51
|
Conti M, Beavo J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 2007; 76:481-511. [PMID: 17376027 DOI: 10.1146/annurev.biochem.76.060305.150444] [Citation(s) in RCA: 902] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although cyclic nucleotide phosphodiesterases (PDEs) were described soon after the discovery of cAMP, their complexity and functions in signaling is only recently beginning to become fully realized. We now know that at least 100 different PDE proteins degrade cAMP and cGMP in eukaryotes. A complex PDE gene organization and a large number of PDE splicing variants serve to fine-tune cyclic nucleotide signals and contribute to specificity in signaling. Here we review some of the major concepts related to our understanding of PDE function and regulation including: (a) the structure of catalytic and regulatory domains and arrangement in holoenzymes; (b) PDE integration into signaling complexes; (c) the nature and function of negative and positive feedback circuits that have been conserved in PDEs from prokaryotes to human; (d) the emerging association of mutant PDE alleles with inherited diseases; and (e) the role of PDEs in generating subcellular signaling compartments.
Collapse
Affiliation(s)
- Marco Conti
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 943095-5317, USA.
| | | |
Collapse
|
52
|
Xiong Y, Lu HT, Li Y, Yang GF, Zhan CG. Characterization of a catalytic ligand bridging metal ions in phosphodiesterases 4 and 5 by molecular dynamics simulations and hybrid quantum mechanical/molecular mechanical calculations. Biophys J 2006; 91:1858-67. [PMID: 16912214 PMCID: PMC1544286 DOI: 10.1529/biophysj.106.086835] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 05/30/2006] [Indexed: 11/18/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) constitute a large superfamily of enzymes regulating concentrations of intracellular second messengers cAMP and cGMP through PDE-catalyzed hydrolysis. Although three-dimensional x-ray crystal structures of PDE4 and PDE5 have been reported, it is uncertain whether a critical, second bridging ligand (BL2) in the active site is H2O or HO- because hydrogen atoms cannot be determined by x-ray diffraction. The identity of BL2 is theoretically determined by performing molecular dynamics simulations and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations, for the first time, on the protein structures resolved by x-ray diffraction. The computational results confirm our previous suggestion, which was based on QM calculations on a simplified active site model, that BL2 in PDE4 should be HO-, rather than H2O, serving as the nucleophile to initialize the catalytic hydrolysis of cAMP. The molecular dynamics simulations and QM/MM calculations on PDE5 demonstrate for the first time that the BL2 in PDE5 should also be HO- rather than H2O as proposed in recently published reports on the x-ray crystal structures, which serves as the nucleophile to initialize the PDE5-catalyzed hydrolysis of cGMP. These fundamental structural insights provide a rational basis for future structure-based drug design targeting PDEs.
Collapse
Affiliation(s)
- Ying Xiong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | | | | | | | | |
Collapse
|
53
|
Hung SH, Zhang W, Pixley RA, Jameson BA, Huang YC, Colman RF, Colman RW. New Insights from the Structure-Function Analysis of the Catalytic Region of Human Platelet Phosphodiesterase 3A. J Biol Chem 2006; 281:29236-44. [PMID: 16873361 DOI: 10.1074/jbc.m606558200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human phosphodiesterase 3A (PDE3A) degrades cAMP, the major inhibitor of platelet function, thus potentiating platelet function. Of the 11 human PDEs, only PDE3A and 3B have 44-amino acid inserts in the catalytic domain. Their function is not clear. Incubating Sp-adenosine-3',5'-cyclic-S-(4-bromo-2,3-di-oxobutyl) monophosphorothioate (Sp-cAMPS-BDB) with PDE3A irreversibly inactivates the enzyme. High pressure liquid chromatography (HPLC) analysis of a tryptic digest yielded an octapeptide within the insert of PDE3A ((K)T(806)YNVTDDK(813)), suggesting that a substrate-binding site exists within the insert. Because Sp-cAMPS-BDB reacts with nucleophilic residues, mutants Y807A, D811A, and D812A were produced. Sp-cAMPS-BDB inactivates D811A and D812A but not Y807A. A docking model showed that Tyr(807) is 3.3 angstroms from the reactive carbon, whereas Asp(811) and Asp(812) are >15 angstroms away from Sp-cAMPS-BDB. Y807A has an altered K(m) but no change in k(cat). Activity of wild type but not Y807A is inhibited by an anti-insert antibody. These data suggest that Tyr(807) is modified by Sp-cAMPS-BDB and involved in substrate binding. Because the homologous amino acid in PDE3B is Cys(792), we prepared the mutant Y807C and found that its K(m) and k(cat) were similar to the wild type. Moreover, Sp-cAMPS-BDB irreversibly inactivates Y807C with similar kinetics to wild type, suggesting that the tyrosine may, like the cysteine, serve as a H donor. Kinetic analyses of nine additional insert mutants reveal that H782A, T810A, Y814A, and C816S exhibit an altered k(cat) but not K(m), indicating that catalysis is modulated. We document a new functional role for the insert in which substrate binding may produce a conformational change. This change would allow the substrate to bind to Tyr(807) and other amino acids in the insert to interact with residues important for catalysis in the active site cleft.
Collapse
Affiliation(s)
- Su-Hwi Hung
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Bolger G, Baillie G, Li X, Lynch M, Herzyk P, Mohamed A, High Mitchell L, McCahill A, Hundsrucker C, Klussmann E, Adams D, Houslay M. Scanning peptide array analyses identify overlapping binding sites for the signalling scaffold proteins, beta-arrestin and RACK1, in cAMP-specific phosphodiesterase PDE4D5. Biochem J 2006; 398:23-36. [PMID: 16689683 PMCID: PMC1525009 DOI: 10.1042/bj20060423] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cAMP-specific phosphodiesterase PDE4D5 can interact with the signalling scaffold proteins RACK (receptors for activated C-kinase) 1 and beta-arrestin. Two-hybrid and co-immunoprecipitation analyses showed that RACK1 and beta-arrestin interact with PDE4D5 in a mutually exclusive manner. Overlay studies with PDE4D5 scanning peptide array libraries showed that RACK1 and beta-arrestin interact at overlapping sites within the unique N-terminal region of PDE4D5 and at distinct sites within the conserved PDE4 catalytic domain. Screening scanning alanine substitution peptide arrays, coupled with mutagenesis and truncation studies, allowed definition of RACK1 and beta-arrestin interaction sites. Modelled on the PDE4D catalytic domain, these form distinct well-defined surface-exposed patches on helices-15-16, for RACK1, and helix-17 for beta-arrestin. siRNA (small interfering RNA)-mediated knockdown of RACK1 in HEK-293 (human embryonic kidney) B2 cells increased beta-arrestin-scaffolded PDE4D5 approx. 5-fold, increased PDE4D5 recruited to the beta2AR (beta2-adrenergic receptor) upon isoproterenol challenge approx. 4-fold and severely attenuated (approx. 4-5 fold) both isoproterenol-stimulated PKA (protein kinase A) phosphorylation of the beta2AR and activation of ERK (extracellular-signal-regulated kinase). The ability of a catalytically inactive form of PDE4D5 to exert a dominant negative effect in amplifying isoproterenol-stimulated ERK activation was ablated by a mutation that blocked the interaction of PDE4D5 with beta-arrestin. In the present study, we show that the signalling scaffold proteins RACK1 and beta-arrestin compete to sequester distinct 'pools' of PDE4D5. In this fashion, alterations in the level of RACK1 expression may act to modulate signal transduction mediated by the beta2AR.
Collapse
Affiliation(s)
- Graeme B. Bolger
- *Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294-3300, U.S.A
| | - George S. Baillie
- †Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Xiang Li
- †Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Martin J. Lynch
- †Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Pawel Herzyk
- ‡Sir Henry Wellcome Functional Genomics Facility, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Ahmed Mohamed
- †Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Lisa High Mitchell
- *Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294-3300, U.S.A
| | - Angela McCahill
- †Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Christian Hundsrucker
- §Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Enno Klussmann
- §Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - David R. Adams
- ∥Department of Chemistry, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, U.K
| | - Miles D. Houslay
- †Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
55
|
Wang H, Liu Y, Huai Q, Cai J, Zoraghi R, Francis SH, Corbin JD, Robinson H, Xin Z, Lin G, Ke H. Multiple Conformations of Phosphodiesterase-5. J Biol Chem 2006; 281:21469-21479. [PMID: 16735511 DOI: 10.1074/jbc.m512527200] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphodiesterase-5 (PDE5) is the target for sildenafil, vardenafil, and tadalafil, which are drugs for treatment of erectile dysfunction and pulmonary hypertension. We report here the crystal structures of a fully active catalytic domain of unliganded PDE5A1 and its complexes with sildenafil or icarisid II. These structures together with the PDE5A1-isobutyl-1-methylxanthine complex show that the H-loop (residues 660-683) at the active site of PDE5A1 has four different conformations and migrates 7-35A upon inhibitor binding. In addition, the conformation of sildenafil reported herein differs significantly from those in the previous structures of chimerically hybridized or almost inactive PDE5. Mutagenesis and kinetic analyses confirm that the H-loop is particularly important for substrate recognition and that invariant Gly(659), which immediately precedes the H-loop, is critical for optimal substrate affinity and catalytic activity.
Collapse
Affiliation(s)
- Huanchen Wang
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7260
| | - Yudong Liu
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7260
| | - Qing Huai
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7260
| | - Jiwen Cai
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7260; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510080, China
| | - Roya Zoraghi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615
| | - Sharron H Francis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615
| | - Jackie D Corbin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615
| | - Howard Robinson
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973-5000
| | - Zhongcheng Xin
- Andrology Center, Peking University First Hospital, Peking University, 8 Xishiku Street, Beijing (100034), China
| | - Guiting Lin
- Department of Urology, University of California, San Francisco, California 94143-1695
| | - Hengming Ke
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7260.
| |
Collapse
|
56
|
Huai Q, Sun Y, Wang H, Macdonald D, Aspiotis R, Robinson H, Huang Z, Ke H. Enantiomer discrimination illustrated by the high resolution crystal structures of type 4 phosphodiesterase. J Med Chem 2006; 49:1867-73. [PMID: 16539372 PMCID: PMC2527038 DOI: 10.1021/jm051273d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Type 4 phosphodiesterase (PDE4) inhibitors are emerging as new treatments for a number of disorders including asthma and chronic obstructive pulmonary disease. Here we report the biochemical characterization on the second generation inhibitor (+)-1 (L-, IC50=0.4 nM) and its enantiomer (-)-1 (L-, IC50=43 nM) and their cocrystal structures with PDE4D at 2.0 A resolution. Despite the 107-fold affinity difference, both enantiomers interact with the same sets of residues in the rigid active site. The weaker (-)-1 adopts an unfavorable conformation to preserve the pivotal interactions between the Mg-bound waters and the N-oxide of pyridine. These structures support a model in which inhibitors are anchored by the invariant glutamine at one end and the metal-pocket residues at another end. This model provides explanations for most of the observed structure-activity relationship and the metal ion dependency of the catechol-ether based inhibitors and should facilitate their further design.
Collapse
Affiliation(s)
- Qing Huai
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Yingjie Sun
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Huanchen Wang
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | - Dwight Macdonald
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, Kirkland, Quebec, Canada
| | - Renée Aspiotis
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, Kirkland, Quebec, Canada
| | - Howard Robinson
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Zheng Huang
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, Kirkland, Quebec, Canada
- Correspondence should be addressed to H.K. (, Phone: 919-966-2244, Fax: 929-966-2852) or Z.H. (, Phone: 514-428-3143)
| | - Hengming Ke
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599-7260, USA
- Correspondence should be addressed to H.K. (, Phone: 919-966-2244, Fax: 929-966-2852) or Z.H. (, Phone: 514-428-3143)
| |
Collapse
|
57
|
Kang NS, Chae CH, Yoo SE. Study on the hydrolysis mechanism of phosphodiesterase 4 using molecular dynamics simulations. MOLECULAR SIMULATION 2006. [DOI: 10.1080/08927020600717111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
58
|
Houslay MD, Schafer P, Zhang KYJ. Keynote review: phosphodiesterase-4 as a therapeutic target. Drug Discov Today 2006; 10:1503-19. [PMID: 16257373 DOI: 10.1016/s1359-6446(05)03622-6] [Citation(s) in RCA: 505] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyclic AMP (cAMP) is a key second messenger in all cells. It is compartmentalized within cells and its levels are controlled, as a result of spatially discrete signaling cassettes controlling its generation, detection and degradation. Underpinning compartmentalized cAMP signaling are approximately 20 members of the phosphodiesterase-4 (PDE4) family. The selective inhibition of this family generates profound, functional effects and PDE4 inhibitors are currently under development to provide potential, novel therapeutics for the treatment of inflammatory diseases, such as asthma, chronic obstructive pulmonary disease and psoriasis, as well as treating depression and serving as cognitive enhancers. Here, we delineate the range of PDE4 isoforms, their role in signaling, their structural biology and related preclinical and clinical pharmacology.
Collapse
Affiliation(s)
- Miles D Houslay
- Division of Biochemistry and Molecular Biology, IBLS, Wolfson Link Building, University of Glasgow, University Avenue, Glasgow, G12 8QQ, Scotland, UK.
| | | | | |
Collapse
|
59
|
Zoraghi R, Corbin JD, Francis SH. Phosphodiesterase-5 Gln817 is critical for cGMP, vardenafil, or sildenafil affinity: its orientation impacts cGMP but not cAMP affinity. J Biol Chem 2006; 281:5553-8. [PMID: 16407275 DOI: 10.1074/jbc.m510372200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The side group of an invariant Gln in cGMP- and cAMP-specific phosphodiesterases (PDE) is held in different orientations by bonds with other amino acids and purportedly discriminates between guanine and adenine in cGMP and cAMP. In cGMP-specific PDE5, Gln(775) constrains the orientation of the invariant Gln(817) side chain, which forms bidentate bonds with 5'-GMP, vardenafil, sildenafil, and 3-isobutyl-1-methylxanthine (IBMX) (Sung, B. J., Hwang, K. Y., Jeon, Y. H., Lee, J. I., Heo, Y. S., Kim, J. H., Moon, J., Yoon, J. M., Hyun, Y. L., Kim, E., Eum, S. J., Park, S. Y., Lee, J. O., Lee, T. G., Ro, S., and Cho, J. M. (2003) Nature 425, 98-102; Huai, Q., Liu, Y., Francis, S. H., Corbin, J. D., and Ke, H. (2004) J. Biol. Chem. 279, 13095-13101; Zhang, K. Y., Card, G. L., Suzuki, Y., Artis, D. R., Fong, D., Gillette, S., Hsieh, D., Neiman, J., West, B. L., Zhang, C., Milburn, M. V., Kim, S. H., Schlessinger, J., and Bollag, G. (2004) Mol. Cell 15, 279-286). PDE5(Q817A) and PDE5(Q775A) were generated to test the hypotheses that Gln(817) is critical for cyclic nucleotide or inhibitor affinity and that Gln(775) immobilizes the Gln(817) side chain to provide cGMP/cAMP selectivity. Allosteric cGMP binding and the molecular mass of the mutant proteins were unchanged compared with PDE5(WT). For PDE5(Q817A), K(m) for cGMP or cAMP was weakened 60- or 2-fold, respectively. For PDE5(Q775A), K(m) for cGMP was weakened approximately 20-fold but was unchanged for cAMP. For PDE5(Q817A), vardenafil, sildenafil, and IBMX inhibitory potencies were weakened 610-, 48-, and 60-fold, respectively, indicating that Gln(817) is a major determinant of potency, especially for vardenafil, and that binding of vardenafil and sildenafil differs substantially. Sildenafil and vardenafil affinity were not significantly affected in PDE5(Q775A). It is concluded that Gln(817) is a positive determinant for PDE5 affinity for cGMP and several inhibitors; Gln(775), which perhaps restricts rotation of Gln(817) side chain, is critical for cGMP affinity but has no measurable effect on affinity for cAMP, sildenafil, or vardenafil.
Collapse
Affiliation(s)
- Roya Zoraghi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA
| | | | | |
Collapse
|
60
|
Lynch MJ, Hill EV, Houslay MD. Intracellular targeting of phosphodiesterase-4 underpins compartmentalized cAMP signaling. Curr Top Dev Biol 2006; 75:225-59. [PMID: 16984814 DOI: 10.1016/s0070-2153(06)75007-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The phosphodiesterase-4 (PDE4) enzyme belongs to a family of cAMP-dependent phosphodiesterases that provide the major means of hydrolyzing and, thereby, inactivating the key intracellular second messenger, cAMP. As such, PDE4s are central to the regulation of many diverse signaling processes that allow cells to respond to external stimuli. Four genes (4A, 4B, 4C, and 4D) encode around 20 distinct isoform members of the PDE4 family. Each isoform is characterized by a unique N-terminal region. PDE4s are multidomain metallohydrolases with each domain serving particular roles allowing them to be targeted to varying regions and organelles of intracellular space and regulated in distinct fashions by phosphorylation and protein-protein interaction. Although identical in catalytic function, each isoform locates to distinct regions within the cell so as to create and manage spatially distinct pools of cAMP. The multiplicity of partners associating with members of the four gene PDE4 family places these enzymes in key regulatory positions, permitting them to channel complex biological signals via fundamental signaling cohorts such as G-protein-coupled receptors (GPCRs), arrestins, A-kinase-anchoring proteins (AKAPs), and tyrosyl family kinases. The cAMP cascade has long been linked to cellular growth and embryogenesis and with this comes the implication that PDE4 may play considerable roles in the regulation of progeny development in maturing cells and tissues.
Collapse
Affiliation(s)
- Martin J Lynch
- Division of Biochemistry and Molecular Biology, IBLS, Wolfson Building University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | | | | |
Collapse
|
61
|
Reverse pharmacognosy: a new concept for accelerating natural drug discovery. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1572-557x(05)02001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
62
|
Zhang KYJ, Ibrahim PN, Gillette S, Bollag G. Phosphodiesterase-4 as a potential drug target. Expert Opin Ther Targets 2005; 9:1283-305. [PMID: 16300476 DOI: 10.1517/14728222.9.6.1283] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phosphodiesterase-4 (PDE4) is the predominant enzyme in some specific cell types that is responsible for the degradation of the second messenger, cAMP. Consequently, PDE4 plays a crucial role in cell signalling and, as such, it has been the target of clinical drug development of various indications, ranging from anti-inflammation to memory enhancement. In this review, the fundamental biological role of PDE4 in intracellular signalling, its tissue distribution and regulation are described. The historical development of various chemical classes of PDE4 inhibitors and the challenges that face these inhibitors as therapeutics are also discussed. Finally, recent advances in the structural biology of PDE4 and their complexes with various inhibitors, as well as its potential impact on the rational design of potent and selective PDE4 inhibitors, are presented.
Collapse
Affiliation(s)
- Kam Y J Zhang
- Plexxikon, Inc., 91 Bolivar Drive, Berkeley, CA 94710, USA.
| | | | | | | |
Collapse
|
63
|
Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 2005; 109:366-98. [PMID: 16102838 DOI: 10.1016/j.pharmthera.2005.07.003] [Citation(s) in RCA: 643] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 07/12/2005] [Indexed: 01/08/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs), which are ubiquitously distributed in mammalian tissues, play a major role in cell signaling by hydrolyzing cAMP and cGMP. Due to their diversity, which allows specific distribution at cellular and subcellular levels, PDEs can selectively regulate various cellular functions. Their critical role in intracellular signaling has recently designated them as new therapeutic targets for inflammation. The PDE superfamily represents 11 gene families (PDE1 to PDE11). Each family encompasses 1 to 4 distinct genes, to give more than 20 genes in mammals encoding the more than 50 different PDE proteins probably produced in mammalian cells. Although PDE1 to PDE6 were the first well-characterized isoforms because of their predominance in various tissues and cells, their specific contribution to tissue function and their regulation in pathophysiology remain open research fields. This concerns particularly the newly discovered families, PDE7 to PDE11, for which roles are not yet established. In many pathologies, such as inflammation, neurodegeneration, and cancer, alterations in intracellular signaling related to PDE deregulation may explain the difficulties observed in the prevention and treatment of these pathologies. By inhibiting specifically the up-regulated PDE isozyme(s) with newly synthesized potent and isozyme-selective PDE inhibitors, it may be potentially possible to restore normal intracellular signaling selectively, providing therapy with reduced adverse effects.
Collapse
Affiliation(s)
- Claire Lugnier
- CNRS UMR, 7034, Pharmacologie et Physicochimie des Interactions Moléculaires et Cellulaires, Faculté de Pharmacie, Université Louis Pasteur de Strasbourg, 74 route du Rhin, BP 60024, 67401 Illkirch, France.
| |
Collapse
|
64
|
Tait A, Luppi A, Hatzelmann A, Fossa P, Mosti L. Synthesis, biological evaluation and molecular modelling studies on benzothiadiazine derivatives as PDE4 selective inhibitors. Bioorg Med Chem 2005; 13:1393-402. [PMID: 15670947 DOI: 10.1016/j.bmc.2004.10.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 10/26/2004] [Indexed: 10/26/2022]
Abstract
A series of 2,1,3- and 1,2,4-benzothiadiazine derivatives (BTDs) were synthesized and evaluated for their inhibitory activity versus enzymatic isoforms PDE3, PDE4 and PDE7. The compounds characterized by the 3,5-di-tert-butyl-4-hydroxybenzyl moiety at N1 position of 2,1,3-benzothiadiazine core (8, 13, 18), were found active and selective at micromolar level versus PDE4 and could be studied as new leads for the treatment of asthma and COPD (Chronic Obstructive Pulmonary Disease). The antioxidant activity evaluation on the same compounds highlighted 13 as the most significative. Molecular modelling studies gave further support to biological results and suggested targeted modifications so as to improve their potency.
Collapse
Affiliation(s)
- Annalisa Tait
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Modena e Reggio Emilia, Via Campi 183, 41100 Modena, Italy.
| | | | | | | | | |
Collapse
|
65
|
|
66
|
Wang H, Liu Y, Chen Y, Robinson H, Ke H. Multiple elements jointly determine inhibitor selectivity of cyclic nucleotide phosphodiesterases 4 and 7. J Biol Chem 2005; 280:30949-55. [PMID: 15994308 DOI: 10.1074/jbc.m504398200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphodiesterase (PDE) inhibitors have been widely studied as therapeutics for treatment of human diseases. However, the mechanism by which each PDE family recognizes selectively a category of inhibitors remains a puzzle. Here we report the crystal structure of PDE7A1 catalytic domain in complex with non-selective inhibitor 3-isobutyl-1-methylxanthine and kinetic analysis on the mutants of PDE7A1 and PDE4D2. Our studies suggest at least three elements play critical roles in inhibitor selectivity: 1) the conformation and position of an invariant glutamine, 2) the natures of scaffolding residues, and 3) residues that alter shape and size of the binding pocket. Kinetic analysis shows that single PDE7 to PDE4 mutations increase the sensitivity of PDE7 to PDE4 inhibitors but are not sufficient to render the engineered enzymes comparable with the wild types. The triple S373Y/S377T/I412S mutation of PDE7A1 produces a PDE4-like enzyme, implying that multiple elements must work together to determine inhibitor selectivity.
Collapse
Affiliation(s)
- Huanchen Wang
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | | | | |
Collapse
|
67
|
Castro A, Jerez MJ, Gil C, Martinez A. Cyclic nucleotide phosphodiesterases and their role in immunomodulatory responses: advances in the development of specific phosphodiesterase inhibitors. Med Res Rev 2005; 25:229-44. [PMID: 15514991 DOI: 10.1002/med.20020] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The activity of phosphodiesterases (PDEs) is associated with a wide variety of diseases and an intense effort toward the development of specific PDEs inhibitors has been generated for the last years. They are the enzymes responsible for the hydrolysis of intracellular cyclic adenosine and guanosine monophosphate, and their complexity, as well as their different functional role, makes these enzymes a very attractive therapeutic target. This review is focused on the role of PDEs played on immunomodulatory processes and the advance on the development of specific inhibitors, covering PDEs mainly related to the regulation of autoimmune processes, PDE4 and PDE7. The review also highlights the novel structural classes of PDE4 and PDE7 inhibitors, and the therapeutic potential that combined PDE4/PDE7 inhibitors offer as immunomodulatory agents.
Collapse
Affiliation(s)
- Ana Castro
- Instituto de Química Médica, Juan de la Cierva 3, 28006 Madrid, Spain.
| | | | | | | |
Collapse
|
68
|
Varnerin JP, Chung CC, Patel SB, Scapin G, Parmee ER, Morin NR, MacNeil DJ, Cully DF, Van der Ploeg LHT, Tota MR. Expression, refolding, and purification of recombinant human phosphodiesterase 3B: definition of the N-terminus of the catalytic core. Protein Expr Purif 2005; 35:225-36. [PMID: 15135397 DOI: 10.1016/j.pep.2004.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 01/12/2004] [Indexed: 10/26/2022]
Abstract
We have developed an expression, refolding, and purification protocol for the catalytic domain of human Phosphodiesterase 3B (PDE3B). High level expression in Escherichia coli has been achieved with yields of up to 20mg/L. The catalytic domain of the enzyme was purified by affinity chromatography utilizing a novel affinity ligand. PDE3B, purified by affinity chromatography, with no single impurity #10878;1% as determined by SDS-PAGE, has a specific activity of 2210+/-442nmol/min/mg and a KM for cAMP of 44+/-4.5nM. Reducing the size of the expressed catalytic domain from residues 387-1112 to residues 654-1086 greatly reduced the aggregation phenomena observed with the affinity purified PDE3B. The definition of the N-terminus of the catalytic core was examined through the generation of several truncation mutants spanning amino acid residues 636-674. Constructs starting at E665 and M674 were fully active and devoid of activity, respectively. A construct starting at D668 had a Vmax reduced by approximately 10-fold relative to the longer constructs, yet the KM was not affected. This indicates the minimal N-terminus of the catalytic core lies between E665 and Y667. Refolding and affinity purification of the 654-1073 catalytic core of PDE3B has been employed to produce large quantities of highly pure enzyme for structural studies.
Collapse
|
69
|
Leroux F, Jeschke P, Schlosser M. α-Fluorinated Ethers, Thioethers, and Amines: Anomerically Biased Species. Chem Rev 2005; 105:827-56. [PMID: 15755078 DOI: 10.1021/cr040075b] [Citation(s) in RCA: 559] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Frédéric Leroux
- Laboratoire de Stéréochimie associé au CNRS (UMR 7008), Université Louis Pasteur (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
| | | | | |
Collapse
|
70
|
Ko WC, Shih CM, Lai YH, Chen JH, Huang HL. Inhibitory effects of flavonoids on phosphodiesterase isozymes from guinea pig and their structure-activity relationships. Biochem Pharmacol 2005; 68:2087-94. [PMID: 15476679 DOI: 10.1016/j.bcp.2004.06.030] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Accepted: 06/29/2004] [Indexed: 11/18/2022]
Abstract
The structure-activity relationships of flavonoids with regard to their inhibitory effects on phosphodiesterase (PDE) isozymes are little known. The activities of PDE1-5 were measured by a two-step procedure using cAMP with [(3)H]-cAMP or cGMP with [(3)H]-cGMP as substrates. In the present results, PDE1, 5, 2, and 4 isozymes were partially purified from guinea pig lungs in that order, and PDE3 was from the heart. The IC(50) values of PDE1-5 were greater than those reported previously for the reference drugs, vinpocetin, EHNA, milrinone, Ro 20-1724, and zaprinast, by 5-, 5-, 7-, 5-, and 3-fold, respectively. As shown in Table 2, luteolin revealed non-selective inhibition of PDE1-5 with IC(50) values in a range of 10-20 microM, as did genistein except with a low potency on PDE5. Daidzein, an inactive analogue of genistein in tyrosine kinase inhibition, showed selective inhibition of PDE3 with an IC(50) value of around 30 microM, as did eriodictyol with an IC(50) value of around 50 microM. Hesperetin and prunetin exhibited more-selective inhibition of PDE4 with IC(50) values of around 30 and 60 microM, respectively. Luteolin-7-glucoside exhibited dual inhibition of PDE2/PDE4 with an IC(50) value of around 40 microM. Diosmetin more-selectively inhibited PDE2 (IC(50) of 4.8 microM) than PDE1, PDE4, or PDE5. However, biochanin A more-selectively inhibited PDE4 (IC(50) of 8.5 microM) than PDE1 or PDE2. Apigenin inhibited PDE1-3 with IC(50) values of around 10-25 microM. Myricetin inhibited PDE1-4 with IC(50) values of around 10-40 microM. The same was true for quercetin, but we rather consider that it more-selectively inhibited PDE3 and PDE4 (IC(50) of < 10 microM). In conclusion, it is possible to synthesize useful drugs through elucidating the structure-activity relationships of flavonoids with respect to inhibition of PDE isozymes at concentrations used in this in vitro study.
Collapse
Affiliation(s)
- Wun-Chang Ko
- Graduate Institute of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
71
|
Abstract
Phosphodiesterases (PDEs) control cellular concentrations of cyclic adenosine monophosphate (cAMP) or cyclic guanosine monophosphate (cGMP). PDE4 and PDE5 selectively hydrolyze cAMP and cGMP, respectively. PDE family members share approximately 25% sequence identity within a conserved catalytic domain of about 300 amino acids. Crystal structure analysis of PDE4's catalytic domain identifies two metal-binding sites: a high-affinity site and a low-affinity site, which probably bind zinc (Zn2+) and magnesium (Mg2+), respectively. Absolute conservation among the PDEs of two histidine and two aspartic acid residues for divalent metal binding suggests the importance of these amino acids in catalysis. Although active sites of PDEs are apparently structurally similar, PDE4 is specifically inhibited by selective inhibitors such as rolipram, while PDE5 is preferentially blocked by sildenafil. Modeling interactions of the PDE5 inhibitor sildenafil with the PDE4 active site may help explain inhibitor selectivity and provide useful information for the design of new inhibitors.
Collapse
Affiliation(s)
- H Ke
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA
| |
Collapse
|
72
|
Card GL, England BP, Suzuki Y, Fong D, Powell B, Lee B, Luu C, Tabrizizad M, Gillette S, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KYJ. Structural Basis for the Activity of Drugs that Inhibit Phosphodiesterases. Structure 2004; 12:2233-47. [PMID: 15576036 DOI: 10.1016/j.str.2004.10.004] [Citation(s) in RCA: 308] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 09/30/2004] [Accepted: 10/03/2004] [Indexed: 11/16/2022]
Abstract
Phosphodiesterases (PDEs) comprise a large family of enzymes that catalyze the hydrolysis of cAMP or cGMP and are implicated in various diseases. We describe the high-resolution crystal structures of the catalytic domains of PDE4B, PDE4D, and PDE5A with ten different inhibitors, including the drug candidates cilomilast and roflumilast, for respiratory diseases. These cocrystal structures reveal a common scheme of inhibitor binding to the PDEs: (i) a hydrophobic clamp formed by highly conserved hydrophobic residues that sandwich the inhibitor in the active site; (ii) hydrogen bonding to an invariant glutamine that controls the orientation of inhibitor binding. A scaffold can be readily identified for any given inhibitor based on the formation of these two types of conserved interactions. These structural insights will enable the design of isoform-selective inhibitors with improved binding affinity and should facilitate the discovery of more potent and selective PDE inhibitors for the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Graeme L Card
- Plexxikon, Inc., 91 Bolivar Drive, Berkeley, CA 94710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Johnston LA, Erdogan S, Cheung YF, Sullivan M, Barber R, Lynch MJ, Baillie GS, Van Heeke G, Adams DR, Huston E, Houslay MD. Expression, intracellular distribution and basis for lack of catalytic activity of the PDE4A7 isoform encoded by the human PDE4A cAMP-specific phosphodiesterase gene. Biochem J 2004; 380:371-84. [PMID: 15025561 PMCID: PMC1224194 DOI: 10.1042/bj20031662] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 02/19/2004] [Accepted: 03/04/2004] [Indexed: 12/23/2022]
Abstract
PDE4A7 is an isoform encoded by the human PDE4A cAMP-specific phosphodiesterase gene that fails to hydrolyse cAMP and whose transcripts are widely expressed. Removal of either the N- or C-terminal unique portions of PDE4A7 did not reconstitute catalytic activity, showing that they did not exert a chronic inhibitory effect. A chimera (Hyb2), formed by swapping the unique N-terminal portion of PDE4A7 with that of the active PDE4A4C form, was not catalytically active. However, one formed (Hyb1) by swapping the unique C-terminal portion of PDE4A7 with that common to all active PDE4 isoforms was catalytically active. Compared with the active PDE4A4B isoform, Hyb1 exhibited a similar K(m) value for cAMP and IC50 value for rolipram inhibition, but was less sensitive to inhibition by Ro-20-1724 and denbufylline, and considerably more sensitive to thermal denaturation. The unique C-terminal region of PDE4A7 was unable to support an active catalytic unit, whereas its unique N-terminal region can. The N-terminal portion of the PDE4 catalytic unit is essential for catalytic activity and can be supplied by either highly conserved sequence found in active PDE4 isoforms from all four PDE4 subfamilies or the unique N-terminal portion of PDE4A7. A discrete portion of the conserved C-terminal region in active PDE4A isoforms underpins their aberrant migration on SDS/PAGE. Unlike active PDE4A isoforms, PDE4A7 is exclusively localized to the P1 particulate fraction in cells. A region located within the C-terminal portion of active PDE4 isoforms prevents such exclusive targeting. Three functional regions in PDE4A isoforms are identified, which influence catalytic activity, subcellular targeting and conformational status.
Collapse
Affiliation(s)
- Lee Ann Johnston
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Wolfson Building, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Ochiai H, Odagaki Y, Ohtani T, Ishida A, Kusumi K, Kishikawa K, Yamamoto S, Takeda H, Obata T, Kobayashi K, Nakai H, Toda M. Design, synthesis, and biological evaluation of new phosphodiesterase type 4 inhibitors. Bioorg Med Chem 2004; 12:5063-78. [PMID: 15351390 DOI: 10.1016/j.bmc.2004.07.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 07/16/2004] [Accepted: 07/16/2004] [Indexed: 10/26/2022]
Abstract
The design, synthesis, and biological evaluation of new phosphodiesterase type 4 inhibitors, which possess new templates instead of a cyclohexane ring, are described. The mode of interaction with the enzyme is discussed based on the structure-activity relationship (SAR) data obtained for the synthesized inhibitors. Furthermore, the roles of three pharmacophores, a catechol moiety, a nitrile moiety, and acidic moieties, are discussed using in silico docking studies. More detailed biological evaluations of selected compounds are also presented.
Collapse
Affiliation(s)
- Hiroshi Ochiai
- Minase Research Institute, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai, Shimamoto, Mishima, Osaka 618-8585, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Zhang KYJ, Card GL, Suzuki Y, Artis DR, Fong D, Gillette S, Hsieh D, Neiman J, West BL, Zhang C, Milburn MV, Kim SH, Schlessinger J, Bollag G. A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases. Mol Cell 2004; 15:279-86. [PMID: 15260978 DOI: 10.1016/j.molcel.2004.07.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 05/14/2004] [Accepted: 05/21/2004] [Indexed: 10/26/2022]
Abstract
Phosphodiesterases (PDEs) comprise a family of enzymes that modulate the immune response, inflammation, and memory, among many other functions. There are three types of PDEs: cAMP-specific, cGMP-specific, and dual-specific. Here we describe the mechanism of nucleotide selectivity on the basis of high-resolution co-crystal structures of the cAMP-specific PDE4B and PDE4D with AMP, the cGMP-specific PDE5A with GMP, and the apo-structure of the dual-specific PDE1B. These structures show that an invariant glutamine functions as the key specificity determinant by a "glutamine switch" mechanism for recognizing the purine moiety in cAMP or cGMP. The surrounding residues anchor the glutamine residue in different orientations for cAMP and for cGMP. The PDE1B structure shows that in dual-specific PDEs a key histidine residue may enable the invariant glutamine to toggle between cAMP and cGMP. The structural understanding of nucleotide binding enables the design of new PDE inhibitors that may treat diseases in which cyclic nucleotides play a critical role.
Collapse
Affiliation(s)
- Kam Y J Zhang
- Plexxikon Inc., 91 Bolivar Drive, Berkeley, CA 94710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Huai Q, Wang H, Zhang W, Colman RW, Robinson H, Ke H. Crystal structure of phosphodiesterase 9 shows orientation variation of inhibitor 3-isobutyl-1-methylxanthine binding. Proc Natl Acad Sci U S A 2004; 101:9624-9. [PMID: 15210993 PMCID: PMC470725 DOI: 10.1073/pnas.0401120101] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 05/12/2004] [Indexed: 11/18/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are enzymes controlling cellular concentrations of the second messengers cAMP and cGMP. The crystal structure of the catalytic domain of PDE9A2, a member of a PDE family specifically hydrolyzing cGMP, has been determined at 2.23-A resolution. The PDE9A2 catalytic domain closely resembles the cAMP-specific PDE4D2 but is significantly different from the cGMP-specific PDE5A1, implying that each individual PDE family has its own characteristic substrate recognition mechanism. The different conformations of the H and M loops between PDE9A2 and PDE5A1 imply their less critical roles in nucleotide recognition. The nonselective inhibitor 3-isobutyl-1-methylxanthine (IBMX) binds to a similar subpocket in the active sites of PDE4, PDE5, and PDE9 and has a common pattern of the binding. However, significantly different orientations and interactions of IBMXs are observed among the three PDE families and also between two monomers of the PDE9A2 dimer. The kinetic properties of the PDE9A2 catalytic domain similar to those of full-length PDE9A imply that the N-terminal regulatory domain does not significantly alter the catalytic activity and the IBMX inhibition.
Collapse
Affiliation(s)
- Qing Huai
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | | | | | | | | | |
Collapse
|
77
|
Richter W, Conti M. The oligomerization state determines regulatory properties and inhibitor sensitivity of type 4 cAMP-specific phosphodiesterases. J Biol Chem 2004; 279:30338-48. [PMID: 15131123 DOI: 10.1074/jbc.m312687200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PDE4 splice variants are classified into long and short forms depending on the presence or absence of two unique N-terminal domains termed upstream conserved regions 1 and 2 (UCR1 and -2). We have shown previously that the UCR module mediates dimerization of PDE4 long forms, whereas short forms, which lack UCR1, behave as monomers. In the present study, we demonstrate that dimerization is an essential structural element that determines the regulatory properties and inhibitor sensitivities of PDE4 enzymes. Comparing the properties of the dimeric wild type PDE4D3 with several monomeric mutant PDE4D3 constructs revealed that disruption of dimerization ablates the activation of PDE4 long forms by either protein kinase A phosphorylation or phosphatidic acid binding. Moreover, the analysis of heterodimers consisting of a catalytically active and a catalytically inactive PDE4D3 subunit indicates that protein kinase A phosphorylation of both subunits is essential to fully activate PDE4 enzymes. In addition to affecting enzyme regulation, disruption of dimerization reduces the sensitivity of the enzymes toward the prototypical PDE4 inhibitor rolipram. Parallel binding assays indicated that this shift in rolipram sensitivity is likely mediated by a decrease in the number of inhibitor binding sites in the high affinity rolipram binding state. Thus, although dimerization is not a requirement for high affinity rolipram binding, it functions to stabilize PDE4 long forms in their high affinity rolipram binding conformation. Taken together, our data indicate that dimerization defines the properties of PDE4 enzymes and suggest a common structural and functional organization for all PDEs.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/biosynthesis
- 3',5'-Cyclic-AMP Phosphodiesterases/chemistry
- 3',5'-Cyclic-AMP Phosphodiesterases/genetics
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Binding Sites
- Blotting, Western
- COS Cells
- Catalysis
- Catalytic Domain
- Centrifugation, Density Gradient
- Chromatography, Gel
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- Cyclic AMP/chemistry
- Cyclic AMP-Dependent Protein Kinases/chemistry
- Cyclic Nucleotide Phosphodiesterases, Type 4
- Cytosol/metabolism
- DNA Primers/chemistry
- Dimerization
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Enzyme Inhibitors/pharmacology
- Genetic Vectors
- Humans
- Inhibitory Concentration 50
- Kinetics
- Models, Biological
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Open Reading Frames
- Phosphatidic Acids/chemistry
- Phosphorylation
- Polymerase Chain Reaction
- Precipitin Tests
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- Rolipram/chemistry
- Transfection
Collapse
Affiliation(s)
- Wito Richter
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 94305-5317, USA
| | | |
Collapse
|
78
|
Kim DK, Young Lee J, Park HJ, Minh Thai K. Synthesis and phosphodiesterase 5 inhibitory activity of new sildenafil analogues containing a phosphonate group in the 5 ′ -sulfonamide moiety of phenyl ring. Bioorg Med Chem Lett 2004; 14:2099-103. [PMID: 15080987 DOI: 10.1016/j.bmcl.2004.02.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 02/07/2004] [Accepted: 02/10/2004] [Indexed: 11/17/2022]
Abstract
Synthesis of new sildenafil analogues containing a phosphonate group in the 5(')-sulfonamide moiety of the phenyl ring, 12a-e, 13a-d, and 14a-d, and evaluation of their in vitro PDE5 inhibitory activity are disclosed. Enzyme assays revealed that maximum 10-fold increase in PDE5 inhibitory activity, compared with sildenafil, was achieved by introducing a phosphonate group in the 5(')-sulfonamide moiety. Docking model of (PDE5: 12d) complex shows that the PDE5-bound conformation of 12d matches completely with that of sildenafil, while 12d is partially overlapped with cGMP with ethyl phosphonate group of 12d superimposed onto the cyclic phosphate group of cGMP.
Collapse
Affiliation(s)
- Dae-Kee Kim
- College of Pharmacy, Ewha Womans University, 11-1 Daehyun-dong, Seodaemun-gu, Seoul 120-750, South Korea.
| | | | | | | |
Collapse
|
79
|
Xu RX, Rocque WJ, Lambert MH, Vanderwall DE, Luther MA, Nolte RT. Crystal structures of the catalytic domain of phosphodiesterase 4B complexed with AMP, 8-Br-AMP, and rolipram. J Mol Biol 2004; 337:355-65. [PMID: 15003452 DOI: 10.1016/j.jmb.2004.01.040] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Revised: 12/23/2003] [Accepted: 01/09/2004] [Indexed: 10/26/2022]
Abstract
Phosphodiesterase catalyzes the hydrolysis of the intracellular second messenger 3',5'-cyclic AMP (cAMP) into the corresponding 5'-nucleotide. Phosphodiesterase 4 (PDE4), the major cAMP-specific PDE in inflammatory and immune cells, is an attractive target for the treatment of asthma and COPD. We have determined crystal structures of the catalytic domain of PDE4B complexed with AMP (2.0 A), 8-Br-AMP (2.13 A) and the potent inhibitor rolipram (2.0 A). All the ligands bind in the same hydrophobic pocket and can interact directly with the active site metal ions. The identity of these metal ions was examined using X-ray anomalous difference data. The structure of the AMP complex confirms the location of the catalytic site and allowed us to speculate about the detailed mechanism of catalysis. The high-resolution structures provided the experimental insight into the nucleotide selectivity of phosphodiesterase. 8-Br-AMP binds in the syn conformation to the enzyme and demonstrates an alternative nucleotide-binding mode. Rolipram occupies much of the AMP-binding site and forms two hydrogen bonds with Gln443 similar to the nucleotides.
Collapse
Affiliation(s)
- Robert X Xu
- Department of Computational, Analytical and Structural Sciences, GlaxoSmithKline, 5 Moore Drive, V-180, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | |
Collapse
|
80
|
Huai Q, Liu Y, Francis SH, Corbin JD, Ke H. Crystal structures of phosphodiesterases 4 and 5 in complex with inhibitor 3-isobutyl-1-methylxanthine suggest a conformation determinant of inhibitor selectivity. J Biol Chem 2004; 279:13095-101. [PMID: 14668322 DOI: 10.1074/jbc.m311556200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes controlling cellular concentrations of the second messengers cAMP and cGMP. Crystal structures of the catalytic domains of cGMP-specific PDE5A1 and cAMP-specific PDE4D2 in complex with the nonselective inhibitor 3-isobutyl-1-methylxanthine have been determined at medium resolution. The catalytic domain of PDE5A1 has the same topological folding as that of PDE4D2, but three regions show different tertiary structures, including residues 79-113, 208-224 (H-loop), and 341-364 (M-loop) in PDE4D2 or 535-566, 661-676, and 787-812 in PDE5A1, respectively. Because H- and M-loops are involved in binding of the selective inhibitors, the different conformations of the loops, thus the distinct shapes of the active sites, will be a determinant of inhibitor selectivity in PDEs. IBMX binds to a subpocket that comprises key residues Ile-336, Phe-340, Gln-369, and Phe-372 of PDE4D2 or Val-782, Phe-786, Gln-817, and Phe-820 of PDE5A1. This subpocket may be a common site for binding nonselective inhibitors of PDEs.
Collapse
Affiliation(s)
- Qing Huai
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, the University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | | | | | | | |
Collapse
|
81
|
Kunz S, Kloeckner T, Essen LO, Seebeck T, Boshart M. TbPDE1, a novel class I phosphodiesterase of Trypanosoma brucei. ACTA ACUST UNITED AC 2004; 271:637-47. [PMID: 14728691 DOI: 10.1111/j.1432-1033.2003.03967.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclic nucleotide specific phosphodiesterases (PDEs) are important components of all cAMP signalling networks. In humans, 11 different PDE families have been identified to date, all of which belong to the class I PDEs. Pharmacologically, they have become of great interest as targets for the development of drugs for a large variety of clinical conditions. PDEs in parasitic protozoa have not yet been extensively investigated, despite their potential as antiparasitic drug targets. The current study presents the identification and characterization of a novel class I PDE from the parasitic protozoon Trypanosoma brucei, the causative agent of human sleeping sickness. This enzyme, TbPDE1, is encoded by a single-copy gene located on chromosome 10, and it functionally complements PDE-deficient strains of Saccharomyces cerevisiae. Its C-terminal catalytic domain shares about 30% amino acid identity, including all functionally important residues, with the catalytic domains of human PDEs. A fragment of TbPDE1 containing the catalytic domain could be expressed in active form in Escherichia coli. The recombinant enzyme is specific for cAMP, but exhibits a remarkably high Km of > 600 microm for this substrate.
Collapse
Affiliation(s)
- Stefan Kunz
- Institute of Cell Biology, University of Bern, Switzerland
| | | | | | | | | |
Collapse
|
82
|
Ochiai H, Ohtani T, Ishida A, Kishikawa K, Obata T, Nakai H, Toda M. Orally active PDE4 inhibitors with therapeutic potential. Bioorg Med Chem Lett 2004; 14:1323-7. [PMID: 14980691 DOI: 10.1016/j.bmcl.2003.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 12/01/2003] [Accepted: 12/03/2003] [Indexed: 11/27/2022]
Abstract
Based on the successful results in the clinical trial of Ariflo, further optimization of the spatial arrangement of the three pharmacophores (carboxylic acid moiety, nitrile moiety and 3-cyclopentyl-4-methoxyphenyl moiety) in the structure of Ariflo 1 was attempted using a bicyclo[3.3.0]octane template instead of a cyclohexane template. As a result, 2a, 7a and 7b were found to be orally active and were predicted to have an improved therapeutic potential based on evaluation by cross-species and same-species comparisons. Structure-activity relationships (SARs) of these compounds are also discussed.
Collapse
Affiliation(s)
- Hiroshi Ochiai
- Minase Research Institute, Ono Pharmaceutical Co. Ltd., 3-1-1 Sakurai, Shimamoto, Mishima, Osaka 618-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
83
|
Yoshimura T, Sagami I, Sasakura Y, Shimizu T. Relationships between heme incorporation, tetramer formation, and catalysis of a heme-regulated phosphodiesterase from Escherichia coli: a study of deletion and site-directed mutants. J Biol Chem 2003; 278:53105-11. [PMID: 14551206 DOI: 10.1074/jbc.m304408200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heme-regulated phosphodiesterase (PDE) from Escherichia coli (Ec DOS) is a tetrameric protein composed of an N-terminal sensor domain (amino acids 1-201) containing two PAS domains (PAS-A, amino acids 21-84, and PAS-B, amino acids 144-201) and a C-terminal catalytic domain (amino acids 336-799). Heme is bound to the PAS-A domain, and the redox state of the heme iron regulates PDE activity. In our experiments, a H77A mutation and deletion of the PAS-B domain resulted in the loss of heme binding affinity to PAS-A. However, both mutant proteins were still tetrameric and more active than the full-length wild-type enzyme (140% activity compared with full-length wild type), suggesting that heme binding is not essential for catalysis. An N-terminal truncated mutant (DeltaN147, amino acids 148-807) containing no PAS-A domain or heme displayed 160% activity compared with full-length wild-type protein, confirming that the heme-bound PAS-A domain is not required for catalytic activity. An analysis of C-terminal truncated mutants led to mapping of the regions responsible for tetramer formation and revealed PDE activity in tetrameric proteins only. Mutations at a putative metal-ion binding site (His-590, His-594) totally abolished PDE activity, suggesting that binding of Mg2+ to the site is essential for catalysis. Interestingly, the addition of the isolated PAS-A domain in the Fe2+ form to the full-length wild-type protein markedly enhanced PDE activity (>5-fold). This activation is probably because of structural changes in the catalytic site as a result of interactions between the isolated PAS-A domain and that of the holoenzyme.
Collapse
Affiliation(s)
- Tokiko Yoshimura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | | | | | | |
Collapse
|
84
|
Terry R, Cheung YF, Praestegaard M, Baillie GS, Huston E, Gall I, Adams DR, Houslay MD. Occupancy of the catalytic site of the PDE4A4 cyclic AMP phosphodiesterase by rolipram triggers the dynamic redistribution of this specific isoform in living cells through a cyclic AMP independent process. Cell Signal 2003; 15:955-71. [PMID: 12873709 DOI: 10.1016/s0898-6568(03)00092-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In cells transfected to express wild-type PDE4A4 cAMP phosphodiesterase (PDE), the PDE4 selective inhibitor rolipram caused PDE4A4 to relocalise so as to form accretion foci. This process was followed in detail in living cells using a PDE4A4 chimera formed with Green Fluorescent Protein (GFP). The same pattern of behaviour was also seen in chimeras of PDE4A4 formed with various proteins and peptides, including LimK, RhoC, FRB and the V5-6His tag. Maximal PDE4A4 foci formation, occurred over a period of about 10 h, was dose-dependent on rolipram and was reversible upon washout of rolipram. Inhibition of protein synthesis, using cycloheximide, but not PKA activity with H89, inhibited foci generation. Foci formation was elicited by Ro20-1724 and RS25344 but not by either Ariflo or RP73401, showing that not all PDE4 selective inhibitors had this effect. Ariflo and RP73401 dose-dependently antagonised rolipram-induced foci formation and dispersed rolipram pre-formed foci as did the adenylyl cyclase activator, forskolin. Foci formation showed specificity for PDE4A4 and its rodent homologue, PDE4A5, as it was not triggered in living cells expressing the PDE4B2, PDE4C2, PDE4D3 and PDE4D5 isoforms as GFP chimeras. Altered foci formation was seen in the Deltab-LR2-PDE4A4 construct, which deleted a region within LRZ, showing that appropriate linkage between the N-terminal portion of PDE4A4 and the catalytic unit of PDE4A4 was needed for foci formation. Certain single point mutations within the PDE4A4 catalytic site (His505Asn, His506Asn and Val475Asp) were shown to ablate foci formation but still allow rolipram inhibition of PDE4A4 catalytic activity. We suggest that the binding of certain, but not all, PDE4 selective inhibitors to PDE4A4 induces a conformational change in this isoform by 'inside-out' signalling that causes it to redistribute in the cell. Displacing foci-forming inhibitors with either cAMP or inhibitors that do not form foci can antagonise this effect. Specificity of this effect for PDE4A4 and its homologue PDE4A5 suggests that interplay between the catalytic site and the unique N-terminal region of these isoforms is required. Thus, certain PDE4 selective inhibitors may exert effects on PDE4A4 that extend beyond simple catalytic inhibition. These require protein synthesis and may lead to redistribution of PDE4A4 and any associated proteins. Foci formation of PDE4A4 may be of use in probing for conformational changes in this isoform and for sub-categorising PDE4 selective inhibitors.
Collapse
Affiliation(s)
- Robert Terry
- BioImage A/S, Moerkhoej Bygade 28, Soeborg DK-2860, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Sung BJ, Hwang KY, Jeon YH, Lee JI, Heo YS, Kim JH, Moon J, Yoon JM, Hyun YL, Kim E, Eum SJ, Park SY, Lee JO, Lee TG, Ro S, Cho JM. Structure of the catalytic domain of human phosphodiesterase 5 with bound drug molecules. Nature 2003; 425:98-102. [PMID: 12955149 DOI: 10.1038/nature01914] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Accepted: 07/14/2003] [Indexed: 11/09/2022]
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that degrade the intracellular second messengers cyclic AMP and cyclic GMP. As essential regulators of cyclic nucleotide signalling with diverse physiological functions, PDEs are drug targets for the treatment of various diseases, including heart failure, depression, asthma, inflammation and erectile dysfunction. Of the 12 PDE gene families, cGMP-specific PDE5 carries out the principal cGMP-hydrolysing activity in human corpus cavernosum tissue. It is well known as the target of sildenafil citrate (Viagra) and other similar drugs for the treatment of erectile dysfunction. Despite the pressing need to develop selective PDE inhibitors as therapeutic drugs, only the cAMP-specific PDE4 structures are currently available. Here we present the three-dimensional structures of the catalytic domain (residues 537-860) of human PDE5 complexed with the three drug molecules sildenafil, tadalafil (Cialis) and vardenafil (Levitra). These structures will provide opportunities to design potent and selective PDE inhibitors with improved pharmacological profiles.
Collapse
Affiliation(s)
- Byung-Je Sung
- Division of Drug Discovery, CrystalGenomics, Inc., Daedeok Biocommunity, Jeonmin-dong, Yuseong-gu, Daejeon, 305-390, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Chung C, Varnerin JP, Morin NR, MacNeil DJ, Singh SB, Patel S, Scapin G, Van der Ploeg LHT, Tota MR. The role of tryptophan 1072 in human PDE3B inhibitor binding. Biochem Biophys Res Commun 2003; 307:1045-50. [PMID: 12878217 DOI: 10.1016/s0006-291x(03)01299-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The catalytic domain of recombinant human PDE3B was expressed in Escherichia coli as inclusion bodies and refolded to form active enzyme. A mutation at tryptophan 1072 in PDE3B disrupts inhibitor binding, but has minimal effect on cAMP hydrolysis. The W1072A mutation caused a 158-fold decrease in affinity for cilostamide, a 740-fold decrease for cGMP, and a 15-fold decrease in affinity for IBMX. The corresponding tyrosine mutation had a smaller effect. However, the K(m) of cAMP for the W1072A mutation was only increased by about 7-fold. The data indicate that the inhibitor binding region is not completely coincident with the substrate binding region. The homologous residue in PDE4B is located on helix 16 within 7A of the predicted bound substrate. A model of PDE3B was constructed based on the X-ray crystal structure of PDE4B.
Collapse
Affiliation(s)
- Christine Chung
- Department of Metabolic Disorders, Merck Research Laboratories, P.O. Box 2000, Mailstop: RY80M-213, Rahway, NJ 07065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Huai Q, Wang H, Sun Y, Kim HY, Liu Y, Ke H. Three-dimensional structures of PDE4D in complex with roliprams and implication on inhibitor selectivity. Structure 2003; 11:865-73. [PMID: 12842049 DOI: 10.1016/s0969-2126(03)00123-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Selective inhibitors against the 11 families of cyclic nucleotide phosphodiesterases (PDEs) are used to treat various human diseases. How the inhibitors selectively bind the conserved PDE catalytic domains is unknown. The crystal structures of the PDE4D2 catalytic domain in complex with (R)- or (R,S)-rolipram suggest that inhibitor selectivity is determined by the chemical nature of amino acids and subtle conformational changes of the binding pockets. The conformational states of Gln369 in PDE4D2 may play a key role in inhibitor recognition. The corresponding Y329S mutation in PDE7 may lead to loss of the hydrogen bonds between rolipram and Gln369 and is thus a possible reason explaining PDE7's insensitivity to rolipram inhibition. Docking of the PDE5 inhibitor sildenafil into the PDE4 catalytic pocket further helps understand inhibitor selectivity.
Collapse
Affiliation(s)
- Qing Huai
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
88
|
Houslay MD, Adams DR. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem J 2003; 370:1-18. [PMID: 12444918 PMCID: PMC1223165 DOI: 10.1042/bj20021698] [Citation(s) in RCA: 587] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2002] [Revised: 11/13/2002] [Accepted: 11/22/2002] [Indexed: 11/17/2022]
Abstract
cAMP is a second messenger that controls many key cellular functions. The only way to inactivate cAMP is to degrade it through the action of cAMP phosphodiesterases (PDEs). PDEs are thus poised to play a key regulatory role. PDE4 cAMP-specific phosphodiesterases appear to have specific functions with selective inhibitors serving as potent anti-inflammatory agents. The recent elucidation of the structure of the PDE4 catalytic unit allows for molecular insight into the mode of catalysis as well as substrate and inhibitor selectivity. The four PDE4 genes encode over 16 isoforms, each of which is characterized by a unique N-terminal region. PDE4 isoforms play a pivotal role in controlling functionally and spatially distinct pools of cAMP by virtue of their unique intracellular targeting. Targeting occurs by association with proteins, such as arrestins, SRC family tyrosyl kinases, A-kinase anchoring proteins ('AKAPs') and receptor for activated C kinase 1 ('RACK1'), and, in the case of isoform PDE4A1, by a specific interaction (TAPAS-1) with phosphatidic acid. PDE4 isoforms are 'designed' to be regulated by extracellular-signal-related protein kinase (ERK), which binds to anchor sites on the PDE4 catalytic domain that it phosphorylates. The upstream conserved region 1 (UCR1) and 2 (UCR2) modules that abut the PDE4 catalytic unit confer regulatory functions by orchestrating the functional outcome of phosphorylation by cAMP-dependent protein kinase ('PKA') and ERK. PDE4 enzymes stand at a crossroads that allows them to integrate various signalling pathways with that of cAMP in spatially distinct compartments.
Collapse
Affiliation(s)
- Miles D Houslay
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Davidson Building, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | | |
Collapse
|