51
|
Abstract
Studies on the transport kinetics and the posttranslational modification of synapsin I in mouse retinal ganglion cells were performed to obtain an insight into the possible factors involved in forming the structural and functional differences between the axon and its terminals. Synapsin I, a neuronal phosphoprotein associated with small synaptic vesicles and cytoskeletal elements at the presynaptic terminals, is thought to be involved in modulating neurotransmitter release. The state of phosphorylation of synapsin I in vitro regulates its interaction with both synaptic vesicles and cytoskeletal components, including microtubules and microfilaments. Here we present the first evidence that in the mouse retinal ganglion cells most synapsin I is transported down the axon, together with the cytomatrix proteins, at the same rate as the slow component b of axonal transport, and is phosphorylated at both the head and tail regions. In addition, our data suggest that, after synapsin I has reached the nerve endings, the relative proportions of variously phosphorylated synapsin I molecules change, and that these changes lead to a decrease in the overall content of phosphorus. These results are consistent with the hypothesis that, in vivo, the phosphorylation of synapsin I along the axon prevents the formation of a dense network that could impair organelle movement. On the other hand, the dephosphorylation of synapsin I at the nerve endings may regulate the clustering of small synaptic vesicles and modulate neurotransmitter release by controlling the availability of small synaptic vesicles for exocytosis.
Collapse
Affiliation(s)
- P Paggi
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università La Sapienza, Rome, Italy
| | | |
Collapse
|
52
|
Puszkin S, Perry D, Li S, Hanson V. Neuronal protein NP185 is developmentally regulated, initially expressed during synaptogenesis, and localized in synaptic terminals. Mol Neurobiol 1992; 6:253-83. [PMID: 1476676 DOI: 10.1007/bf02780557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Evidence is presented here that demonstrates the presence of NP185 (AP3) in neuronal cells, specifically within syn-aptic terminals of the central nervous system and in the peripheral nervous system, particularly in the neuro-muscular junction of adult chicken muscle. Biochemical results obtained in our laboratories indicate that NP185 is associated with brain synaptic vesicles, with clathrin-coated vesicles, and with the synaptosomal plasma membrane. Also, NP185 binds to tubulin and clathrin light chains and the binding is regulated by phosphorylation (Su et al., 1991). Based on these properties and the data reported here, we advance the postulate that NP185 fulfills multiple functions in synaptic terminals. One function is that of a plasma membrane docking or channel protein, another of a signaling molecule for brain vesicles to reach the synaptic terminal region, and a third is that of a recycling molecule by binding to protein components on the lipid bilayer of the synaptic plasma membrane during the process of endocytosis. In support of these premises, a thorough study of NP185 using the developing chick brain, adult mouse brain, and chicken straited muscle was begun by temporally and spatially mapping the expression and localization of NP185 in evolving and mature nerve endings. To achieve these objectives, monoclonal antibodies to NP185 were used for immunocytochemistry in tissue sections of chicken and mouse cerebella. The distribution of NP185 was compared with those of other cytoskeletal and cytoplasmic proteins of axons and synapses, namely synaptophysin, vimentin, neurofilament NF68, and the intermediate filaments of glial cells (GFAP). The data indicate that expression of NP185 temporally coincides with synaptogenesis, and that the distribution of this protein is specific for synaptic terminal buttons of the CNS and the PNS.
Collapse
Affiliation(s)
- S Puszkin
- Department of Pathology, Mount Sinai School of Medicine, CUNY, NY 10029
| | | | | | | |
Collapse
|
53
|
|
54
|
Kim HS, Lee IH, Chung CH, Kang MS, Ha DB. Ca2+/calmodulin-dependent phosphorylation of the 100-kDa protein in chick embryonic muscle cells in culture. Dev Biol 1992; 150:223-30. [PMID: 1312962 DOI: 10.1016/0012-1606(92)90237-b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pattern of protein phosphorylation was found to change in differentiating chick embryonic myoblasts in culture. The extent of phosphorylation of 42-, 50-, and 100-kDa proteins increased while that of a 63-kDa protein declined in extracts of myoblasts that had been cultured for increasing periods. Of these, the increase in phosphorylation of the 100-kDa protein occurred most dramatically in extracts of myoblasts in an early stage of differentiation and was specifically inhibited by trifluoperazine (TFP) and other calmodulin (CaM) antagonists including chlorpromazine and N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide (W-7). Treatment of increasing concentrations of TFP to culture medium also decreased the phosphorylation state of the 100-kDa protein and the degree of myoblast fusion in parallel. In addition, levels of both the kinase activity and the 100-kDa protein but not of CaM appeared to rise in the cells cultured for longer periods. These results suggest that (1) a Ca2+/CaM-dependent protein kinase is responsible for phosphorylation of the 100-kDa protein, (2) the TFP-mediated myoblast fusion block may be associated with the inhibitory effect of the drug against the kinase activity, and (3) the increase in phosphorylation state of the 100-kDa protein during myogenic differentiation is due to the rise in levels of the kinase and its substrate.
Collapse
Affiliation(s)
- H S Kim
- Department of Molecular Biology, College of Natural Sciences, Seoul National University, Korea
| | | | | | | | | |
Collapse
|
55
|
Mizutani A, Tokumitsu H, Hidaka H. Acidic calmodulin binding protein, ACAMP-81, is MARCKS protein interacting with synapsin I. Biochem Biophys Res Commun 1992; 182:1395-401. [PMID: 1540183 DOI: 10.1016/0006-291x(92)91888-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
ACAMP-81 is an acidic calmodulin binding protein with molecular mass of 81 kDa. We report partial amino acid analysis of ACAMP-81 and its interaction with synapsin I. 123 amino acids of ACAMP-81 were determined and the sequence was completely identical with that of MARCKS protein which was thought to be a substrate for calcium/phospholipid dependent protein kinase (PKC). We found ACAMP-81 bound to synapsin I with 125I-labeled ACAMP-81 overlay method. ACAMP-81 bound to the cysteine specific cleaved 51 kDa fragment derived from middle/tail region of synapsin I.
Collapse
Affiliation(s)
- A Mizutani
- Department of Pharmacology, Nagoya University School of Medicine, Japan
| | | | | |
Collapse
|
56
|
Firestone JA, Browning MD. Synapsin II phosphorylation and catecholamine release in bovine adrenal chromaffin cells: additive effects of histamine and nicotine. J Neurochem 1992; 58:441-7. [PMID: 1729391 DOI: 10.1111/j.1471-4159.1992.tb09741.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Primary cultures of bovine adrenal medullary chromaffin cells can be stimulated with nicotine, which mimics the cholinergic stimulus from the splanchnic nerve. Histamine also stimulates catecholamine release in a time- and dose-dependent manner. We have previously shown that nicotine stimulates incorporation of 32Pi into the vesicle-associated phosphoprotein synapsin II. We report here that histamine, too, stimulates an increase in 32Pi incorporation into synapsin II, which is blocked by the H1-histamine receptor-specific antagonist pyrilamine. The time course of histamine-stimulated synapsin II phosphorylation closely paralleled that of histamine-stimulated catecholamine release. Interestingly, histamine and nicotine produced an additive increase in both catecholamine release and synapsin II phosphorylation, suggesting that these two secretogogues stimulate the phenomena via independent mechanisms. When we investigated the dependence of these two agonists on extracellular calcium, we found that nicotine-stimulated release and synapsin II phosphorylation were reduced to basal levels at low calcium concentrations. However, the histamine-stimulated effects remained significantly elevated. This suggests that calcium arising from two separate pools can stimulate catecholamine release and synapsin II phosphorylation in bovine chromaffin cells. Taken together, these data support the hypothesis that synapsin II phosphorylation is a component of the secretory response from these cells.
Collapse
Affiliation(s)
- J A Firestone
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262
| | | |
Collapse
|
57
|
Browning MD, Dudek EM. Activators of protein kinase C increase the phosphorylation of the synapsins at sites phosphorylated by cAMP-dependent and Ca2+/calmodulin-dependent protein kinase in the rat hippocampal slice. Synapse 1992; 10:62-70. [PMID: 1311130 DOI: 10.1002/syn.890100109] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous studies have shown that activators of protein kinase C (C kinase) produce synaptic potentiation in the hippocampus. For example, the C kinase activator phorbol dibutyrate has been shown to increase transmitter release in the hippocampus. In addition, a role for C kinase in long-term potentiation has been proposed. A common assumption in such studies has been that substrates for C kinase were responsible for producing these forms of synaptic potentiation. However, we have recently shown that phorbol dibutyrate increased the phosphorylated of synapsin II (formerly protein III, Browning et al., 1987) in chromaffin cells (Haycock et al., 1988). Synapsin II is a synaptic vesicle-associated phosphoprotein that is a very poor substrate for C kinase but an excellent substrate for cAMP-dependent and Ca2+/calmodulin-dependent protein kinase. We felt, therefore, that activation of C kinase might lead to activation of a kinase cascade. Thus effects of C kinase activation might be produced via the phosphorylation of proteins that are not substrates for C kinase. In this report we test the hypothesis that activators of C kinase increase the phosphorylation of synapsin II and an homologous protein synapsin I. Our data indicate that PdBu produced dose-dependent increases in the phosphorylation of synapsin I and synapsin II. We also performed phospho-site analysis of synapsin I using limited proteolysis. These studies indicated that PdBu increased the phosphorylation of multiple sites on synapsin I. These sites have previously been shown to be phosphorylated by both cAMP-dependent protein kinase and the multifunctional Ca2+/calmodulin-dependent protein kinase II.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M D Browning
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262
| | | |
Collapse
|
58
|
Abstract
Nitric oxide synthase was purified to apparent homogeneity from the cytosolic fractions obtained from rat and porcine cerebellum. Enzyme activity--measured as [3H]citrulline formation after incubation with [3H]arginine--was dependent on Ca2+/calmodulin, NADPH, and tetrahydro-L-biopterin. Specific activity varied between 450 to 780 nmol/min/mg protein. Purified nitric oxide synthases showed a single band on 8% SDS/PAGE gels and had an apparent molecular mass of 150,000 Da. The purified proteins were used as substrate for phosphorylation with different protein kinases. In the assays using two Ca2+/calmodulin-dependent protein kinases, CaM kinase II and CaM kinase-Gr, protein kinase C, and the catalytic subunit of protein kinase A, nitric oxide synthase was exclusively phosphorylated by protein kinase A. Such phosphorylation was linear over time for at least 60 min and resulted in nearly stoichiometric phosphate/protein incorporation. The serine in the protein kinase A-consensus sequence KRFGS is probably the site of phosphorylation in nitric oxide synthase. Kemptide, a known protein kinase A substrate, inhibited phosphorylation of nitric oxide synthase in a dose-dependent manner. No changes in nitric oxide synthase activity were observed upon phosphorylation by protein kinase A.
Collapse
Affiliation(s)
- B Brüne
- Division of Cell Biology, Burroughs Wellcome Co., Research Triangle Park, N.C. 27709
| | | |
Collapse
|
59
|
Gubin AN, Severin SE. Synapsin I phosphorylated by Ca2+, calmodulin-dependent protein kinase II is able to self-degrade. FEBS Lett 1991; 289:11-2. [PMID: 1654274 DOI: 10.1016/0014-5793(91)80897-c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phosphorylation of the neurospecific protein synapsin I (SI) by various cellular protein kinases was studied. The analysis of functional properties of phosphosynapsins showed that in the case of PK II-mediated modification of the protein, it becomes capable of self-degradation. The latter process was found to be specific and did not appear to be characteristic of the phosphoforms emerging after the protein modification by PK C or PK A. A possible involvement of the process in the regulation of neurotransmitter secretion is discussed.
Collapse
Affiliation(s)
- A N Gubin
- Research Center of Molecular Diagnostics, USSR Ministry of Health, Moscow
| | | |
Collapse
|
60
|
Sikorski AF, Goodman SR. The effect of synapsin I phosphorylation upon binding of synaptic vesicles to spectrin. Brain Res Bull 1991; 27:195-8. [PMID: 1742607 DOI: 10.1016/0361-9230(91)90067-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have previously demonstrated that brain spectrin is attached to small spherical synaptic vesicles via synapsin I. These studies utilized a novel microfiltration assay in which 125I-labelled synaptic vesicles were incubated with brain spectrin which was covalently attached to cellulosic membranes. In these studies purified dephosphosynapsin I was demonstrated to competitively inhibit the binding of the synaptic vesicles to the immobilized brain spectrin with a KI = 45 nM. In the current study we demonstrate that phosphorylation of synapsin I site 1 (0.74 mol Pi/mol synapsin I) with cAMP-dependent protein kinase and sites 2 and 3 (2.0 mol Pi/mol synapsin I) with Ca(2+)-calmodulin kinase II had little effect upon its interaction with brain spectrin. cAMP-dependent protein kinase phosphorylated synapsin I and Ca(2+)-calmodulin kinase II phosphorylated synapsin I both inhibited the binding of 125I-labelled synaptic vesicles to immobilized brain spectrin with a KI of 23 nM and 24 nM respectively. We conclude that phosphorylation of synapsin I does not down-regulate the interaction of synaptic vesicles with brain spectrin.
Collapse
Affiliation(s)
- A F Sikorski
- Department of Structural and Cellular Biology, University of South Alabama, College of Medicine, Mobile 36688
| | | |
Collapse
|
61
|
Koszka C, Brent VA, Rostas JA. Developmental changes in phosphorylation of MAP-2 and synapsin I in cytosol and taxol polymerised microtubules from chicken brain. Neurochem Res 1991; 16:637-44. [PMID: 1686473 DOI: 10.1007/bf00965549] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In cytosol, cyclic AMP stimulated phosphorylation of microtubule associated protein-2 (MAP-2) increased from 2 days to adult in proportion to the increase in the concentration of MAP-2. By contrast, the calmodulin stimulated phosphorylation of MAP-2 decreased in proportion to the decrease in the concentration of calmodulin stimulated protein kinase II (CMK II). Similarly, the cAMP stimulated phosphorylation of the site on synapsin I labeled by the cAMP stimulated protein kinase (PKA) changed little during development whereas the calcium/calmodulin stimulated phosphorylation of the CMK II site decreased dramatically in proportion to the decrease in the concentration of CMK II. The decrease in the concentration of CMK II which occurs in cytosol during synapse maturation was also observed in taxol polymerised microtubules and the effects of the change in the relative concentrations of CMK II and PKA on the phosphorylation of MAP-2 and synapsin I in this fraction were similar to that observed in the cytosol. These results are consistent with the hypothesis that the developmental changes in phosphorylation of endogenous substrates by PKA is controlled largely by changes in the concentration of those substrates, whereas the concentration of CMK II is limiting so that the developmental changes in the phosphorylation of endogenous substrates by CMK II are a function of the concentration of CMK II itself as well as the concentration of endogenous substrates. Some possible functional consequences of this during synapse maturation are discussed.
Collapse
Affiliation(s)
- C Koszka
- Neuroscience Group, Faculty of Medicine, University of Newcastle, Australia
| | | | | |
Collapse
|
62
|
Senda T, Nishii Y, Fujita H. Immunocytochemical localization of synapsin I in the adrenal medulla of rats. HISTOCHEMISTRY 1991; 96:25-30. [PMID: 1938477 DOI: 10.1007/bf00266757] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The localization of synapsin I in the rat adrenal medulla was studied using the light- and electronmicroscopic immunohistochemistry. By light microscopy, many dot-like reaction products for synapsin I were recognized to be distributed throughout the medullary tissue. The immunoelectron microscopy clearly revealed that gold particles for synapsin I accumulated in abundance in the nerve terminals forming synapses with the chromaffin cell, while the particles were not localized in the chromaffin cells at all. In the nerve terminal, the gold particles were localized exclusively in the region occupied by synaptic vesicles except for the region just beneath the presynaptic plasma membrane. The synaptic vesicles were frequently linked with the adjacent ones by filamentous structures implicated in synapsin I. It is concluded morphologically that synapsin I is a highly-specific protein for the genuine neuron, and is not detected even in the chromaffin cell which originates from the neural crest.
Collapse
Affiliation(s)
- T Senda
- Department of Anatomy, Osaka University Medical School, Japan
| | | | | |
Collapse
|
63
|
Abstract
The neuron-specific synaptic vesicle-associated phosphoproteins synapsin I and synapsin II were shown to contain terminal N-acetylglucosamine (GlcNAc) residues as determined by specific labeling with bovine galactosyltransferase and UDP-[3H]galactose. The beta-elimination of galactosyltransferase radiolabeled synapsin I and subsequent analysis of released saccharide on high-voltage paper electrophoresis confirmed the presence of monosaccharidic GlcNAc moieties in O-linkage to the protein. Partial cleavage of synapsin I by collagenase, 2-nitro-5-thiocyanobenzoic acid, and Staphylococcus aureus V8 protease suggests that at least three glycosylation sites exist along the molecule. Taken together these data present the first evidence that a neuron-specific protein contains O-glycosidically bound GlcNAc.
Collapse
Affiliation(s)
- T Lüthi
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York 10021
| | | | | | | |
Collapse
|
64
|
Affiliation(s)
- T C Südhof
- Howard Hughes Medical Institute, Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas 75235
| | | |
Collapse
|
65
|
Ho MF, Bähler M, Czernik AJ, Schiebler W, Kézdy FJ, Kaiser ET, Greengard P. Synapsin I is a highly surface-active molecule. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67637-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
66
|
Severin SE, Moskvitina EL, Gubin AN, Kiselev VI. Ca(2+)-dependent phosphorylation of synapsin I as a possible regulatory mechanism of neurosecretion. ADVANCES IN ENZYME REGULATION 1991; 31:351-61. [PMID: 1908615 DOI: 10.1016/0065-2571(91)90023-f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phosphorylation of homogeneous synapsin I isolated from human brain by Ca2+, phospholipid-dependent protein kinase (protein kinase C) from the same source was studied. The inhibitory effect of calmodulin on this process was demonstrated. The kinetics of activation of synapsin I phosphorylation by acidic phospholipids, phosphatidylserine and phosphatidylinositol, in the absence and presence of phosphatidylinositol-4,5-bisphosphate and diacylglycerol was compared. The proteolytic effect of degradation of the synapsin I molecule phosphorylated by Ca2+, calmodulin-dependent protein kinase II was revealed. No proteolysis of synapsin phosphorylated under similar conditions either by protein kinase C or cAMP-dependent protein kinase was detected. In view of the process specificity, the physiological significance of the observed effect is suggested. The inter-relationship between two ways of neurosecretion regulation is discussed: an earlier known, conventional way, mediated by synapsin I phosphorylation by Ca2+, calmodulin-dependent protein kinase II, and another one, mediated by synapsin I phosphorylation by protein kinase C. The modulating role of polyphosphoinositides in the PK C-dependent way of regulation is considered.
Collapse
Affiliation(s)
- S E Severin
- Research Center of Molecular Diagnostics, U.S.S.R. Ministry of Health, Moscow
| | | | | | | |
Collapse
|
67
|
Parks KM, Sugar JE, Haroutunian V, Bierer L, Perl D, Wallace WC. Reduced in vitro phosphorylation of synapsin I (site 1) in Alzheimer's disease postmortem tissues. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1991; 9:125-34. [PMID: 1850067 DOI: 10.1016/0169-328x(91)90137-m] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Homogenates prepared from the temporal cortex and hippocampus of individuals who had histopathologically confirmed Alzheimer's disease exhibited reduced in vitro cyclic AMP-dependent phosphorylation of synapsin I, neuronal phosphoprotein. One specific phosphorylation site (site 1) was affected while two other sites, which are phosphorylated by calcium/calmodulin kinase II, exhibited no such differences. Other phosphoproteins such as pyruvate dehydrogenase, did not show these differences. The reductions were not observed in either cerebellum or thalamus of Alzheimer's disease brain. Analysis by immunoblots indicated that the reductions were not caused by a decrease in absolute amounts of the protein. The reduced AD synapsin I phosphorylation was not overcome by the addition of purified cyclic AMP-dependent protein kinase. No differences were detected in total cyclic AMP-dependent protein kinase activity between the control and Alzheimer samples. However, dephosphorylation of the synapsin I prior to the in vitro phosphorylation reversed the differences observed between the control and AD homogenates. Thus, the reduced in vitro phosphorylation of the synapsin I in the Alzheimer homogenate reflects a reduced phosphorylatability of the protein due to either an increased phosphate content or some other alteration of the phosphorylation site.
Collapse
Affiliation(s)
- K M Parks
- Mack Laboratory, Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029
| | | | | | | | | | | |
Collapse
|
68
|
Hrabec Z, Szkudlarek J, Lachowicz L. Substance P and its fragments affect Ca2+/calmodulin-dependent synaptosomal membrane protein phosphorylation from rat cerebral cortex. GENERAL PHARMACOLOGY 1991; 22:879-82. [PMID: 1722184 DOI: 10.1016/0306-3623(91)90224-t] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. We have used synaptosomal membranes to study the influence of substance P and its fragments and analogues of its C-terminal fragment on Ca2+/calmodulin-dependent synapsin I endogenous phosphorylation. 2. SP1-11, SP1-4, [Tyr8]SP6-11 and [pGlu6, Tyr8]SP6-11 at 10(-3) M greatly inhibited synapsin I phosphorylation. 3. SP6-11 at all investigated concentrations and SP1-11, SP1-4, [Tyr8]SP6-11, [pGlu6, Tyr8]SP6-11 at 10(-4) and 10(-5) M were ineffective. 4. The results indicate that SP1-11 and its N-terminal fragment and analogues of its C-terminal fragment act on the phosphorylation of specific synaptic protein (synapsin I) and therefore may influence the release of neurotransmitters, membrane conductance and potentiation or inhibition of other signalling systems.
Collapse
Affiliation(s)
- Z Hrabec
- II Department of Biochemistry, Institute of Physiology and Biochemistry, School of Medicine, Lódź, Poland
| | | | | |
Collapse
|
69
|
Sáez JC, Nairn AC, Czernik AJ, Spray DC, Hertzberg EL, Greengard P, Bennett MV. Phosphorylation of connexin 32, a hepatocyte gap-junction protein, by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 192:263-73. [PMID: 2170122 DOI: 10.1111/j.1432-1033.1990.tb19223.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Phosphorylation of connexin 32, the major liver gap-junction protein, was studied in purified liver gap junctions and in hepatocytes. In isolated gap junctions, connexin 32 was phosphorylated by cAMP-dependent protein kinase (cAMP-PK), by protein kinase C (PKC) and by Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaM-PK II). Connexin 26 was not phosphorylated by these three protein kinases. Phosphopeptide mapping of connexin 32 demonstrated that cAMP-PK and PKC primarily phosphorylated a seryl residue in a peptide termed peptide 1. PKC also phosphorylated seryl residues in additional peptides. CA2+/CaM-PK II phosphorylated serine and to a lesser extent, threonine, at sites different from those phosphorylated by the other two protein kinases. A synthetic peptide PSRKGSGFGHRL-amine (residues 228-239 based on the deduced amino acid sequence of rat connexin 32) was phosphorylated by cAMP-PK and by PKC, with kinetic properties being similar to those for other physiological substrates phosphorylated by these enzymes. Ca2+/CaM-PK II did not phosphorylate the peptide. Phosphopeptide mapping and amino acid sequencing of the phosphorylated synthetic peptide indicated that Ser233 of connexin 32 was present in peptide 1 and was phosphorylated by cAMP-PK or by PKC. In hepatocytes labeled with [32P]orthophosphoric acid, treatment with forskolin or 20-deoxy-20-oxophorbol 12,13-dibutyrate (PDBt) resulted in increased 32P-incorporation into connexin 32. Phosphopeptide mapping and phosphoamino acid analysis showed that a seryl residue in peptide 1 was most prominently phosphorylated under basal conditions. Treatment with forskolin or PDBt stimulated the phosphorylation of peptide 1. PDBt treatment also increased the phosphorylation of seryl residues in several other peptides. PDBt did not affect the cAMP-PK activity in hepatocytes. It has previously been shown that phorbol ester reduces dye coupling in several cell types, however in rat hepatocytes, dye coupling was not reduced by treatment with PDBt. Thus, activation of PKC may have differential effects on junctional permeability in different cell types; one source of this variability may be differences in the sites of phosphorylation in different gap-junction proteins.
Collapse
Affiliation(s)
- J C Sáez
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | | | | | | | | | |
Collapse
|
70
|
|
71
|
Synapsin II. Mapping of a domain in the NH2-terminal region which binds to small synaptic vesicles. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)46255-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
72
|
Time-resolved fluorescence study of the neuron-specific phosphoprotein synapsin I. Evidence for phosphorylation-dependent conformational changes. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38384-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
73
|
Aubert-Foucher E, Font B. Limited proteolysis of synapsin I. Identification of the region of the molecule responsible for its association with microtubules. Biochemistry 1990; 29:5351-7. [PMID: 2116898 DOI: 10.1021/bi00474a021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Synapsin I is a highly asymmetric neuronal structural phosphoprotein implicated in the regulation of neurotransmitter release probably by the multiple interactions it can contract with membranous and cytoskeletal elements of the neuronal cell. In order to locate the region(s) of synapsin I responsible for its association with microtubules, we have first studied synapsin I limited digestion by trypsin. The resulting polypeptides were localized in the synapsin I molecule by using three different criteria: their kinetics of appearance, their collagenase sensitivity, and the presence of the synapsin phosphorylation site 1 (cyclic AMP dependent). Synapsin I digestion kinetics are not affected by phosphorylation at this site. Analysis of the ability of various synapsin I tryptic fragments in mixture to cosediment with microtubules shows that a 44-kDa fragment corresponding to the NH2-terminal hydrophobic head of the molecule contains a binding site for polymerized tubulin. This fragment competes with native synapsin I for binding on microtubules. None of the polypeptides belonging to the tail region of synapsin I (COOH-terminal half of the molecule) were found to cosediment with microtubules.
Collapse
Affiliation(s)
- E Aubert-Foucher
- LBTM-CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France
| | | |
Collapse
|
74
|
|
75
|
Lockerbie RO. Biochemical pharmacology of isolated neuronal growth cones: implications for synaptogenesis. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1990; 15:145-65. [PMID: 2282450 DOI: 10.1016/0165-0173(90)90016-h] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The neuronal growth cone is critical to the establishment of neuronal polarity through its motile, pathfinding and target recognition properties exhibited during synaptogenesis. Subcellular fractionation procedures yielding milligram quantities of isolated growth cones has allowed for biochemical and pharmacological investigation of intrinsic growth cone components that are likely to be involved in regulation of growth cone function in neuronal development. These 'mapping' studies of growth cone components are prerequisites to elucidating the mechanisms by which extracellular factors influence the motility, adhesion and directed growth of the growth cone. For example, neurotransmitters and polypeptide growth factors which have been shown in other systems to modulate growth cone behavior are presumed to act through receptors on the growth cone, inducing second-messenger molecule formation and consequent modification and regulation of proteins effecting the response(s) of the growth cone (i.e. proteins involved in motility, adhesion and membrane turnover). In a relatively short period of time, work with the isolated growth cone preparation has identified, in independent studies, many of the elements involved in this proposed scheme of events, including transmitter receptors, second-messenger cascades, and second-messenger post-translational modifications. An obvious future goal will be to analyze in more detail the intracellular events, and the relationships between them, in the growth cone and how they transmit extracellular signals into responses such as motility and adhesivity which underly the growth cone's synaptogenic properties. It is to be expected that much of this information will come forth from experimentation with the isolated growth cone preparation.
Collapse
Affiliation(s)
- R O Lockerbie
- Department of Biochemistry, Colorado State University, Fort Collins 80523
| |
Collapse
|
76
|
|
77
|
Hrabec Z, Szkudlarek J, Lachowicz L. The influence of substance P and its fragments on endogenous phosphorylation of synaptosomal membrane protein (synapsin) from cerebral cortex of rat brain. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. C, COMPARATIVE PHARMACOLOGY AND TOXICOLOGY 1990; 96:59-63. [PMID: 1704299 DOI: 10.1016/0742-8413(90)90044-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. The effects of substance P and its fragments and analogue of a C-terminal fragment on cyclic AMP-dependent phosphorylation of synapsin I in synaptosomal membranes (SM) from cerebral cortex were investigated. 2. SP(I-II) and SP(1-4) at 10(-3) M caused a marked stimulation of synapsin I phosphorylation. 3. A C-terminal fragment of SP (SP6-11) had no effect on phosphorylation of synapsin 1. 4. Analogue of C-terminal fragment [(Tyr8)SP6-11] at 10(-3) M distinctly inhibits phosphorylation of synapsin I. 5. These data suggest that SPI-II and its C- and N-terminal fragments have a modulator function against the phosphorylation of some rat brain proteins.
Collapse
Affiliation(s)
- Z Hrabec
- II Department of Biochemistry, School of Medicine, Lodz, Poland
| | | | | |
Collapse
|
78
|
Colbran RJ, Soderling TR. Calcium/calmodulin-dependent protein kinase II. CURRENT TOPICS IN CELLULAR REGULATION 1990; 31:181-221. [PMID: 2173993 DOI: 10.1016/b978-0-12-152831-7.50007-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is a great deal known about the in vitro properties of CaM kinase II, both in terms of its substrate specificity and its regulation by calmodulin and autophosphorylation. Much of this characterization is based on experiments performed with the rat brain isozyme of CaM kinase II, although in the aspects examined to date isozymes of the kinase from other tissues appear to behave in a broadly similar manner in vitro. However, relatively little is known about the functions of the kinase in vivo. The proteins phosphorylated by the kinase (with the probable exception of synapsin I and tyrosine hydroxylase) and the role of kinase autophosphorylation in vivo remain largely unknown. Investigation of the physiological role of the kinase in brain and other tissues will be a particularly exciting area for future work. The current knowledge of the in vitro properties and the availability of cDNA clones will hopefully expedite this research.
Collapse
Affiliation(s)
- R J Colbran
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | |
Collapse
|
79
|
Ueno E, Rosenberg P. Inhibition of phosphorylation of rat synaptosomal proteins by snake venom phospholipase A2 neurotoxins (beta-bungarotoxin, notexin) and enzymes (Naja naja atra, Naja nigricollis). Toxicon 1990; 28:1423-37. [PMID: 2089738 DOI: 10.1016/0041-0101(90)90156-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Some snake venom neurotoxins, such as beta-bungarotoxin (beta-BuTX) and notexin, which inhibit the release of neurotransmitter at both peripheral and central presynaptic terminals possess phospholipase A2 activity. In contrast, most snake venom phospholipase A2 enzymes such as those isolated from Naja naja atra and Naja nigricollis are structurally homologous to these neutrotoxins but do not have any specific or potent presynaptic action although they have higher enzymatic activities than the neurotoxins. In order to investigate the mechanisms of presynaptic action of the snake venom neurotoxins, we studied their effects on phosphorylation of rat brain synaptosomal proteins. It is known that phosphorylation of synapsin I, a neuron specific and synaptic vesicle associated phosphoprotein, increases neurotransmitter release. Incubation of cerebral cortical synaptosomes with 32P-orthophosphate at 37 degrees C for 30 min, caused significant phosphorylation of a wide mol. wt range of proteins including most markedly those proteins in the mol. wt range (81,000-86,000) of synapsin I. Both snake venom phospholipase A2 neurotoxins and enzymes (5, 15 and 50 nM) inhibited phosphorylation in a Ca2(+)-dependent manner with the following order of potencies: beta-BuTX greater than N.n. atra phospholipase A2 greater than or equal to notexin greater than N. nigricollis phospholipase A2. Five nanomoles of beta-BuTX, which has the lowest phospholipase A2 activity, inhibited phosphorylation of a wide range of mol. wt proteins (51,000-188,000) by 42-58%. At the same concentration, N.n. atra phospholipase A2 (which possesses the highest enzymatic activity), notexin and N. nigricollis phospholipase A2 caused less inhibition than beta-BuTX, ranging from 0-40% depending on the agent used. These results indicate that there is no correlation between their potencies in inhibiting phosphorylation and the levels of their phospholipase A2 activities. An inhibitory activity on phosphorylation may be at least partially responsible for a presynaptically-induced block of neurotransmitter release.
Collapse
Affiliation(s)
- E Ueno
- Section of Pharmacology and Toxicology, University of Connecticut, School of Pharmacy, Storrs, CT 06269
| | | |
Collapse
|
80
|
Südhof TC, Czernik AJ, Kao HT, Takei K, Johnston PA, Horiuchi A, Kanazir SD, Wagner MA, Perin MS, De Camilli P. Synapsins: mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins. Science 1989; 245:1474-80. [PMID: 2506642 DOI: 10.1126/science.2506642] [Citation(s) in RCA: 407] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Synapsins are neuronal phosphoproteins that coat synaptic vesicles, bind to the cytoskeleton, and are believed to function in the regulation of neurotransmitter release. Molecular cloning reveals that the synapsins comprise a family of four homologous proteins whose messenger RNA's are generated by differential splicing of transcripts from two genes. Each synapsin is a mosaic composed of homologous amino-terminal domains common to all synapsins and different combinations of distinct carboxyl-terminal domains. Immunocytochemical studies demonstrate that all four synapsins are widely distributed in nerve terminals, but that their relative amounts vary among different kinds of synapses. The structural diversity and differential distribution of the four synapsins suggest common and different roles of each in the integration of distinct signal transduction pathways that modulate neurotransmitter release in various types of neurons.
Collapse
Affiliation(s)
- T C Südhof
- Howard Hughes Medical Institute, Dallas, TX
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Nelson RB, Linden DJ, Routtenberg A. Phosphoproteins localized to presynaptic terminal linked to persistence of long-term potentiation (LTP): quantitative analysis of two-dimensional gels. Brain Res 1989; 497:30-42. [PMID: 2790456 DOI: 10.1016/0006-8993(89)90966-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previous findings suggest: (1) that altering protein kinase C (PKC) activity alters the persistence of long-term potentiation (LTP) in the intact hippocampal formation; and (2) that PKC activity is directly correlated with persistence of LTP in vivo as measured by the in vitro phosphorylation of two major PKC substrates in adult hippocampus, protein F1 and 80k. Using quantitative analysis of two-dimensional gels, we report here two additional phosphoproteins of 72 and 55 kDa which were directly correlated to persistence of LTP induced in the intact dorsal hippocampal formation. The phosphorylation of both proteins in response to addition of different kinase stimulators was distinct from that of protein F1 and 80k. Moreover, neither protein was a substrate for exogenous PKC. The physicochemical properties of these phosphoproteins suggest they are identical to the previously described synaptic vesicle proteins IIIa and IIIb, and as such are immunologically indistinguishable. Because proteins IIIa and IIIb are known to be phosphorylated by a Ca2+/calmodulin (CaM)-stimulated kinase, and protein F1 is known to be a plasma membrane-associated protein (P-57) which releases bound CaM in response to phosphorylation by PKC, the present findings suggest a potential mechanism in which PKC-mediated changes in plasma membrane proteins produce CaM kinase-mediated changes in synaptic vesicle proteins through a phosphorylation cascade. These membrane/vesicle alterations are postulated to underlie the increased synaptic efficacy which marks persistent LTP.
Collapse
Affiliation(s)
- R B Nelson
- Cresap Neuroscience Laboratory, Northwestern University, Evanston, IL 60201
| | | | | |
Collapse
|
82
|
Severin SE, Bykova EV, Moskvitina EL, Severin ES. Regulation of synapsin I phosphorylation by cellular modulators. JOURNAL OF PROTEIN CHEMISTRY 1989; 8:359-62. [PMID: 2571345 DOI: 10.1007/bf01674278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- S E Severin
- M. V. Lomonosov Moscow Institute of Fine Chemical Technology, USSR Ministry of Health
| | | | | | | |
Collapse
|
83
|
Carraway KL, Carraway CA. Membrane-cytoskeleton interactions in animal cells. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 988:147-71. [PMID: 2524216 DOI: 10.1016/0304-4157(89)90017-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- K L Carraway
- Department of Anatomy, University of Miami School of Medicine, FL 33101
| | | |
Collapse
|
84
|
Lockerbie RO, Eddé B, Prochiantz A. Cyclic AMP-dependent protein phosphorylation in isolated neuronal growth cones from developing rat forebrain. J Neurochem 1989; 52:786-96. [PMID: 2537377 DOI: 10.1111/j.1471-4159.1989.tb02523.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have shown recently that neuronal growth cones isolated from developing rat forebrain possess an appreciable activity of adenylate cyclase, which produces cyclic AMP and can be stimulated by various neurotransmitter receptor agonists and by forskolin. To investigate cyclic AMP-mediated biochemical mechanisms in isolated growth cones, we have centered the present study on cyclic AMP-dependent protein phosphorylation. One-dimensional gel electrophoretic analysis showed that cyclic AMP analogs increased incorporation of 32P into several phosphoproteins in molecular mass ranges of 50-58 and 76-82 kilodaltons, including those of 82, 76, and 51 kilodaltons. Two-dimensional electrophoresis, using isoelectric focusing in the first dimension, resolved phosphorylated alpha- and beta-tubulin species, actin, a very acidic protein (isoelectric point 4.0) with a molecular mass of 93 kilodaltons, and two proteins (x and x') closely neighboring beta-tubulin. Two other phosphoproteins seen in the gels had molecular masses of 56 and 51 kilodaltons (respective isoelectric points, 4.5 and 4.4) and, along with the 93-kilodalton phosphoprotein, were highly enriched in the isolated growth cones. Only the tubulin and actin species were major proteins in the isolated growth cones. Cyclic AMP analogs enhanced incorporation of 32P into phosphoproteins x and x', and, as assessed by immunoprecipitation, into beta-tubulin. Peptide digest experiments suggested that phosphoproteins x and x' are unrelated to beta-tubulin. Nonequilibrium two-dimensional electrophoresis resolved many phosphoproteins, of which a 79- and 75-kilodalton doublet, a 74-kilodalton species, and a 58-kilodalton doublet showed enhanced incorporation of 32P in the presence of cyclic AMP.
Collapse
Affiliation(s)
- R O Lockerbie
- Chaire de Neuropharmacologie, INSERM U 114, Collège de France, Paris
| | | | | |
Collapse
|
85
|
Walaas SI, Sedvall G, Greengard P. Dopamine-regulated phosphorylation of synaptic vesicle-associated proteins in rat neostriatum and substantia nigra. Neuroscience 1989; 29:9-19. [PMID: 2496331 DOI: 10.1016/0306-4522(89)90328-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dopamine, acting through dopamine D1 receptors and cyclic AMP-dependent protein kinase, has been found to increase the state of phosphorylation of the synaptic vesicle-associated phosphoproteins synapsin I and protein III in slices of rat neostriatum and substantia nigra. In the neostriatum, the effect of dopamine was mimicked by SKF 38393, a D2 receptor agonist, and was abolished by preincubation of the slices with fluphenazine or SCH 23390, antipsychotic drugs which are potent D1 receptor antagonists, but not by the D2 receptor antagonists l-sulpiride or spiroperidol. The maximal effect of dopamine in the neostriatum represented approximately 30-35% of the maximal effect induced by 8-bromo cyclic AMP, suggesting that a similar fraction of nerve terminals in the neostriatum may express the dopamine D1 receptor. Evidence for a small population of beta-adrenergic receptors regulating nerve terminal protein phosphorylation in the neostriatum, distinct from the D1 dopamine receptors, was also obtained. In the substantia nigra, the effect of dopamine also appeared to be mediated through a D1 dopamine receptor, since it was abolished by fluphenazine and SCH 23390. The maximal effect of dopamine in the substantia nigra represented approximately two-thirds of the effect induced by 8-bromo cyclic AMP, suggesting that a similar fraction of nerve terminals in the substantia nigra may express the dopamine D1 receptor. The ability of dopamine D1 receptor activation to stimulate both synapsin I and protein III phosphorylation and GABA release in both the neostriatum and substantia nigra may be causally linked.
Collapse
Affiliation(s)
- S I Walaas
- Laboratory of Molecular and Cellular Neurosciences, Rockefeller University, New York, NY 10021
| | | | | |
Collapse
|
86
|
Gorelick FS, Wang JK, Lai Y, Nairn AC, Greengard P. Autophosphorylation and activation of Ca2+/calmodulin-dependent protein kinase II in intact nerve terminals. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)77816-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
87
|
Huang CK, Devanney JF, Kennedy SP. Vimentin, a cytoskeletal substrate of protein kinase C. Biochem Biophys Res Commun 1988; 150:1006-11. [PMID: 2829888 DOI: 10.1016/0006-291x(88)90728-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Evidence is shown that vimentin, the intermediate filament protein, is a substrate for protein kinase C: (a) Purified vimentin from Chinese hamster ovary cells can be phosphorylated by protein kinase C prepared from rabbit peritoneal neutrophils. Tryptic peptic analysis reveals multiple sites of phosphorylation distinct from those phosphorylated by cAMP-dependent protein kinase. (b) phosphorylation of membrane associated vimentin is stimulated in phorbol 12-myristate 13-acetate treated neutrophil membranes, suggesting that vimentin can be a substrate for membrane associated protein kinase C and (c) phorbol 12-myristate 13-acetate also stimulates the phosphorylation of vimentin in 32P-labeled intact neutrophils.
Collapse
Affiliation(s)
- C K Huang
- Department of Pathology, University of Connecticut Health Center, Farmington 06032
| | | | | |
Collapse
|
88
|
Valtorta F, Villa A, Jahn R, De Camilli P, Greengard P, Ceccarelli B. Localization of synapsin I at the frog neuromuscular junction. Neuroscience 1988; 24:593-603. [PMID: 3129673 DOI: 10.1016/0306-4522(88)90353-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report here the results of immunocytochemical and biochemical studies on the localization of synapsin I, a nerve terminal--specific phosphoprotein, at the frog neuromuscular junction. Our results show that in this in situ synapse synapsin I is concentrated in the presynaptic compartment, where it appears to be associated with the synaptic vesicle membrane. Double immunoprecipitated synapsin I from homogenates of frog cutaneous pectoris muscles could be phosphorylated by the catalytic subunit of cyclic adenosine 5'-monophosphate-dependent protein kinase after gel electrophoresis and blotting onto nitrocellulose and could be subsequently identified by an immunoperoxidase technique. Experiments carried out in frog brain preparations indicate that frog synapsin I, like the mammalian protein, can be phosphorylated at different sites by exogenously added catalytic subunit of cyclic adenosine 5'-monophosphate-dependent protein kinase and Ca2+/calmodulin-dependent protein kinase II prepared from mammalian sources. The phosphorylation sites of frog synapsin I, as judged by phosphopeptide mapping, are somewhat different from those of mammalian synapsin I. The study of synapsin I and of the regulation of its state of phosphorylation at the neuromuscular junction may provide important information on its role in synaptic function, since at the present time this is one of the few systems in which a correlation among biochemical, immunocytochemical and electrophysiological results is possible.
Collapse
Affiliation(s)
- F Valtorta
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York
| | | | | | | | | | | |
Collapse
|
89
|
Neuronal Phosphoproteins. Mol Neurobiol 1988. [DOI: 10.1007/978-1-4612-4604-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
90
|
Goodman SR, Krebs KE, Whitfield CF, Riederer BM, Zagon IS. Spectrin and related molecules. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1988; 23:171-234. [PMID: 3048888 DOI: 10.3109/10409238809088319] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This review begins with a complete discussion of the erythrocyte spectrin membrane skeleton. Particular attention is given to our current knowledge of the structure of the RBC spectrin molecule, its synthesis, assembly, and turnover, and its interactions with spectrin-binding proteins (ankyrin, protein 4.1, and actin). We then give a historical account of the discovery of nonerythroid spectrin. Since the chicken intestinal form of spectrin (TW260/240) and the brain form of spectrin (fodrin) are the best characterized of the nonerythroid spectrins, we compare these molecules to RBC spectrin. Studies establishing the existence of two brain spectrin isoforms are discussed, including a description of the location of these spectrin isoforms at the light- and electron-microscope level of resolution; a comparison of their structure and interactions with spectrin-binding proteins (ankyrin, actin, synapsin I, amelin, and calmodulin); a description of their expression during brain development; and hypotheses concerning their potential roles in axonal transport and synaptic transmission.
Collapse
Affiliation(s)
- S R Goodman
- Cell and Molecular Biology Center, Milton S. Hershey Medical Center, Pennsylvania State University
| | | | | | | | | |
Collapse
|
91
|
Kelly PT, Shields S, Conway K, Yip R, Burgin K. Developmental changes in calmodulin-kinase II activity at brain synaptic junctions: alterations in holoenzyme composition. J Neurochem 1987; 49:1927-40. [PMID: 2824699 DOI: 10.1111/j.1471-4159.1987.tb02456.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Synaptic junctions (SJs) from rat forebrain were isolated at increasing postnatal ages and examined for endogenous protein kinase activities. Our studies focused on the postnatal maturation of the multifunctional protein kinase designated Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II). This kinase is comprised of a major 50-kilodalton (kDa) and a minor 60-kDa subunit. Experiments examined the developmental properties of CaM-kinase II associated with synaptic plasma membranes (SPMs) and synaptic junctions (SJs), as well as the holoenzyme purified from cytosolic extracts. Large developmental increases in CaM-kinase II activity of SJ fractions were observed between postnatal days 6 and 20; developmental changes were examined for a number of properties including (a) autophosphorylation, (b) endogenous substrate phosphorylation, (c) exogenous substrate phosphorylation, and (d) immunoreactivity. Results demonstrated that forebrain CaM-kinase II undergoes a striking age-dependent change in subunit composition. In early postnatal forebrain the 60-kDa subunit constitutes the major catalytic and immunoreactive subunit of the holoenzyme. The major peak of CaM-kinase II activity in SJ fractions occurred at approximately postnatal day 20, a time near the end of the most active period of in vivo synapse formation. Following this developmental age, CaM-kinase II continued to accumulate at SJs; however, its activity was not as highly activated by Ca2+ plus calmodulin.
Collapse
Affiliation(s)
- P T Kelly
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston 77225
| | | | | | | | | |
Collapse
|
92
|
Buxbaum JD, Dudai Y. In vitro protein phosphorylation in head preparations from normal and mutant Drosophila melanogaster. J Neurochem 1987; 49:1161-73. [PMID: 3040907 DOI: 10.1111/j.1471-4159.1987.tb10007.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have characterized protein phosphorylation in vitro in subcellular fractions from Drosophila melanogaster heads. Optimal conditions for the incorporation of 32P into proteins, and its dependence on ATP, divalent cations, and cyclic nucleotides have been determined, as well as the effect of inhibitors of ATPase, protein phosphatase, and protein kinase on protein phosphorylation. Among these inhibitors, Zn2+ was found to affect the incorporation of 32P into specific bands and p-hydroxymercuribenzoate was found to be most suited for freezing the activity of both kinases and phosphatases. Cyclic AMP-dependent protein kinase (cAMP-dPK) activity was present in both supernatant (S2) and particulate (P2) fractions, with the majority (60-85%, depending on the homogenization medium) being associated with S2, as determined by phosphorylation of exogenous synapsin I. cAMP-dPK catalyzed the phosphorylation of at least 18 endogenous polypeptides in S2 and at least 10 endogenous polypeptides in P2. These proteins could be classified on the basis of the extent of stimulation of phosphorylation by cyclic nucleotides, dependence on cyclic nucleotide concentration, and rate of phosphorylation. A phosphoprotein of 51 kilodaltons (pp51) was a major component of the S2 and P2 fractions and displayed properties expected from the regulatory subunit of the cAMP-dPK, R-II. A phosphoprotein doublet of approximately 37 kilodaltons (pp37) was stimulated to the largest extent by cAMP in the P2 and S2 fractions. The phosphorylation of several proteins in both fractions was significantly lowered by the mammalian Walsh inhibitor of cAMP-dPK, whereas in some cases the stimulation of phosphorylation of the same proteins by exogeneous cAMP was relatively small. Phosphoproteins from two learning mutants known to be deficient in cAMP metabolism, dnc and rut, were analyzed for their extent of phosphorylation in the presence of a stable cAMP analogue; no significant differences from normal were detected, suggesting that the genetic defect in cAMP metabolism is not accompanied by constituent abnormalities in phosphorylated substrates in the adult fly, and that the physiological defects in these mutants result from aberrations in the interaction of the cAMP cascade with normal substrates. The majority of Ca2+/calmodulin kinase activity (80-90%, depending on the homogenization procedure) was associated with S2, as revealed by phosphorylation of exogenous synapsin I. Two endogenous substrates for this kinase in P2 had molecular masses of approximately 45 and 87 kilodaltons. At least 11 substrates for the Ca2+/calmodulin-dependent kinase were detected in S2.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
93
|
Parks TP, Nairn AC, Greengard P, Jamieson JD. The cyclic nucleotide-dependent phosphorylation of aortic smooth muscle membrane proteins. Arch Biochem Biophys 1987; 255:361-71. [PMID: 3036005 DOI: 10.1016/0003-9861(87)90404-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Membrane proteins of Mr 240,000, 130,000, and 85,000 (GS-proteins) were rapidly and selectively phosphorylated in particulate fractions of rabbit aortic smooth muscle in the presence of [Mg-32P]ATP and low concentrations of cGMP (Ka = 0.01 microM) or cAMP (Ka = 0.2 microM). The effects of both cyclic nucleotides in this preparation were mediated entirely by an endogenous, membrane-bound form of cGMP-dependent protein kinase (G-kinase). The GS-proteins were also phosphorylated by the soluble form of G-kinase purified from bovine lung; this effect was most evident following removal of endogenous G-kinase from the membranes using Na2CO3 and high salt washes. The membrane-bound and cytosolic forms of G-kinase phosphorylated the Mr 130,000 GS-protein with the same specificity as determined by two-dimensional peptide mapping. Despite this functional homology between the two forms of G-kinase, only the particulate enzyme appears to play a role in phosphorylating the GS-proteins. Although little endogenous cAMP-dependent protein kinase (A-kinase) activity was detected in washed aortic smooth muscle membranes, the GS-proteins could be phosphorylated when purified A-kinase catalytic subunit was added to this preparation. Peptide mapping of the Mr 130,000 GS-protein indicated that A-kinase phosphorylated a subset of the same peptides labeled by the two forms of G-kinase. The endogenous A-kinase of rabbit aortic smooth muscle homogenates was also found to phosphorylate the GS-proteins. Since the intracellular concentrations of cGMP or cAMP can be selectively elevated by different stimuli, these results suggest several possible mechanisms by which the phosphorylation state of the GS-proteins may be regulated by cyclic nucleotides: activation of the membrane-bound G-kinase by cGMP or cAMP; and activation of cytosolic A-kinase by cAMP.
Collapse
|
94
|
Abstract
Fodrin, a protein related to erythrocyte spectrin, redistributes within the cell in certain situations. We compare such movements of fodrin and several fodrin binding proteins during the processes of axonal transport in neurons, and capping of surface proteins in lymphocytes. In neurons, three different populations of newly synthesized fodrin appear to be transported down the axons at different velocities corresponding to those of groups of transported proteins designated II, IV, and V. Actin, which can interact with fodrin, is transported at the velocity of group IV. Synapsin, a component of synaptic vesicles, is also reported to bind to fodrin. One population of synapsin is transported more rapidly than fodrin, at the velocity of group I: two additional populations of transported synapsin may overlap fodrin in groups II and IV. We consider possible functional associations of these different populations of fodrin and fodrin binding proteins. We note that the transport of group IV proteins resembles in certain respects the process of capping in lymphocytes, suggesting the possibility of a common mechanism. We outline one of several possible mechanisms.
Collapse
|
95
|
Nairn AC, Greengard P. Purification and characterization of Ca2+/calmodulin-dependent protein kinase I from bovine brain. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)48233-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
96
|
Dosemeci A, Rodnight R. Effect of digestion with phospholipase A2 on endogenous protein phosphorylation in particulate fractions from rat brain synaptosomes. J Neurochem 1987; 48:1132-5. [PMID: 3102691 DOI: 10.1111/j.1471-4159.1987.tb05637.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The endogenous phosphorylation of synapsin 1 in cyclic AMP-containing media was greatly decreased by digestion of synaptic vesicles and synaptosomal membranes with phospholipase A2, suggesting that the system is functionally dependent on the membrane structure. Treatment of the synaptic vesicle fraction with phospholipase A2 also caused a small but significant inhibition of the Ca2+/calmodulin-dependent phosphorylation of the same protein. The Ca2+/calmodulin-dependent phosphorylation of other major acceptors, and the basal phosphorylation of a 52-kD acceptor enriched in the vesicle fraction, remained unchanged after cleavage of the membrane phospholipids with phospholipase A2. The significance of the selective effect of phospholipase A2 treatment on endogenous membrane phosphorylation is discussed.
Collapse
|
97
|
de Camilli P, Navone F. Regulated secretory pathways of neurons and their relation to the regulated secretory pathway of endocrine cells. Ann N Y Acad Sci 1987; 493:461-79. [PMID: 3109301 DOI: 10.1111/j.1749-6632.1987.tb27231.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
98
|
Abstract
This article summarizes some of our knowledge concerning intracellular protein phosphorylation pathways in nerve cells. It also summarizes, very briefly, recent direct experimental evidence involving intracellular injection of protein kinases, protein kinase inhibitors, and substrates, indicating that protein phosphorylation mediates the actions of a variety of neurotransmitters on their target cells. Finally, it summarizes in somewhat greater detail the results of studies of three different types of substrate proteins that appear to regulate different types of biological responses in nerve cells: synapsin I, a substrate protein present in virtually all nerve terminals, which appears to regulate neurotransmitter release from those nerve terminals; the acetylcholine receptor, the phosphorylation of which regulates its rate of desensitization in the presence of acetylcholine; and DARPP-32, the phosphorylation of which converts it into a very potent phosphoprotein phosphatase inhibitor that may be involved in the regulation by the neuromodulator dopamine of the effects of the neurotransmitter glutamate. The identification and characterization of additional neuronal phosphoproteins can be expected to lead to the clarification of numerous additional molecular mechanisms by which signal transduction is carried out in nerve cells.
Collapse
Affiliation(s)
- P Greengard
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY 10021
| |
Collapse
|
99
|
DeGennaro LJ, McCaffery CA, Kirchgessner CU, Yang-Feng TL, Francke U. Molecular analysis of synapsin I, a candidate gene for Rett syndrome. Brain Dev 1987; 9:469-74. [PMID: 3124657 DOI: 10.1016/s0387-7604(87)80066-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The characteristics of Rett syndrome suggest that it is an X-linked neurodegenerative disorder. Laboratory investigations to date have not revealed any metabolic abnormalities in affected individuals. Synapsin I is a neuron-specific protein thought to play a fundamental role in neuronal function. In this report we summarize the circumstantial evidence suggesting that a defect in synapsin I gene structure or expression might be involved in Rett syndrome. This evidence includes analysis of structural and functional aspects of synapsin I primary structure, characterization of synapsin I messenger RNAs, location of the synapsin I gene on the human X chromosome and preliminary analysis of synapsin I gene structure in Rett individuals.
Collapse
Affiliation(s)
- L J DeGennaro
- Department of Neurochemistry, Max Planck Institute for Psychiatry, Martinsried, FRG
| | | | | | | | | |
Collapse
|
100
|
Greengard P, Browning MD, McGuinness TL, Llinas R. Synapsin I, a phosphoprotein associated with synaptic vesicles: possible role in regulation of neurotransmitter release. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1987; 221:135-53. [PMID: 2893522 DOI: 10.1007/978-1-4684-7618-7_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The data presented here provide evidence that the study of neuronal phosphoproteins can lead to the identification of previously unknown proteins and that these proteins may play important roles in neuronal communication. Specifically, in the case of synapsin I, direct evidence has been obtained that this phosphoprotein is involved in regulating neurotransmitter release. A tentative explanation of the results obtained in the micro-injection studies is as follows: synapsin I, in the dephosphostate, is bound to the cytoplasmic surface of synaptic vesicles and inhibits the ability of the vesicle to interact with the plasma membrane; increases in intracellular calcium activate calmodulin kinase II which in turn phosphorylates synapsin I and the phosphorylated synapsin I dissociates from the synaptic vesicle thus removing a constraint on the release of neurotransmitter. Clearly, more studies need to be done to rigorously test this hypothesis. Nevertheless these studies of synapsin I suggest that the study of previously unknown phosphoproteins will lead to the elucidation of previously unknown regulatory processes in neurons.
Collapse
|