech Ageing Dev 2002; 123:1081-6. [PMID: 12044957 DOI: 10.1016/s0047-6374(01)00391-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A number of studies have shown that the selective monoamine oxidase (MAO)-B inhibitor l-selegiline has neuroprotective activities in several cell culture systems and in vivo. The suggestion has been made that the propargyl moiety in this molecule may have some intrinsic neuroprotective activity not related to its ability to bind covalently to MAO B and inhibit it. We have therefore developed a number of novel drugs based on rasagiline (N-propargyl-1R-(+)-aminoindan), a potent anti-Parkinson-propargyl-containing MAO-B inhibitor drug with structural resemblance to selegiline, for the treatment of Alzheimer's disease. These drugs possess a carbamate moiety for cholinesterase (ChE), and a propargyl group for MAO inhibition. The R-enantiomer of these compounds (TV3326) has ChE and MAO inhibitory activities in vivo and retains the neuroprotective properties of rasagiline. It also exhibits anti-depressant activity in animal models. The S-enantiomer does not inhibit MAO and has no anti-depressant activity, but it has similar ChE inhibitory and neuroprotective activities. Thus MAO inhibition by propargylamines is not a pre-requisite for neuroprotection. Rather, propargylamines have some intrinsic neuroprotective property whose mechanism of action requires further elucidation.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Technion-Faculty of Medicine, Eve Topf and NPF Centers, 31096, Haifa, Israel.
| | | |
Collapse
|
87
|
Youdim MBH, Tipton KF. Rat striatal monoamine oxidase-B inhibition by l-deprenyl and rasagiline: its relationship to 2-phenylethylamine-induced stereotypy and Parkinson's disease. Parkinsonism Relat Disord 2002; 8:247-53. [PMID: 12039419 DOI: 10.1016/s1353-8020(01)00011-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Rats were injected intraperitoneally with varying doses of l-deprenyl (selegiline) followed 2h later by 30 mg kg(-1) 2-phenylethylamine (PEA), administered in the same way, and the stereotypic behavioural response elicited was assessed. l-Deprenyl alone at doses of up to 5 mg kg(-1) caused no significant behavioural response. Administration of PEA without prior l-deprenyl treatment resulted in only a modest increase in stereotypic behaviour and this was not significantly enhanced by the prior administration 1 mg kg(-1) l-deprenyl. When the administered dose of l-deprenyl was increased to 2.5 or 5 mgkg(-1), however, the stereotypic behavioural response to PEA was greatly potentiated and in the latter case persisted for 60 min. A dose of 2.5 mg kg(-1) l-deprenyl and 1 mg kg(-1) rasagiline was shown to result in over 90% inhibition of the monoamine oxidase (MAO)-B from rat liver and striatum, whereas the inhibition of MAO-A was about 60 and 40% in liver and striatum, respectively. The recovery of MAO-B activity in rat striatum and liver following a single i.p. injection of 5 mg kg(-1) l-deprenyl gave first-order rate constants of 1.80 and 7.15 h(-1), respectively, which corresponded to half-lives of 9.23 and 2.33 days. Similar results were obtained with rasagiline. The corresponding indices of stereotypic response to PEA (30 mg kg(-1); i.p.) during recovery from the single dose of l-deprenyl were initially high, but had started to decline by the third day after l-deprenyl treatment and was not significant after day 4. At that time, less than 20% of the striatal monoamine oxidase-B activity had been regained, whereas the recovery of the liver enzyme was about 65%. These data are discussed in terms of the suggested involvement of PEA potentiation in the anti-parkinsonian actions of l-deprenyl and rasagiline and the duration of the 'wash-out' period used in studies on the effects of l-deprenyl on patients with Parkinson's disease. The longer duration of the recovery of brain monoamine oxidase B after its selective inhibition and the corresponding behavioural responses of the animals to PEA at same time points, indicate that PEA may have a major pharmacological role in the mechanism of the antiParkinson action of l-deprenyl and rasagiline. Brain monoamine oxidase B inhibition has previously been shown to significantly increases brain PEA and which is capable of releasing dopamine endogenously or that formed from L-dopa.
Collapse
Affiliation(s)
- M B H Youdim
- Department of Pharmacology, Technion-Faculty of Medicine, Eve Topf and US National Parkinson Foundation Centers for Neurodegenerative Diseases, The B. Rappaport Family-Medical Research Institute, 31096 Haifa, Israel.
| | | |
Collapse
|
88
|
Abu-Raya S, Tabakman R, Blaugrund E, Trembovler V, Lazarovici P. Neuroprotective and neurotoxic effects of monoamine oxidase-B inhibitors and derived metabolites under ischemia in PC12 cells. Eur J Pharmacol 2002; 434:109-16. [PMID: 11779573 DOI: 10.1016/s0014-2999(01)01548-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selegiline and rasagiline are selective and irreversible monoamine oxidase-B inhibitors that exert neuroprotective effects in various preclinical models. The aim of the present study was to examine the effect of selegiline and its major metabolite, L-methamphetamine in comparison to rasagiline and its major metabolite, 1-R-aminoindan on oxygen-glucose deprivation induced cell death in nerve growth factor (NGF)-differentiated pheochromocytoma (PC12) cells. Our results show that selegiline reduces oxygen-glucose deprivation induced cell death by 30%. When the cultures were treated with rasagiline at similar concentrations, cell death induced by oxygen-glucose deprivation was reduced by 45-55%. L-methamphetamine, a major selegiline metabolite, but not 1-R-aminoindan, the major rasagiline metabolite, enhanced oxygen-glucose deprivation-induced cell death by 70%. Under normoxic conditions, both metabolites lack neurotoxicity. Concomitant exposure of the cultures under oxygen-glucose deprivation, to a combination of either selegiline and L-methamphetamine or rasagiline and 1-R-aminoindan, indicated that L-methamphetamine, but not 1-R-aminoindan, blocked the neuroprotective effect of the parental drug. These results suggest there may be a neuroprotective advantage of rasagiline over selegiline.
Collapse
Affiliation(s)
- Saleh Abu-Raya
- Department of Pharmacology and Experimental Therapeutics, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
89
|
Youdim MB, Weinstock M. Molecular basis of neuroprotective activities of rasagiline and the anti-Alzheimer drug TV3326 [(N-propargyl-(3R)aminoindan-5-YL)-ethyl methyl carbamate]. Cell Mol Neurobiol 2001; 21:555-73. [PMID: 12043833 DOI: 10.1023/a:1015131516649] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rasagiline (N-propargyl-1-(R)-aminoindan) is a selective, irreversible monoamine oxidase B (MAO B) inhibitor which has been developed as an anti-Parkinson drug. In controlled monotherapy and as adjunct to L-dopa it has shown anti-Parkinson activity. In cell culture (PC-12 and neuroblastoma SH-SY5Y cells) it exhibits neuroprotective and anti-apoptotic activity against several neurotoxins (SIN-1, MPTP, 6-hydroxydopamine and N-methyl-(R)-salsolinol) and ischemia. In vivo, it reduces the sequelae of traumatic brain injury in mice and speeds their recovery. The neuroprotective activity of rasagaline does not result from MAO B inhibition, since its S-enantiomer, TVP1022, which has 1000-fold weaker MAO inhibitory activity, exhibits similar neuroprotective properties. Introduction of a carbamate moiety into the rasagiline molecule to confer cholinesterase inhibitory activity for the treatment of Alzheimer's disease, resulted in compounds TV3326 [(N-Propargyl-(3R)Aminoindan-5-YL)-Ethyl Methyl Carbamate] and its S-enantiomer TV3279 [(N-Propargyl-(3S)Aminoindan-5-YL)-Ethyl Methyl Carbamate], which retain the neuroprotective activities of rasagiline and TVP1022. They also antagonize scopolamine-induced impairments in spatial memory. In addition, TV3326 exhibits brain-selective MAO A and B inhibitory activity after chronic administration and has antidepressant-like activity in the forced swim test. This is associated with an increase in brain levels of serotonin. The anti-apoptotic activity of these propargylamine-containing derivatives may be related to their ability to delay the opening of voltage-dependent anion channels (VDAC), which are part of the mitochondrial permeability transition pore. The propargylamine moiety is responsible for the increase in the mitochondrial family of Bcl-2 proteins, prevention in the fall in mitochondrial membrane potential, prevention of the activation of caspase 3, and of translocation of glyceraldehyde-3-phosphate dehydrogenase from the cytoplasm to the nucleus. The latter processes are closely associated with neurotoxin-induced apoptosis. Rasagiline interacts with and prevents the binding of PKI 1195 to the pro-apoptotic peripheral benzodiazepine receptor, which together with Bcl-2, hexokinase, porin, and adenine nucleotide translocator constitutes part of the VDAC. Furthermore, rasagiline, TV3326 and TV3279 are able to influence the processing of amyloid precursor protein by activation of alpha-secretase and increasing the release of soluble alpha APP in rat PC-12 and human neuroblastoma SH-SY5Y cells and in rat and mice cortex and hippocampus. This process has been shown to involve the upregulation of PKC and MAP kinase. It is quite likely that the induction of Bcl-2 and activation of PKC by rasagiline and TV3326 is closely linked to the anti-apoptotic action of these drugs and their ability to process APP by activation of alpha-secretase.
Collapse
Affiliation(s)
- M B Youdim
- Eve Topf and National Parkinson Foundation Centers for Neurodegenerative Diseases Research, Department of Pharmacology, Technion-Faculty of Medicine, Haifa, Israel.
| | | |
Collapse
|
90
|
Weinstock M, Kirschbaum-Slager N, Lazarovici P, Bejar C, Youdim MB, Shoham S. Neuroprotective effects of novel cholinesterase inhibitors derived from rasagiline as potential anti-Alzheimer drugs. Ann N Y Acad Sci 2001; 939:148-61. [PMID: 11462767 DOI: 10.1111/j.1749-6632.2001.tb03622.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
TV3326, (N-propargyl-(3R)-aminoindan-5-yl-ethyl,methyl carbamate) was prepared in order to combine the neuroprotective effects of rasagiline, a selective inhibitor of monoamine oxidase (MAO)-B with the cholinesterase (ChE) inhibitory activity of rivastigmine as a potential treatment for Alzheimer's disease. The study reported here examined the neuroprotective effects of TV3326 against various insults in vitro and in vivo. TV3326 caused a dose related (10-500 microM) reduction in death induced in NGF differentiated rat pheochromocytoma (PC12) cells by 3-4 hour exposure to oxygen-glucose deprivation. A single s.c. injection of TV3326 given five minutes after closed head injury in mice significantly reduced the cerebral edema, and accelerated the recovery of motor function and spatial memory several days later. Unilateral icv injection of streptozotocin (STZ) 1.5 mg in rats, caused specific damage to myelinated neurones in the fornix and corpus callosum accompanied by microgliosis. Three bilateral injections of STZ, 0.25 mg each, caused more widespread damage, and a marked impairment in spatial memory. Chronic oral treatment with TV3326 (75 mumols/kg) reduced the neuronal damage and microgliosis and almost completely prevented the memory impairment. The neuroprotective effect in PC12 cells may be due to a combination of ChE inhibition and antiapoptotic activity. The latter does not result from ChE inhibition. It is associated with the presence of the propargyl group, since it occurs with other propargylamines that do not inhibit MAO, but not with drugs that inhibit only ChE.
Collapse
Affiliation(s)
- M Weinstock
- Department of Pharmacology, Hebrew University Faculty of Medicine, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
91
|
Youdim MB, Wadia A, Tatton W, Weinstock M. The anti-Parkinson drug rasagiline and its cholinesterase inhibitor derivatives exert neuroprotection unrelated to MAO inhibition in cell culture and in vivo. Ann N Y Acad Sci 2001; 939:450-8. [PMID: 11462801 DOI: 10.1111/j.1749-6632.2001.tb03656.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The antiapoptotic and neuroprotective activity of irreversible monoamine oxidase (MAO) B inhibitor, rasagiline [R(+)-N-propargyl-1-aminioindan], its S-isomer (TVP1022) and TV 3219, a novel anti-Alzheimer cholinesterase-MAO inhibitor drug derived from rasagiline were examined in PC12 cells cultures and in vivo. We found that these drugs have potent antiapoptotic and neuroprotective activities in response to serum and NGF withdrawal in partially neuronally differentiated PC12 cells and prevent the fall in mitochondrial membrane potential, the first step in cell death. Closed head injury studies in mice have shown that both rasagiline and TVP1022 are neuroprotective. All these compounds possess a propargyl moiety, which normally is responsible for irreversible inactivation of MAO, as is seen with rasagiline. However, neither TVP1022 nor TV3219 are MAO inhibitors, both share the antiapoptotic and neuroprotective actions of rasagiline, indicating that MAO inhibition is not a prerequisite for neuroprotection and that the propargyl moiety exhibits intrinsic neuroprotective pharmacological activity that requires identification.
Collapse
Affiliation(s)
- M B Youdim
- Technion-Faculty of Medicine, Eve Topf and NPF Neurodegenerative Disease Centers, Efron Street, Bat Galim, Haifa, Israel.
| | | | | | | |
Collapse
|
92
|
Maruyama W, Akao Y, Youdim MB, Naoi M. Neurotoxins induce apoptosis in dopamine neurons: protection by N-propargylamine-1(R)- and (S)-aminoindan, rasagiline and TV1022. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2001:171-86. [PMID: 11205138 DOI: 10.1007/978-3-7091-6301-6_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
In Parkinson's disease, apoptosis was proposed to cause cell death in nigral dopamine neurons. An endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol, stereo-selectively induced apoptosis in human neuroblastoma SH-SY5Y cells. In this paper the intracellular mechanism of apoptosis was studied using N-methyl(R)salsolinol, 6-hydroxydopamine and peroxynitrite as inducers of apoptosis. Apoptotic cascade was initiated by opening of mitochondrial permeability transition pore, as shown by collapse of mitochondrial membrane potential, deltapsim. Apoptosis was executed by caspase 3 activation, followed by DNA fragmentation, which was antagonized by overexpressed Bcl-2. Propargylamines were found to protect the cells from apoptosis, and rasagiline, a selective irreversible inhibitor of type B monoamine oxidase was the most potent to prevent the cell death. Rasagiline preserved deltapsim, which was proved also in isolated mitochondria, and rasagiline completely suppressed the activation of caspases and DNA fragmentation. These results suggest that mitochondria regulate apoptotic process, which may be a target of neuroprotection by rasagiline.
Collapse
Affiliation(s)
- W Maruyama
- Department of Basic Gerontology, National Institute for Longevity Sciences, Obu, Aichi, Japan
| | | | | | | |
Collapse
|
93
|
Weinstock M, Bejar C, Wang RH, Poltyrev T, Gross A, Finberg JP, Youdim MB. TV3326, a novel neuroprotective drug with cholinesterase and monoamine oxidase inhibitory activities for the treatment of Alzheimer's disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2001:157-69. [PMID: 11205137 DOI: 10.1007/978-3-7091-6301-6_10] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
TV3326, [(N-propargyl-(3R) aminoindan-5-yl)-ethyl methyl carbamate] is a novel aminoindan derivative of the selective irreversible monoamine oxidase (MAO)-B inhibitor, rasagiline (N-propargyl-(1R)-aminoindan), possessing both cholinesterase (ChE) and MAO-inhibitory activity. In doses of 35-100 micromoles/kg administered orally to rats, it inhibits ChE by 25-40% and antagonises scopolamine-induced impairments in spatial memory. After daily administration of 75 micromoles/kg for 2 weeks, TV3326 does not show any motor stimulant effects but significantly reduces immobility in the forced swim test, an action consistent with that of known antidepressants. This could result from more than 70% inhibition of both MAO-A and B in the brain that occurs under these conditions, since it is not shared by the S-isomer, TV3279, which does not block MAO. TV3326 also shows selectivity for brain MAO, even after 2 months of daily administration, with little or no effect on the enzyme in the intestinal tract and liver. This reduces the likelihood of it producing the "cheese effect" if administered with tyramine-containing foods or beverages. TV3326 and TV3279 protect against ischemia-induced cytotoxicity in PC12 cells and reduce the oedema, deficits in motor function and memory after closed head injury in mice. These neuroprotective effects do not result from MAO inhibition. The pharmacological actions of TV3326 could be of clinical importance for the treatment of AD, and the drug is currently in development for this purpose.
Collapse
Affiliation(s)
- M Weinstock
- Department of Pharmacology, Hebrew University Hadassah School of Medicine, Ein Kerem, Jerusalem, Israel.
| | | | | | | | | | | | | |
Collapse
|
94
|
Fornai F, Giorgi FS, Gesi M, Chen K, Alessrì MG, Shih JC. Biochemical effects of the monoamine neurotoxins DSP-4 and MDMA in specific brain regions of MAO-B-deficient mice. Synapse 2001; 39:213-21. [PMID: 11169770 DOI: 10.1002/1098-2396(20010301)39:3<213::aid-syn1002>3.0.co;2-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies reported that drugs acting as monoamine oxidase (MAO)-B inhibitors prevented biochemical effects induced by the neurotoxins N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) and 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy"). In this study, we administered DSP-4 (50 mg/kg) or MDMA (50 mg/kg x 2, 2 h apart) to MAO-B deficient mice. Monoamine content in various brain regions (cerebellum, frontal cortex, hippocampus, hypothalamus, striatum, substantia nigra) was assayed 1 week after neurotoxin administration. Injection of DSP-4 to wild-type mice caused a marked norepinephrine (NE) loss in specific brain regions. Unexpectedly, DSP-4 caused similar effects in MAO-B-deficient and in wild-type mice in all brain regions investigated. These results suggest that MAO-B is not involved in DSP-4 toxicity. In wild-types, the neurotoxin MDMA induced both serotonin (5HT) and dopamine (DA) depletion in specific brain areas. In MAO-B-deficient mice, 5HT depletion observed in wild-types did not occur. In contrast, MDMA produced a more pronounced DA loss in knockout mice compared with wild-types. The present findings, together with previous data obtained using selective enzyme inhibitors, suggest that MAO-B is not involved in the mechanism of action of DSP-4, whereas it plays opposite roles in MDMA-induced DA and 5HT depletions.
Collapse
Affiliation(s)
- F Fornai
- Department of Human Morphology and Applied Biology, University of Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
95
|
Youdim MB, Gross A, Finberg JP. Rasagiline [N-propargyl-1R(+)-aminoindan], a selective and potent inhibitor of mitochondrial monoamine oxidase B. Br J Pharmacol 2001; 132:500-6. [PMID: 11159700 PMCID: PMC1572573 DOI: 10.1038/sj.bjp.0703826] [Citation(s) in RCA: 270] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Rasagiline [N-propargyl-1R(+)-aminoindan], was examined for its monoamine oxidase (MAO) A and B inhibitor activities in rats together with its S(-)-enantiomer (TVP 1022) and the racemic compound (AGN-1135) and compared to selegiline (1-deprenyl). The tissues that were studied for MAO inhibition were the brain, liver and small intestine. 2. While rasagiline and AGN1135 are highly potent selective irreversible inhibitors of MAO in vitro and in vivo, the S(-) enantiomer is relatively inactive in the tissues examined. 3. The in vitro IC(50) values for inhibition of rat brain MAO activity by rasagiline are 4.43+/-0.92 nM (type B), and 412+/-123 nM (type A). The ED(50) values for ex vivo inhibition of MAO in the brain and liver by a single dose of rasagiline are 0.1+/-0.01, 0.042+/-0.0045 mg kg(-1) respectively for MAO-B, and 6.48+/-0.81, 2.38+/-0.35 mg kg(-1) respectively for MAO-A. 4. Selective MAO-B inhibition in the liver and brain was maintained on chronic (21 days) oral dosage with ED(50) values of 0.014+/-0.002 and 0.013+/-0.001 mg kg(-1) respectively. 5. The degree of selectivity of rasagiline for inhibition of MAO-B as opposed to MAO-A was similar to that of selegiline. Rasagiline was three to 15 times more potent than selegiline for inhibition of MAO-B in rat brain and liver in vivo on acute and chronic administration, but had similar potency in vitro. 6. These data together with lack of tyramine sympathomimetic potentiation by rasagiline, at selective MAO-B inhibitory dosage, indicate that this inhibitor like selegiline may be a useful agent in the treatment of Parkinson's disease in either symptomatic or L-DOPA adjunct therapy, but lack of amphetamine-like metabolites could present a therapeutic advantage for rasagiline.
Collapse
Affiliation(s)
- M B Youdim
- Technion-Rappaport Faculty of Medicine, Department of Pharmacology, Eve Topf and National Parkinson Foundation Centers for Neurodegenerative Diseases Research, Haifa, Israel
| | | | | |
Collapse
|
96
|
Rabey JM, Sagi I, Huberman M, Melamed E, Korczyn A, Giladi N, Inzelberg R, Djaldetti R, Klein C, Berecz G. Rasagiline mesylate, a new MAO-B inhibitor for the treatment of Parkinson's disease: a double-blind study as adjunctive therapy to levodopa. Clin Neuropharmacol 2000; 23:324-30. [PMID: 11575866 DOI: 10.1097/00002826-200011000-00005] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Rasagiline mesylate (TVP-1012) is a potent, selective, non-reversible MAO-B inhibitor, without the tyramine-potentiating effect and with neuroprotective activities. The benefit of rasagiline as monotherapy in patients with early Parkinson's disease (PD) has already been reported. To evaluate the safety, tolerability, and clinical effect of rasagiline as adjunctive therapy to levodopa, a multicenter, double-blind, randomized, placebo-controlled, parallel-group study (0.5, 1, and 2 mg/d) was conducted for 12 weeks in 70 patients with PD (mean age, 57.4 y; mean disease duration, 5.7 y; 32 patients had motor fluctuations). A beneficial clinical effect was observed in fluctuating patients treated with rasagiline (all doses), expressed as a decrease in total Unified Parkinson's Disease Rating Scale (UPDRS) score (23.0% vs 8.5% in the placebo group). The treatment effect was still evident 6 weeks after drug discontinuation (in all doses). The safety and tolerability of rasagiline were good. Adverse events were no different than those of patients taking placebo. Almost complete platelet MAO-B inhibition was obtained at all rasagiline doses. This study has demonstrated that rasagiline (up to 2 mg/day) has a good safety profile and a beneficial clinical effect in fluctuating patients with PD when given as an add-on to chronic levodopa therapy.
Collapse
Affiliation(s)
- J M Rabey
- Department of Neurology, Assaf Harofeh Medical Center, Zerifin, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
The monoamine oxidase-B (MAO-B) inhibitor L-deprenyl (Selegiline) is effective in treating Parkinson's disease and possibly Alzheimer's disease, with a concomitant extension of life span. It has been suggested that the therapeutic efficacy of L-deprenyl may involve actions other than the inhibition of the enzyme MAO-B. This article reviews some novel actions of L-deprenyl and suggests that stimulation of nitric oxide (NO) production could be central to the action of the drug. L-Deprenyl induced rapid increases in NO production in brain tissue and cerebral blood vessels. In vitro or in vivo application of L-deprenyl produced vasodilatation. The drug also protected the vascular endothelium from the toxic effects of amyloid-beta peptide. Because NO modulates activities including cerebral blood flow and memory, and reduced NO production has been observed in AD brain, stimulation of NO production by L-deprenyl could contribute to the enhancement of cognitive function in AD. MAO-B inhibitors are unique in that they exert protective effects on both vascular and neuronal tissue and thus warrant further consideration in the treatment of vascular and neurodegenerative diseases associated with aging.
Collapse
Affiliation(s)
- T Thomas
- Woodlands Medical and Research Center, 3150 Tampa Road, Oldsmar, FL 34677, USA.
| |
Collapse
|
98
|
Abu-Raya S, Blaugrund E, Trembovler V, Lazarovici P. Rasagiline, a novel monoamine oxidase-B inhibitor with neuroprotective effects under ischemic conditions in PC12 cells. Drug Dev Res 2000. [DOI: 10.1002/1098-2299(200007/08)50:3/4<285::aid-ddr11>3.0.co;2-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
99
|
Weinstock M, Goren T, Youdim MBH. Development of a novel neuroprotective drug (TV3326) for the treatment of Alzheimer's disease, with cholinesterase and monoamine oxidase inhibitory activities. Drug Dev Res 2000. [DOI: 10.1002/1098-2299(200007/08)50:3/4<216::aid-ddr4>3.0.co;2-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
100
|
Abu-Raya S, Blaugrund E, Trembovler V, Shilderman-Bloch E, Shohami E, Lazarovici P. Rasagiline, a monoamine oxidase-B inhibitor, protects NGF-differentiated PC12 cells against oxygen-glucose deprivation. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19991101)58:3<456::aid-jnr12>3.0.co;2-s] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|