51
|
Kuwata T, Gongora C, Kanno Y, Sakaguchi K, Tamura T, Kanno T, Basrur V, Martinez R, Appella E, Golub T, Ozato K. Gamma interferon triggers interaction between ICSBP (IRF-8) and TEL, recruiting the histone deacetylase HDAC3 to the interferon-responsive element. Mol Cell Biol 2002; 22:7439-48. [PMID: 12370291 PMCID: PMC135656 DOI: 10.1128/mcb.22.21.7439-7448.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2002] [Revised: 04/08/2002] [Accepted: 07/24/2002] [Indexed: 11/20/2022] Open
Abstract
ICSBP (IRF-8) is a transcription factor of the IRF family expressed only in the immune system. It is induced in macrophages by gamma interferon (IFN-gamma) and contributes to macrophage functions. By interacting with Ets family protein PU.1, ICSBP binds to the IRF/Ets composite element and stimulates transcription. ICSBP binds to another DNA element, the IFN-stimulated response element (ISRE), a common target of the IRF family. Limited knowledge as to how ICSBP and other IRF proteins regulate ISRE-dependent transcription in IFN-gamma-activated macrophages is available. By mass-spectrometric analysis of ISRE-bound proteins in macrophages, we identified TEL, another Ets member, as a factor recruited to the element in an IFN-gamma-dependent manner. In vitro analysis with recombinant proteins indicated that this recruitment is due to a direct interaction between ICSBP and TEL, which is enhanced by the presence of ISRE. Significantly, the interaction with TEL in turn resulted in the recruitment of the histone deacetytase HDAC3 to the ISRE, causing increased repression of IFN-gamma-mediated reporter activity through the ISRE. This repression may provide a negative-feedback mechanism operating after the initial transcriptional activation by IFN-gamma. By associating with two different Ets family proteins, ICSBP exerts a dual function in IFN-gamma-dependent gene regulation in an immune system-specific manner.
Collapse
Affiliation(s)
- Takeshi Kuwata
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Meraro D, Gleit-Kielmanowicz M, Hauser H, Levi BZ. IFN-stimulated gene 15 is synergistically activated through interactions between the myelocyte/lymphocyte-specific transcription factors, PU.1, IFN regulatory factor-8/IFN consensus sequence binding protein, and IFN regulatory factor-4: characterization of a new subtype of IFN-stimulated response element. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:6224-31. [PMID: 12055236 DOI: 10.4049/jimmunol.168.12.6224] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type I IFNs cause the induction of a subset of genes termed IFN-stimulated genes (ISGs), which harbor a specific DNA element, IFN-stimulated response element (ISRE). This ISRE confers the responsiveness to the IFN signal through the binding of a family of transcription factors designated IFN regulatory factors (IRFs). Some IRFs can bind to the DNA alone, such as IRF-1, which elicits transcriptional activation, or IRF-2, which leads to transcriptional repression. In addition, these factors associate with IRF-8/IFN consensus sequence binding protein (ICSBP), an immune cell-restricted IRF, and the assembled heterocomplexes lead to synergistic repression of ISRE elements. ISG15 is a prototype ISG that contains a well-characterized ISRE. Here we show that PU.1, an ETS member essential for myeloid/lymphoid cell differentiation, forms heterocomplexes with the immune-restricted IRFs, IRF-8\/ICSBP and IRF-4, which lead to transcriptional activation of ISG15. These data allowed the characterization of a subset of ISREs designated ETS/IRF response element (EIRE), which are differentially regulated in immune cells. EIREs are unique in their ability to recruit different factors to an assembled enhanceosomes. In nonimmune cells the factors will mainly include IRF members, while cell type-restricted factors, such as PU.1, IRF-8\/ICSBP, and IRF-4, will be recruited in immune cells. IRF heterocomplex formation leads to transcriptional repression, and conversely, PU.1/IRFs heterocomplex formation leads to transcriptional activation. The fact that IRF-8\/ICSBP is an IFN-gamma-induced factor explains why some of the EIREs are also induced by type II IFN. Our results lay the molecular basis for the unique regulation of ISGs, harboring EIRE, in immune cells.
Collapse
Affiliation(s)
- David Meraro
- Department of Food Engineering and Biotechnology, Technion, Haifa, Israel
| | | | | | | |
Collapse
|
53
|
Nehyba J, Hrdlicková R, Burnside J, Bose HR. A novel interferon regulatory factor (IRF), IRF-10, has a unique role in immune defense and is induced by the v-Rel oncoprotein. Mol Cell Biol 2002; 22:3942-57. [PMID: 11997525 PMCID: PMC133824 DOI: 10.1128/mcb.22.11.3942-3957.2002] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cloning and functional characterization of a novel interferon regulatory factor (IRF), IRF-10, are described. IRF-10 is most closely related to IRF-4 but differs in both its constitutive and inducible expression. The expression of IRF-10 is inducible by interferons (IFNs) and by concanavalin A. In contrast to that of other IRFs, the inducible expression of IRF-10 is characterized by delayed kinetics and requires protein synthesis, suggesting a unique role in the later stages of an antiviral defense. Accordingly, IRF-10 is involved in the upregulation of two primary IFN-gamma target genes (major histocompatibility complex [MHC] class I and guanylate-binding protein) and interferes with the induction of the type I IFN target gene for 2',5'-oligo(A) synthetase. IRF-10 binds the interferon-stimulated response element site of the MHC class I promoter. In contrast to that of IRF-1, which has some of the same functional characteristics, the expression of IRF-10 is not cytotoxic for fibroblasts or B cells. The expression of IRF-10 is induced by the oncogene v-rel, the proto-oncogene c-rel, and IRF-4 in a tissue-specific manner. Moreover, v-Rel and IRF-4 synergistically cooperate in the induction of IRF-10 in fibroblasts. The level of IRF-10 induction in lymphoid cell lines by Rel proteins correlates with Rel transformation potential. These results suggest that IRF-10 plays a role in the late stages of an immune defense by regulating the expression some of the IFN-gamma target genes in the absence of a cytotoxic effect. Furthermore, IRF-10 expression is regulated, at least in part, by members of the Rel/NF-kappa B and IRF families.
Collapse
Affiliation(s)
- Jirí Nehyba
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712-1095,USA
| | | | | | | |
Collapse
|
54
|
Tamura T, Ozato K. ICSBP/IRF-8: its regulatory roles in the development of myeloid cells. J Interferon Cytokine Res 2002; 22:145-52. [PMID: 11846985 DOI: 10.1089/107999002753452755] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interferon (IFN) consensus sequence binding protein (ICSBP)/IFN regulatory factor (IRF)-8 is an IFNgamma-inducible transcription factor of the IRF family and regulates transcription through multiple target DNA elements, such as IFN-stimulated response element (ISRE), Ets/IRF composite element, and IFN-gamma activation site (GAS). ICSBP(-/-) mice are immunodeficient and susceptible to various pathogens. They have defects in the macrophage function, including the ability to induce interleukin-12 (IL-12) p40 and some IFN-gamma-responsible genes. In addition, ICSBP(-/-) mice develop a chronic myelogenous leukemia (CML)-like syndrome, where a systemic expansion of granulocytes is followed by a fatal blast crisis. ICSBP(-/-) mice harbor an increased number of myeloid progenitor cells, and the -/- progenitors preferentially give rise to granulocytes, although they cannot efficiently generate another descendant of the myeloid lineage, macrophages. Studies with myeloid progenitor cells have shown that ICSBP drives their differentiation toward macrophage, whereas it inhibits granulocyte differentiation. Furthermore, myeloid cells from ICSBP(-/-) mice are resistant to apoptosis. These results illustrate the mechanism by which the loss of ICSBP leads to immunodeficiency and CML-like syndrome and suggest ICSBP's critical role in the development of myeloid cells.
Collapse
Affiliation(s)
- Tomohiko Tamura
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
55
|
Levi BZ, Hashmueli S, Gleit-Kielmanowicz M, Azriel A, Meraro D. ICSBP/IRF-8 transactivation: a tale of protein-protein interaction. J Interferon Cytokine Res 2002; 22:153-60. [PMID: 11846986 DOI: 10.1089/107999002753452764] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interferon (IFN) consensus sequence binding protein (ICSBP) is a member of a family of transcription factors termed IFN regulatory factors (IRF) and is also called IRF-8. Its expression is restricted mainly to cells of the immune system, and it plays a key role in the maturation of macrophages. ICSBP exerts its activity through the formation of different DNA-binding heterocomplexes. The interacting partner dictates a specific DNA recognition sequence, thus rendering ICSBP dual transcriptional activity, that is, repression or activation. Accordingly, such DNA elements were identified at the promoter regions of target genes that manifest macrophage action. A specific module (IRF association domain [IAD]) within ICSBP and a PEST domain located on the interacting partners mediate this association. Thus, ICSBP serves as an excellent prototype, demonstrating how a small subset of transcription factors can regulate gene expression in a spatial, temporal, and delicate tuning through combinatorial protein-protein interactions on different enhanceasomes.
Collapse
Affiliation(s)
- Ben-Zion Levi
- Department of Food Engineering and Biotechnology, Technion-Israel Institute of Technology, Haifa 32,000, Israel
| | | | | | | | | |
Collapse
|
56
|
Abstract
Interferon (IFN) regulatory factor-1 (IRF-1) was isolated by virtue of its affinity to specific DNA sequences in the IFN-beta promoter that mediate virus responsiveness. IRF-1 was the first factor identified of the IRF family and was most extensively characterized at the molecular level. Also, its physiologic role in host defense against pathogens, tumor prevention, and development of the immune system was investigated in detail. Even though some of the functions first associated with IRF-1 were later found to be mediated in part or predominantly by other activators of the IRF family of transcription factors, IRF-1 has remained a central paradigm in the transcriptional regulation of the IFN response.
Collapse
Affiliation(s)
- Andrea Kröger
- Department of Gene Regulation and Differentiation, GBF, Gesellschaft für Biotechnologische Forschung, D 38124 Braunschweig Mascheroder Weg 1, Germany
| | | | | | | | | |
Collapse
|
57
|
Abstract
The inflammatory cytokine interferon gamma (IFNgamma) can cause cell cycle arrest and apoptosis in the hepatocyte. Primarily these processes are protective but in chronic liver disease oncogenic mutations may prosper. IFNgamma signalling is discussed showing how p53 is induced to cause cell cycle arrest. While caspases are are known to be responsible for IFNgamma induced apoptosis, how they are activated is unclear. Potential mechanisms are reviewed.
Collapse
Affiliation(s)
- B J Tura
- Cell Injury and Apoptosis Group, (Department of Pathology), MRC Centre for Inflammation Research, University of Edinburgh Medical School, Edinburgh, UK
| | | | | |
Collapse
|
58
|
Taniguchi T, Ogasawara K, Takaoka A, Tanaka N. IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 2001; 19:623-55. [PMID: 11244049 DOI: 10.1146/annurev.immunol.19.1.623] [Citation(s) in RCA: 1266] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interferon regulatory factors (IRFs) constitute a family of transcription factors that commonly possess a novel helix-turn-helix DNA-binding motif. Following the initial identification of two structurally related members, IRF-1 and IRF-2, seven additional members have now been reported. In addition, virally encoded IRFs, which may interfere with cellular IRFs, have also been identified. Thus far, intensive functional analyses have been done on IRF-1, revealing a remarkable functional diversity of this transcription factor in the regulation of cellular response in host defense. Indeed, IRF-1 selectively modulates different sets of genes, depending on the cell type and/or the nature of cellular stimuli, in order to evoke appropriate responses in each. More recently, much attention has also been focused on other IRF family members. Their functional roles, through interactions with their own or other members of the family of transcription factors, are becoming clearer in the regulation of host defense, such as innate and adaptive immune responses and oncogenesis.
Collapse
Affiliation(s)
- T Taniguchi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | |
Collapse
|
59
|
Schmidt M, Hochhaus A, Nitsche A, Hehlmann R, Neubauer A. Expression of nuclear transcription factor interferon consensus sequence binding protein in chronic myeloid leukemia correlates with pretreatment risk features and cytogenetic response to interferon-α. Blood 2001; 97:3648-50. [PMID: 11369663 DOI: 10.1182/blood.v97.11.3648] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, it was shown that interferon consensus sequence binding protein (ICSBP), a member of the interferon regulatory factor (IRF) family, has a potential role in chronic myeloid leukemia (CML). Deletion of ICSBP gene in mice leads to a CML-like syndrome and samples from CML patients exhibited impaired ICSBP expression. The present study found that ICSBP expression correlated with risk features determined by Sokal score in untreated CML (P = .007 for high versus low risk). In addition, analyzing ICSBP expression during interferon-α (IFN-α) therapy in “good” (n = 27) versus “poor” (n = 15) cytogenetic responders, high ICSBP levels were only observed in “good” responders (P = .0002). Together, these data suggest that ICSBP levels are related to initial presentation of CML and the therapeutic response of CML to IFN-α, indicating an important role of ICSBP in CML.
Collapse
Affiliation(s)
- M Schmidt
- Klinikum der Philipps-Universität Marburg, Zentrum Innere Medizin, Abteilung Hämatologie/Onkologie/Immunologie, Baldingerstrasse, 35043 Marburg, Germany
| | | | | | | | | |
Collapse
|
60
|
Arons E, Kunin V, Schechter C, Ehrlich R. Organization and functional analysis of the mouse transporter associated with antigen processing 2 promoter. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:3942-51. [PMID: 11238639 DOI: 10.4049/jimmunol.166.6.3942] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In accordance with the key role of MHC class I molecules in the adaptive immune response against viruses, they are expressed by most cells, and their expression can be enhanced by cytokines. The assembly and cell surface expression of class I complexes depend on a continuous peptide supply. The peptides are generated mainly by the proteasome and are transported to the endoplasmic reticulum by a peptide transport pump consisting of two subunits, TAP1 and TAP2. The proteasome low molecular weight polypeptide (2 and 7), as well as TAP (1 and 2) genes, are coordinately regulated and are induced by IFNs. Despite this coordinate regulation, examination of tumors shows that these genes can be discordantly down-regulated. In pursuing a molecular explanation for these observations, we have characterized the mouse TAP2 promoter region and 5'-flanking sequence. We show that the 5' untranslated regions of TAP2 genes have a characteristic genomic organization that is conserved in both the mouse and the human. The mouse TAP2 promoter belongs to a class of promoters that lack TATA boxes but contain a MED1 (multiple start site element downstream) sequence. Accordingly, transcription is initiated from multiple sites within a 100-nucleotide window. An IFN regulatory factor 1 (IRF1)/IRF2 binding site is located in this region and is involved in both basal and IRF1-induced TAP2 promoter activity. The implication of the extensive differences found among the promoters of class I heavy chain, low molecular weight polypeptide, and TAP genes, all encoding proteins involved in Ag presentation, is discussed.
Collapse
Affiliation(s)
- E Arons
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | |
Collapse
|
61
|
Cohen H, Azriel A, Cohen T, Meraro D, Hashmueli S, Bech-Otschir D, Kraft R, Dubiel W, Levi BZ. Interaction between interferon consensus sequence-binding protein and COP9/signalosome subunit CSN2 (Trip15). A possible link between interferon regulatory factor signaling and the COP9/signalosome. J Biol Chem 2000; 275:39081-9. [PMID: 10991940 DOI: 10.1074/jbc.m004900200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interferon consensus sequence-binding protein (ICSBP) is a member of the interferon regulatory factors (IRF) that has a pivotal role in mediating resistance to pathogenic infections in mice and in promoting the differentiation of myeloid cells. ICSBP exerts some of its transcriptional activities via association with other factors that enable its binding to a variety of promoters containing DNA composite elements. These interactions are mediated through a specific COOH-terminal domain termed IAD (IRF association domain). To gain a broader insight of the capacity of ICSBP to interact with other factors, yeast two-hybrid screens were performed using ICSBP-IAD as a bait against a B-cell cDNA library. Trip15 was identified as a specific interacting factor with ICSBP in yeast cells, which was also confirmed by in vitro glutathione S-transferase pull-down assays and by coimmunoprecipitation studies in COS7 cells. Trip15 was recently identified as a component of the COP9/signalosome (CSN) complex composed of eight evolutionary conserved subunits and thus termed CSN2. This complex has a role in cell-signaling processes, which is manifested by its associated novel kinase activity and by the involvement of its subunits in regulating multiple cell-signaling pathways and cell-cycle progression. We show that in vitro association of ICSBP with the CSN leads to phosphorylation of ICSBP at a unique serine residue within its IAD. The phosphorylated residue is essential for efficient association with IRF-1 and thus for the repressor activity of ICSBP exerted on IRF-1. This suggests that the CSN has a role in integrating incoming signals that affect the transcriptional activity of ICSBP.
Collapse
MESH Headings
- 3T3 Cells
- Alanine/chemistry
- Animals
- B-Lymphocytes/metabolism
- Blotting, Northern
- COP9 Signalosome Complex
- COS Cells
- Carrier Proteins/chemistry
- Carrier Proteins/metabolism
- DNA/metabolism
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Gene Library
- Glutathione Transferase/metabolism
- HL-60 Cells
- HeLa Cells
- Humans
- Interferon Regulatory Factors
- Mice
- Models, Biological
- Multiprotein Complexes
- Mutagenesis, Site-Directed
- Nuclear Proteins
- Peptide Hydrolases
- Phosphorylation
- Plasmids/metabolism
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Proteins/chemistry
- Proteins/metabolism
- RNA, Messenger/metabolism
- Receptors, Thyroid Hormone
- Repressor Proteins/chemistry
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Serine/chemistry
- Signal Transduction
- Transcription Factors
- Transcription, Genetic
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- H Cohen
- Department of Food Engineering and Biotechnology, Technion, Haifa 32000, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Kirchhoff S, Oumard A, Nourbakhsh M, Levi BZ, Hauser H. Interplay between repressing and activating domains defines the transcriptional activity of IRF-1. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6753-61. [PMID: 11082185 DOI: 10.1046/j.1432-1033.2000.01750.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interferon regulatory factor-1 (IRF-1) is a transcriptional activator with weak activation capacity. By defining the transcriptional activation domain of IRF-1 we identified two activator fragments located between amino acids 185 and 256 functioning in an additive manner. Another fragment of IRF-1, which has no activator function alone, acts as a strong enhancer element of these activator sequences. This enhancer element resides between the activator domains and the C-terminus. In addition, we identified a novel type of inhibitory domain in the N-terminal 60 amino acids of IRF-1 which strongly inhibits its transcriptional activity. Because this fragment is conserved in all interferon regulatory factors, we found similar repression effects in the corresponding fragments in IRF-2, IRF-3 and interferon consensus sequence binding protein (ICSBP/IRF-8). Interestingly, the corresponding sequence in p48/IRF-9 is divergent, so that it does not show this inhibitory activity. A five-amino-acid sequence distinguishes the p48/IRF-9 N-terminus from the homologous parts in other interferon regulatory factors containing the repressing function. Replacing the diverged amino acids in IRF-1 with the corresponding sequence of p48/IRF-9 resulted in a loss of inhibitory activity within IRF-1. The opposing activities within interferon regulatory factors may contribute to balanced or tuned regulation of gene activation, depending on the promoter context.
Collapse
Affiliation(s)
- S Kirchhoff
- National Research Center for Biotechnology, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
63
|
Schmidt M, Hochhaus A, König-Merediz SA, Brendel C, Proba J, Hoppe GJ, Wittig B, Ehninger G, Hehlmann R, Neubauer A. Expression of interferon regulatory factor 4 in chronic myeloid leukemia: correlation with response to interferon alfa therapy. J Clin Oncol 2000; 18:3331-8. [PMID: 11013272 DOI: 10.1200/jco.2000.18.19.3331] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Mice experiments have established an important role for interferon regulatory factor (IRF) family members in hematopoiesis. We wanted to study the expression of interferon regulatory factor 4 (IRF4) in various hematologic disorders, especially chronic myeloid leukemia (CML), and its association with response to interferon alfa (IFN-alpha) treatment in CML. MATERIALS AND METHODS Blood samples from various hematopoietic cell lines, different leukemia patients (70 CML, 29 acute myeloid leukemia [AML], 10 chronic myelomonocytic leukemia [CMMoL], 10 acute lymphoblastic leukemia, and 10 chronic lymphoid leukemia patients), and 33 healthy volunteers were monitored for IRF4 expression by reverse transcriptase polymerase chain reaction. Then, with a focus on CML, the IRF4 level was determined in sorted cell subpopulations from CML patients and healthy volunteers and in in vitro-stimulated CML cells. Furthermore, IRF4 expression was compared in the CML samples taken before IFN-alpha therapy and in 47 additional CML samples taken during IFN-alpha therapy. IRF4 expression was then correlated with cytogenetic response to IFN-alpha. RESULTS IRF4 expression was significantly impaired in CML, AML, and CMMoL samples. The downregulation of IRF4 in CML samples was predominantly found in T cells. In CML patients during IFN-alpha therapy, a significant increase in IRF4 levels was detected, and this was also observed in sorted T cells from CML patients. The increase seen during IFN-alpha therapy was not due to different blood counts. In regard to the cytogenetic response with IFN-alpha, a good response was associated with high IRF4 expression. CONCLUSION IRF4 expression is downregulated in T cells of CML patients, and its increase is associated with a good response to IFN-alpha therapy. These data suggest IRF4 expression as a useful marker to monitor, if not predict, response to IFN-alpha in CML.
Collapse
MESH Headings
- Acute Disease
- Antineoplastic Agents/therapeutic use
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Transformation, Neoplastic/metabolism
- Clinical Trials as Topic
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/blood
- DNA-Binding Proteins/genetics
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/metabolism
- Humans
- Interferon Regulatory Factors
- Interferon-alpha/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myeloid/blood
- Leukemia, Myeloid/drug therapy
- Leukemia, Myeloid/immunology
- Leukemia, Myelomonocytic, Chronic/blood
- Leukemia, Myelomonocytic, Chronic/drug therapy
- Leukemia, Myelomonocytic, Chronic/immunology
- Lymphocyte Activation/drug effects
- Lymphocyte Subsets/immunology
- Lymphocyte Subsets/metabolism
- Lymphocytes/immunology
- Lymphocytes/metabolism
- Monocytes/immunology
- Monocytes/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/blood
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- RNA, Messenger/biosynthesis
- RNA, Messenger/blood
- RNA, Messenger/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transcription Factors/biosynthesis
- Transcription Factors/blood
- Transcription Factors/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M Schmidt
- Zentrum für Innere Medizin, Abteilung Hämatologie/Onkologie/Immunologie, Klinikum der Philipps-Universität Marburg, Marburg
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Kim YM, Im JY, Han SH, Kang HS, Choi I. IFN-gamma up-regulates IL-18 gene expression via IFN consensus sequence-binding protein and activator protein-1 elements in macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:3198-205. [PMID: 10975835 DOI: 10.4049/jimmunol.165.6.3198] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Constitutive IL-18 expression is detected from many different cells, including macrophages, keratinocytes, and osteoblasts. It has been known that IL-18 gene expression is regulated by two different promoters (p1 promoter and p2 promoter). When RAW 264.7 macrophages were treated with IFN-gamma, IL-18 gene expression was increased in a dose- and time-dependent manner. IFN-gamma activated the inducible promoter 1, but not the constitutive promoter 2. Mutagenesis studies indicated that an IFN consensus sequence-binding protein (ICSBP) binding site between -39 and -22 was critical for the IFN-gamma inducibility. EMSA using an ICSBP oligonucleotide probe showed that IFN-gamma treatment increased the formation of DNA-binding complex, which was supershifted with anti-IFN regulatory factor-1 Ab and anti-ICSBP Ab. Another element, an AP-1 site between -1120 and -1083, was important. EMSA using an AP-1-specific oligonucleotide demonstrated that IFN-gamma or LPS treatment increased the AP-1-binding activity. The addition of anti-c-Jun Ab or anti-c-Fos Ab to IFN-gamma- or LPS-treated nuclear extracts resulted in the reduction of AP-1 complex or the formation of a supershifted complex. Taken together, these results indicate that IFN-gamma increased IL-18 gene expression via ICSBP and AP-1 elements.
Collapse
Affiliation(s)
- Y M Kim
- Laboratory of Immunology, Korea Research Institute of Bioscience and Biotechnology, Yusong, Taejon, Republic of Korea
| | | | | | | | | |
Collapse
|
65
|
Lohoff M, Duncan GS, Ferrick D, Mittrücker HW, Bischof S, Prechtl S, Röllinghoff M, Schmitt E, Pahl A, Mak TW. Deficiency in the transcription factor interferon regulatory factor (IRF)-2 leads to severely compromised development of natural killer and T helper type 1 cells. J Exp Med 2000; 192:325-36. [PMID: 10934221 PMCID: PMC2193225 DOI: 10.1084/jem.192.3.325] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Interferon (IFN) regulatory factor (IRF)-2 was originally described as an antagonist of IRF-1-mediated transcriptional regulation of IFN-inducible genes. IRF-1(-/)- mice exhibit defective T helper type 1 (Th1) cell differentiation. We have used experimental leishmaniasis to show that, like IRF-1(-/)- mice, IRF-2(-/)- mice are susceptible to Leishmania major infection due to a defect in Th1 differentiation. Natural killer (NK) cell development is compromised in both IRF-1(-/)- and IRF-2(-/)- mice, but the underlying mechanism differs. NK (but not NK(+) T) cell numbers are decreased in IRF-2(-/)- mice, and the NK cells that are present are immature in phenotype. Therefore, like IRF-1, IRF-2 is required for normal generation of Th1 responses and for NK cell development in vivo. In this particular circumstance the absence of IRF-2 cannot be compensated for by the presence of IRF-1 alone. Mechanistically, IRF-2 may act as a functional agonist rather than antagonist of IRF-1 for some, but not all, IFN-stimulated regulatory element (ISRE)-responsive genes.
Collapse
Affiliation(s)
- Michael Lohoff
- Institut für Klinische Mikrobiologie und Immunologie, Universität Erlangen, 91054 Erlangen, Germany
| | - Gordon S. Duncan
- Amgen Research Institute, Toronto, Ontario M5G 2C1, Canada
- Ontario Cancer Institute, Department of Immunology, and the Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| | - David Ferrick
- Department of Pathology, Department of Microbiology, and the Department of Immunology, School of Veterinary Medicine, University of California at Davis, Davis, California 95616
| | | | - Susi Bischof
- Institut für Klinische Mikrobiologie und Immunologie, Universität Erlangen, 91054 Erlangen, Germany
| | - Stefan Prechtl
- Institut für Klinische Mikrobiologie und Immunologie, Universität Erlangen, 91054 Erlangen, Germany
| | - Martin Röllinghoff
- Institut für Klinische Mikrobiologie und Immunologie, Universität Erlangen, 91054 Erlangen, Germany
| | - Edgar Schmitt
- Institut für Immunologie, Universität Mainz, 55101 Mainz, Germany
| | - Andreas Pahl
- Institut für Pharmakologie, Universität Erlangen, 91054 Erlangen, Germany
| | - Tak W. Mak
- Amgen Research Institute, Toronto, Ontario M5G 2C1, Canada
- Ontario Cancer Institute, Department of Immunology, and the Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| |
Collapse
|
66
|
Rubinstein YR, Pontzer CH. Loss of interferon alpha and interferon tau-induced antiviral protection in interferon regulatory factor-2 DNA-binding domain dominant negative mutants. Antiviral Res 2000; 46:207-13. [PMID: 10867158 DOI: 10.1016/s0166-3542(00)00087-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of the interferon regulatory factory (IRF) family of transcription factors in regulation of interferon alpha and interferon tau antiviral activity was investigated using a dominant negative mutant of IRF-2. The IRF-2 DNA binding domain (DBD), without the C-terminal regulatory region, was stably transfected into myeloid U937 cells. Expression of the IRF-2 DBD resulted in an increase in constitutive 2'5' oligoadenylate synthetase (OAS) levels, indicative of an active repressive mechanism, but was not sufficient to protect cells from challenge with vesicular stomatitis virus. Treatment of the DBD clones with interferons alpha A and tau failed to upregulate 2'5' OAS expression and did not elicit an antiviral response. While interferon alpha A was more sensitive than interferon tau to the inhibitory effects of the IRF-2 DBD, IRF-mediated gene induction is involved in successful interferon alpha and tau-induced anti-VSV activity.
Collapse
Affiliation(s)
- Y R Rubinstein
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park 20742, USA
| | | |
Collapse
|
67
|
Rehli M, Poltorak A, Schwarzfischer L, Krause SW, Andreesen R, Beutler B. PU.1 and interferon consensus sequence-binding protein regulate the myeloid expression of the human Toll-like receptor 4 gene. J Biol Chem 2000; 275:9773-81. [PMID: 10734131 DOI: 10.1074/jbc.275.13.9773] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein product of the Toll-like receptor (TLR) 4 gene has been implicated in the signal transduction events induced by lipopolysaccharide (LPS). In mice, destructive mutations of Tlr4 impede the normal response to LPS and cause a high susceptibility to Gram-negative infection. Expression of TLR4 mRNA in humans is restricted to a small number of cell types, including LPS-responsive myeloid cells, B-cells, and endothelial cells. To investigate the molecular basis for TLR4 expression in cells of myeloid origin, we cloned the human TLR4 gene and analyzed its putative 5'-proximal promoter. In transient transfections a region of only 75 base pairs upstream of the major transcription initiation site was sufficient to induce maximal luciferase activity in THP-1 cells. The sequence of this region is similar in human and mouse TLR4 genes and lacks a TATA box, typical Sp1-sites or CCAAT box sequences. Instead, it contains consensus-binding sites for Ets family transcription factors, octamer-binding factors, and a composite interferon response factor/Ets motif. The activity of the promoter in macrophages was strictly dependent on the integrity of both half sites of the composite interferon response factor/Ets motif, which was constitutively bound by the myeloid and B-cell-specific transcription factor PU.1 and interferon consensus sequence-binding protein. These results indicate that the two tissue-restricted transcription factors PU.1 and interferon consensus sequence-binding protein participate in the basal regulation of human TLR4 in myeloid cells. Cloning of the human TLR4 gene provides a basis for further investigation of the possible impact of genetic variations on the susceptibility to infection and sepsis.
Collapse
Affiliation(s)
- M Rehli
- Department of Hematology and Oncology, University of Regensburg, 93042 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
68
|
Hein J, Kempf VA, Diebold J, Bücheler N, Preger S, Horak I, Sing A, Kramer U, Autenrieth IB. Interferon consensus sequence binding protein confers resistance against Yersinia enterocolitica. Infect Immun 2000; 68:1408-17. [PMID: 10678954 PMCID: PMC97295 DOI: 10.1128/iai.68.3.1408-1417.2000] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Interferon consensus sequence binding protein (ICSBP)-deficient mice display enhanced susceptibility to intracellular pathogens. At least two distinct immunoregulatory defects are responsible for this phenotype. First, diminished production of reactive oxygen intermediates in macrophages results in impaired intracellular killing of microorganisms. Second, defective early interleukin-12 (IL-12) production upon microbial challenge leads to a failure in gamma interferon (IFN-gamma) induction and subsequently in T helper 1 immune responses. Here, we investigated the role of ICSBP in resistance against the extracellular bacterium Yersinia enterocolitica. ICSBP(-/-) mice failed to produce IL-12 and IFN-gamma, but also IL-4, after Yersinia challenge. In addition, granuloma formation was highly disturbed in infected ICSBP(-/-) mice, leading to multiple necrotic abscesses in affected organs. Consequently, ICSBP(-/-) mice rapidly succumbed to acute Yersinia infection. In vitro treatment of spleen cells from ICSBP(-/-) mice with recombinant IL-12 (rIL-12) or rIL-18 in combination with a second stimulus resulted in IFN-gamma induction. In experimental therapy of infected ICSBP(-/-) mice, we observed that administration of rIL-12 induced IFN-gamma production which was associated with improved resistance to Yersinia. In contrast, treatment with rIL-18 failed to enhance endogenous IFN-gamma production but nevertheless reduced bacterial burden in ICSBP(-/-) mice. Although cytokine therapy with rIL-12 or rIL-18 ameliorated the course of Yersinia infection in ICSBP(-/-) mice, both cytokines failed to completely restore impaired immunity. Taken together, the results indicate that the transcription factor ICSBP is essential for efficient host immune defense against Yersinia. These results are important for understanding the complex host immune responses in bacterial infections.
Collapse
Affiliation(s)
- J Hein
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Hao SX, Ren R. Expression of interferon consensus sequence binding protein (ICSBP) is downregulated in Bcr-Abl-induced murine chronic myelogenous leukemia-like disease, and forced coexpression of ICSBP inhibits Bcr-Abl-induced myeloproliferative disorder. Mol Cell Biol 2000; 20:1149-61. [PMID: 10648600 PMCID: PMC85233 DOI: 10.1128/mcb.20.4.1149-1161.2000] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is a clonal myeloproliferative disorder resulting from the neoplastic transformation of a hematopoietic stem cell. The majority of cases of CML are associated with the (9;22) chromosome translocation that generates the bcr-abl chimeric gene. Alpha interferon (IFN-alpha) treatment induces hematological remission and prolongs life in 75% of CML patients in the chronic phase. It has been shown that mice deficient in interferon consensus sequence binding protein (ICSBP), a member of the interferon regulatory factor family, manifest a CML-like syndrome. We have shown that expression of Bcr-Abl in bone marrow (BM) cells from 5-fluorouracil (5-FU)-treated mice by retroviral transduction efficiently induces a myeloproliferative disease in mice resembling human CML. To directly test whether icsbp can function as a tumor suppressor gene, we examined the effect of ICSBP on Bcr-Abl-induced CML-like disease using this murine model for CML. We found that expression of the ICSBP protein was significantly decreased in Bcr-Abl-induced CML-like disease. Forced coexpression of ICSBP inhibited the Bcr-Abl-induced colony formation of BM cells from 5-FU-treated mice in vitro and Bcr-Abl-induced CML-like disease in vivo. Interestingly, coexpression of ICSBP and Bcr-Abl induced a transient B-lymphoproliferative disorder in the murine model of Bcr-Abl-induced CML-like disease. Overexpression of ICSBP consistently promotes rather than inhibits Bcr-Abl-induced B lymphoproliferation in a murine model where BM cells from non-5-FU-treated donors were used, indicating that ICSBP has a specific antitumor activity toward myeloid neoplasms. We also found that overexpression of ICSBP negatively regulated normal hematopoiesis. These data provide direct evidence that ICSBP can act as a tumor suppressor that regulates normal and neoplastic proliferation of hematopoietic cells.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- B-Lymphocytes/pathology
- Base Sequence
- Bone Marrow Transplantation
- Colony-Forming Units Assay
- Consensus Sequence
- DNA Primers/genetics
- Disease Models, Animal
- Down-Regulation
- Fluorouracil/pharmacology
- Genes, abl
- Hematopoiesis/genetics
- Humans
- Interferon Regulatory Factors
- Interferons/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Lymphoproliferative Disorders/etiology
- Lymphoproliferative Disorders/genetics
- Male
- Mice
- Mice, Inbred BALB C
- Myeloproliferative Disorders/genetics
- Myeloproliferative Disorders/prevention & control
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Translocation, Genetic
Collapse
Affiliation(s)
- S X Hao
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | |
Collapse
|
70
|
Meraro D, Hashmueli S, Koren B, Azriel A, Oumard A, Kirchhoff S, Hauser H, Nagulapalli S, Atchison ML, Levi BZ. Protein-Protein and DNA-Protein Interactions Affect the Activity of Lymphoid-Specific IFN Regulatory Factors. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.12.6468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
IFN regulatory factors (IRFs) constitute a family of transcription factors that are involved in IFN signaling and the development and differentiation of the immune system. Targeted gene disruption studies in mice assigned their primary role to the immune system. Two lymphoid-specific IRF members, IFN consensus sequence binding protein (ICSBP) and IRF-4, bind target DNA with greater efficiency following interaction with two transcription factors, PU.1 and E47, leading to transcriptional synergy. PU.1 and E47 are essential for proper differentiation and maturation of lymphoid cells. In addition, ICSBP interacts with two IRF members, IRF-1 and IRF-2, which also have central roles in the regulation of cell-mediated immunity. Previously, we identified a region in ICSBP, termed the IRF association domain (IAD), that is conserved in all IRFs (excluding IRF-1 and IRF-2) and is essential for its interactions with other IRF proteins. Here we show that the IAD is an independent module used by ICSBP and IRF-4 for protein-protein interactions. In addition, an IAD of IRF-2 (IAD2), necessary for interaction with ICSBP, was identified and found to be conserved in IRF-1. The IAD2 shares similar characteristics with the PEST domain that is essential for the interaction of PU.1 with IRF-4. We also show that the ICSBP DNA binding domain is indispensable for the formation of DNA binding heterocomplexes and transcriptional activity. Therefore, our results shed light on the molecular mechanisms that affect IRF activities in the immune system via discrete functional domains.
Collapse
Affiliation(s)
- David Meraro
- *Department of Food Engineering and Biotechnology, Technion, Haifa, Israel
| | - Sharon Hashmueli
- *Department of Food Engineering and Biotechnology, Technion, Haifa, Israel
| | - Belly Koren
- *Department of Food Engineering and Biotechnology, Technion, Haifa, Israel
| | - Aviva Azriel
- *Department of Food Engineering and Biotechnology, Technion, Haifa, Israel
| | - André Oumard
- †Department of Gene Regulation and Differentiation, Gesellschaft für Biotechnologische Forschung, Braunschweig, Germany; and
| | - Sabine Kirchhoff
- †Department of Gene Regulation and Differentiation, Gesellschaft für Biotechnologische Forschung, Braunschweig, Germany; and
| | - Hansjörg Hauser
- †Department of Gene Regulation and Differentiation, Gesellschaft für Biotechnologische Forschung, Braunschweig, Germany; and
| | - Sujatha Nagulapalli
- ‡Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Michael L. Atchison
- ‡Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104
| | - Ben-Zion Levi
- *Department of Food Engineering and Biotechnology, Technion, Haifa, Israel
| |
Collapse
|
71
|
Interferon Consensus Sequence Binding Protein and Interferon Regulatory Factor-4/Pip Form a Complex That Represses the Expression of the Interferon-Stimulated Gene-15 in Macrophages. Blood 1999. [DOI: 10.1182/blood.v94.12.4274] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractInterferon consensus sequence binding protein (ICSBP), a transcription factor of the interferon (IFN) regulatory factor (IRF) family, binds to the IFN-stimulated response element (ISRE) in the regulatory region of IFNs and IFN-stimulated genes (ISG). To identify target genes, which are deregulated by an ICSBP null-mutation in mice (ICSBP−/−), we have analyzed transcription of an ISRE-bearing gene, ISG15. We have found that although ISG15 expression is unchanged in B cells, it is upregulated in macrophages from ICSBP−/− mice. Three factors, ICSBP, IRF-2, and IRF-4/Pip interact with the ISRE in B cells, however only ICSBP and IRF-4/Pip were found to bind this sequence in macrophages of wild-type mice. Although IRF-4 was considered to be a lymphoid-specific factor, we provide evidence for its role in macrophage gene regulation. Our results suggest that the formation of cell-type–specific heteromeric complexes between individual IRFs plays a crucial role in regulating IFN responses.
Collapse
|
72
|
Interferon Consensus Sequence Binding Protein and Interferon Regulatory Factor-4/Pip Form a Complex That Represses the Expression of the Interferon-Stimulated Gene-15 in Macrophages. Blood 1999. [DOI: 10.1182/blood.v94.12.4274.424k05_4274_4281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interferon consensus sequence binding protein (ICSBP), a transcription factor of the interferon (IFN) regulatory factor (IRF) family, binds to the IFN-stimulated response element (ISRE) in the regulatory region of IFNs and IFN-stimulated genes (ISG). To identify target genes, which are deregulated by an ICSBP null-mutation in mice (ICSBP−/−), we have analyzed transcription of an ISRE-bearing gene, ISG15. We have found that although ISG15 expression is unchanged in B cells, it is upregulated in macrophages from ICSBP−/− mice. Three factors, ICSBP, IRF-2, and IRF-4/Pip interact with the ISRE in B cells, however only ICSBP and IRF-4/Pip were found to bind this sequence in macrophages of wild-type mice. Although IRF-4 was considered to be a lymphoid-specific factor, we provide evidence for its role in macrophage gene regulation. Our results suggest that the formation of cell-type–specific heteromeric complexes between individual IRFs plays a crucial role in regulating IFN responses.
Collapse
|
73
|
Finkelstein Y, Faktor O, Elroy-Stein O, Levi BZ. The use of bi-cistronic transfer vectors for the baculovirus expression system. J Biotechnol 1999; 75:33-44. [PMID: 10510857 DOI: 10.1016/s0168-1656(99)00131-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this communication, we describe the construction of bi-cistronic transfer vectors for the baculovirus expression system (BVES), which are advantageous over the existing vectors. The new vectors provide a simple way to isolate recombinant viruses. More specifically, the gene of interest and the reporter gene luciferase (LUC), constitute the first and second cistrons, respectively, of the same transcript. Therefore, the LUC activity measured during infection of such a bi-cistronic virus, permits an on-line estimation of the recombinant protein level, a very useful feature for large-scale production of recombinant proteins. To achieve expression of the second cistron, the internal ribosome entry site (IRES) element of the encephalomyocarditis virus (EMCV) was employed. However, this element, which is highly efficient in mammalian systems, did not promote efficient internal translation of the second cistron in various insect cells lines originating from different insect species. The lack of efficient internal translation was not due to baculovirus propagation since the same phenomenon was also observed in a viral-free expression system. It seems that a component essential for efficient EMCV IRES activity is either missing or present in limiting amount in insect cells or not compatible. Nevertheless, LUC placed downstream to the IRES element, or immediately downstream to the first cistron, was expressed to a level that enabled the biotechnological application it was designed for.
Collapse
Affiliation(s)
- Y Finkelstein
- Department of Food Engineering & Biotechnology, Technion, Haifa, Israel
| | | | | | | |
Collapse
|
74
|
Mamane Y, Heylbroeck C, Génin P, Algarté M, Servant MJ, LePage C, DeLuca C, Kwon H, Lin R, Hiscott J. Interferon regulatory factors: the next generation. Gene 1999; 237:1-14. [PMID: 10524230 DOI: 10.1016/s0378-1119(99)00262-0] [Citation(s) in RCA: 429] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Interferons are a large family of multifunctional secreted proteins involved in antiviral defense, cell growth regulation and immune activation. Viral infection induces transcription of multiple IFN genes, a response that is in part mediated by the interferon regulatory factors (IRFs). The initially characterized members IRF-1 and IRF-2 are now part of a growing family of transcriptional regulators that has expanded to nine members. The functions of the IRFs have also expanded to include distinct roles in biological processes such as pathogen response, cytokine signaling, cell growth regulation and hematopoietic development. The aim of this review is to provide an update on the novel discoveries in the area of IRF transcription factors and the important roles of the new generation of IRFs--particularly IRF-3, IRF-4 and IRF-7.
Collapse
Affiliation(s)
- Y Mamane
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Burýsek L, Yeow WS, Lubyová B, Kellum M, Schafer SL, Huang YQ, Pitha PM. Functional analysis of human herpesvirus 8-encoded viral interferon regulatory factor 1 and its association with cellular interferon regulatory factors and p300. J Virol 1999; 73:7334-42. [PMID: 10438822 PMCID: PMC104259 DOI: 10.1128/jvi.73.9.7334-7342.1999] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 8/Kaposi sarcoma-associated virus (HHV-8/KSHV) contains, in addition to genes required for viral replication, a unique set of nonstructural genes which may be part of viral mimicry and contribute to viral replication and pathogenesis in vivo. Among these, HHV-8 encodes four open reading frames (ORFs) that showed homology to the transcription factors of the interferon regulatory factor (IRF) family. The ORF K9, viral IRF 1 (vIRF-1), has been cloned, and it was shown that, when overexpressed, it down modulates the interferon-mediated transcriptional activation of the interferon-stimulated gene 15 (ISG 15) promoter, and the role of vIRF-1 in viral mimicry was implied. However, the molecular mechanism of this effect has not been clarified. Here, we extend this observation and show that vIRF-1 also downregulates the transcriptional activity of IFNA gene promoter in infected cells by interfering with the transactivating activity of cellular IRFs, including IRF-1 and IRF-3. We further show that ectopic expression of vIRF-1 in NIH 3T3 cells confers resistance to tumor necrosis factor alpha-induced apoptosis. While vIRF-1 is unable to bind DNA with the same specificity as cellular IRFs, we demonstrate by in vitro binding assay that it can associate with the family of cellular IRFs, such as IRF-1 and the interferon consensus sequence binding protein. vIRF-1 interaction domain was localized between amino acids (aa) 152 and 243. While no binding between the full-size IRF-3 and vIRF-1 could be detected by the same assay, we show that vIRF-1 also targets the carboxy-terminal region (aa 1623 to 2414) of the transcriptional coactivator p300 which could also bind IRF-3 and IRF-1. These results demonstrate that vIRF-1 can modulate the transcription of the IFNA genes by direct heterodimerization with members of the IRF family, as well as by competitive binding with cellular transcription factors to the carboxy-terminal region of p300.
Collapse
Affiliation(s)
- L Burýsek
- Oncology Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
Kim YM, Kang HS, Paik SG, Pyun KH, Anderson KL, Torbett BE, Choi I. Roles of IFN Consensus Sequence Binding Protein and PU.1 in Regulating IL-18 Gene Expression. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.4.2000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
IL-18 is expressed from a variety of cell types. Two promoters located upstream of exon 1 (5′-flanking region) and upstream of exon 2 (intron 1) regulate its expression. Both promoter regions were cloned into pCAT-Basic plasmid to yield p1-2686 for the 5′-flanking promoter and p2-2.3 for the intron 1 promoter. Both promoters showed basal constitutive activity and LPS inducibility when transfected into RAW 264.7 macrophages. To learn the regulatory elements of both promoters, 5′-serial deletion and site-directed mutants were prepared. For the activity of the p1-2686 promoter, the IFN consensus sequence binding protein (ICSBP) binding site between −39 and −22 was critical. EMSA using an oligonucleotide probe encompassing the ICSBP binding site showed that LPS treatment increased the formation of DNA binding complex. In addition, when supershift assays were performed, retardation of the protein-DNA complex was seen after the addition of anti-ICSBP Ab. For the activity of the p2-2.3 promoter, the PU.1 binding site between −31 and −13 was important. EMSA using a PU.1-specific oligonucleotide demonstrated that LPS treatment increased PU.1 binding activity. The addition of PU.1-specific Ab to LPS-treated nuclear extracts resulted in the formation of a supershifted complex. Furthermore, cotransfection of ICSBP or PU.1 expression vector increased p1 promoter activity or IL-18 expression, respectively. Taken together, these results indicate that ICSBP and PU.1 are critical elements for IL-18 gene expression.
Collapse
Affiliation(s)
- Yong-Man Kim
- *Immune Cell Signal Transduction RU, Korea Research Institute of Bioscience and Biotechnology, Taejon, Republic of Korea
| | - Hyung-Sik Kang
- *Immune Cell Signal Transduction RU, Korea Research Institute of Bioscience and Biotechnology, Taejon, Republic of Korea
| | - Sang-Gi Paik
- †Department of Biology, Chungnam National University, Taejon, Republic of Korea; and
| | - Kwang-Ho Pyun
- *Immune Cell Signal Transduction RU, Korea Research Institute of Bioscience and Biotechnology, Taejon, Republic of Korea
| | - Karen L. Anderson
- ‡Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037
| | - Bruce E. Torbett
- ‡Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037
| | - Inpyo Choi
- *Immune Cell Signal Transduction RU, Korea Research Institute of Bioscience and Biotechnology, Taejon, Republic of Korea
| |
Collapse
|
77
|
Gabriele L, Phung J, Fukumoto J, Segal D, Wang IM, Giannakakou P, Giese NA, Ozato K, Morse HC. Regulation of apoptosis in myeloid cells by interferon consensus sequence-binding protein. J Exp Med 1999; 190:411-21. [PMID: 10430629 PMCID: PMC2195590 DOI: 10.1084/jem.190.3.411] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mice with a null mutation of the gene encoding interferon consensus sequence-binding protein (ICSBP) develop a disease with marked expansion of granulocytes and macrophages that frequently progresses to a fatal blast crisis, thus resembling human chronic myelogenous leukemia (CML). One important feature of CML is decreased responsiveness of myeloid cells to apoptotic stimuli. Here we show that myeloid cells from mice deficient in ICSBP exhibit reduced spontaneous apoptosis and a significant decrease in sensitivity to apoptosis induced by DNA damage. In contrast, apoptosis in thymocytes from ICSBP-deficient mice is unaffected. We also show that overexpression of ICSBP in the human U937 monocytic cell line enhances the rate of spontaneous apoptosis and the sensitivity to apoptosis induced by etoposide, lipopolysaccharide plus ATP, or rapamycin. Programmed cell death induced by etoposide was specifically blocked by peptides inhibitory for the caspase-1 or caspase-3 subfamilies of caspases. Studies of proapoptotic genes showed that cells overexpressing ICSBP have enhanced expression of caspase-3 precursor protein. In addition, analyses of antiapoptotic genes showed that overexpression of ICSBP results in decreased expression of Bcl-X(L). These data suggest that ICSBP modulates survival of myeloid cells by regulating expression of apoptosis-related genes.
Collapse
Affiliation(s)
- L Gabriele
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-0760, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Salkowski CA, Kopydlowski K, Blanco J, Cody MJ, McNally R, Vogel SN. IL-12 Is Dysregulated in Macrophages from IRF-1 and IRF-2 Knockout Mice. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.3.1529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Macrophages derived from IFN-regulatory factor-1 (IRF-1) and IRF-2 knockout (−/−) and wild-type (+/+) mice were utilized to examine the role of these transcription factors in the regulation of IL-12 mRNA and protein expression. Induction of IL-12 p40 mRNA by LPS was markedly diminished in both IRF-1−/− and IRF-2−/− macrophages. In contrast, IRF-1−/−, but not IRF-2−/−, macrophages exhibited impaired LPS-induced IL-12 p35 mRNA expression. The ability of IFN-γ to augment LPS-induced IL-12 p40 mRNA further when both stimuli were present simultaneously was significantly diminished in both IRF-1−/− and IRF-2−/− macrophages, with the most profound impairment observed for IRF-1−/− macrophages. Reductions in IL-12 mRNA expression after stimulation with LPS or LPS plus IFN-γ were accompanied by substantial reductions in IL-12 p40 and IL-12 p70 protein in both IRF-1−/− and IRF-2−/− macrophages. Priming IRF-1−/− and IRF-2−/− macrophages with IFN-γ for 24 h before LPS treatment partially restored impaired IL-12 mRNA and protein production in both IRF-1−/− and IRF-2−/− macrophages. Depressed IL-12 levels were paralleled by significant reductions in IFN-γ mRNA expression in IRF-1−/− and IRF-2−/− macrophages. These results indicate that both IRF-1 and IRF-2 are critical transcription factors in the regulation of macrophage IL-12 and consequently IFN-γ production.
Collapse
Affiliation(s)
- Cindy A. Salkowski
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Karen Kopydlowski
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Jorge Blanco
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - M. Joshua Cody
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Ranney McNally
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Stefanie N. Vogel
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| |
Collapse
|
79
|
Kantakamalakul W, Politis AD, Marecki S, Sullivan T, Ozato K, Fenton MJ, Vogel SN. Regulation of IFN Consensus Sequence Binding Protein Expression in Murine Macrophages. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.12.7417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Recent work has demonstrated that the transcription factor, IFN consensus sequence binding protein (ICSBP), plays a critical role in the capacity of mice to control infection with Toxoplasma gondii and Leishmania major, agents that require highly activated macrophages for their elimination. In this report the regulation of ICSBP mRNA and protein were analyzed in murine macrophages stimulated with LPS and/or IFN-γ. Like induction of leishmaniacidal activity, LPS and IFN-γ synergize to induce ICSBP mRNA and protein. Deletion analysis of the ICSBP promoter identified regions that were IFN-γ responsive, regions that mediate the ability of LPS and IFN-γ to activate this promoter synergistically, as well as regions that normally repress ICSBP transcription. Finally, exogenous expression of ICSBP, found in previous studies to down-regulate MHC I gene expression, failed to repress basal or IFN-γ-induced ICSBP transcription. This demonstrates that ICSBP can selectively suppress the expression of IFN-responsive genes. These findings extend in a significant way our understanding of the regulation of ICSBP by LPS and IFN-γ and provide important clues as to its role in macrophage activation.
Collapse
Affiliation(s)
- Wannee Kantakamalakul
- *Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Alexander D. Politis
- *Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Sylvia Marecki
- †Pulmonary Center and Department of Pathology, Boston University School of Medicine, Boston, MA 02118; and
| | - Teri Sullivan
- *Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Keiko Ozato
- ‡National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Matthew J. Fenton
- †Pulmonary Center and Department of Pathology, Boston University School of Medicine, Boston, MA 02118; and
| | - Stefanie N. Vogel
- *Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| |
Collapse
|
80
|
Searles RP, Bergquam EP, Axthelm MK, Wong SW. Sequence and genomic analysis of a Rhesus macaque rhadinovirus with similarity to Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J Virol 1999; 73:3040-53. [PMID: 10074154 PMCID: PMC104064 DOI: 10.1128/jvi.73.4.3040-3053.1999] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/1998] [Accepted: 01/11/1999] [Indexed: 11/20/2022] Open
Abstract
We have sequenced the long unique region (LUR) and characterized the terminal repeats of the genome of a rhesus rhadinovirus (RRV), strain 17577. The LUR as sequenced is 131,364 bp in length, with a G+C content of 52.2% and a CpG ratio of 1.11. The genome codes for 79 open reading frames (ORFs), with 67 of these ORFs similar to genes found in both Kaposi's sarcoma-associated herpesvirus (KSHV) (formal name, human herpesvirus 8) and herpesvirus saimiri. Eight of the 12 unique genes show similarity to genes found in KSHV, including genes for viral interleukin-6, viral macrophage inflammatory protein, and a family of viral interferon regulatory factors (vIRFs). Genomic organization is essentially colinear with KSHV, the primary differences being the number of cytokine and IRF genes and the location of the gene for dihydrofolate reductase. Highly repetitive sequences are located in positions corresponding to repetitive sequences found in KSHV. Phylogenetic analysis of several ORFs supports the similarity between RRV and KSHV. Overall, the sequence, structural, and phylogenetic data combine to provide strong evidence that RRV 17577 is the rhesus macaque homolog of KSHV.
Collapse
Affiliation(s)
- R P Searles
- Division of Pathobiology and Immunology, Oregon Health Sciences University/Oregon Regional Primate Research Center, Beaverton, Oregon 97006, USA
| | | | | | | |
Collapse
|
81
|
Hiscott J, Pitha P, Genin P, Nguyen H, Heylbroeck C, Mamane Y, Algarte M, Lin R. Triggering the interferon response: the role of IRF-3 transcription factor. J Interferon Cytokine Res 1999; 19:1-13. [PMID: 10048763 DOI: 10.1089/107999099314360] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The interferon (IFN) regulatory factors (IRF) consist of a growing family of related transcription proteins first identified as regulators of the IFN-alpha/beta gene promoters, as well as the IFN-stimulated response element (ISRE) of some IFN-stimulated genes. IRF-3 was originally identified as a member of the IRF family based on homology with other IRF family members and on binding to the ISRE of the IFN-stimulated gene 15 (ISG15) promoter. Several recent studies have focused attention on the unique molecular properties of IRF-3 and its role in the regulation of IFN gene expression. IRF-3 is expressed constitutively in a variety of tissues, and the relative levels of IRF-3 mRNA do not change in virus-infected or IFN-treated cells. Following virus infection, IRF-3 is posttranslationally modified by protein phosphorylation at multiple serine and threonine residues, located in the carboxy-terminus of IRF-3. Phosphorylation causes the cytoplasmic to nuclear translocation of IRF-3, stimulation of DNA binding, and increased transcriptional activation, mediated through the association of IRF-3 with the CBP/p300 coactivator. The purpose of this review is to summarize recent investigations demonstrating the important role of IRF-3 in cytokine gene transcription. These studies provide the framework for a model in which virus-dependent phosphorylation of IRF-3 alters protein conformation to permit nuclear translocation, association with transcriptional partners, and primary activation of IFN and IFN-responsive genes.
Collapse
Affiliation(s)
- J Hiscott
- Lady Davis Institute for Medical Research, Department of Microbiology and Immunology, McGill University, Montreal, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Feigenblum D, Walker R, Schneider RJ. Adenovirus induction of an interferon-regulatory factor during entry into the late phase of infection. J Virol 1998; 72:9257-66. [PMID: 9765473 PMCID: PMC110345 DOI: 10.1128/jvi.72.11.9257-9266.1998] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus infection of animal cells can induce intracellular antiviral responses mediated by the induction of interferon-regulatory transcription factors (IRFs), which bind to and control genes directed by the interferon-stimulated response element (ISRE). The purpose of this study was to determine whether adenovirus (Ad) induces IRFs during infection, because they might play a role in promoting viral pathogenesis. Here we show that after the late phase of infection, Ad induces a transcription factor related to the IRF family of factors. The IRF is induced shortly after Ad entry into late phase and is shown to stimulate ISRE-directed transcription, to require activation by protein tyrosine kinase signalling, and to be induced several hours prior to the inhibition of cell protein synthesis. Inhibition of tyrosine kinase activity blocks Ad induction and activation of the IRF. Attempts to identify the Ad-induced factor immunologically and by photo-UV cross-linking indicate that it is likely a novel member of the IRF family. Finally, several independent lines of evidence also suggest that Ad induction of the IRF might correlate with the ability of the virus to block host cell protein synthesis later during infection.
Collapse
Affiliation(s)
- D Feigenblum
- Department of Biochemistry and Microbiology, Kaplan Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
83
|
Juang YT, Lowther W, Kellum M, Au WC, Lin R, Hiscott J, Pitha PM. Primary activation of interferon A and interferon B gene transcription by interferon regulatory factor 3. Proc Natl Acad Sci U S A 1998; 95:9837-42. [PMID: 9707562 PMCID: PMC21423 DOI: 10.1073/pnas.95.17.9837] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The family of interferon (IFN) regulatory factors (IRFs) encodes DNA-binding transcription factors, some of which function as modulators of virus-induced signaling. The IRF-3 gene is constitutively expressed in many tissues and cell types, and neither virus infection nor IFN treatment enhances its transcription. In infected cells, however, IRF-3 protein is phosphorylated at the carboxyl terminus, which facilitates its binding to the CBP/p300 coactivator. In the present study, we demonstrate that overexpression of IRF-3 significantly enhances virus-mediated transcription of the IFNA and IFNB genes in infected cells as well as IFN synthesis. IRF-3-mediated activation of IFN genes depends in part on carboxyl-terminal phosphorylation of a cluster of Ser/Thr residues, because a mutant with Ser/Thr to Ala substitutions activates the IFN promoter less efficiently. However, overexpression of IRF-3 in human 2FTGH cells alone results in the induction of an antiviral state, which depends on functional IFN signaling, because IRF-3 does not induce an antiviral state in mutant 2FTGH cells defective in either JAK-1 or p48 functions; also no antiviral effect of IRF-3 could be demonstrated in Vero cells that lack the IFNA and IFNB genes. This finding indicates that the observed antiviral activity of IRF-3 in 2FTGH cells results mainly from the induction of IFNs. Furthermore, E1A protein inhibited IRF-3-mediated stimulation of the IFNA4 promoter in transient expression assays; this inhibition could be reversed partially by overexpression of CBP/p300 and was not demonstrated with the mutant of E1A that does not bind p300. These results identify IRF-3 and CBP/p300 as integral components of the virus-induced complex that stimulates type 1 IFN gene transcription. The observation that adenovirus E1A antagonizes IRF-3 mediated activation suggests that E1A and IRF-3 may compete for binding to CBP/p300 and implicates a novel mechanism by which adenovirus may overcome the antiviral effects of the IFN pathway.
Collapse
Affiliation(s)
- Y T Juang
- Oncology Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Interferon regulatory factor 1 (IRF-1) is a transcriptional activator which exerts different biological activities. IRF-1 activates interferon induced genes as well as genes which are not directly linked to the interferon system, such as the ICE protease gene. IRF-1 activity is post-transcriptionally regulated in addition to transcriptional regulation by interferons, cytokines, hormones and many other factors. This includes heterodimerisation with activators and repressors of transcription. These protein interactions modulate the transactivating capacity of IRF-1. By using a two-hybrid system, we demonstrate that IRF-1 forms homodimers in vivo. The homodimerization domain was determined to be located in the N-terminal part of IRF-1 which belongs to the DNA-binding domain. Since this sequence is highly conserved between members of the IRF-family, our observation raises the question of homodimerization of other IRFs through this domain.
Collapse
Affiliation(s)
- S Kirchhoff
- Department of Gene Regulation and Differentiation, GBF-National Research Institute for Biotechnology, Braunschweig, Germany
| | | | | | | |
Collapse
|
85
|
Pitha PM, Au WC, Lowther W, Juang YT, Schafer SL, Burysek L, Hiscott J, Moore PA. Role of the interferon regulatory factors (IRFs) in virus-mediated signaling and regulation of cell growth. Biochimie 1998; 80:651-8. [PMID: 9865487 DOI: 10.1016/s0300-9084(99)80018-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As a response to viral infection, cells express the early inflammatory genes that encode small proteins generally called cytokines or chemokines. These protein can activate immune responses to viral infection as well as to modulate directly the outcome of viral infection. The group of proteins with the direct antiviral effects have been called interferons. The stimulation of interferon synthesis in infected cells is regulated on a transcriptional level and two families of cellular transcriptional factors seem to play a critical role in the transcriptional activation of interferon genes. The first one are the proteins of NF-kappaB family and the second is the family of the interferon responsive factors. While both of the types of the transcriptional factors are important for the induction of interferon beta gene, the NF-kappaB factor do not seems to participate in the induction of interferon alpha genes. The present review is focused on the recently identified new members of cellular IRF family and their role in virus mediated response, responses and cell growth. In addition the HHV-8 encoded vIRFs are described.
Collapse
Affiliation(s)
- P M Pitha
- Oncology Center and Department of Molecular Biology & Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
Transcriptional regulation is a consequence of the combination of both activation and repression for establishing specific patterns of eukaryotic gene expression. The regulation of the expression of type I interferon (IFN-A and IFN-B) multigene family is controlled primarily at the transcriptional level and has been widely studied as a model for understanding the mechanisms of stable repression, transient virus induction and postinduction repression of the genes. The positive and negative regulatory elements required for this on/off switch have been defined within a complex 5' upstream region of their transcription start site. The differential expression pattern of type I IFN genes is thought to involve both substitutions in the virus responsive element (VRE) and presence or absence of negatively acting sequences surrounding the VRE. In this review we discuss several mechanisms of negative regulation due to the existence of common or specific elements in the IFN-B and IFN-A genes and we summarize recent studies on transcriptional repressors that bind to these promoters.
Collapse
Affiliation(s)
- S Lopez
- Laboratoire de Régulation de l'Expression des Genes Eucaryotes, CNRS, UPR 37, UFR Biomédicale des Saints-Pères, Université René-Descartes, Paris, France
| | | |
Collapse
|
87
|
Yee AA, Yin P, Siderovski DP, Mak TW, Litchfield DW, Arrowsmith CH. Cooperative interaction between the DNA-binding domains of PU.1 and IRF4. J Mol Biol 1998; 279:1075-83. [PMID: 9642085 DOI: 10.1006/jmbi.1998.1838] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The two lymphoid-specific transcription factors PU.1 and IRF4 form a cooperative ternary complex at immunoglobulin enhancer elements such as the lambdaB and kappaE3' sites. We report here that the synergy of this interaction can be reconstituted in part with the DNA-binding domains of the two proteins. The minimal DNA binding-domain of IRF4 was mapped to residues 20 to 137, corresponding to the conserved DNA-binding region of other interferon regulatory factors (IRFs). This domain can bind weakly to a synthetic murine lambdaB element, while IRF4 constructs that contain residues 1 to 19 require the presence of PU.1 for DNA-binding at similar concentrations. Fluorescence polarization of fluorescein-labelled DNA was used to show that the presence of residues 1 to 19 decreases the binding affinity of IRF4 N-terminal constructs from two- to fivefold. However, all constructs bound better to the lambdaB element in the presence of the DNA-binding domain of PU.1. This cooperative interaction was not dependent on phosphorylation of the PEST domain of PU.1, but was dependent on the proper spacing of the binding sites for PU.1 and IRF4. These data suggest that at least part of the cooperative interaction between full-length PU.1 and IRF4 involves the DNA-binding domains of the two proteins. NMR spectroscopy of 15N-labelled PU.1 and IRF4 constructs indicates that the PEST domain of PU.1 and residues 1 to 19 of IRF4 may be unstructured in the isolated proteins.
Collapse
Affiliation(s)
- A A Yee
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada
| | | | | | | | | | | |
Collapse
|
88
|
Matikainen S, Lehtonen A, Sareneva T, Julkunen I. Regulation of IRF and STAT gene expression by retinoic acid. Leuk Lymphoma 1998; 30:63-71. [PMID: 9669677 DOI: 10.3109/10428199809050930] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Retinoic acid has antiproliferative and differentiative effects on many cell types. However, the molecular mechanisms involved in ATRA (all-trans retinoic acid) -dependent growth inhibition and cell differentiation are poorly understood. On the other hand, several different cytokine specific transcription factors such as signal transducers and activators of transcription (STAT) and interferon regulatory factors (IRF) are known to be instrumental in mediating differentiative, growth regulatory and antiproliferative effects in cells. The IRF family consists of six different proteins, of which IRF-1 has been demonstrated to have antiproliferative and tumor suppressive functions. We have shown that ATRA activates IRF-1 gene expression in several myeloid leukemia cell lines (HL-60, NB4, THP-1, U937), all of which respond to ATRA by growth inhibition. In addition, during ATRA-induced myeloid differentiation, gene expression of STAT1, STAT2, and p48 was upregulated. These proteins are involved in IFN-alpha specific signaling. ATRA-induced expression of IRF and/or STAT transcription factors may be one of the molecular mechanisms mediating growth inhibition by ATRA.
Collapse
Affiliation(s)
- S Matikainen
- Department of Virology, National Public Health Institute, Helsinki, Finland.
| | | | | | | |
Collapse
|
89
|
Flowers CC, Flowers SP, Nabel GJ. Kaposi’s Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor Confers Resistance to the Antiproliferative Effect of Interferon-α. Mol Med 1998. [DOI: 10.1007/bf03401747] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
90
|
Eklund EA, Jalava A, Kakar R. PU.1, interferon regulatory factor 1, and interferon consensus sequence-binding protein cooperate to increase gp91(phox) expression. J Biol Chem 1998; 273:13957-65. [PMID: 9593745 DOI: 10.1074/jbc.273.22.13957] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
gp91(phox) is a subunit of the phagocyte respiratory burst oxidase catalytic unit. Transcription of CYBB, the gene encoding gp91(phox), is restricted to terminally differentiated phagocytic cells. An element in the proximal CYBB promoter binds a protein complex, referred to as hematopoiesis-associated factor (HAF1), that is necessary for interferon-gamma (IFNgamma)-induced gp91(phox) expression. In these investigations, we determined that HAF1 was a multiprotein complex, cross-immunoreactive with the transcription factors PU.1, interferon regulatory factor 1 (IRF-1), and interferon consensus sequence-binding protein (ICSBP). In electrophoretic mobility shift assay, the HAF1 complex was reconstituted by either in vitro translated PU.1 with IRF-1 or PU.1 with ICSBP, but not by IRF-1 with ICSBP. HAF1a, a slower mobility complex with the same binding site specificity as HAF1, was also investigated. Similar to the HAF1 complex, the HAF1a complex was cross-immunoreactive with PU. 1, IRF-1, and ICSBP. Unlike the HAF1 complex, reconstitution of the HAF1a complex required in vitro translated PU.1 with both IRF-1 and ICSBP. An artificial promoter construct containing the HAF1/HAF1a binding site was modestly activated in the myelomonocytic cell line U937 by co-transfection either with PU.1 and IRF-1 or with PU.1 and ICSBP, but it was strongly activated by co-transfection with PU.1, IRF-1, and ICSBP. This activation required serine 148-phosphorylated PU.1. These studies describe a novel mechanism for PU.1 transcriptional activation via interaction with both IRF-1 and ICSBP, a target gene for the interaction of IRF-1 with ICSBP, and a novel activation function for ICSBP as a component of a multiprotein complex.
Collapse
Affiliation(s)
- E A Eklund
- Lurleen B. Wallace Tumor Institute, Department of Hematology and Oncology and the Comprehensive Cancer Center, University of Alabama at Birmingham and the Birmingham Veterans Administration Hospital, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
91
|
Lin R, Heylbroeck C, Pitha PM, Hiscott J. Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol Cell Biol 1998; 18:2986-96. [PMID: 9566918 PMCID: PMC110678 DOI: 10.1128/mcb.18.5.2986] [Citation(s) in RCA: 776] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The interferon regulatory factors (IRF) consist of a growing family of related transcription proteins first identified as regulators of the alpha beta interferon (IFN-alpha/beta) gene promoters, as well as the interferon-stimulated response element (ISRE) of some IFN-stimulated genes. IRF-3 was originally identified as a member of the IRF family based on homology with other IRF family members and on binding to the ISRE of the ISG15 promoter. IRF-3 is expressed constitutively in a variety of tissues, and the relative levels of IRF-3 mRNA do not change in virus-infected or IFN-treated cells. In the present study, we demonstrate that following Sendai virus infection, IRF-3 is posttranslationally modified by protein phosphorylation at multiple serine and threonine residues, which are located in the carboxy terminus of IRF-3. A combination of IRF-3 deletion and point mutations localized the inducible phosphorylation sites to the region -ISNSHPLSLTSDQ- between amino acids 395 and 407; point mutation of residues Ser-396 and Ser-398 eliminated virus-induced phosphorylation of IRF-3 protein, although residues Ser-402, Thr-404, and Ser-405 were also targets. Phosphorylation results in the cytoplasm-to-nucleus translocation of IRF-3, DNA binding, and increased transcriptional activation. Substitution of the Ser-Thr sites with the phosphomimetic Asp generated a constitutively active form of IRF-3 that functioned as a very strong activator of promoters containing PRDI-PRDIII or ISRE regulatory elements. Phosphorylation also appears to represent a signal for virus-mediated degradation, since the virus-induced turnover of IRF-3 was prevented by mutation of the IRF-3 Ser-Thr cluster or by proteasome inhibitors. Interestingly, virus infection resulted in the association of IRF-3 with the CREB binding protein (CBP) coactivator, as detected by coimmunoprecipitation with anti-CBP antibody, an interaction mediated by the C-terminal domains of both proteins. Mutation of residues Ser-396 and Ser-398 in IRF-3 abrogated its binding to CBP. These results are discussed in terms of a model in which virus-inducible, C-terminal phosphorylation of IRF-3 alters protein conformation to permit nuclear translocation, association with transcriptional partners, and primary activation of IFN- and IFN-responsive genes.
Collapse
Affiliation(s)
- R Lin
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
92
|
Dosch E, Zöller B, Redmann-Müller I, Nanda I, Schmid M, Viciano-Gofferge A, Jungwirth C. The genomic structure of the chicken ICSBP gene and its transcriptional regulation by chicken interferon. Gene X 1998; 210:265-75. [PMID: 9573381 DOI: 10.1016/s0378-1119(98)00063-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The chicken interferon consensus sequence binding protein (ChICSBP) gene spans over 9 kb of DNA and consists, as its murine homolog, of nine exons. The first untranslated exon was identified by 5'-RACE technology. The second exon contains the translation initiation codon. Canonical consensus splice sites are found on every exon/intron junction. The introns are generally smaller than their mammalian counterparts. The ChICSBP and ChIRF-1 genes have been mapped by fluorescence in situ hybridization to different microchromosomes. The transcription start site has been mapped by primer extension. Inspection of the DNA sequence of a genomic clone containing the first exon and the region 1700-bp upstream revealed several potential cisregulatory elements of transcription. The ChICSBP mRNA is induced by recombinant ChIFN type I and ChIFN-gamma. A palindromic IFN regulatory element (pIRE) with high sequence homology to gamma activation site (GAS) sequences was functionally required in transient transfection assays for the induction of transcription by ChIFN-gamma.
Collapse
Affiliation(s)
- E Dosch
- Institute for Virology and Immunobiology, University of Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
93
|
Schafer SL, Lin R, Moore PA, Hiscott J, Pitha PM. Regulation of type I interferon gene expression by interferon regulatory factor-3. J Biol Chem 1998; 273:2714-20. [PMID: 9446577 DOI: 10.1074/jbc.273.5.2714] [Citation(s) in RCA: 239] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The genes of the family of interferon (IFN) regulatory factors (IRF) encode DNA binding transcriptional factors that are involved in modulation of transcription of IFN and interferon-induced genes (ISG). The presence of IRF binding sites in the promoter region of IFNA and IFNB genes indicates that IRF factors recognizing these sites play an important role in the virus-mediated induction of these genes. We have described a novel human gene of this family, IRF-3, that is constitutively expressed in a variety of cell types. IRF-3 binds to the interferon-sensitive response element (ISRE) present in the ISG15 gene promoter and activates its transcriptional activity. In the present study, we examined whether IRF-3 can modulate transcriptional activity of IFNA and IFNB promoter regions. Our results demonstrate that IRF-3 can bind to the IRF-like binding sites present in the virus-inducible region of the IFNA4 promoter and to the PRDIII region of the IFNB promoter but cannot alone stimulate their transcriptional activity in the human cell line, 293. However, the fusion protein generated from the IRF-3 binding domain and the RelA(p65) activation domain effectively activates both IFNA4 and IFNB promoters. Cotransfection of IRF-3 and RelA(p65) expression plasmids activates the IFNB gene promoter but not the promoter of IFNA4 gene that does not contain the NF-kB binding site. Surprisingly, activation of the IFNA4 gene promoter by virus and IRF-1 in these cells was inhibited by IRF-3. These data indicate that in 293 cells IRF-3 does not stimulate expression of IFN genes but can cooperate with RelA(p65) to stimulate the IFNB promoter.
Collapse
Affiliation(s)
- S L Schafer
- Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21231, USA
| | | | | | | | | |
Collapse
|
94
|
Abstract
Interferon consensus sequence binding protein (ICSBP) was first identified as a transcription factor of the interferon (IFN) regulatory factor family (IRF) which regulates expression of IFN-dependent genes by binding to DNA at specific sites, IFN-stimulated responsive elements. Analysis of ICSBP-deficient mice showed hematologic alterations similar to chronic myelogenous leukemia (CML) in humans and suggested a novel role for ICSBP in regulating proliferation and differentiation of hematopoietic progenitor cells. Here we show that ICSBP-mRNA expression is impaired in human myeloid leukemias: 27 of 34 CML patients (79%) and 21 of 32 patients with acute myeloid leukemia (AML) (66%) showed very low or absent transcript numbers of ICSBP. In contrast, only 2 of 33 normal volunteers (6%) showed low transcription of ICSBP(P < .0001 both for CML and AML values). The lack of expression was not associated with lack of lymphatic cells, which normally have been shown to express ICSBP at the highest level. More detailed analysis showed an absence of ICSBP-mRNA also in sorted B cells derived from CML patients. To analyze whetherICSBP may be induced in leukemic cells, ex vivoexperiments using a known inducer of ICSBP, IFN-γ, were performed. Ex vivo treatment of primary CML cells using IFN-γ resulted in induction of ICSBP transcripts. Furthermore, samples of CML patients during IFN-α treatment were analyzed. In 11 of 12 CML patients ICSBP-mRNA was inducible upon in vivo treatment with IFN-α, but decreased with progression of CML. Stable transfection of K-562 cell line with ICSBP led to no difference in bcr-abl expression in vitro, although two patients showed an inverse correlation between bcr-abl andICSBP in vivo. These data suggest that lack of ICSBPmay have an important role also in human myeloid leukemogenesis.
Collapse
|
95
|
Abstract
Interferon alpha (IFN-α) is a mixture of closely related proteins, termed “subtypes,” expressed from distinct chromosomal genes. Interferon β (IFN-β) is a single protein species and is molecularly related to IFN-α subtypes, although it is antigenically distinct from them. IFN omega (IFN-ω) is antigenically distinct from IFN-α and IFN-β but is molecularly related to both. The genes of three IFN subtypes are tandemly arranged on the short arm of chromosome 9. They are transiently expressed following induction by various exogenous stimuli, including viruses. They are synthesized from their respective mRNAs for relatively short periods following gene activation and are secreted to act, via specific cell surface receptors, on other cells. IFN-α subtypes are secreted proteins and as such are transcribed from mRNAs as precursor proteins, pre-IFN-α, containing N-terminal signal polypeptides of 23 hydrophobic amino acids (aa) mainly. Pre-IFN-β contains 187 aa, of which 21 comprise the N-terminal signal polypeptide and 166 comprise the mature IFN-β protein. IFN-ω contains 195 aa—the N-terminal 23 comprising the signal sequence and the remaining 172, the mature IFN-ω protein. At the C-terminus, the aa sequence of IFN-ω is six residues longer than that of IFN-α or IFN-β proteins. IFN-α, as a mixture of subtypes, and IFN-ω may be produced together following viral infection of null lymphocytes or monocytes/macrophages. The biological activities of IFNs are mostly dependent upon protein synthesis with selective subsets of proteins mediating individual activities. IFNs can also stimulate indirect antiviral and antitumor mechanisms, depending upon cellular differentiation and the induction of cytotoxic activity.
Collapse
|
96
|
Lack of Interferon Consensus Sequence Binding Protein (ICSBP) Transcripts in Human Myeloid Leukemias. Blood 1998. [DOI: 10.1182/blood.v91.1.22] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractInterferon consensus sequence binding protein (ICSBP) was first identified as a transcription factor of the interferon (IFN) regulatory factor family (IRF) which regulates expression of IFN-dependent genes by binding to DNA at specific sites, IFN-stimulated responsive elements. Analysis of ICSBP-deficient mice showed hematologic alterations similar to chronic myelogenous leukemia (CML) in humans and suggested a novel role for ICSBP in regulating proliferation and differentiation of hematopoietic progenitor cells. Here we show that ICSBP-mRNA expression is impaired in human myeloid leukemias: 27 of 34 CML patients (79%) and 21 of 32 patients with acute myeloid leukemia (AML) (66%) showed very low or absent transcript numbers of ICSBP. In contrast, only 2 of 33 normal volunteers (6%) showed low transcription of ICSBP(P < .0001 both for CML and AML values). The lack of expression was not associated with lack of lymphatic cells, which normally have been shown to express ICSBP at the highest level. More detailed analysis showed an absence of ICSBP-mRNA also in sorted B cells derived from CML patients. To analyze whetherICSBP may be induced in leukemic cells, ex vivoexperiments using a known inducer of ICSBP, IFN-γ, were performed. Ex vivo treatment of primary CML cells using IFN-γ resulted in induction of ICSBP transcripts. Furthermore, samples of CML patients during IFN-α treatment were analyzed. In 11 of 12 CML patients ICSBP-mRNA was inducible upon in vivo treatment with IFN-α, but decreased with progression of CML. Stable transfection of K-562 cell line with ICSBP led to no difference in bcr-abl expression in vitro, although two patients showed an inverse correlation between bcr-abl andICSBP in vivo. These data suggest that lack of ICSBPmay have an important role also in human myeloid leukemogenesis.
Collapse
|
97
|
Abstract
This article discusses briefly the molecular consequences of the BCR-ABL fusion gene. It then reviews the current evidence supporting the notion that chronic myelogenous leukemia in its chronic phase is a clonal, hematopoietic, stem cell disease in which malignant hematopoietic stem and progenitor cells respond to "normal" external proliferation and differentiation stimuli, but in which such responses are altered owing to defects in the stem and progenitor cells as a result of the BCR-ABL oncogene.
Collapse
MESH Headings
- Cell Adhesion
- Cell Division
- Cytokines/pharmacology
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/pathology
- Humans
- Immunophenotyping
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/pathology
Collapse
Affiliation(s)
- C M Verfaillie
- Department of Medicine, University of Minnesota, Minneapolis, USA
| |
Collapse
|
98
|
Abstract
Interferons (IFN) exert their multiple biological effects through the induction of expression of over 30 genes encoding proteins with antiviral, antiproliferative and immunomodulatory functions. Among the many IFN-inducible proteins are the Interferon Regulatory Factors (IRFs), a family of transcription regulators, originally consisting of the well-characterized IRF-1 and IRF-2 proteins; the family has now expanded to over 10 members and is still growing. The present review provides a detailed description of recently characterized IRF family members. Studies analyzing IRF-expressing cell lines and IRF knockout mice reveal that each member of the IRF family exerts distinct roles in biological processes such as pathogen response, cytokine signalling, cell growth regulation and hematopoietic development. Understanding the molecular mechanisms by which the IRFs affect these important cellular events and IFN expression will contribute to a greater understanding of events leading to various viral, immune and malignant disease states and will suggest novel strategies for antiviral and immune modulatory therapy.
Collapse
Affiliation(s)
- H Nguyen
- Lady Davis Institute for Medical Research, Department of Microbiology and Immunology, McGill University, Montreal, Québec, Canada
| | | | | |
Collapse
|
99
|
Giese NA, Gabriele L, Doherty TM, Klinman DM, Tadesse-Heath L, Contursi C, Epstein SL, Morse HC. Interferon (IFN) consensus sequence-binding protein, a transcription factor of the IFN regulatory factor family, regulates immune responses in vivo through control of interleukin 12 expression. J Exp Med 1997; 186:1535-46. [PMID: 9348311 PMCID: PMC2199114 DOI: 10.1084/jem.186.9.1535] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mice with a null mutation of the gene encoding interferon consensus sequence-binding protein (ICSBP) develop a chronic myelogenous leukemia-like syndrome and mount impaired responses to certain viral and bacterial infections. To gain a mechanistic understanding of the contributions of ICSBP to humoral and cellular immunity, we characterized the responses of control and ICSBP-/- mice to infection with influenza A (flu) and Leishmania major (L. major). Mice of both genotypes survived infections with flu, but differed markedly in the isotype distribution of antiflu antibodies. In sera of normal mice, immunoglobulin (Ig)G2a antibodies were dominant over IgG1 antibodies, a pattern indicative of a T helper cell type 1 (Th1)-driven response. In sera of ICSBP-/- mice, however, IgG1 antibodies dominated over IgG2a antibodies, a pattern indicative of a Th2-driven response. The dominance of IgG1 and IgE over IgG2a was detected in the sera of uninfected mice as well. A seeming Th2 bias of ICSBP-deficient mice was also uncovered in their inability to control infection with L. major, where resistance is known to be dependent on IL-12 and IFN-gamma as components of a Th1 response. Infected ICSBP-deficient mice developed fulminant, disseminated leishmaniasis as a result of failure to mount a Th1-mediated curative response, although T cells remained capable of secreting IFN-gamma and macrophages of producing nitric oxide. Compromised Th1 differentiation in ICSBP-/- mice could not be attributed to hyporesponsiveness of CD4(+) T cells to interleukin (IL)-12; however, the ability of uninfected and infected ICSBP-deficient mice to produce IL-12 was markedly impaired. This indicates that ICSBP is a deciding factor in Th responses governing humoral and cellular immunity through its role in regulating IL-12 expression.
Collapse
Affiliation(s)
- N A Giese
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0760, USA.
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Nonkwelo C, Ruf IK, Sample J. Interferon-independent and -induced regulation of Epstein-Barr virus EBNA-1 gene transcription in Burkitt lymphoma. J Virol 1997; 71:6887-97. [PMID: 9261415 PMCID: PMC191971 DOI: 10.1128/jvi.71.9.6887-6897.1997] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Replication of the Epstein-Barr virus (EBV) genome within latently infected cells is dependent on the EBV EBNA-1 protein. The objective of this study was to identify transcriptional regulatory proteins that mediate EBNA-1 expression via the viral promoter Qp, which is active in EBV-associated tumors such as Burkitt lymphoma and nasopharyngeal carcinoma. Results of a yeast one-hybrid screen suggested that a subset of the interferon regulatory factor (IRF) family may regulate EBNA-1 transcription by targeting an essential cis-regulatory element of Qp, QRE-2. Further investigation indicated that the transcriptional activator IRF-1 and the closely related IRF-2, a repressor of interferon-induced gene expression, are both capable of activating Qp. However, the major QRE-2-specific binding activity detected within extracts of Burkitt lymphoma cells was attributed to IRF-2, suggesting that interferon-independent activation of Qp is largely mediated by IRF-2 in these cells. We observed no effect of gamma interferon on Qp activity in transfection assays, whereas we observed a moderate but significant repression of Qp activity in response to alpha interferon, possibly mediated by either the interferon consensus sequence binding protein or IRF-7, a novel alpha interferon-inducible factor identified in this study. Since expression of IRF-1 and IRF-2 is increased in response to interferons, the Qp activity observed in the presence of interferon likely represented an equilibrium between IRF factors that activate and those that repress gene expression in response to interferon. Thus, by usurping both IRF-1 and its transcriptional antagonist IRF-2 to activate Qp, EBV has evolved not only a mechanism to constitutively express EBNA-1 but also one which may sustain EBNA-1 expression in the face of the antiviral effects of interferon.
Collapse
Affiliation(s)
- C Nonkwelo
- Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | |
Collapse
|