51
|
Michelotti GA, Price DT, Schwinn DA. Alpha 1-adrenergic receptor regulation: basic science and clinical implications. Pharmacol Ther 2000; 88:281-309. [PMID: 11337028 DOI: 10.1016/s0163-7258(00)00092-9] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Adrenergic receptors (ARs) are members of the G-protein-coupled receptor family, which includes alpha 1ARs, alpha 2ARs, beta 1ARs, beta 2ARs, beta 3ARs, adenosine, muscarinic, angiotensin, endothelin receptors, and many others that are responsible for a large variety of physiologic effects through G-protein coupling. This review focuses on alpha 1ARs and their regulation at both the mRNA and protein levels. Currently, three alpha 1AR subtypes have been characterized both pharmacologically and at the gene level: alpha 1aAR, alpha 1bAR, and alpha 1dAR. These are expressed in a species- and tissue-dependent manner. Mutagenesis approaches have been extremely valuable in the identification of key residues that govern alpha 1AR ligand binding and signaling. These studies reveal that alpha 1ARs have evolved an exquisitely sensitive regulation of their activity in which any disruption of the native structure has profound effects on subsequent function and effector coupling. Significant advances have also been made in the elucidation of signaling pathway components, resulting in the identification of novel pathways that can lead to pathologic conditions. Specific topics include mitogen-activated protein kinase, phosphatidylinositol 3-kinase, and G-protein-coupled receptor cross-talk pathways. Within this context, recent studies identifying underlying transcriptional mechanisms involved in the regulation of the alpha 1AR subtypes are also discussed. Finally, given the potentially important role of alpha 1ARs in the vasculature, as well as in the pathology of many diseases, such as myocardial hypertrophy and benign prostatic hyperplasia, the clinical relevance of alpha 1AR distribution, pharmacology, and therapeutic intervention is reviewed.
Collapse
Affiliation(s)
- G A Michelotti
- Department of Anesthesiology, Duke University Medical Center, Box 3094, Durham, NC 27710, USA
| | | | | |
Collapse
|
52
|
|
53
|
Abstract
The alpha- and beta-myosin genes extend over 51 kb on chromosome 14 in human and 11 in mouse separated by about 4.5 kb of intergenic sequence. They are located in tandem in the order of their expression during development. Transcription of each gene is independently controlled but coordinately regulated. During each embryogenesis, the beta-MHC gene is expressed as part of the cardiac myogenic program under the control of NKX-2.5, MEF-2C, and GATA-4/5/6. After birth, thyroid hormone induces expression of alpha-MHC mRNA and inhibits expression of the beta-MHC gene. While a large number of physiological stimuli are capable of modifying this basic paradigm, thyroid hormone is required for expression of alpha-MHC in ventricular muscle. The positive TRE for T(3)-stimulation of alpha-MHC is an imperfect direct repeat located in the proximal promoter of the gene. The negative TRE for the beta-MHC gene is probably a binding half-site that is located adjacent to the TATA box. Binding of TEF-1 to a strong positive element in the proximal promoter is important in basal expression of beta-MHC gene and in the response to alpha(1)-adrenergic stimulation. The beta-MHC gene also is induced together with several other "fetal" genes during cardiac hypertrophy by a mechanism involving Ca(2+)-mediated activation of calcineurin and NF-AT3. Upon activation, NF-AT3 translocates to the nucleus and interacts with GATA-4 to stimulate beta-MHC expression. Changes in chromatin structure mediated by the association of histone acetylases and deacetylases with transcription factors are essential in regulating cell-specific expression of MHC genes.
Collapse
Affiliation(s)
- E Morkin
- Departments of Medicine, Physiology, Pharmacology, and the Sarver Heart Center, University of Arizona College of Medicine, Tucson, Arizona 85724, USA
| |
Collapse
|
54
|
Ueyama T, Zhu C, Valenzuela YM, Suzow JG, Stewart AF. Identification of the functional domain in the transcription factor RTEF-1 that mediates alpha 1-adrenergic signaling in hypertrophied cardiac myocytes. J Biol Chem 2000; 275:17476-80. [PMID: 10764782 DOI: 10.1074/jbc.m001970200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiac myocytes respond to alpha(1)-adrenergic receptor stimulation by a progressive hypertrophy accompanied by the activation of many fetal genes, including skeletal muscle alpha-actin. The skeletal muscle alpha-actin gene is activated by signaling through an MCAT element, the binding site of the transcription enhancer factor-1 (TEF-1) family of transcription factors. Previously, we showed that overexpression of the TEF-1-related factor (RTEF-1) increased the alpha(1)-adrenergic response of the skeletal muscle alpha-actin promoter, whereas TEF-1 overexpression did not. Here, we identified the functional domains and specific sequences in RTEF-1 that mediate the alpha(1)-adrenergic response. Chimeric TEF-1 and RTEF-1 expression constructs localized the region responsible for the alpha(1)-adrenergic response to the carboxyl-terminal domain of RTEF-1. Site-directed mutagenesis was used to inactivate eight serine residues of RTEF-1, not present in TEF-1, that are putative targets of alpha(1)-adrenergic-dependent kinases. Mutation of a single serine residue, Ser-322, reduced the alpha(1)-adrenergic activation of RTEF-1 by 70% without affecting protein stability, suggesting that phosphorylation at this serine residue accounts for most of the alpha(1)-adrenergic response. Thus, these results demonstrate that RTEF-1 is a direct target of alpha(1)-adrenergic signaling in hypertrophied cardiac myocytes.
Collapse
Affiliation(s)
- T Ueyama
- Cardiovascular Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | |
Collapse
|
55
|
Giger JM, Haddad F, Qin AX, Baldwin KM. In vivo regulation of the beta-myosin heavy chain gene in soleus muscle of suspended and weight-bearing rats. Am J Physiol Cell Physiol 2000; 278:C1153-61. [PMID: 10837343 DOI: 10.1152/ajpcell.2000.278.6.c1153] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the weight-bearing hindlimb soleus muscle of the rat, approximately 90% of muscle fibers express the beta-myosin heavy chain (beta-MHC) isoform protein. Hindlimb suspension (HS) causes the MHC isoform population to shift from beta toward the fast MHC isoforms. Our aim was to establish a model to test the hypothesis that this shift in expression is transcriptionally regulated through specific cis elements of the beta-MHC promoter. With the use of a direct gene transfer approach, we determined the activity of different length beta-MHC promoter fragments, linked to a firefly luciferase reporter gene, in soleus muscle of control and HS rats. In weight-bearing rats, the relative luciferase activity of the longest beta-promoter fragment (-3500 bp) was threefold higher than the shorter promoter constructs, which suggests that an enhancer sequence is present in the upstream promoter region. After 1 wk of HS, the reporter activities of the -3500-, -914-, and -408-bp promoter constructs were significantly reduced ( approximately 40%), compared with the control muscles. However, using the -215-bp construct, no differences in promoter activity were observed between HS and control muscles, which indicates that the response to HS in the rodent appears to be regulated within the -408 and -215 bp of the promoter.
Collapse
Affiliation(s)
- J M Giger
- Department of Physiology and Biophysics, University of California, Irvine 92697, USA
| | | | | | | |
Collapse
|
56
|
He Q, Wu G, Lapointe MC. Isoproterenol and cAMP regulation of the human brain natriuretic peptide gene involves Src and Rac. Am J Physiol Endocrinol Metab 2000; 278:E1115-23. [PMID: 10827015 DOI: 10.1152/ajpendo.2000.278.6.e1115] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain natriuretic peptide (BNP) gene expression and chronic activation of the sympathetic nervous system are characteristics of the development of heart failure. We studied the role of the beta-adrenergic signaling pathway in regulation of the human BNP (hBNP) promoter. An hBNP promoter (-1818 to +100) coupled to a luciferase reporter gene was transferred into neonatal cardiac myocytes, and luciferase activity was measured as an index of promoter activity. Isoproterenol (ISO), forskolin, and cAMP stimulated the promoter, and the beta(2)-antagonist ICI 118,551 abrogated the effect of ISO. In contrast, the protein kinase A (PKA) inhibitor H-89 failed to block the action of cAMP and ISO. Pertussis toxin (PT), which inactivates Galpha(i), inhibited ISO- and cAMP-stimulated hBNP promoter activity. The Src tyrosine kinase inhibitor PP1 and a dominant-negative mutant of the small G protein Rac also abolished the effect of ISO and cAMP. Finally, we studied the involvement of M-CAT-like binding sites in basal and inducible regulation of the hBNP promoter. Mutation of these elements decreased basal and cAMP-induced activity. These data suggest that beta-adrenergic regulation of hBNP is PKA independent, involves a Galpha(i)-activated pathway, and targets regulatory elements in the proximal BNP promoter.
Collapse
Affiliation(s)
- Q He
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
57
|
Zhu W, Zou Y, Shiojima I, Kudoh S, Aikawa R, Hayashi D, Mizukami M, Toko H, Shibasaki F, Yazaki Y, Nagai R, Komuro I. Ca2+/calmodulin-dependent kinase II and calcineurin play critical roles in endothelin-1-induced cardiomyocyte hypertrophy. J Biol Chem 2000; 275:15239-45. [PMID: 10809760 DOI: 10.1074/jbc.275.20.15239] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endothelin-1 (ET-1) induces cardiac hypertrophy. Because Ca(2+) is a major second messenger of ET-1, the role of Ca(2+) in ET-1-induced hypertrophic responses in cultured cardiac myocytes of neonatal rats was examined. ET-1 activated the promoter of the beta-type myosin heavy chain gene (beta-MHC) (-354 to +34 base pairs) by about 4-fold. This activation was inhibited by chelation of Ca(2+) and the blocking of protein kinase C activity. Similarly, the beta-MHC promoter was activated by Ca(2+) ionophores and a protein kinase C activator. beta-MHC promoter activation induced by ET-1 was suppressed by pretreatment with the calmodulin inhibitor, W7, the Ca(2+)/calmodulin-dependent kinase II (CaMKII) inhibitor, KN62, and the calcineurin inhibitor, cyclosporin A. beta-MHC promoter activation by ET-1 was also attenuated by overexpression of dominant-negative mutants of CaMKII and calcineurin. ET-1 increased the activity of CaMKII and calcineurin in cardiac myocytes. Pretreatment with KN62 and cyclosporin A strongly suppressed ET-1-induced increases in [(3)H]phenylalanine uptake and in cell size. These results suggest that Ca(2+) plays a critical role in ET-1-induced cardiomyocyte hypertrophy by activating CaMKII- and calcineurin-dependent pathways.
Collapse
Affiliation(s)
- W Zhu
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Varma DR, Deng XF. Cardiovascular α1-adrenoceptor subtypes: functions and signaling. Can J Physiol Pharmacol 2000. [DOI: 10.1139/y99-142] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
α1-Adrenoceptors (α1AR) are G protein-coupled receptors and include α1A, α1B, and α1D subtypes corresponding to cloned α1a, α1b, and α1d, respectively. α1AR mediate several cardiovascular actions of sympathomimetic amines such as vasoconstriction and cardiac inotropy, hypertrophy, metabolism, and remodeling. α1AR subtypes are products of separate genes and differ in structure, G protein-coupling, tissue distribution, signaling, regulation, and functions. Both α1AAR and α1BAR mediate positive inotropic responses. On the other hand, cardiac hypertrophy is primarily mediated by α1AAR. The only demonstrated major function of α1DAR is vasoconstriction. α1AR are coupled to phospholipase C, phospholipase D, and phospholipase A2; they increase intracellular Ca2+ and myofibrillar sensitivity to Ca2+ and cause translocation of specific phosphokinase C isoforms to the particulate fraction. Cardiac hypertrophic responses to α1AR agonists might involve activation of phosphokinase C and mitogen-activated protein kinase via Gq. α1AR subtypes might interact with each other and with other receptors and signaling mechanisms.Key words: cardiac hypertrophy, inotropic responses, central α1-adrenoreceptors, arrythmias.
Collapse
|
59
|
Eizema K, van Heugten HA, Bezstarosti K, van Setten MC, Lamers JM. Endothelin-1 responsiveness of a 1.4 kb phospholamban promoter fragment in rat cardiomyocytes transfected by the gene gun. J Mol Cell Cardiol 2000; 32:311-21. [PMID: 10722806 DOI: 10.1006/jmcc.1999.1076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcriptional regulation of an isolated rat phospholamban (PL) promoter fragment in rat cardiomyocytes was analyzed by applying a new method to reach substantially higher transfection efficiencies: gene gun biolistics. The gene gun transfection method was optimized for application to primary cultures of rat neonatal cardiomyocytes. Cells, cultured at different densities (0.75-1.50x10(5)cells/cm(2)) in serum-free medium, were transfected with DNA coated gold particles. A transfection efficiency of up to 10% could be achieved (compared to <1% with other methods) by the gene gun as checked using a RSV- beta-Gal construct. Cardiomyocytes were stimulated by endothelin-1 (ET-1) (10(-8)M) to induce hypertrophy, thereby yielding the characteristic changes in gene expression (upregulation of Atrial Natriuretic Factor (ANF) and downregulation of PL). The basal activity of an ANF promoter fragment (increasing from the lowest to highest density 2.6-fold) and its ET-1 inducibility (only significant upregulation of 2.6-fold, at lowest density) appeared to be dependent on the plating density of the cardiomyocytes. A PL promoter fragment was isolated, sequenced and 1.4 kb was subcloned in a luciferase reporter vector. The basal activity of the PL promoter fragment was not dependent on the plating density. ET-1 did not downregulate the PL promoter, rather a significant upregulation (1.4-fold) was found at the highest plating density. In conclusion, plating density of the cardiomyocytes can influence promoter activity as shown with an ANF promoter fragment. A newly isolated and sequenced rat PL promoter fragment did not direct gene expression as expected on basis of downregulation of the PL gene by ET-1 observed in this model.
Collapse
Affiliation(s)
- K Eizema
- Department of Biochemistry, Erasmus University Rotterdam, Rotterdam, 3000 DR, Netherlands
| | | | | | | | | |
Collapse
|
60
|
McWhinney C, Wenham D, Kanwal S, Kalman V, Hansen C, Robishaw JD. Constitutively active mutants of the alpha(1a)- and the alpha(1b)-adrenergic receptor subtypes reveal coupling to different signaling pathways and physiological responses in rat cardiac myocytes. J Biol Chem 2000; 275:2087-97. [PMID: 10636913 DOI: 10.1074/jbc.275.3.2087] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Activation of alpha(1)-adrenergic receptors influences both the contractile activity and the growth potential of cardiac myocytes. However, the signaling pathways linking activation of specific alpha(1)-adrenergic receptor (AR) subtypes to these physiological responses remain controversial. In the present study, a molecular approach was used to identify conclusively the signaling pathways activated in response to the individual alpha(1A)- and alpha(1B)-AR subtypes in cardiac myocytes. For this purpose, a mutant alpha(1a)-AR subtype (alpha(1a)-S(290/293)-AR) was constructed based on analogy to the previously described constitutively active mutant alpha(1b)-AR subtype (alpha(1b)-S(288-294)-AR). The mutant alpha(1a)-S(290/293)-AR subtype displayed constitutive activity based on four criteria. To introduce the constitutively active alpha(1)-AR subtypes into cardiac myocytes, recombinant Sindbis viruses encoding either the alpha(1a)-S(290/293)-AR or alpha(1b)-S(288-294)-AR subtype were used to infect the whole cell population with >90% efficiency, thereby allowing the biochemical activities of the various signaling pathways to be measured. When expressed at comparable levels, the alpha(1a)-S(290/293)-AR subtype exhibited a significantly elevated basal level as well as agonist-stimulated level of inositol phosphate accumulation, coincident with activation of atrial natriuretic factor-luciferase gene expression. By contrast, the alpha(1b)-S(288-294)-AR subtype displayed a markedly increased serum response element-luciferase gene expression but no activation of atrial natriuretic factor-luciferase gene expression. Taken together, this study provides the first molecular evidence for coupling of the alpha(1a)-AR and the alpha(1b)-AR subtypes to different signaling pathways in cardiac myocytes.
Collapse
Affiliation(s)
- C McWhinney
- Henry Hood Research Program, Pennsylvania State College of Medicine, Danville, Pennsylvania 17822-2614, USA
| | | | | | | | | | | |
Collapse
|
61
|
SERCA2 and ANF Promoter-Activity Studies in Hypertrophic Cardiomyocytes Using Liposome-, Gene Gun-, and Adenovirus-Mediated Gene Transfer. ACTA ACUST UNITED AC 2000. [DOI: 10.1007/978-1-4615-4423-4_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
62
|
Liang F, Gardner DG. Mechanical strain activates BNP gene transcription through a p38/NF-kappaB-dependent mechanism. J Clin Invest 1999; 104:1603-12. [PMID: 10587524 PMCID: PMC409860 DOI: 10.1172/jci7362] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Application of mechanical strain to neonatal rat ventricular myocytes in culture evokes changes in gene expression reminiscent of those that occur with hypertrophy in vivo, such as stimulation of brain natriuretic peptide (BNP) gene expression. Here, we show that a major component of strain-dependent BNP promoter activation results from stimulation of p38 mitogen-activated protein kinase (MAPK) in the cardiac myocyte. Strain increased p38 activity in a time-dependent fashion. The p38 inhibitor SB203580 led to a reduction of approximately 60% in strain-activated human BNP (hBNP) promoter activity. Cotransfection of wild-type p38 increased both basal and strain-dependent promoter activity, while cotransfection with MKK6AL, a dominant-negative inhibitor of p38 MAPK kinase, resulted in partial inhibition of either p38- or strain-activated hBNP promoter activity. p38 MAPK increased hBNP promoter activity through activation of the transcription factor NF-kappaB. Activation of the hBNP promoter by either p38 or strain was mediated by DNA elements present in the 5' flanking sequence of the gene. Mechanical strain promoted assembly of NF-kappaB components on these DNA elements in vitro. Thus, induction of the hBNP promoter by mechanical strain depends, at least in part, on stimulation of p38 and subsequent activation of NF-kappaB. This activation may play an important role in signaling the increased BNP gene expression that accompanies hemodynamic overload and cardiac hypertrophy in vivo.
Collapse
Affiliation(s)
- F Liang
- Metabolic Research Unit, Department of Medicine, University of California-San Francisco, San Francisco, California 94143, USA
| | | |
Collapse
|
63
|
Xian M, Honbo N, Zhang J, Liew CC, Karliner JS, Lau YF. The green fluorescent protein is an efficient biological marker for cardiac myocytes. J Mol Cell Cardiol 1999; 31:2155-65. [PMID: 10640443 DOI: 10.1006/jmcc.1999.1046] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is a need for a non-toxic marker for cardiac myocytes in studies of cardiac development and in experimentally induced pathophysiologic states in adult animals. We investigated the possibility of using the enhanced green fluorescent protein (EGFP) gene as such a biological marker for cardiac myocytes in both whole animal and cell culture systems. Several lines of transgenic mice were constructed harboring an EGFP gene directed by a 2.38-kb promoter fragment of the hamster beta -myosin heavy chain gene. The transgene was preferentially expressed in the cardiac progenitor cells of embryos at E7.5, a developmental stage that precedes the formation of the cardiomyotube. It was specifically expressed in the cardiomyotube and myotomes along the somites of embryos at E8.5. The EGFP transgene expression continued in the heart throughout gestation and became very intense at birth. When neonatal cardiac cells were fractionated into myocytes and non-myocytes by a differential plating procedure, only myocytes from the transgenic mice showed specific green fluorescence of the transgene product that can be used as a marker for flow cytometry analysis. Although the expression levels were heterogeneous, EGFP expression persisted in the hearts of postnatal animals. In addition to the heart, some skeletal and smooth muscles from transgenic animals also expressed the transgene. The transgenic mice were healthy and had a normal life span, identical to their non-transgenic littermates. These results demonstrate that EGFP is an efficient non-toxic biological marker for cardiac myocytes.
Collapse
Affiliation(s)
- M Xian
- Cardiology Section, Medical Service, VA Medical Center & Cardiovascular Research Institute, University of California at San Francisco 94121, USA
| | | | | | | | | | | |
Collapse
|
64
|
Eizema K, Van Heugten HA, Bezstarosti K, Van Setten MC, Lamers JM. In vitro analysis of SERCA2 gene regulation in hypertrophic cardiomyocytes and increasing transfection efficiency by gene-gun biolistics. Ann N Y Acad Sci 1999; 874:111-24. [PMID: 10415525 DOI: 10.1111/j.1749-6632.1999.tb09229.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The transcriptional downregulation of the SERCA2 gene is studied using neonatal rat cardiomyocytes stimulated with endothelin-1 to induce hypertrophy. Liposome-based transfection of cells with a 1.9 kb SERCA2 promoter fragment directed expression of a reporter gene identical to the downregulation of genomic SERCA2 expression by endothelin-1. Results of a new gene gun technology for transient transfection of cardiomyocytes with a RSV-beta-galactosidase construct are reported. This new method for propelling DNA-coated gold beads into cardiomyocytes is extremely suitable for directly testing promoter/reporter gene DNA constructs since the transfection efficiency (approximately 10%) appears to be higher than traditional transfection methods.
Collapse
Affiliation(s)
- K Eizema
- Department of Biochemistry, Erasmus University Rotterdam, Netherlands
| | | | | | | | | |
Collapse
|
65
|
Morimoto T, Hasegawa K, Kaburagi S, Kakita T, Masutani H, Kitsis RN, Matsumori A, Sasayama S. GATA-5 is involved in leukemia inhibitory factor-responsive transcription of the beta-myosin heavy chain gene in cardiac myocytes. J Biol Chem 1999; 274:12811-8. [PMID: 10212267 DOI: 10.1074/jbc.274.18.12811] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leukemia inhibitory factor is a member of a family of structurally related cytokines sharing the receptor component gp130. Activation of gp130 by leukemia inhibitory factor is sufficient to induce myocardial cell hypertrophy accompanied by specific changes in the pattern of gene expression. However, the molecular mechanisms that link gp130 activation to these changes have not been clarified. The present study investigated the transcriptional pathways by which leukemia inhibitory factor activates beta-myosin heavy chain expression during myocardial cell hypertrophy. Mutation of the GATA motif in the beta-myosin heavy chain promoter totally abolished leukemia inhibitory factor-responsive transcription without changing basal transcriptional activity. In contrast, endothelin-1 responsiveness was unaffected by the GATA mutation. Among members of the cardiac GATA transcription factor subfamily (GATA-4, -5, and -6), GATA-5 was the sole and potent transactivator for the beta-myosin heavy chain promoter. This transactivation was dependent on sequence-specific binding of GATA-5 to the beta-myosin heavy chain GATA element. Cardiac nuclear factors that bind to to the beta-myosin heavy chain GATA element were induced by leukemia inhibitory factor stimulation. Last, leukemia inhibitory factor stimulation markedly increased transcripts of cardiac GATA-5, the expression of which is normally restricted to the early embryo. Thus, GATA-5 may be involved in gp130 signaling in cardiac myocytes.
Collapse
Affiliation(s)
- T Morimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Wright CE, Haddad F, Qin AX, Bodell PW, Baldwin KM. In vivo regulation of beta-MHC gene in rodent heart: role of T3 and evidence for an upstream enhancer. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C883-91. [PMID: 10199819 DOI: 10.1152/ajpcell.1999.276.4.c883] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac beta-myosin heavy chain (beta-MHC) gene expression is mainly regulated through transcriptional processes. Although these results are based primarily on in vitro cell culture models, relatively little information is available concerning the interaction of key regulatory factors thought to modulate MHC expression in the intact rodent heart. Using a direct gene transfer approach, we studied the in vivo transcriptional activity of different-length beta-MHC promoter fragments in normal control and in altered thyroid states. The test beta-MHC promoter was fused to a firefly luciferase reporter gene, whereas the control alpha-MHC promoter was fused to the Renilla luciferase reporter gene and was used to account for variations in transfection efficiency. Absolute reporter gene activities showed that beta- and alpha-MHC genes were individually and reciprocally regulated by thyroid hormone. The beta-to-alpha ratios of reporter gene expression demonstrated an almost threefold larger beta-MHC gene expression in the longest than in the shorter promoter fragments in normal control animals, implying the existence of an upstream enhancer. A mutation in the putative thyroid response element of the -408-bp beta-MHC promoter construct caused transcriptional activity to drop to null. When studied in the -3, 500-bp beta-MHC promoter, construct activity was reduced ( approximately 100-fold) while thyroid hormone responsiveness was retained. These findings suggest that, even though the bulk of the thyroid hormone responsiveness of the gene is contained within the first 215 bp of the beta-MHC promoter sequence, the exact mechanism of triiodothyronine (T3) action remains to be elucidated.
Collapse
Affiliation(s)
- C E Wright
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA
| | | | | | | | | |
Collapse
|
67
|
Doenst T, Taegtmeyer H. alpha-adrenergic stimulation mediates glucose uptake through phosphatidylinositol 3-kinase in rat heart. Circ Res 1999; 84:467-74. [PMID: 10066682 DOI: 10.1161/01.res.84.4.467] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We examined whether insulin and catecholamines share common pathways for their stimulating effects on glucose uptake. We perfused isolated working rat hearts with Krebs-Henseleit buffer containing [2-3H]glucose (5 mmol/L, 0.05 microCi/mL) and sodium oleate (0.4 mmol/L). In the absence or presence of the phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin (3 micromol/L), we added insulin (1 mU/mL), epinephrine (1 micromol/L), phenylephrine (100 micromol/L) plus propranolol (10 micromol/L, selective alpha-adrenergic stimulation), or isoproterenol (1 micromol/L) plus phentolamine (10 micromol/L, selective beta-adrenergic stimulation) to the perfusate. Cardiac power was found to be stable in all groups (between 8.07+/-0.68 and 10.7+/-0. 88 mW) and increased (25% to 47%) with addition of epinephrine, but not with selective alpha- and beta-adrenergic stimulation. Insulin and epinephrine, as well as selective alpha- and beta-receptor stimulation, increased glucose uptake (the following values are in micromol/[min. g dry weight]: basal, 1.19+/-0.13; insulin, 3.89+/-0.36; epinephrine, 3.46+/-0.27; alpha-stimulation, 4.08+/-0.40; and beta-stimulation, 3.72+/-0.34). Wortmannin completely inhibited insulin-stimulated and selective alpha-stimulated glucose uptake, but it did not affect the epinephrine-stimulated or selective beta-stimulated glucose uptake. Sequential addition of insulin and epinephrine or insulin and alpha-selective stimulation showed additive effects on glucose uptake in both cases. Wortmannin further blocked the effects of insulin on glycogen synthesis. We conclude that alpha-adrenergic stimulation mediates glucose uptake in rat heart through a PI3-K-dependent pathway. However, the additive effects of alpha-adrenergic stimulation and insulin suggest 2 different isoforms of PI3-K, compartmentation of PI3-K, potentiation, or inhibition by wortmannin of another intermediate of the alpha-adrenergic signaling cascade. The stimulating effects of both the alpha- and the beta-adrenergic pathways on glucose uptake are independent of changes in cardiac performance.
Collapse
Affiliation(s)
- T Doenst
- Department of Medicine, Division of Cardiology, University of Texas-Houston Medical School, Houston, USA
| | | |
Collapse
|
68
|
|
69
|
Bowling N, Walsh RA, Song G, Estridge T, Sandusky GE, Fouts RL, Mintze K, Pickard T, Roden R, Bristow MR, Sabbah HN, Mizrahi JL, Gromo G, King GL, Vlahos CJ. Increased protein kinase C activity and expression of Ca2+-sensitive isoforms in the failing human heart. Circulation 1999; 99:384-91. [PMID: 9918525 DOI: 10.1161/01.cir.99.3.384] [Citation(s) in RCA: 317] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Increased expression of Ca2+-sensitive protein kinase C (PKC) isoforms may be important markers of heart failure. Our aim was to determine the relative expression of PKC-beta1, -beta2, and -alpha in failed and nonfailed myocardium. METHODS AND RESULTS Explanted hearts of patients in whom dilated cardiomyopathy or ischemic cardiomyopathy was diagnosed were examined for PKC isoform content by Western blot, immunohistochemistry, enzymatic activity, and in situ hybridization and compared with nonfailed left ventricle. Quantitative immunoblotting revealed significant increases of >40% in PKC-beta1 (P<0.05) and -beta2 (P<0.04) membrane expression in failed hearts compared with nonfailed; PKC-alpha expression was significantly elevated by 70% in membrane fractions (P<0.03). PKC-epsilon expression was not significantly changed. In failed left ventricle, PKC-beta1 and -beta2 immunostaining was intense throughout myocytes, compared with slight, scattered staining in nonfailed myocytes. PKC-alpha immunostaining was also more evident in cardiomyocytes from failed hearts with staining primarily localized to intercalated disks. In situ hybridization revealed increased PKC-beta1 and -beta2 mRNA expression in cardiomyocytes of failed heart tissue. PKC activity was significantly increased in membrane fractions from failed hearts compared with nonfailed (1021+/-189 versus 261+/-89 pmol. mg-1. min-1, P<0.01). LY333531, a selective PKC-beta inhibitor, significantly decreased PKC activity in membrane fractions from failed hearts by 209 pmol. min-1. mg-1 (versus 42.5 pmol. min-1. mg-1 in nonfailed, P<0.04), indicating a greater contribution of PKC-beta to total PKC activity in failed hearts. CONCLUSIONS In failed human heart, PKC-beta1 and -beta2 expression and contribution to total PKC activity are significantly increased. This may signal a role for Ca2+-sensitive PKC isoforms in cardiac mechanisms involved in heart failure.
Collapse
Affiliation(s)
- N Bowling
- Cardiovascular Research, Eli Lilly and Co, Indianapolis, Ind 46285-0520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Kaburagi S, Hasegawa K, Morimoto T, Araki M, Sawamura T, Masaki T, Sasayama S. The role of endothelin-converting enzyme-1 in the development of alpha1-adrenergic-stimulated hypertrophy in cultured neonatal rat cardiac myocytes. Circulation 1999; 99:292-8. [PMID: 9892597 DOI: 10.1161/01.cir.99.2.292] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Accumulating evidence suggests that the local synthesis of endothelin-1 (ET-1) plays a role in the development of heart failure in vivo. We investigated the role of endothelin-converting enzyme-1 (ECE-1), which mediates the conversion of big ET-1 to mature ET-1, in the development of alpha1-adrenergic-stimulated hypertrophy in cultured neonatal rat cardiac myocytes. METHODS AND RESULTS Phenylephrine (PE) induced the expression of ET-1 in rat cardiac myocytes and accelerated the conversion of big ET-1 to ET-1. The ECE-1 mRNA levels were markedly increased 3 hours after PE stimulation (3.6-fold compared with saline stimulation, P<0.005). A specific ECE-1 antagonist, FR901533, inhibited the PE-stimulated increase in protein synthesis rate by 45% (P<0.05). As genetic markers for the hypertrophic response, FR901533 inhibited the PE-stimulated transcriptional activities of the 3.5-kb beta-myosin heavy chain promoter by 79% (P<0.01) but did not affect that of the 3.4-kb atrial natriuretic factor (ANF) promoter. In Bio14.6 Syrian cardiomyopathic hamsters, ventricular ET-1 and ANF mRNA levels did not correlate at 2 different stages. CONCLUSIONS ET-1-independent pathways may mediate activation of the ANF gene program in ventricular myocytes both in vitro and in vivo. These results also indicate that the conversion of big ET-1 to ET-1 in rat cardiac myocytes is required for the development of alpha1-adrenergic-stimulated hypertrophy and beta-myosin heavy chain gene transcription.
Collapse
Affiliation(s)
- S Kaburagi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
71
|
Butler AJ, Ordahl CP. Poly(ADP-ribose) polymerase binds with transcription enhancer factor 1 to MCAT1 elements to regulate muscle-specific transcription. Mol Cell Biol 1999; 19:296-306. [PMID: 9858553 PMCID: PMC83887 DOI: 10.1128/mcb.19.1.296] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/1998] [Accepted: 10/02/1998] [Indexed: 11/20/2022] Open
Abstract
Striated muscle-specific expression of the cardiac troponin T (cTNT) gene is mediated through two MCAT elements that act via binding of transcription enhancer factor 1 (TEF-1) to the MCAT core motifs and binding of an auxiliary protein to nucleotides flanking the 5' side of the core motif. Using DNA-protein and protein-protein binding experiments, we identified a 140-kDa polypeptide that bound both the muscle-specific flanking sequences of the most distal MCAT1 element and TEF-1. Screening of an expression library with the MCAT1 element yielded a cDNA encoding a truncated form of poly(ADP-ribose) polymerase (PARP). Endogenous PARP from embryonic tissue nuclear extracts migrated as a 140-kDa protein. Recombinant full-length PARP preferentially bound the wild-type MCAT1 element and was shown to physically interact with TEF-1. In addition, endogenous TEF-1 could be coimmunoprecipitated with PARP from extracts of primary skeletal muscle cells. Recombinant PARP was able to ADP-ribosylate TEF-1 in vitro. Inhibition of the enzymatic activity of PARP repressed expression of an MCAT1-dependent reporter in transiently transfected primary muscle cells. Together, these data implicate PARP as the auxiliary protein that binds with TEF-1 to the MCAT1 element to provide muscle-specific gene transcription.
Collapse
Affiliation(s)
- A J Butler
- Department of Anatomy and Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94143-0452, USA
| | | |
Collapse
|
72
|
Kovacic B, Ilić D, Damsky CH, Gardner DG. c-Src activation plays a role in endothelin-dependent hypertrophy of the cardiac myocyte. J Biol Chem 1998; 273:35185-93. [PMID: 9857056 DOI: 10.1074/jbc.273.52.35185] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the atrial natriuretic peptide (ANP) gene is regarded as one of the earliest and most reliable markers of hypertrophy in the ventricular cardiac myocyte. We have examined the role of the nonreceptor tyrosine kinases in the signaling mechanism(s) leading to hypertrophy using human ANP gene promoter activity as a marker. Endothelin (ET), a well known hypertrophic agonist, increased activity of c-Src, c-Yes, and Fyn within minutes and promoted a selective redistribution of each of these kinases within the cell. Overexpression of c-Src effected a significant increase in activity of a cotransfected human ANP promoter-driven chloramphenicol acetyl transferase reporter, while expression of either c-Yes or Fyn was considerably less effective in this regard. ET-dependent stimulation of the human ANP gene promoter was partially inhibited by co-transfection with dominant negative Ras or dominant negative Src or Csk or by treatment with the potent Src family-selective tyrosine kinase inhibitor PP1, suggesting that the Src family kinases are involved in signaling ET-dependent activation of this promoter. Both ET- and Src-dependent activation of the ANP promoter required the presence of a CArG motif in a serum response element-like structure between -422 and -413 but did not appear to require assembly of a ternary complex for full activity. These findings support a role for Src in the activation of ANP gene expression and suggest that this kinase may contribute in an important way to the signaling mechanisms that activate hypertrophy in the cardiac myocyte.
Collapse
Affiliation(s)
- B Kovacic
- Metabolic Research Unit and Departments of Medicine, University of California, San Francisco, California 94143, USA.
| | | | | | | |
Collapse
|
73
|
Carson JA, Booth FW. Effect of serum and mechanical stretch on skeletal alpha-actin gene regulation in cultured primary muscle cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C1438-48. [PMID: 9843704 DOI: 10.1152/ajpcell.1998.275.6.c1438] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine whether mechanical stretch or serum availability alters pretranslational regulation of skeletal alpha-actin (SkA) in cultured striated muscle cells. Chicken primary skeletal myoblasts and cardiac myocytes were plated on collagenized Silastic membranes adherent to nylon supports and stretched 8-20% of initial length 96 h postplating. Serum dependence of SkA gene regulation was determined by maintaining differentiated muscle cells in growth/differentiation (G/D; skeletal myotubes, 10% horse serum-2% chick embryo extract; cardiac myocytes, 10% horse serum) or growth-limiting (G-L; 0.5% horse serum) medium. Skeletal myotubes had higher SkA mRNA and SkA promoter activity in G/D than in G-L medium. Cardiac myocyte SkA mRNA was higher in G-L than in G/D medium. Serum response factor (SRF) protein binding to serum response element 1 (SRE1) of SkA promoter increased in skeletal cultures in G/D compared with G-L medium. Western blot analysis demonstrated that increased SRF-SRE1 binding was due, in part, to increased SRF protein. Stretching skeletal myotubes in G-L medium reduced SkA mRNA and repressed SkA promoter activity. The first 100 bp of SkA promoter were sufficient for stretch-induced repression of SkA promoter activity, and an intact transcriptional enhancer factor 1 (TEF-1) binding site was necessary for this response. Serum and stretch appear to repress SkA promoter activity in skeletal myotubes through different DNA binding elements, the SRE1 and TEF-1 sites, respectively. Stretching increased SkA mRNA in cardiac myocytes in G-L medium but did not alter SkA mRNA level in cardiac cells in G/D medium. These results demonstrate that stretch and serum interact differently to alter SkA expression in cultured cardiac and skeletal muscle cells.
Collapse
Affiliation(s)
- J A Carson
- Department of Integrative Biology, Pharmacology, and Physiology, University of Texas Health Science Center, Houston, Texas 77030, USA
| | | |
Collapse
|
74
|
Gupta M, Gupta MP, Arcilla RA, Zak R. Cardiomyocytes and non-muscle cells in cardiac hypertrophy: a molecular perspective. PROGRESS IN PEDIATRIC CARDIOLOGY 1998. [DOI: 10.1016/s1058-9813(99)00005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
75
|
Gupta M, Gupta MP, Arcilla RA. Molecular regulation of cardiac myogenesis and morphology during development. PROGRESS IN PEDIATRIC CARDIOLOGY 1998. [DOI: 10.1016/s1058-9813(99)00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
76
|
Abdellatif M, Packer SE, Michael LH, Zhang D, Charng MJ, Schneider MD. A Ras-dependent pathway regulates RNA polymerase II phosphorylation in cardiac myocytes: implications for cardiac hypertrophy. Mol Cell Biol 1998; 18:6729-36. [PMID: 9774686 PMCID: PMC109256 DOI: 10.1128/mcb.18.11.6729] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/1998] [Accepted: 08/04/1998] [Indexed: 11/20/2022] Open
Abstract
Despite extensive evidence implicating Ras in cardiac muscle hypertrophy, the mechanisms involved are unclear. We previously reported that Ras, through an effector-like function of Ras GTPase-activating protein (GAP) in neonatal cardiac myocytes (M. Abdellatif et al., J. Biol. Chem. 269:15423-15426, 1994; M. Abdellatif and M. D. Schneider, J. Biol. Chem. 272:527-533, 1997), can up-regulate expression from a comprehensive set of promoters, including both cardiac cell-specific and constitutive ones. To investigate the mechanism(s) underlying these earlier findings, we have used recombinant adenoviruses harboring a dominant negative Ras (17N Ras) allele or the N-terminal domain of GAP (nGAP), responsible for the Ras-like effector function. Inhibition of endogenous Ras reduced basal levels of [3H]uridine and [3H]phenylalanine incorporation into total RNA, mRNA, and protein, with parallel changes in apparent cell size. In addition, 17N Ras markedly inhibited phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (pol II), known to regulate transcript elongation, accompanied by down-regulation of its principal kinase, cyclin-dependent kinase 7 (Cdk7). In contrast, nGAP elicited the opposite effects on each of these parameters. Furthermore, cotransfection of constitutively active Ras (12R Ras) with wild-type pol II, rather than a truncated mutant lacking the CTD, demonstrated that Ras activation of transcription was dependent on the pol II CTD. Consistent with a potential role for this pathway in the development of cardiac myocyte hypertrophy, alpha1-adrenergic stimulation similarly enhanced pol II phosphorylation and Cdk7 expression, where both effects were inhibited by dominant negative Ras, while pressure overload hypertrophy led to an increase in both hyperphosphorylated and hypophosphorylated pol II in addition to Cdk7.
Collapse
Affiliation(s)
- M Abdellatif
- Molecular Cardiology Unit, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
77
|
Swartz EA, Johnson AD, Owens GK. Two MCAT elements of the SM alpha-actin promoter function differentially in SM vs. non-SM cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C608-18. [PMID: 9688616 DOI: 10.1152/ajpcell.1998.275.2.c608] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transcriptional activity of the smooth muscle (SM) alpha-actin gene is differentially regulated in SM vs. non-SM cells. Contained within the rat SM alpha-actin promoter are two MCAT motifs, binding sites for transcription enhancer factor 1 (TEF-1) transcriptional factors implicated in the regulation of many muscle-specific genes. Transfections of SM alpha-actin promoter-CAT constructs containing wild-type or mutagenized MCAT elements were performed to evaluate their functional significance. Mutation of the MCAT elements resulted in increased transcriptional activity in SM cells, whereas these mutations either had no effect or decreased activity in L6 myotubes or endothelial cells. High-resolution gel shift assays resolved several complexes of different mobilities that were formed between MCAT oligonucleotides and nuclear extracts from the different cell types, although no single band was unique to SM. Western blot analysis of nuclear extracts with polyclonal antibodies to conserved domains of the TEF-1 gene family revealed multiple reactive bands, some that were similar and others that differed between SM and non-SM. Supershift assays with a polyclonal antibody to the TEF-related protein family demonstrated that TEF-1 or TEF-1-related proteins were contained in the shifted complexes. Results suggest that the MCAT elements may contribute to cell type-specific regulation of the SM alpha-actin gene. However, it remains to be determined whether the differential transcriptional activity of MCAT elements in SM vs. non-SM is due to differences in expression of TEF-1 or TEF-1-related proteins or to unique (cell type specific) combinatorial interactions of the MCAT elements with other cis-elements and trans-factors.
Collapse
Affiliation(s)
- E A Swartz
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22906, USA
| | | | | |
Collapse
|
78
|
Stewart AF, Suzow J, Kubota T, Ueyama T, Chen HH. Transcription factor RTEF-1 mediates alpha1-adrenergic reactivation of the fetal gene program in cardiac myocytes. Circ Res 1998; 83:43-9. [PMID: 9670917 DOI: 10.1161/01.res.83.1.43] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alpha1-adrenergic receptor stimulation induces cardiac myocytes to hypertrophy and reactivates many fetal genes, including beta-myosin heavy chain (betaMyHC) and skeletal alpha-actin (SKA), by signaling through myocyte-specific CAT (M-CAT) cis elements, binding sites of the transcriptional enhancer factor-1 (TEF-1) family of transcription factors. To examine functional differences between TEF-1 and related to TEF-1 (RTEF-1) in alpha1-adrenergic reactivation of the fetal program, expression constructs were cotransfected with betaMyHC and SKA promoter/reporter constructs in neonatal rat cardiac myocytes. TEF-I overexpression tended to transactivate a minimal betaMyHC promoter but significantly interfered with a minimal SKA promoter. In contrast, RTEF-1 transactivated both the minimal betaMyHC and SKA promoters. TEF-1 and RTEF-I also affected the alpha1-adrenergic response of the betaMyHC and SKA promoters differently. TEF-1 had no effect. In contrast, RTEF-1 potentiated the alpha1-adrenergic responses of the SKA promoter and of a -3.3-kb betaMyHC promoter. To determine why the promoters responded differently to TEF-1 and RTEF-1, promoters with mutated M-CAT elements were tested in the same way. The betaMyHC promoter required an intact M-CAT element to respond to TEF-1 and RTEF-1, whereas the SKA promoter M-CAT was required for the TEF-1 response but not for the RTEF-1 response, suggesting that SKA promoter-specific cofactors may be involved. By competition gel shift assay, the M-CAT of the minimal betaMyHC promoter had a lower affinity than that of the SKA promoter, which partly explains the different responses of these promoters to TEF-1. These results highlight functional differences between TEF-1 and RTEF-1 and suggest a novel function of RTEF-1 in mediating the alpha1-adrenergic response in hypertrophic cardiac myocytes.
Collapse
Affiliation(s)
- A F Stewart
- Department of Medicine, University of Pittsburgh, PA 15213, USA. als6+@pitt.edu
| | | | | | | | | |
Collapse
|
79
|
Luther HP, Haase H, Hohaus A, Beckmann G, Reich J, Morano I. Characterization of naturally occurring myosin heavy chain antisense mRNA in rat heart. J Cell Biochem 1998. [DOI: 10.1002/(sici)1097-4644(19980701)70:1<110::aid-jcb11>3.0.co;2-t] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
80
|
Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 1998; 93:215-28. [PMID: 9568714 PMCID: PMC4459646 DOI: 10.1016/s0092-8674(00)81573-1] [Citation(s) in RCA: 1993] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In response to numerous pathologic stimuli, the myocardium undergoes a hypertrophic response characterized by increased myocardial cell size and activation of fetal cardiac genes. We show that cardiac hypertrophy is induced by the calcium-dependent phosphatase calcineurin, which dephosphorylates the transcription factor NF-AT3, enabling it to translocate to the nucleus. NF-AT3 interacts with the cardiac zinc finger transcription factor GATA4, resulting in synergistic activation of cardiac transcription. Transgenic mice that express activated forms of calcineurin or NF-AT3 in the heart develop cardiac hypertrophy and heart failure that mimic human heart disease. Pharmacologic inhibition of calcineurin activity blocks hypertrophy in vivo and in vitro. These results define a novel hypertrophic signaling pathway and suggest pharmacologic approaches to prevent cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- J D Molkentin
- Department of Molecular Biology and Oncology, The University of Texas Southwestern Medical Center at Dallas, 75225-9148, USA
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Tsoporis JN, Marks A, Kahn HJ, Butany JW, Liu PP, O'Hanlon D, Parker TG. S100beta inhibits alpha1-adrenergic induction of the hypertrophic phenotype in cardiac myocytes. J Biol Chem 1997; 272:31915-21. [PMID: 9395540 DOI: 10.1074/jbc.272.50.31915] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In an experimental rat model of myocardial infarction, surviving cardiac myocytes undergo hypertrophy in response to trophic effectors. This response involves gene reprogramming manifested by the re-expression of fetal genes, such as the previously reported isoform switch from adult alpha- to embryonic beta-myosin heavy chain. We now report the transient re-expression of a second fetal gene, skeletal alpha-actin in rat myocardium at 7 days post-infarction, and its subsequent down-regulation coincident with the delayed induction of S100beta, a protein normally expressed in brain. In cultured neonatal rat cardiac myocytes, co-transfection with an S100beta-expression vector inhibits a pathway associated with hypertrophy, namely, alpha1-adrenergic induction of beta-myosin heavy chain and skeletal alpha-actin promoters mediated by beta-protein kinase C. The induction of beta-myosin heavy chain by hypoxia was similarly blocked by forced expression of S100beta. Our results suggest that S100beta may be an intrinsic negative regulator of the hypertrophic response of surviving cardiac myocytes post-infarction. Such negative regulators may be important in limiting the adverse consequences of unchecked hypertrophy leading to ventricular remodeling and dysfunction.
Collapse
Affiliation(s)
- J N Tsoporis
- The Centre for Cardiovascular Research, Division of Cardiology, Department of Medicine, The Toronto Hospital, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | | | | | | | | | | | | |
Collapse
|
82
|
Hasegawa K, Lee SJ, Jobe SM, Markham BE, Kitsis RN. cis-Acting sequences that mediate induction of beta-myosin heavy chain gene expression during left ventricular hypertrophy due to aortic constriction. Circulation 1997; 96:3943-53. [PMID: 9403619 DOI: 10.1161/01.cir.96.11.3943] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Marked alterations in the expression of specific genes occur during the development of cardiac hypertrophy in vivo. Little is known, however, about the cis-acting elements that mediate these changes in response to clinically relevant hypertrophic stimuli, such as hemodynamic overload, in intact adult animals. METHODS AND RESULTS The left ventricular expression of a directly injected reporter gene driven by 3542 bp of rat beta-myosin heavy chain (beta-MHC) promoter was increased 3.0-fold by aortic constriction (P<.005), an increment similar to the 3.2-fold increase in the level of the endogenous beta-MHC mRNA in the same left ventricles. Subsequent analysis identified a 107-bp beta-MHC promoter sequence (-303/-197) sufficient to convert a heterologous neutral promoter to one that is activated by aortic constriction. These sequences contain two M-CAT elements, which have previously been demonstrated to mediate inducible expression during alpha1-adrenergic-stimulated hypertrophy in cultured neonatal cardiac myocytes, and a GATA element. Although simultaneous mutation of both M-CAT elements markedly decreased the basal transcriptional activity of an injected 333-bp beta-MHC promoter, it had no effect on aortic constriction-stimulated transcription (3.5-fold increase, P<.005 for both wild type and mutant). In contrast, mutation of the GATA motif markedly attenuated aortic constriction-stimulated transcription (1.6-fold, P=NS) without affecting the basal transcriptional activity. This GATA site can interact with in vitro translated GATA-4 and compete with an established GATA site for GATA-4 binding activity in nuclear extracts from aortic constricted hearts. CONCLUSIONS Basal and aortic constriction-stimulated transcription of the beta-MHC gene is mediated, at least in part, through different mechanisms. A GATA element within beta-MHC sequences -303/-197 plays a role in the transcriptional activation of this gene by aortic constriction.
Collapse
Affiliation(s)
- K Hasegawa
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
83
|
Malhotra A, Reich D, Reich D, Nakouzi A, Sanghi V, Geenen DL, Buttrick PM. Experimental diabetes is associated with functional activation of protein kinase C epsilon and phosphorylation of troponin I in the heart, which are prevented by angiotensin II receptor blockade. Circ Res 1997; 81:1027-33. [PMID: 9400384 DOI: 10.1161/01.res.81.6.1027] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A cardiomyopathy that is characterized by an impairment in diastolic relaxation and a loss of calcium sensitivity of the isolated myofibril has been described in chronic diabetic animals and humans. To explore a possible role for protein kinase C (PKC)-mediated phosphorylation of myofibrillar proteins in this process, we characterized the subcellular distribution of the major PKC isoforms seen in the adult heart in cardiocytes isolated from diabetic rats and determined patterns of phosphorylation of the major regulatory proteins, including troponin I (TnI). Rats were made diabetic with a single injection of streptozotocin, and myocardiocytes were isolated and studied 3 to 4 weeks later. In nondiabetic animals, 76% of the PKC epsilon isoform was located in the cytosol and 24% was particulate, whereas in diabetic animals, 55% was cytosolic and 45% was particulate (P < .05). PKC delta, the other major PKC isoform seen in adult cardiocytes, did not show a change in subcellular localization. In parallel, TnI phosphorylation was increased 5-fold in cardiocytes isolated from the hearts of diabetic animals relative to control animals (P < .01). The change in PKC epsilon distribution and in TnI phosphorylation in diabetic animals was completely prevented by rendering the animals euglycemic with insulin or by concomitant treatment with a specific angiotensin II type-1 receptor (AT1) antagonist. Since PKC phosphorylation of TnI has been associated with a loss of calcium sensitivity of intact myofibrils, these data suggest that angiotensin II receptor-mediated activation of PKC may play a role in the contractile dysfunction seen in chronic diabetes.
Collapse
Affiliation(s)
- A Malhotra
- Division of Cardiology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Xia Y, Buja LM, Scarpulla RC, McMillin JB. Electrical stimulation of neonatal cardiomyocytes results in the sequential activation of nuclear genes governing mitochondrial proliferation and differentiation. Proc Natl Acad Sci U S A 1997; 94:11399-404. [PMID: 9326621 PMCID: PMC23479 DOI: 10.1073/pnas.94.21.11399] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/1997] [Accepted: 08/22/1997] [Indexed: 02/05/2023] Open
Abstract
Electrical stimulation of neonatal cardiac myocytes produces hypertrophy and cellular maturation with increased mitochondrial content and activity. To investigate the patterns of gene expression associated with these processes, cardiac myocytes were stimulated for varying times up to 72 hr in serum-free culture. The mRNA contents for genes associated with transcriptional activation [c-fos, c-jun, JunB, nuclear respiratory factor 1 (NRF-1)], mitochondrial proliferation [cytochrome c (Cyt c), cytochrome oxidase], and mitochondrial differentiation [carnitine palmitoyltransferase I (CPT-I) isoforms] were measured. The results establish a temporal pattern of mRNA induction beginning with c-fos (0.25-3 hr) and followed sequentially by c-jun (0.5-3 hr), JunB (0.5-6 hr), NRF-1 (1-12 hr), Cyt c (12-72 hr), and muscle-specific CPT-I (48-72 hr). Induction of the latter was accompanied by a marked decrease in the liver-specific CPT-I mRNA, thus supporting the developmental fidelity of this pattern of gene regulation. Consistent with a transcriptional mechanism, electrical stimulation increased c-fos, beta-myosin heavy chain, and Cyt c promoter activities. These increases coincided with a rise in their respective endogenous gene transcripts. NRF-1, cAMP response element, and Sp-1 site mutations within the Cyt c promoter reduced luciferase expression in both stimulated and nonstimulated myocytes. Mutations in the NRF-1 and CRE sites inhibited the induction by electrical stimulation (5-fold and 2-fold, respectively) whereas mutation of the Sp-1 site maintained or increased the fold induction. This finding is consistent with the appearance of NRF-1 and fos/jun mRNAs prior to that of Cyt c and suggests that induction of these transcription factors is a prerequisite for the transcriptional activation of Cyt c expression. These results support a regulatory role for NRF-1 and possibly AP-1 in the initiation of mitochondrial proliferation.
Collapse
Affiliation(s)
- Y Xia
- Department of Pathology and Laboratory Medicine, University of Texas Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
85
|
Qi M, Puglisi JL, Byron KL, Ojamaa K, Klein I, Bers DM, Samarel AM. Myosin heavy chain gene expression in neonatal rat heart cells: effects of [Ca2+]i and contractile activity. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C394-403. [PMID: 9277337 DOI: 10.1152/ajpcell.1997.273.2.c394] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To determine if mechanical signals or alterations in intracellular Ca2+ concentration ([Ca2+]i) affect myosin heavy chain (MHC) gene expression in spontaneously beating, neonatal rat ventricular myocytes, contractile activity was inhibited with verapamil, KCl, or 2,3-butanedione monoxime (BDM), and their acute and chronic effects on myocyte shortening, [Ca2+]i, and MHC gene expression were examined. Despite their differing effects on [Ca2+]i, verapamil, KCl, and BDM all inhibited contractile activity and markedly downregulated beta-MHC mRNA levels to 24 +/- 5, 21 +/- 7, and 6 +/- 2% of contracting cells, respectively. In contrast, these inhibitors of contraction upregulated alpha-MHC mRNA levels to 163 +/- 19, 156 +/- 7, and 198 +/- 20% of contracting cells, respectively. Transient transfection with a rat beta-MHC promoter-luciferase expression plasmid demonstrated that all inhibitors of contraction significantly decreased beta-MHC promoter activity. Paradoxically, contractile arrest also inhibited alpha-MHC promoter activity, suggesting that increased alpha-MHC mRNA levels resulted from posttranscriptional mechanisms. Actinomycin D mRNA stability assays indicated that alpha-MHC mRNA half-life was prolonged in noncontracting cells (33 h) compared with contracting myocytes (14 h). Contraction-dependent alterations in MHC gene expression were not dependent on release of angiotensin II or other growth factors into the culture medium. Thus intrinsic mechanical signals rather than alterations in [Ca2+]i regulate alpha-MHC and beta-MHC gene expression by both transcriptional and posttranscriptional mechanisms.
Collapse
Affiliation(s)
- M Qi
- Cardiovascular Institute, Loyola University Chicago Strich School of Medicine, Maywood, Illinois 60153, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
Park S, McCune SA, Radin MJ, Hoepf TM, Hensley J, Hohl CM, Altschuld RA. Verapamil accelerates the transition to heart failure in obese, hypertensive, female SHHF/Mcc-fa(cp) rats. J Cardiovasc Pharmacol 1997; 29:726-33. [PMID: 9234652 DOI: 10.1097/00005344-199706000-00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We sought to characterize the effects of the nonselective Ca2+ channel antagonist, verapamil, and the vascular-selective Ca2+ channel antagonist, felodipine, on obese, hypertensive, heart failure-prone, female SHHF/Mcc-fa(cp) rats. Rats were treated for < or = 2 months with verapamil (57 mg/kg/day) or felodipine (24 mg/kg/day). Blood pressures were determined at monthly intervals by the tail-cuff method. Heart weights and myosin isoforms were measured at the end of treatment. Direct cardiac effects of verapamil and felodipine were examined in electrically field stimulated, fura-2/AM-loaded cardiomyocytes. Both Ca2+ channel antagonists reduced systolic blood pressures. Verapamil, but not felodipine, increased heart weights and decreased expression of the myosin V1 isoform. In older animals, 75% of those treated with verapamil developed end-stage congestive heart failure. Age-matched control and felodipine-treated rats remained healthy. In isolated cardiomyocytes, 10(-9) M verapamil significantly reduced Ca2+ transient amplitudes but 10(-9) M felodipine did not. Both Ca2+ channel antagonists reduced blood pressures in obese, hypertensive, female SHHF rats. Verapamil, but not felodipine, produced heart failure in a large number of these animals. Differences between the in vivo effects of the two Ca2+ channel antagonists may be related to the differing effects on sarcolemmal Ca2+ influx.
Collapse
Affiliation(s)
- S Park
- Department of Food Science and Technology, The Ohio State University, Columbus 43210-1218, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Jacquemin P, Martial JA, Davidson I. Human TEF-5 is preferentially expressed in placenta and binds to multiple functional elements of the human chorionic somatomammotropin-B gene enhancer. J Biol Chem 1997; 272:12928-37. [PMID: 9148898 DOI: 10.1074/jbc.272.20.12928] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We report the cloning of a cDNA encoding the human transcription factor hTEF-5, containing the TEA/ATTS DNA binding domain and related to the TEF family of transcription factors. hTEF-5 is expressed in skeletal and cardiac muscle, but the strongest expression is observed in the placenta and in placenta-derived JEG-3 choriocarcinoma cells. In correlation with its placental expression, we show that hTEF-5 binds to several functional enhansons of the human chorionic somatomammotropin (hCS)-B gene enhancer. We define a novel functional element in this enhancer comprising tandemly repeated sites to which hTEF-5 binds cooperatively. In the corresponding region of the hCS-A enhancer, which is known to be inactive, this element is inactivated by a naturally occurring single base mutation that disrupts hTEF-5 binding. We further show that the binding of the previously described placental protein f/chorionic somatomammotropin enhancer factor-1 to TEF-binding sites is disrupted by monoclonal antibodies directed against the TEA domain and that this factor is a proteolytic degradation product of the TEF factors. These results strongly suggest that hTEF-5 regulates the activity of the hCS-B gene enhancer.
Collapse
Affiliation(s)
- P Jacquemin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, B.P. 163-67404 Illkirch Cédex, France
| | | | | |
Collapse
|
88
|
Barnes KV, Cheng G, Dawson MM, Menick DR. Cloning of Cardiac, Kidney, and Brain Promoters of the Feline ncx1 Gene. J Biol Chem 1997. [DOI: 10.1074/jbc.272.17.11510] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
89
|
Thuerauf DJ, Glembotski CC. Differential effects of protein kinase C, Ras, and Raf-1 kinase on the induction of the cardiac B-type natriuretic peptide gene through a critical promoter-proximal M-CAT element. J Biol Chem 1997; 272:7464-72. [PMID: 9054448 DOI: 10.1074/jbc.272.11.7464] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The cardiac genes for the A- and B-type natriuretic peptides (ANP and BNP) are coordinately induced by growth promoters, such as alpha1-adrenergic receptor agonists (e.g. phenylephrine (PE)). Although inducible elements in the ANP gene have been identified, responsible elements in the BNP gene are unknown. In this study, reporter constructs transfected into neonatal rat ventricular myocytes showed that in the context of 2.5 kilobase pairs of native BNP 5'-flanking sequences, a 2-base pair mutation in a promoter-proximal M-CAT site (CATTCT) disrupted basal and PE-inducible transcription by more than 98%. Expression of constitutively active forms of Ras, Raf-1 kinase, and protein kinase C, all of which are activated by PE in cardiac myocytes, strongly stimulated BNP reporter expression. Isolated M-CAT elements conferred PE, protein kinase C, and Ras inducibility to a minimal BNP promoter, however, they did not confer Raf-1 inducibility. These results show that M-CAT elements can serve as targets for Ras-dependent, Raf-1-independent pathways, implying the involvement of c-Jun N-terminal kinase and/or p38 mitogen-activated protein kinases, but not extracellular signal-regulated protein kinase/mitogen-activated protein kinase. Moreover, the essential M-CAT element distinguishes the BNP gene from the ANP gene, which utilizes serum response elements and an Sp1-like sequence.
Collapse
Affiliation(s)
- D J Thuerauf
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, California 92182, USA
| | | |
Collapse
|
90
|
Luther HP, Hille S, Haase H, Morano I. Influence of mechanical activity, adrenergic stimulation, and calcium on the expression of myosin heavy chains in cultivated neonatal cardiomyocytes. J Cell Biochem 1997; 64:458-65. [PMID: 9057103 DOI: 10.1002/(sici)1097-4644(19970301)64:3<458::aid-jcb12>3.0.co;2-c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
It is generally accepted that mechanical stress of cardiomyocytes increases RNA and protein synthesis of myosin heavy chain (MHC) quantitatively but it is still a matter of debate whether MHC gene expression is also changed qualitatively. We investigated expression of MHC genes of spontaneously contracting neonatal cardiomyocytes experimentally arrested by permanent depolarization [potassium chloride (KCl)] as well as by electromechanical uncoupling [2,3 butanedione monoxime (BDM)]. Relative distribution of MHC mRNA isoforms (alpha and beta) was studied by quantitative polymerase chain reaction. Expression of MHC isoenzymes was the same in contracting (34.5% beta-MHC) and arrested (40.5% and 33.0% beta-MHC in KCl and BDM, respectively) cardiomyocytes. However, treatment with phenylephrine for the same period increased significantly beta-MHC expression to 55%. We conclude that hormonal factors rather than Ca2+ or mechanical stress regulate qualitatively MHC gene expression.
Collapse
Affiliation(s)
- H P Luther
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | | | | | | |
Collapse
|
91
|
Abstract
External load plays a critical role in determining muscle mass and its phenotype in cardiac myocytes. Cardiac myocytes have the ability to sense mechanical stretch and convert it into intracellular growth signals, which lead to hypertrophy. Mechanical stretch of cardiac myocytes in vitro causes activation of multiple second messenger systems that are very similar to growth factor-induced cell signaling systems. Stretch of neonatal rat cardiac myocytes stimulates a rapid secretion of angiotensin II which, together with other growth factors, mediates stretch-induced hypertrophic responses in vitro. In this review, various cell signaling mechanisms initiated by mechanical stress on cardiac myocytes are summarized with emphasis on potential mechanosensing mechanisms and the relationship between mechanical loading and the cardiac renin-angiotensin system.
Collapse
Affiliation(s)
- J Sadoshima
- Cardiovascular Research Center, University of Michigan Medical Center, Ann Arbor 48109-0644, USA
| | | |
Collapse
|
92
|
Abstract
The present knowledge concerning the alpha- and beta-adrenergic systems in the regulation of cardiac growth and gene expression is reviewed. To investigate the mechanism by which cAMP regulates the expression of cardiac genes we have used cultured myocytes derived from fetal rat hearts. We have shown previously that the addition of Br cAMP to the culture medium produced an increase in alpha-myosin heavy chain (alpha-MHC) mRNA level, in its rate of transcription as well as in the amount of V1 isomyosin. To characterize the promoter element(s) involved in cAMP responsive regulation of alpha-MHC expression we performed transient transfection analysis with a series of alpha-MHC gene promoter-CAT constructs. We have identified a 13 bp E-box/M-CAT hybrid motif (EM element) which conferred a basal muscle specific and cAMP inducible expression of the alpha-MHC gene. Using mobility shift assay we have documented that one of the EM element binding protein is TEF-1. Moreover, by incubating cardiac nuclear extracts with the catalytic subunit of PK-A we have found that factor(s) binding to the EM element is a substrate for cAMP dependent phosphorylation.
Collapse
Affiliation(s)
- M P Gupta
- Department of Medicine (Section of Cardiology), University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
93
|
Patten M, Hartogensis WE, Long CS. Interleukin-1beta is a negative transcriptional regulator of alpha1-adrenergic induced gene expression in cultured cardiac myocytes. J Biol Chem 1996; 271:21134-41. [PMID: 8702883 DOI: 10.1074/jbc.271.35.21134] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We recently reported that interleukin-1beta (IL-1beta) induces a novel form of cardiac myocyte hypertrophy characterized by an increase in protein content but an absence of the fetal program of skeletal alpha-actin or beta-myosin heavy chain (beta-MHC) gene expression (Palmer, J. N., Hartogensis, W. E., Patten, M., Fortuin, F. D., and Long, C. S. (1995) J. Clin. Invest. 95, 2555-2564). Because of the apparent disparity between this myocardial phenotype and that seen with other hypertrophic agents in culture, such as catecholamines, we investigated the effect of IL-1beta on alpha1-induced cardiomyocyte hypertrophy. Although there was no augmentation in total protein when IL-1beta and phenylephrine were given simultaneously, IL-1beta attenuated the increase in contractile protein mRNAs (skeletal alpha-actin and beta-MHC) in response to phenylephrine. Transient transfection studies with skeletal alpha-actin and beta-MHC promoter constructs linked to the chloramphenicol acetyltransferase (CAT)-reporter gene indicate that repression occurred at the level of gene transcription. In view of the previously reported activity of the zinc finger protein YY1 in the negative regulation of the skeletal alpha-actin promoter in cardiomyocytes (MacLellan, W. R., Lee, T. C., Schwartz, R. J., and Schneider, M. D. (1994) J. Biol. Chem. 269, 16754-16760), we investigated the potential role of this factor in the IL-1beta-mediated effects. Using transient transfection, we found that a mutation in the YY1 binding site of the skeletal alpha-actin promoter abolished the inhibitory effect of IL-1beta. We further found that the 127-base pair fragment of the skeletal alpha-actin promoter required for the IL-1beta effect is also required for inhibition by the overexpression of YY1 in the myocytes. Furthermore, increased levels of YY1 protein are found in IL-1beta treated myocytes. Taken together these results suggest that the repression of contractile protein gene transcription by IL-1beta may be due, at least in part, to activation of the negative transcription factor YY1.
Collapse
Affiliation(s)
- M Patten
- Division of Cardiology Section and the Research Service, Veterans Affairs Medical Center, San Francisco, California 94121, USA
| | | | | |
Collapse
|
94
|
Hwang KC, Gray CD, Sweet WE, Moravec CS, Im MJ. Alpha 1-adrenergic receptor coupling with Gh in the failing human heart. Circulation 1996; 94:718-26. [PMID: 8772694 DOI: 10.1161/01.cir.94.4.718] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND We recently demonstrated that Gh, which transfers the signal from the alpha 1-adrenergic receptor to the 69-kD phospholipase C, is the previously identified tissue-type transglutaminase (TGase II). The alpha 1-adrenergic receptor mediates actions of the sympathetic nervous system, including cardiac, arteriolar, and smooth muscle contractions. In human cardiac tissue, the expression of the alpha 1-adrenergic receptor is increased under pathophysiological conditions, but changes in the physiological response are small. Therefore, it has been suggested that the other components involved in the alpha 1-adrenergic receptor-mediated signaling pathway are probably altered. METHODS AND RESULTS Immunological and biochemical studies with nonfailling and failing human heart tissues revealed that the GTP-binding and TGase activities of human heart TGase II (hhG alpha n) are downregulated in both ischemic and dilated cardiomyopathic human heart. In ischemic cardiomyopathy, the alpha 1-adrenergic receptor number increased twofold (27.0 fmol/mg) compared with the nonfailing (12.8 fmol/mg) and the dilated cardiomyopathic (15.6 fmol/mg) heart tissues, but the coupling of hhG alpha h with the alpha 1-adrenergic receptor did not increase. The intrinsic activity of hhG alpha h, was greatly decreased in membrane fractions, whereas the cytosolic TGase activity was not changed. In the dilated cardiomyopathic human heart, these intrinsic enzyme activities of hhG alpha h were also downregulated in the membrane fraction, whereas the amount of hhG alpha h protein was greatly increased (2.8-fold) compared with the nonfailing heart. CONCLUSIONS The results of the present study clearly demonstrate that the alpha 1-adrenergic receptor in human heart couples with Gh (TGase II) and indicate that downregulation of hhG alpha h activity is associated with human cardiac failure but that the mechanism differs between ischemic and dilated cardiomyopathies.
Collapse
Affiliation(s)
- K C Hwang
- Department of Molecular Cardiology, Cleveland Clinic Foundation, OH 44195, USA
| | | | | | | | | |
Collapse
|
95
|
Tsika GL, Wiedenman JL, Gao L, McCarthy JJ, Sheriff-Carter K, Rivera-Rivera ID, Tsika RW. Induction of beta-MHC transgene in overloaded skeletal muscle is not eliminated by mutation of conserved elements. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:C690-9. [PMID: 8770011 DOI: 10.1152/ajpcell.1996.271.2.c690] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mechanical overload leads to hypertrophy, increased type I fiber composition, and beta-myosin heavy chain (beta-MHC) induction in the fast-twitch plantaris muscle. To better understand the mechanism(s) involved in beta-MHC induction, we have examined inducible expression of transgenes carrying the simultaneous mutation of three DNA regulatory subregions [muscle CAT (MCAT), C-rich, and beta e3] in the context of either 5,600-base pair (bp; beta 5.6mut3) or 600-bp (beta 0.6mut3) beta-MHC promoter in overloaded plantaris muscles of transgenic mice. Protein extract from mechanically overloaded plantaris muscle of mice, harboring either mutant transgene beta 5.6mut3 or beta 0.6mut3, showed an unexpected 2.8- to 4.5-fold increase in chloramphenicol acetyltransferase (CAT) specific activity relative to their respective controls. Similar results were obtained with wild-type (wt) beta-MHC transgenes (beta 5.6wt, beta 0.6wt). Histochemical staining for both myofibrillar ATPase and CAT activity and CAT immunohistochemistry revealed a striking increase in type I fibers and that CAT expression was restricted to these fibers in overloaded plantaris muscle of beta 5.6mut3 transgenic mice. Our transgenic data suggest that beta-MHC transgenes, and perhaps the endogenous beta-MHC gene, are induced by mechanical overload via a mechanism(s) that does not exclusively require the MCAT, C-rich, or beta e3 subregions.
Collapse
Affiliation(s)
- G L Tsika
- University of Illinois, Urbana-Champaign 61801, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Rouet-Benzineb P, Mohammadi K, Pérennec J, Poyard M, Crozatier B. Protein kinase C isoform expression in normal and failing rabbit hearts. Circ Res 1996; 79:153-61. [PMID: 8755991 DOI: 10.1161/01.res.79.2.153] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protein kinase C (PKC) is activated by alpha-adrenergic stimulation. Molecular analysis showed that PKC consists of a family of at least 12 isozymes. Studies of their distribution in the heart showed conflicting results. The first goal of our study was thus to characterize cardiac PKC in normal rabbits. PKC plays an important role in gene expression, cell growth, and differentiation and is involved in the hypertrophy phase of cardiac overload, but since its expression has never been evaluated in heart failure, the second goal of our study was to evaluate PKC activity and isoform expression in rabbits with heart failure induced by a double hemodynamic overload (aortic insufficiency followed by an aortic stenosis). In the first part of the study, PKC isoform expression analyzed in normal rabbits by immunoblotting showed that isoforms alpha, beta, epsilon, and zeta were expressed along with PKC gamma, which had never been detected in the heart. PKC gamma expression was also identified by polymerase chain reaction, and immunofluorescence techniques showed a localization on intercalated disks associated with the membrane localization observed with the other isoforms. In the second part of the study, PKC activity, content, and isoform expression showed a decrease of 37% in the failing group. PKC immunodetection with a monoclonal antibody (Mab 1.9) recognizing the catalytic domain of all PKC isoforms revealed a 20% decrease in the failing ventricles compared with normal left ventricles. Expressed PKC isoforms quantified by Western blot showed, in the failing heart group compared with the control group, a decrease of 27%, 32%, 16%, and 9% of PKC alpha, PKC beta 1, PKC gamma, and PKC epsilon, respectively, whereas PKC zeta was not significantly modified. These results show that, in heart failure, PKC activity and expression of Ca(2+)-dependent PKC isoforms are decreased. This may lead to alterations of PKC-induced phosphorylations.
Collapse
|
97
|
Carson JA, Schwartz RJ, Booth FW. SRF and TEF-1 control of chicken skeletal alpha-actin gene during slow-muscle hypertrophy. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:C1624-33. [PMID: 8764144 DOI: 10.1152/ajpcell.1996.270.6.c1624] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The purpose of this study was to delineate the alpha-actin regulatory elements and transcription factors that are responsible for conferring stretch-overload responsiveness during hypertrophy of the anterior latissimus dorsi (ALD) muscle of young chickens by weighting one wing. Minimal promoter constructs were evaluated by direct injection into the ALD, which demonstrated that both serum response element 1 (SRE1) and the transcriptional enhancer factor 1 (TEF-1) elements were sufficient for increased expression during stretch overload. A mutated SRE1 prevented expression in both basal and stretched ALD muscles, whereas a mutated TEF-1 element reduced actin promoter function in both control and stretched muscles. The serum response factor (SRF)-SRE1 binding complex demonstrated faster migration in mobility shift assays from day 3-and day 6-stretched ALD nuclear extracts relative to their control. TEF-1 binding was qualitatively increased in stretched extracts at day 3 but not day 6 of stretch overload. Skeletal alpha-actin mRNA accumulated from day 3 to day 6 of stretch overload. These data demonstrate that SRE1 is necessary and sufficient for stretch-overload responsiveness from the skeletal alpha-actin promoter and that the SRF-SRE1 binding complex migrates faster in stretched nuclear extracts of hypertrophied relative to control extracts from intact ALD muscles of chickens.
Collapse
Affiliation(s)
- J A Carson
- Department of Integrative Biology, University of Texas-Houston Health Science Center, Houston 77030, USA
| | | | | |
Collapse
|
98
|
Graham RM, Perez DM, Hwa J, Piascik MT. alpha 1-adrenergic receptor subtypes. Molecular structure, function, and signaling. Circ Res 1996; 78:737-49. [PMID: 8620593 DOI: 10.1161/01.res.78.5.737] [Citation(s) in RCA: 290] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- R M Graham
- Victor Chang Cardiac Research Institute, St Vincent's Hospital, Sydney, Australia
| | | | | | | |
Collapse
|
99
|
Farrance IK, Ordahl CP. The role of transcription enhancer factor-1 (TEF-1) related proteins in the formation of M-CAT binding complexes in muscle and non-muscle tissues. J Biol Chem 1996; 271:8266-74. [PMID: 8626521 DOI: 10.1074/jbc.271.14.8266] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
M-CAT sites are required for the activity of many promoters in cardiac and skeletal muscle. M-CAT binding activity is muscle-enriched, but is found in many tissues and is immunologically related to the HeLa transcription enhancer factor-1 (TEF-1). TEF-1-related cDNAs (RTEF-1) have been cloned from chick heart. RTEF-1 mRNA is muscle-enriched, consistent with a role for RTEF-1 in the regulation of muscle-specific gene expression. Here, we have examined the tissue distribution of TEF-1-related proteins and of M-CAT binding activity by Western analysis and mobility shift polyacrylamide gel electrophoresis. TEF-1-related proteins of 57, 54 and 52 kDa were found in most tissues with the highest levels in muscle tissues. All of these TEF-1-related proteins bound M-CAT DNA and the 57- and 54-kDa TEF-1-related polypeptides were phosphorylated. Proteolytic digestion mapping showed that the 54-kDa TEF-1-related polypeptide is encoded by a different gene than the 52- and 57-kDa TEF-1-related polypeptides. A comparison of the migration and proteolytic digestion of the 54-kDa TEF-1-related polypeptide with proteins encoded by the cloned RTEF-1 cDNAs showed that the 54-kDa TEF-1-related polypeptide is encoded by RTEF-1A. High resolution mobility shift polyacrylamide gel electrophoresis showed multiple M-CAT binding activities in tissues. All of these activities contained TEF-1-related proteins. One protein-M-CAT DNA complex was muscle-enriched and was up-regulated upon differentiation of a skeletal muscle cell line. This complex contained the 54-kDa TEF-1-related polypeptide. Therefore, RTEF1-A protein is a component of a muscle-enriched transcription complex that forms on M-CAT sites and may play a key role in the regulation of transcription in muscle.
Collapse
Affiliation(s)
- I K Farrance
- Department of Anatomy and Cardiovascular Research Institute, University of California, San Francisco, 94143, USA
| | | |
Collapse
|
100
|
Wiedenman JL, Rivera-Rivera I, Vyas D, Tsika G, Gao L, Sheriff-Carter K, Wang X, Kwan LY, Tsika RW. Beta-MHC and SMLC1 transgene induction in overloaded skeletal muscle of transgenic mice. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:C1111-21. [PMID: 8928739 DOI: 10.1152/ajpcell.1996.270.4.c1111] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The hypertrophic responses of white fast-twitch muscle to mechanical overload has been investigated using transgenic mice. After 7 wk of overload, endogenous beta-myosin heavy chain (MHC) and slow myosin light chain 1 and 2 (SMLC1, SMLC2) protein were increased in the overloaded plantaris (OP) muscle compared with sham-operated control plantaris (CP)muscle. Concurrently, the levels of endogenous beta-MHC, SMLC1, SMLC2, and cardiac/slow troponin C (CTnC) mRNA transcripts were significantly increased in OP muscles, whereas skeletal troponin C (sTnC) mRNA transcript levels decreased. As an initial attempt to locate DNA sequence(s) that governs beta-MHC induction in response to mechanical overload, multiple independent transgenic lines harboring four different human beta-MHC transgenes (beta 1286, beta 988, beta 450, beta 141) were generated. Except for transgene beta 141, muscle-specific expression and induction (3- to 22-fold) in OP muscles were observed by measuring chloramphenicol acetyltransferase activity (CAT assay). Induction of a SMLC1 transgene (3920SMLC1) in OP muscles was also observed. Collectively, these in vivo data provide evidence that 1) a mechanical overload inducible element(s) is located between nucleotides -450 and +120 of the human beta-MHC transgene, 2) 3,900 bp of 5' sequence is sufficient to confer mechanical overload induction of a SMLC1 transgene, and 3) the increased expression of slow/type I isomyosin (beta-MHC, SMLC1, SMLC2) in response to mechanical overload is regulated, in part, transcriptionally.
Collapse
|