51
|
Reversal of age-associated cognitive deficits is accompanied by increased plasticity-related gene expression after chronic antidepressant administration in middle-aged mice. Pharmacol Biochem Behav 2015; 135:70-82. [DOI: 10.1016/j.pbb.2015.05.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/07/2015] [Accepted: 05/22/2015] [Indexed: 12/22/2022]
|
52
|
Diene Valepotriates from Valeriana glechomifolia Prevent Lipopolysaccharide-Induced Sickness and Depressive-Like Behavior in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:145914. [PMID: 26170871 PMCID: PMC4480249 DOI: 10.1155/2015/145914] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/24/2015] [Accepted: 05/26/2015] [Indexed: 01/22/2023]
Abstract
Valeriana glechomifolia, a native species from southern Brazil, presents antidepressant-like activity and diene valepotriates (VAL) contribute to the pharmacological properties of the genus. It is known that depression can develop on an inflammation background in vulnerable patients and antidepressants present anti-inflammatory properties. We investigated the effects of VAL (10 mg/kg, p.o.) on sickness and depressive-like behaviors as well as proinflammatory cytokines (IL-1β and TNF-α) and BDNF expression in the cortex of mice exposed to a 5 min swimming session (as a stressful stimulus) 30 min before the E. coli LPS injection (600 µg/kg, i.p.). The forced swim + LPS induced sickness and depressive-like behaviors, increased the cortical expression of IL-1β and TNF-α, and decreased BDNF expression. VAL was orally administered to mice 1 h before (pretreatment) or 5 h after (posttreatment) E. coli LPS injection. The pretreatment with VAL restored the behavioral alterations and the expression of cortical proinflammatory cytokines in LPS-injected animals but had no effects on BDNF expression, while the posttreatment rescued only behavioral alterations. Our results demonstrate for the first time the positive effects of VAL in an experimental model of depression associated with inflammation, providing new data on the range of action of these molecules.
Collapse
|
53
|
Downs CA, Faulkner MS. Toxic stress, inflammation and symptomatology of chronic complications in diabetes. World J Diabetes 2015; 6:554-565. [PMID: 25987953 PMCID: PMC4434076 DOI: 10.4239/wjd.v6.i4.554] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/30/2014] [Accepted: 02/12/2015] [Indexed: 02/05/2023] Open
Abstract
Diabetes affects at least 382 million people worldwide and the incidence is expected to reach 592 million by 2035. The incidence of diabetes in youth is skyrocketing as evidenced by a 21% increase in type 1 diabetes and a 30.5% increase in type 2 diabetes in the United States between 2001 and 2009. The effects of toxic stress, the culmination of biological and environmental interactions, on the development of diabetes complications is gaining attention. Stress impacts the hypothalamus-pituitary-adrenal axis and contributes to inflammation, a key biological contributor to the pathogenesis of diabetes and its associated complications. This review provides an overview of common diabetic complications such as neuropathy, cognitive decline, depression, nephropathy and cardiovascular disease. The review also provides a discussion of the role of inflammation and stress in the development and progression of chronic complications of diabetes, associated symptomatology and importance of early identification of symptoms of depression, fatigue, exercise intolerance and pain.
Collapse
|
54
|
Treatment of cognitive dysfunction in major depressive disorder—a review of the preclinical evidence for efficacy of selective serotonin reuptake inhibitors, serotonin–norepinephrine reuptake inhibitors and the multimodal-acting antidepressant vortioxetine. Eur J Pharmacol 2015; 753:19-31. [DOI: 10.1016/j.ejphar.2014.07.044] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/06/2014] [Accepted: 07/24/2014] [Indexed: 02/02/2023]
|
55
|
Cattaneo A, Macchi F, Plazzotta G, Veronica B, Bocchio-Chiavetto L, Riva MA, Pariante CM. Inflammation and neuronal plasticity: a link between childhood trauma and depression pathogenesis. Front Cell Neurosci 2015; 9:40. [PMID: 25873859 PMCID: PMC4379909 DOI: 10.3389/fncel.2015.00040] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/27/2015] [Indexed: 12/13/2022] Open
Abstract
During the past two decades, there has been increasing interest in understanding and characterizing the role of inflammation in major depressive disorder (MDD). Indeed, several are the evidences linking alterations in the inflammatory system to Major Depression, including the presence of elevated levels of pro-inflammatory cytokines, together with other mediators of inflammation. However, it is still not clear whether inflammation represents a cause or whether other factors related to depression result in these immunological effects. Regardless, exposure to early life stressful events, which represent a vulnerability factor for the development of psychiatric disorders, act through the modulation of inflammatory responses, but also of neuroplastic mechanisms over the entire life span. Indeed, early life stressful events can cause, possibly through epigenetic changes that persist over time, up to adulthood. Such alterations may concur to increase the vulnerability to develop psychopathologies. In this review we will discuss the role of inflammation and neuronal plasticity as relevant processes underlying depression development. Moreover, we will discuss the role of epigenetics in inducing alterations in inflammation-immune systems as well as dysfunction in neuronal plasticity, thus contributing to the long-lasting negative effects of stressful life events early in life and the consequent enhanced risk for depression. Finally we will provide an overview on the potential role of inflammatory system to aid diagnosis, predict treatment response, enhance treatment matching, and prevent the onset or relapse of Major Depression.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College London London, UK ; IRCCS Centro S Giovanni di Dio, Fatebenefratelli Brescia, Italy
| | - Flavia Macchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan Milan, Italy
| | - Giona Plazzotta
- IRCCS Centro S Giovanni di Dio, Fatebenefratelli Brescia, Italy
| | - Begni Veronica
- Department of Pharmacological and Biomolecular Sciences, University of Milan Milan, Italy
| | - Luisella Bocchio-Chiavetto
- IRCCS Centro S Giovanni di Dio, Fatebenefratelli Brescia, Italy ; Faculty of Psychology, eCampus University Novedrate (Como), Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan Milan, Italy
| | - Carmine Maria Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College London London, UK
| |
Collapse
|
56
|
Liang BF, Huang F, Wang HT, Wang GH, Yuan X, Zhang MZ, Guo HB, Cheng YF, Xu JP. Involvement of norepinephrine and serotonin system in antidepressant-like effects of hederagenin in the rat model of unpredictable chronic mild stress-induced depression. PHARMACEUTICAL BIOLOGY 2015; 53:368-377. [PMID: 25471378 DOI: 10.3109/13880209.2014.922586] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Previous studies from our laboratory indicated that both acute and subchronic administration of Fructus Akebiae (FAE) [the fruit of Akebiae quinata (Thunb.) Decne, (Lardizabalaceae)] produce antidepressant-like effects in animal depressive behavior tests. FAE contains approximately 70% of hederagenin (HG) as its main chemical component. OBJECTIVE This study compared the antidepressant ability of FAE with that of HG in mice and further investigated the antidepressant-like effects and potential mechanisms of HG in rats subjected to unpredictable chronic mild stress (UCMS). MATERIALS AND METHODS Mice received FAE (50 mg/kg) and HG (20 mg/kg) once a day via intragastric administration (i.g.) for 3 weeks. The anxiolytic and antidepressant activities of FAE and HG were compared using elevated plus maze (EPM) and behavioral despair tests including tail suspension test (TST) and forced swimming test (FST), respectively. Antidepressant effects of HG (5 mg/kg) were assessed using the UCMS depressive rat model. Moreover, the levels of monoamine neurotransmitters and relevant gene expression in UCMS rats' hippocampi were determined through high-performance liquid chromatography with electrochemical detection and real-time polymerase chain reaction techniques. RESULTS The results of our preliminary screening test suggest that HG at 20 mg/kg, while not FAE at 50 mg/kg, significantly decreased the immobility in both TST and FST compared with the vehicle group when administered chronically; however, there were no significant differences observed between the HG and the FAE group. Chronic administration of HG failed to significantly reverse the altered crossing and rearing behavioral performance, time spent in the open arm and closed entries in the EPM, even if they showed an increased tendency, but HG significantly increased the percent of sucrose preference in the sucrose preference test (SPT) and decreased the immobility time in the FST. HG showed that significant increases of norepinephrine and serotonin levels and exhibited a tendency to increase the expression of 5-hydroxytryptamine (serotonin) 1A receptor mRNA, and to significantly decrease the expression of the mRNA for the serotonin transporter (5-HTT). However, there were no significant differences in the expression of the brain-derived neurotrophic factor. CONCLUSION These findings confirm the antidepressant-like effects of HG in a behavioral despair test and UCMS rat model, which may be associated with monoamine neurotransmitters and 5-HTT mRNA expression.
Collapse
Affiliation(s)
- Bao-Fang Liang
- Department of Pharmacology, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou , PR China and
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Amin SN, El-Aidi AA, Ali MM, Attia YM, Rashed LA. Modification of hippocampal markers of synaptic plasticity by memantine in animal models of acute and repeated restraint stress: implications for memory and behavior. Neuromolecular Med 2015; 17:121-36. [PMID: 25680935 DOI: 10.1007/s12017-015-8343-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/03/2015] [Indexed: 12/18/2022]
Abstract
Stress is any condition that impairs the balance of the organism physiologically or psychologically. The response to stress involves several neurohormonal consequences. Glutamate is the primary excitatory neurotransmitter in the central nervous system, and its release is increased by stress that predisposes to excitotoxicity in the brain. Memantine is an uncompetitive N-methyl D-aspartate glutamatergic receptors antagonist and has shown beneficial effect on cognitive function especially in Alzheimer's disease. The aim of the work was to investigate memantine effect on memory and behavior in animal models of acute and repeated restraint stress with the evaluation of serum markers of stress and the expression of hippocampal markers of synaptic plasticity. Forty-two male rats were divided into seven groups (six rats/group): control, acute restraint stress, acute restraint stress with Memantine, repeated restraint stress, repeated restraint stress with Memantine and Memantine groups (two subgroups as positive control). Spatial working memory and behavior were assessed by performance in Y-maze. We evaluated serum cortisol, tumor necrotic factor, interleukin-6 and hippocampal expression of brain-derived neurotrophic factor, synaptophysin and calcium-/calmodulin-dependent protein kinase II. Our results revealed that Memantine improved spatial working memory in repeated stress, decreased serum level of stress markers and modified the hippocampal synaptic plasticity markers in both patterns of stress exposure; in ARS, Memantine upregulated the expression of synaptophysin and brain-derived neurotrophic factor and downregulated the expression of calcium-/calmodulin-dependent protein kinase II, and in repeated restraint stress, it upregulated the expression of synaptophysin and downregulated calcium-/calmodulin-dependent protein kinase II expression.
Collapse
MESH Headings
- Acute Disease
- Animals
- Anxiety/blood
- Anxiety/drug therapy
- Anxiety/etiology
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Biomarkers/blood
- Brain-Derived Neurotrophic Factor/biosynthesis
- Brain-Derived Neurotrophic Factor/genetics
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/biosynthesis
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
- Drug Evaluation, Preclinical
- Excitatory Amino Acid Antagonists/pharmacology
- Excitatory Amino Acid Antagonists/therapeutic use
- Freezing Reaction, Cataleptic/drug effects
- Freezing Reaction, Cataleptic/physiology
- Gene Expression Regulation/drug effects
- Grooming/drug effects
- Grooming/physiology
- Hippocampus/chemistry
- Hippocampus/drug effects
- Hippocampus/physiopathology
- Hydrocortisone/blood
- Interleukin-6/blood
- Male
- Maze Learning/drug effects
- Maze Learning/physiology
- Memantine/pharmacology
- Memantine/therapeutic use
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Neurogenesis/drug effects
- Neuronal Plasticity/drug effects
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Rats
- Rats, Wistar
- Restraint, Physical/adverse effects
- Spatial Memory/drug effects
- Spatial Memory/physiology
- Stress, Physiological/drug effects
- Stress, Physiological/physiology
- Stress, Psychological/blood
- Stress, Psychological/drug therapy
- Stress, Psychological/etiology
- Stress, Psychological/physiopathology
- Synaptophysin/biosynthesis
- Synaptophysin/genetics
- Tumor Necrosis Factor-alpha/blood
Collapse
Affiliation(s)
- Shaimaa Nasr Amin
- Department of Medical Physiology, Kasr Al Ainy Faculty of Medicine, Cairo University, Al Manyal, Cairo, 11451, Egypt,
| | | | | | | | | |
Collapse
|
58
|
Paumier KL, Sortwell CE, Madhavan L, Terpstra B, Daley BF, Collier TJ. Tricyclic antidepressant treatment evokes regional changes in neurotrophic factors over time within the intact and degenerating nigrostriatal system. Exp Neurol 2015; 266:11-21. [PMID: 25681575 DOI: 10.1016/j.expneurol.2015.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/07/2015] [Accepted: 02/04/2015] [Indexed: 01/16/2023]
Abstract
In addition to alleviating depression, trophic responses produced by antidepressants may regulate neural plasticity in the diseased brain, which not only provides symptomatic benefit but also potentially slows the rate of disease progression in Parkinson's disease (PD). Recent in vitro and in vivo data provide evidence that neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) may be key mediators of the therapeutic response to antidepressants. As such, we conducted a cross-sectional time-course study to determine whether antidepressant-mediated changes in neurotrophic factors occur in relevant brain regions in response to amitriptyline (AMI) treatment before and after intrastriatal 6-hydroxydopamine (6OHDA). Adult male Wistar rats were divided into seven cohorts and given daily injections (i.p.) of AMI (5mg/kg) or saline throughout the duration of the study. In parallel, various cohorts of intact or parkinsonian animals were sacrificed at specific time points to determine the impact of AMI treatment on trophic factor levels in the intact and degenerating nigrostriatal system. The left and right hemispheres of the substantia nigra, striatum, frontal cortex, piriform cortex, hippocampus, and anterior cingulate cortex were dissected, and BDNF and GDNF levels were measured with ELISA. Results show that chronic AMI treatment elicits effects in multiple brain regions and differentially regulates levels of BDNF and GDNF depending on the region. Additionally, AMI halts the progressive degeneration of dopamine (DA) neurons elicited by an intrastriatal 6-OHDA lesion. Taken together, these results suggest that AMI treatment elicits significant trophic changes important to DA neuron survival within both the intact and degenerating nigrostriatal system.
Collapse
Affiliation(s)
- Katrina L Paumier
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA.
| | - Caryl E Sortwell
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | | | - Brian Terpstra
- The Parkinson's Disease Rehabilitation Institute, Cincinnati, OH, USA
| | - Brian F Daley
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Timothy J Collier
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
59
|
Abstract
Antidepressants are currently the treatment of choice for major depressive disorder (MDD). Nevertheless, a high percentage of patients do not respond to a first-line antidepressant drug, and combination treatments and augmentation strategies increase the risk of side effects. Moreover, a significant proportion of patients are treatment-resistant. In the last 30 years, a number of studies have sought to establish whether exercise could be regarded as an alternative to antidepressants, but so far no specific analysis has examined the efficacy of exercise as an adjunctive treatment in combination with antidepressants. We carried out a systematic review to evaluate the effectiveness of exercise as an adjunctive treatment with antidepressants on depression. A search of relevant papers was carried out in PubMed/Medline, Google Scholar, and Scopus with the following keywords: "exercise," "physical activity," "physical fitness," "depressive disorder," "depression," "depressive symptoms," "add-on," "augmentation," "adjunction," and "combined therapy." Twenty-two full-text articles were retrieved by the search. Among the 13 papers that fulfilled our inclusion criteria, we found methodological weaknesses in the majority. However, the included studies showed a strong effectiveness of exercise combined with antidepressants. Further analyses and higher quality studies are needed; nevertheless, as we have focused on a particular intervention (exercise in adjunction to antidepressants) that better reflects clinical practice, we can hypothesize that this strategy could be appropriately and safely translated into real-world practice.
Collapse
|
60
|
Adachi N, Numakawa T, Richards M, Nakajima S, Kunugi H. New insight in expression, transport, and secretion of brain-derived neurotrophic factor: Implications in brain-related diseases. World J Biol Chem 2014; 5:409-428. [PMID: 25426265 PMCID: PMC4243146 DOI: 10.4331/wjbc.v5.i4.409] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 06/10/2014] [Accepted: 08/31/2014] [Indexed: 02/05/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has been reported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer’s disease, Huntington’s disease, depression and schizophrenia.
Collapse
|
61
|
Kraus C, Baldinger P, Rami-Mark C, Gryglewsky G, Kranz GS, Haeusler D, Hahn A, Wadsak W, Mitterhauser M, Rujescu D, Kasper S, Lanzenberger R. Exploring the impact of BDNF Val66Met genotype on serotonin transporter and serotonin-1A receptor binding. PLoS One 2014; 9:e106810. [PMID: 25188405 PMCID: PMC4154779 DOI: 10.1371/journal.pone.0106810] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/28/2014] [Indexed: 01/15/2023] Open
Abstract
Background The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism (rs6265) may impact on the in-vivo binding of important serotonergic structures such as the serotonin transporter (5-HTT) and the serotonin-1A (5-HT1A) receptor. Previous positron emission tomography (PET) studies on the association between Val66Met and 5-HTT and 5-HT1A binding potential (BPND) have demonstrated equivocal results. Methods We conducted an imaging genetics study investigating the effect of Val66Met genotype on 5-HTT or 5-HT1A BPND in 92 subjects. Forty-one subjects (25 healthy subjects and 16 depressive patients) underwent genotyping for Val66Met and PET imaging with the 5-HTT specific radioligand [11C]DASB. Additionally, in 51 healthy subjects Val66Met genotypes and 5-HT1A binding with the radioligand [carbonyl-11C]WAY-100635 were ascertained. Voxel-wise and region of interest-based analyses of variance were used to examine the influence of Val66Met on 5-HTT and 5-HT1A BPND. Results No significant differences of 5-HTT nor 5-HT1A BPND between BDNF Val66Met genotype groups (val/val vs. met-carrier) were detected. There was no interaction between depression and Val66Met genotype status. Conclusion In line with previous data, our work confirms an absent effect of BDNF Val66Met on two major serotonergic structures. These results could suggest that altered protein expression associated with genetic variants, might be compensated invivo by several levels of unknown feedback mechanisms. In conclusion, Val66Met genotype status is not associated with changes of in-vivo binding of 5-HTT and 5-HT1A receptors in human subjects.
Collapse
Affiliation(s)
- Christoph Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Pia Baldinger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Christina Rami-Mark
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine Medical University of Vienna, Vienna, Austria
| | - Gregor Gryglewsky
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Georg S. Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Daniela Haeusler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine Medical University of Vienna, Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine Medical University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine Medical University of Vienna, Vienna, Austria
| | - Dan Rujescu
- Department of Psychiatry, Medical University of Halle, Halle, Germany
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
62
|
McCann SK, Irvine C, Mead GE, Sena ES, Currie GL, Egan KE, Macleod MR, Howells DW. Efficacy of antidepressants in animal models of ischemic stroke: a systematic review and meta-analysis. Stroke 2014; 45:3055-63. [PMID: 25184357 DOI: 10.1161/strokeaha.114.006304] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND PURPOSE Poststroke depression is a prevalent complication of stroke with unclear pathogenesis. The benefits of antidepressants in this context and their effects on stroke recovery other than effects on mood are not clearly defined, with some studies suggesting efficacy in improving functional outcome in both depressed and nondepressed stroke patients. We have analyzed the preclinical animal data on antidepressant treatment in focal cerebral ischemia, modeled±depression, to help inform clinical trial design. METHODS We performed a systematic review and meta-analysis of data from experiments testing the efficacy of antidepressants versus no treatment to reduce infarct volume or improve neurobehavioral or neurogenesis outcomes in animal models of stroke. We used random-effects metaregression to test the impact of study quality and design characteristics and used trim and fill to assess publication bias. RESULTS We identified 44 publications describing the effects of 22 antidepressant drugs. The median quality checklist score was 5 of a possible 10 (interquartile range, 4-7). Overall, antidepressants reduced infarct volume by 27.3% (95% confidence interval, 20.7%-33.8%) and improved neurobehavioral outcomes by 53.7% (46.4%-61.1%). There was little evidence for an effect of selective serotonin reuptake inhibitors on infarct volume. For neurobehavioral outcomes there was evidence of publication bias. Selective serotonin reuptake inhibitors were the most frequently studied antidepressant subtype and improved neurobehavioral outcome by 51.8% (38.6%-64.9%) and increased neurogenesis by 2.2 SD (1.3-3.0). CONCLUSIONS In line with current clinical data and despite some limitations, antidepressant treatments seem to improve infarct volume and neurobehavioral outcome in animal models of ischemic stroke.
Collapse
Affiliation(s)
- Sarah K McCann
- From The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia (S.K.M., E.S.S., D.W.H.); and Department of Clinical Neurosciences, University of Edinburgh, Edinburgh, United Kingdom (C.I., G.E.M., E.S.S., G.L.C., K.E.E., M.R.M)
| | - Cadi Irvine
- From The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia (S.K.M., E.S.S., D.W.H.); and Department of Clinical Neurosciences, University of Edinburgh, Edinburgh, United Kingdom (C.I., G.E.M., E.S.S., G.L.C., K.E.E., M.R.M)
| | - Gillian E Mead
- From The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia (S.K.M., E.S.S., D.W.H.); and Department of Clinical Neurosciences, University of Edinburgh, Edinburgh, United Kingdom (C.I., G.E.M., E.S.S., G.L.C., K.E.E., M.R.M)
| | - Emily S Sena
- From The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia (S.K.M., E.S.S., D.W.H.); and Department of Clinical Neurosciences, University of Edinburgh, Edinburgh, United Kingdom (C.I., G.E.M., E.S.S., G.L.C., K.E.E., M.R.M)
| | - Gillian L Currie
- From The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia (S.K.M., E.S.S., D.W.H.); and Department of Clinical Neurosciences, University of Edinburgh, Edinburgh, United Kingdom (C.I., G.E.M., E.S.S., G.L.C., K.E.E., M.R.M)
| | - Kieren E Egan
- From The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia (S.K.M., E.S.S., D.W.H.); and Department of Clinical Neurosciences, University of Edinburgh, Edinburgh, United Kingdom (C.I., G.E.M., E.S.S., G.L.C., K.E.E., M.R.M)
| | - Malcolm R Macleod
- From The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia (S.K.M., E.S.S., D.W.H.); and Department of Clinical Neurosciences, University of Edinburgh, Edinburgh, United Kingdom (C.I., G.E.M., E.S.S., G.L.C., K.E.E., M.R.M).
| | - David W Howells
- From The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia (S.K.M., E.S.S., D.W.H.); and Department of Clinical Neurosciences, University of Edinburgh, Edinburgh, United Kingdom (C.I., G.E.M., E.S.S., G.L.C., K.E.E., M.R.M)
| |
Collapse
|
63
|
Serum brain-derived neurotrophic factor and nerve growth factor decreased in chronic ketamine abusers. Drug Alcohol Depend 2014; 142:290-4. [PMID: 25064020 PMCID: PMC4888958 DOI: 10.1016/j.drugalcdep.2014.06.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/23/2014] [Accepted: 06/28/2014] [Indexed: 12/16/2022]
Abstract
AIMS This study investigated the serum levels of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in a group of chronic ketamine abusers in comparison to healthy controls. The correlations between the serum BDNF, NGF level with the subjects' demographic, pattern of ketamine use were also examined. METHODS 93 subjects who met the criteria of ketamine dependence and 39 healthy subjects were recruited. Serum BDNF and NGF levels were assayed by enzyme-linked immunosorbent assay (ELISA). Psychopathological symptoms were assessed using Positive and Negative Syndrome Scale (PANSS), Beck Depression Inventory (BDI) and Beck Anxiety Inventory (BAI). RESULTS Both serum levels of BDNF and NGF were significant lower in the ketamine users compared to the healthy control subjects (9.50±6.68 versus 14.37±6.07 ng/ml, p=0.019 for BDNF; 1.93±0.80 versus 2.60±1.07 ng/ml, p=0.011 for NGF). BDNF level was negatively associated with current frequency of ketamine use (r=-0.209, p=0.045). CONCLUSIONS Both BDNF and NGF serum concentrations were significantly lower among chronic ketamine users than among health controls.
Collapse
|
64
|
Abstract
Increasing number of studies has during the last decade linked neurotrophic factors with the pathophysiology of neuropsychiatric disorders and with the mechanisms of action of drugs used for the treatment of these disorders. In particular, brain-derived neurotrophic factor BDNF and its receptor TrkB have been connected with the pathophysiology in mood disorders, and there is strong evidence that BDNF signaling is critically involved in the recovery from depression with both pharmacological and psychological means. Neurotrophins play a central role in neuronal plasticity and network connectivity in developing adult brain, and recent evidence links plasticity and network rewiring with mood disorders and their treatment. Therefore, neurotrophins should not be seen as happiness factors but as critical tools in the process where brain networks are optimally tuned to environment, and it is against this background that the effects of neurotrophins on neuropsychiatric disorders should be looked at.
Collapse
Affiliation(s)
- E Castrén
- Neuroscience Center, University of Helsinki, 56, 00014, Helsinki, Finland,
| |
Collapse
|
65
|
Epigenetic and epistatic interactions between serotonin transporter and brain-derived neurotrophic factor genetic polymorphism: insights in depression. Neuroscience 2014; 275:455-68. [PMID: 24972302 DOI: 10.1016/j.neuroscience.2014.06.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 01/19/2023]
Abstract
Epidemiological studies have shown significant results in the interaction between the functions of brain-derived neurotrophic factor (BDNF) and 5-HT in mood disorders, such as major depressive disorder (MDD). The latest research has provided convincing evidence that gene transcription of these molecules is a target for epigenetic changes, triggered by stressful stimuli that starts in early childhood and continues throughout life, which are subsequently translated into structural and functional phenotypes culminating in depressive disorders. The short variants of 5-HTTLPR and BDNF-Met are seen as forms which are predisposed to epigenetic aberrations, which leads individuals to a susceptibility to environmental adversities, especially when subjected to stress in early life. Moreover, the polymorphic variants also feature epistatic interactions in directing the functional mechanisms elicited by stress and underlying the onset of depressive disorders. Also emphasized are works which show some mediators between stress and epigenetic changes of the 5-HTT and BDNF genes, such as the hypothalamic-pituitary-adrenal (HPA) axis and the cAMP response element-binding protein (CREB), which is a cellular transcription factor. Both the HPA axis and CREB are also involved in epistatic interactions between polymorphic variants of 5-HTTLPR and Val66Met. This review highlights some research studying changes in the epigenetic patterns intrinsic to genes of 5-HTT and BDNF, which are related to lifelong environmental adversities, which in turn increases the risks of developing MDD.
Collapse
|
66
|
Lindholm JSO, Castrén E. Mice with altered BDNF signaling as models for mood disorders and antidepressant effects. Front Behav Neurosci 2014; 8:143. [PMID: 24817844 PMCID: PMC4012208 DOI: 10.3389/fnbeh.2014.00143] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/10/2014] [Indexed: 12/20/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase TrkB support neuronal survival during development and promote connectivity and plasticity in the adult brain. Decreased BDNF signaling is associated with the pathophysiology of depression and the mechanisms underlying the actions of antidepressant drugs (AD). Several transgenic mouse models with decreases or increases in the amount of BDNF or the activity of TrkB signaling have been created. This review summarizes the studies where various mouse models with increased or decreased BDNF levels or TrkB signaling were used to evaluate the role of BDNF signaling in depression-like behavior. Although a large number of models have been employed and several studies have been published, no clear-cut connections between BDNF levels or signaling and depression-like behavior in mice have emerged. However, it is clear that BDNF plays a critical role in the mechanisms underlying the actions of AD.
Collapse
Affiliation(s)
| | - Eero Castrén
- Neuroscience Center, University of Helsinki Helsinki, Finland
| |
Collapse
|
67
|
Perez-Caballero L, Torres-Sanchez S, Bravo L, Mico JA, Berrocoso E. Fluoxetine: a case history of its discovery and preclinical development. Expert Opin Drug Discov 2014; 9:567-78. [DOI: 10.1517/17460441.2014.907790] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
68
|
Homberg JR, Molteni R, Calabrese F, Riva MA. The serotonin-BDNF duo: developmental implications for the vulnerability to psychopathology. Neurosci Biobehav Rev 2014; 43:35-47. [PMID: 24704572 DOI: 10.1016/j.neubiorev.2014.03.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 12/21/2022]
Abstract
Serotonin (5-HT) and brain-derived neurotrophin factor (BDNF) are known to modulate behavioral responses to stress and to mediate the therapeutic efficacy of antidepressant agents through neuroplastic and epigenetic mechanisms. While the two systems interact at several levels, this scenario is complicated by a number of variants including brain region specificity, 5-HT receptor selectivity and timing. Based on recent insights obtained using 5-HT transporter (5-HTT) knockout rats we here set-out and discuss the crucial role of neurodevelopmental mechanisms and the contribution of transcription factors and epigenetic modifications to this interaction and its variants. 5-HTT knockout in rats, as well as the low activity short allelic variant of the serotonin transporter human polymorphism, consistently show reduced BDNF mRNA and protein levels in the hippocampus and in the prefrontal cortex. This starts during the second postnatal week, is preceded by DNA hypermethylation during the first postnatal week, and it is developmentally paralleled by reduced expression of key transcription factors. The reduced BDNF levels, in turn, affect 5-HT1A receptor-mediated intracellular signaling and thereby the serotonergic phenotype of the neurons. We propose that such a negative spiral of modifications may affect brain development and reduce its resiliency to environmental challenges during critical time windows, which may lead to phenotypic alterations that persist for the entire life. The characterization of 5-HT-BDNF interactions will eventually increase the understanding of mental illness etiology and, possibly, lead to the identification of novel molecular targets for drug development.
Collapse
Affiliation(s)
- Judith Regina Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Medical Centre, Geert Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
| | - Raffaella Molteni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy.
| |
Collapse
|
69
|
Steiner JP, Nath A. Neurotrophin strategies for neuroprotection: are they sufficient? J Neuroimmune Pharmacol 2014; 9:182-94. [PMID: 24609976 DOI: 10.1007/s11481-014-9533-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/13/2014] [Indexed: 12/30/2022]
Abstract
As people are living longer, the prevalance of neurodegenerative diseases continues to rise resulting in huge socio-economic consequences. Despite major advancements in studying the pathophysiology of these diseases and a large number of clinical trials currently there is no effective treatment for these illnesses. All neuroprotective strategies have either failed or have shown only a minimal effect. There has been a major shift in recent years exploring the potential of neuroregenerative approaches. While the concept of using neurotropins for therapeutic purposes has been in existence for many years, new modes of delivery and expression of this family of molecules makes this approach now feasilble. Further neurotropin mimetics and receptor agonists are also being developed. The use of small molecules to induce the expression of neurotropins including repurposing of FDA approved drugs for this approach is another strategy being pursued. In the review we examine these new developments and discuss the potential for such approaches in the context of the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Joseph P Steiner
- NINDS Translational Neuroscience Center, National Institutes of Health, Room 7C-105; Bldg 10, 10 Center Drive, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
70
|
Vahdati Hassani F, Naseri V, Razavi BM, Mehri S, Abnous K, Hosseinzadeh H. Antidepressant effects of crocin and its effects on transcript and protein levels of CREB, BDNF, and VGF in rat hippocampus. ACTA ACUST UNITED AC 2014; 22:16. [PMID: 24401376 PMCID: PMC3927874 DOI: 10.1186/2008-2231-22-16] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 11/10/2013] [Indexed: 12/29/2022]
Abstract
Background Antidepressants have been shown to affect levels of brain-derived neurotrophic factor (BDNF) and VGF (non-acronymic) whose transcriptions are dependent on cAMP response element binding protein (CREB) in long term treatment. The aim of this study was to verify the subacute antidepressant effects of crocin, an active constituent of saffron (Crocus sativus L.), and its effects on CREB, BDNF, and VGF proteins, transcript levels and amount of active, phosphorylated CREB (P-CREB) protein in rat hippocampus. Methods Crocin (12.5, 25, and 50 mg/kg), imipramine (10 mg/kg; positive control) and saline (1 mL/kg; neutral control) were administered intraperitoneally (IP) to male Wistar rats for 21 days. The antidepressant effects were studied using the forced swimming test (FST) on day 21 after injection. Protein expression and transcript levels of genes in the rat hippocampus were evaluated using western blot and quantitative reverse transcription-polymerase chain reaction (qRT-PCR), respectively. Results Crocin significantly reduced the immobility time in the FST. Western blot analysis showed that 25 and 50 mg/kg of crocin increased the levels of CREB and BDNF significantly and dose dependently. All doses of crocin increased the VGF levels in a dose-dependent manner. Levels of p-CREB increased significantly by 50 mg/kg dose of crocin. Only 12.5 mg/kg crocin could significantly increase the transcript levels of BDNF. No changes in CREB and VGF transcript levels were observed in all groups. Conclusions These results suggest that crocin has antidepressant-like action by increasing CREB, BDNF and VGF levels in hippocampus.
Collapse
Affiliation(s)
| | | | | | | | | | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
71
|
Abstract
Depression is a highly recurrent and debilitating psychiatric disorder associated with multicausal origins. Impairments in the monoaminergic transmission, increased glutamatergic excitotoxicity, neuroinflammation, oxidative stress and deficits in neurotrophic factors are the main hypothesis raised in order to explain the etiological basis of depression. Although the current antidepressant therapy usually alleviates symptoms and prevents recurrence of episodes, the delay in the onset of the therapeutic effect and the refractory or intolerant responses exhibited by a large number of patients are the main drawbacks of the current therapy. For these reasons, several studies have dealt with the investigation of alternative therapeutic approaches or adjunctive strategies which could improve clinical outcomes. One potential adjunctive treatment with conventional antidepressants involves the use of nutraceuticals (a food, a part of a food, a vitamin, a mineral, or a herb that provides health benefits). In this review, we will focus on the main nutrients, phytochemicals and food that have been shown to have beneficial effects against depression.
Collapse
Affiliation(s)
- Luana M Manosso
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| | | | | |
Collapse
|
72
|
Kim HJ, Kim W, Kong SY. Antidepressants for neuro-regeneration: from depression to Alzheimer's disease. Arch Pharm Res 2013; 36:1279-90. [PMID: 24129616 DOI: 10.1007/s12272-013-0238-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/17/2013] [Indexed: 02/05/2023]
Abstract
Recently identified new potential functions of antidepressants in the treatment of neurodegenerative will be introduced. Antidepressants are reported to regulate stem cell fate to regenerate neurons in the adult hippocampus and are effective in reducing toxic amyloid peptides and are known to increase neurotrophic factor such as brain-derived neurotrophic factor. Clinical trial data support that antidepressants have potential to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Laboratory of Molecular and Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 156-756, Republic of Korea,
| | | | | |
Collapse
|
73
|
Zetterström TSC, Coppell AA, Khundakar AA. The role of 5-hydroxytryptamine receptor subtypes in the regulation of brain-derived neurotrophic factor gene expression. J Pharm Pharmacol 2013; 66:53-61. [DOI: 10.1111/jphp.12153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/05/2013] [Indexed: 11/30/2022]
Abstract
Abstract
Objectives
The study aims to investigate the role of 5-hydroxytryptamine receptor subtypes in mediating the inhibitory effect of the selective serotonin reuptake inhibitor (fluoxetine on brain-derived neurotrophic factor gene (bdnf) expression in rat hippocampus.
Methods
In situ hybridization was used for regional determination of bdnf expression levels in hippocampal brain slices from normal, lesioned (5-hydroxytryptamine or noradrenaline) or adrenalectomized rats; treated with fluoxetine and/or 5-hydroxytryptamine selective ligands.
Key findings
Our study shows that the transient fluoxetine-induced down-regulation of bdnf gene expression depends on an intact 5-hydroxytryptamine but not noradrenaline system or circulating glucocorticoids. Pretreatment with the 5-hydroxytryptamine4 antagonist SB-204070 blocked the overall fluoxetine-induced inhibition of bdnf levels in hippocampus, while pretreatment with the 5-hydroxytryptamine2 antagonists ketanserin had an effect in the CA3 but not in the dentate gyrus sub-region of hippocampus. The 5-hydroxytryptamine1A antagonist WAY-100635 and the 5-hydroxytryptamine3 antagonist granisetron were both ineffective.
Conclusions
Our study found strong support for a primary effect of 5-hydroxytryptamine but not noradrenaline or circulating glucocorticoids in the mediation of fluoxetine-induced down-regulation of bdnf expression. More specifically, we also show that 5-hydroxytryptamine4 receptor-stimulation seems to play a pivotal role in this effect.
Collapse
Affiliation(s)
- Tyra S C Zetterström
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - Alexander A Coppell
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - Ahmad A Khundakar
- Institute for Ageing and Health, Newcastle University, Campus For Ageing and Vitality, Newcastle, UK
| |
Collapse
|
74
|
de Foubert G, Khundakar AA, Zetterström TS. Effects of repeated 5-HT6 receptor stimulation on BDNF gene expression and cell survival. Neurosci Lett 2013; 553:211-5. [DOI: 10.1016/j.neulet.2013.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/31/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
|
75
|
Vidal R, Diaz A, Pazos A, Castro E. Region-specific regulation of 5-HT1B receptors in the rat brain by chronic venlafaxine treatment. Psychopharmacology (Berl) 2013; 229:177-85. [PMID: 23609771 DOI: 10.1007/s00213-013-3104-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 03/26/2013] [Indexed: 11/29/2022]
Abstract
RATIONALE Venlafaxine is a non-selective serotonin and noradrenaline reuptake inhibitor antidepressant drug for which clinical studies have suggested a high level efficacy and a possible early action onset compared to the classical antidepressants. Its therapeutic effects might be due, at least in part, to adaptive changes in serotonergic neurotransmission, through the activation of the different 5-HT receptor subtypes. 5-HT(1B) receptors are located in the axon terminals of both serotonergic and non-serotonergic neurons, where they act as inhibitory autoreceptors or heteroreceptors, respectively. However, the information about the involvement of this subtype in the mechanism of action of antidepressants is limited and quite controversial. OBJECTIVES The aim of this study was to evaluate the effect of venlafaxine (10 mg kg⁻¹ day⁻¹, p.o.) after 21 days of treatment on the density of 5-HT(1B) receptors and their functionality in rat brain. METHODS Effects of chronic venlafaxine were evaluated at different levels of 5-HT(1B) receptor by using receptor autoradiography, [³⁵S]GTPγS binding, and the regulation of body temperature induced by selective 5-HT(1B) agonist. RESULTS Our results show that venlafaxine induced an increase in sensitivity of 5-HT(1B) receptors in hypothalamus both at G-protein level and the control of core temperature without affecting the receptor density. CONCLUSIONS These results demonstrate that adaptive changes on 5-HT(1B) receptors induced by chronic administration of venlafaxine exhibit regional differences suggesting that the hypothalamus might be an important site of drug action.
Collapse
Affiliation(s)
- R Vidal
- Instituto de Biomedicina y Biotecnología-IBBTEC, UC-CSIC-SODERCAN, Santander, Cantabria, Spain
| | | | | | | |
Collapse
|
76
|
Yi LT, Li J, Geng D, Liu BB, Fu Y, Tu JQ, Liu Y, Weng LJ. Essential oil of Perilla frutescens-induced change in hippocampal expression of brain-derived neurotrophic factor in chronic unpredictable mild stress in mice. JOURNAL OF ETHNOPHARMACOLOGY 2013; 147:245-253. [PMID: 23506995 DOI: 10.1016/j.jep.2013.03.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/17/2013] [Accepted: 03/07/2013] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Perilla frutescens (Perilla leaf), a traditional Chinese medicinal herb, has been used for centuries to treat various conditions including depression. A previous study of the authors demonstrated that essential oil of Perilla frutescens (EOPF) attenuated the depressive-like behavior in mice. AIM OF THE STUDY This study was undertaken to explore the dynamic change of behaviors and brain-derived neurotrophic factor (BDNF) expression induced by chronic unpredictable mild stress (CUMS), and improved by EOPF. MATERIALS AND METHODS Four separate CUMS experimental groups (1-week, 2-week, 3-week and 4-week treatment) were treated with EOPF (3 mg/kg and 6 mg/kg, p.o.) or fluoxetine (20 mg/kg, p.o.), followed by sucrose preference, locomotor activity, immobility and hippocampal BDNF measurement. RESULTS EOPF, as well as fluoxetine, restored the CUMS-induced decreased sucrose preference and increased immobility time, without affecting body weight gain and locomotor activity. Furthermore, CUMS (3 or 4-week) produced a reduction in both BDNF mRNA and protein expression in the hippocampus, which were ameliorated by EOPF (4-week) and fluoxetine (3 or 4-week) treatment. CONCLUSION These results presented here show that BDNF is expressed depending on length of CUMS procedure and EOPF administration. And this study might contribute to the underlying reason for the slow onset of antidepressant activity in clinic.
Collapse
MESH Headings
- Animals
- Antidepressive Agents/isolation & purification
- Antidepressive Agents/pharmacology
- Behavior, Animal/drug effects
- Body Weight/drug effects
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/metabolism
- Chronic Disease
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Down-Regulation
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/pharmacology
- Fluoxetine/pharmacology
- Food Preferences/drug effects
- Hippocampus/drug effects
- Hippocampus/metabolism
- Male
- Medicine, Chinese Traditional
- Mice
- Mice, Inbred ICR
- Motor Activity/drug effects
- Oils, Volatile/isolation & purification
- Oils, Volatile/pharmacology
- Perilla frutescens/chemistry
- Phytotherapy
- Plant Leaves
- Plant Oils/isolation & purification
- Plant Oils/pharmacology
- Plants, Medicinal
- RNA, Messenger/metabolism
- Stress, Psychological/drug therapy
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Stress, Psychological/psychology
- Sucrose
- Time Factors
- alpha-Linolenic Acid/isolation & purification
- alpha-Linolenic Acid/pharmacology
Collapse
Affiliation(s)
- Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian province, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Dwivedi Y. Involvement of brain-derived neurotrophic factor in late-life depression. Am J Geriatr Psychiatry 2013; 21:433-49. [PMID: 23570887 PMCID: PMC3767381 DOI: 10.1016/j.jagp.2012.10.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 10/16/2012] [Accepted: 10/26/2012] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), one of the major neurotrophic factors, plays an important role in the maintenance and survival of neurons, synaptic integrity, and synaptic plasticity. Evidence suggests that BDNF is involved in major depression, such that the level of BDNF is decreased in depressed patients and that antidepressants reverse this decrease. Stress, a major factor in depression, also modulates BDNF expression. These studies have led to the proposal of the neurotrophin hypothesis of depression. Late-life depression is associated with disturbances in structural and neural plasticity as well as impairments in cognitive behavior. Stress and aging also play a crucial role in late-life depression. Many recent studies have suggested that not only expression of BDNF is decreased in the serum/plasma of patients with late-life depression, but structural abnormalities in the brain of these patients may be associated with a polymorphism in the BDNF gene, and that there is a relationship between a BDNF polymorphism and antidepressant remission rates. This review provides a critical review of the involvement of BDNF in major depression, in general, and in late-life depression, in particular.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
78
|
Cardamone L, Salzberg MR, O'Brien TJ, Jones NC. Antidepressant therapy in epilepsy: can treating the comorbidities affect the underlying disorder? Br J Pharmacol 2013; 168:1531-54. [PMID: 23146067 PMCID: PMC3605864 DOI: 10.1111/bph.12052] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/24/2012] [Accepted: 10/29/2012] [Indexed: 12/20/2022] Open
Abstract
There is a high incidence of psychiatric comorbidity in people with epilepsy (PWE), particularly depression. The manifold adverse consequences of comorbid depression have been more clearly mapped in recent years. Accordingly, considerable efforts have been made to improve detection and diagnosis, with the result that many PWE are treated with antidepressant drugs, medications with the potential to influence both epilepsy and depression. Exposure to older generations of antidepressants (notably tricyclic antidepressants and bupropion) can increase seizure frequency. However, a growing body of evidence suggests that newer ('second generation') antidepressants, such as selective serotonin reuptake inhibitors or serotonin-noradrenaline reuptake inhibitors, have markedly less effect on excitability and may lead to improvements in epilepsy severity. Although a great deal is known about how antidepressants affect excitability on short time scales in experimental models, little is known about the effects of chronic antidepressant exposure on the underlying processes subsumed under the term 'epileptogenesis': the progressive neurobiological processes by which the non-epileptic brain changes so that it generates spontaneous, recurrent seizures. This paper reviews the literature concerning the influences of antidepressants in PWE and in animal models. The second section describes neurobiological mechanisms implicated in both antidepressant actions and in epileptogenesis, highlighting potential substrates that may mediate any effects of antidepressants on the development and progression of epilepsy. Although much indirect evidence suggests the overall clinical effects of antidepressants on epilepsy itself are beneficial, there are reasons for caution and the need for further research, discussed in the concluding section.
Collapse
Affiliation(s)
- L Cardamone
- Department of Medicine (RMH), University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
79
|
Sakata K, Mastin JR, Duke SM, Vail MG, Overacre AE, Dong BE, Jha S. Effects of antidepressant treatment on mice lacking brain-derived neurotrophic factor expression through promoter IV. Eur J Neurosci 2013; 37:1863-74. [DOI: 10.1111/ejn.12148] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Kazuko Sakata
- Department of Pharmacology/Psychiatry; College of Medicine; University of Tennessee Health Science Center; 874 Union Avenue, Room 430; Memphis; TN; 38163; USA
| | - Joshua R. Mastin
- Department of Pharmacology/Psychiatry; College of Medicine; University of Tennessee Health Science Center; 874 Union Avenue, Room 430; Memphis; TN; 38163; USA
| | - Sean M. Duke
- Department of Pharmacology/Psychiatry; College of Medicine; University of Tennessee Health Science Center; 874 Union Avenue, Room 430; Memphis; TN; 38163; USA
| | - Meghan G. Vail
- Department of Pharmacology/Psychiatry; College of Medicine; University of Tennessee Health Science Center; 874 Union Avenue, Room 430; Memphis; TN; 38163; USA
| | - Abigail E. Overacre
- Department of Pharmacology/Psychiatry; College of Medicine; University of Tennessee Health Science Center; 874 Union Avenue, Room 430; Memphis; TN; 38163; USA
| | - Brittany E. Dong
- Department of Pharmacology/Psychiatry; College of Medicine; University of Tennessee Health Science Center; 874 Union Avenue, Room 430; Memphis; TN; 38163; USA
| | - Shanker Jha
- Department of Pharmacology/Psychiatry; College of Medicine; University of Tennessee Health Science Center; 874 Union Avenue, Room 430; Memphis; TN; 38163; USA
| |
Collapse
|
80
|
Sun H, Kennedy PJ, Nestler EJ. Epigenetics of the depressed brain: role of histone acetylation and methylation. Neuropsychopharmacology 2013; 38:124-37. [PMID: 22692567 PMCID: PMC3521990 DOI: 10.1038/npp.2012.73] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 12/17/2022]
Abstract
Major depressive disorder is a chronic, remitting syndrome involving widely distributed circuits in the brain. Stable alterations in gene expression that contribute to structural and functional changes in multiple brain regions are implicated in the heterogeneity and pathogenesis of the illness. Epigenetic events that alter chromatin structure to regulate programs of gene expression have been associated with depression-related behavior, antidepressant action, and resistance to depression or 'resilience' in animal models, with increasing evidence for similar mechanisms occurring in postmortem brains of depressed humans. In this review, we discuss recent advances in our understanding of epigenetic contributions to depression, in particular the role of histone acetylation and methylation, which are revealing novel mechanistic insight into the syndrome that may aid in the development of novel targets for depression treatment.
Collapse
Affiliation(s)
- HaoSheng Sun
- Fishberg Department of Neuroscience and Friedman Brain Institute, School of Medicine, New York, NY, USA
| | - Pamela J Kennedy
- Fishberg Department of Neuroscience and Friedman Brain Institute, School of Medicine, New York, NY, USA
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, School of Medicine, New York, NY, USA
| |
Collapse
|
81
|
O’Leary O, Zandy S, Dinan T, Cryan J. Lithium augmentation of the effects of desipramine in a mouse model of treatment-resistant depression: A role for hippocampal cell proliferation. Neuroscience 2013; 228:36-46. [DOI: 10.1016/j.neuroscience.2012.09.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 09/23/2012] [Accepted: 09/29/2012] [Indexed: 12/01/2022]
|
82
|
Abstract
Neurotrophins and other growth factors have been advanced as critical modulators of depressive behavior. Support for this model is based on analyses of knockout and transgenic mouse models, human genetic studies, and screens for gene products that are regulated by depressive behavior and/or antidepressants. Even subtle alteration in the regulated secretion of brain-derived neurotrophic factor (BDNF), for example, due to a single nucleotide polymorphism (SNP)-encoded Val-Met substitution in proBDNF that affects processing and sorting, impacts behavior and cognition. Alterations in growth factor expression result in changes in neurogenesis as well as structural changes in neuronal cytoarchitecture, including effects on dendritic length and spine density, in the hippocampus, nucleus accumbens, and prefrontal cortex. These changes have the potential to impact the plasticity and stability of synapses in the CNS, and the complex brain circuitry that regulates behavior. Here we review the role that neurotrophins play in the modulation of depressive behavior, and the downstream signaling targets they regulate that potentially mediate these behavioral pro-depressant and antidepressant effects.
Collapse
|
83
|
Bambico FR, Belzung C. Novel insights into depression and antidepressants: a synergy between synaptogenesis and neurogenesis? Curr Top Behav Neurosci 2013; 15:243-291. [PMID: 23271325 DOI: 10.1007/7854_2012_234] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Major depressive disorder has been associated with manifold pathophysiological changes. These include metabolic abnormalities in discreet brain areas; modifications in the level of stress hormones, neurotransmitters, and neurotrophic factors; impaired spinogenesis and synaptogenesis in crucial brain areas, such as the prefrontal cortex and the hippocampus; and impaired neurogenesis in the hippocampus. Antidepressant therapy facilitates remission by reversing most of these disturbances, indicating that these dysfunctions may participate causally in depressive symptomatology. However, few attempts have been made to integrate these different pathophysiologies into one model. The present chapter endeavors (1) to review the extant literature in the field, with particular focus on the role of neurogenesis and synaptogenesis in depression; (2) and to suggest a possible interplay between these two processes, as well as, describe the ways by which improving both neurogenesis and synaptogenesis may enable effective recovery by acting on a larger neuronal network.
Collapse
Affiliation(s)
- Francis Rodriguez Bambico
- Behavioural Neurobiology Laboratory, Research Neuroimaging Division, Center for Addiction and Mental Health, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada,
| | | |
Collapse
|
84
|
|
85
|
The neurobiology of depression and antidepressant action. Neurosci Biobehav Rev 2012; 37:2331-71. [PMID: 23261405 DOI: 10.1016/j.neubiorev.2012.12.007] [Citation(s) in RCA: 342] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 11/26/2012] [Accepted: 12/10/2012] [Indexed: 12/18/2022]
Abstract
We present a comprehensive overview of the neurobiology of unipolar major depression and antidepressant drug action, integrating data from affective neuroscience, neuro- and psychopharmacology, neuroendocrinology, neuroanatomy, and molecular biology. We suggest that the problem of depression comprises three sub-problems: first episodes in people with low vulnerability ('simple' depressions), which are strongly stress-dependent; an increase in vulnerability and autonomy from stress that develops over episodes of depression (kindling); and factors that confer vulnerability to a first episode (a depressive diathesis). We describe key processes in the onset of a 'simple' depression and show that kindling and depressive diatheses reproduce many of the neurobiological features of depression. We also review the neurobiological mechanisms of antidepressant drug action, and show that resistance to antidepressant treatment is associated with genetic and other factors that are largely similar to those implicated in vulnerability to depression. We discuss the implications of these conclusions for the understanding and treatment of depression, and make some strategic recommendations for future research.
Collapse
|
86
|
Abstract
The evolution in the understanding of the neurobiology of most prevalent mental disorders such as major depressive disorder (MDD), bipolar disorder or schizophrenia has not gone hand in hand with the synthesis and clinical use of new drugs that would represent a therapeutic revolution such as that brought about by selective serotonin reuptake inhibitors (SSRIs) or atypical antipsychotics. Although scientists are still a long way from understanding its true aetiology, the neurobiological concept of depression has evolved from receptor regulation disorder, to a neurodegenerative disorder with a hippocampal volume decrease with the controversial reduction in neurotrophins such as BDNF, to current hypotheses that consider depression to be an inflammatory and neuroprogressive process. As regards antidepressants, although researchers are still far from knowing their true mechanism of action, they have gone from monoaminergic hypotheses, in which serotonin was the main protagonist, to emphasising the anti-inflammatory action of some of these drugs, or the participation of p11 protein in their mechanism of action.In the same way, according to the inflammatory hypothesis of depression, it has been proposed that some NSAIDS such as aspirin or drugs like simvastatin that have an anti-inflammatory action could be useful in some depressive patients. Despite the fact that there may be some data to support their clinical use, common sense and the evidence advise us to use already tested protocols and wait for the future to undertake new therapeutic strategies.
Collapse
Affiliation(s)
- Juan Gibert Rahola
- Department of Neurosciences, Faculty of Medicine, University of Cadiz, CIBER of Mental Health-CIBERSAM
| |
Collapse
|
87
|
[The development of depression: the role of brain-derived neurotrophic factor]. DER NERVENARZT 2012; 83:869-77. [PMID: 21947218 DOI: 10.1007/s00115-011-3374-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An association between the presence of psychosocial stress, its pathological processing and the development of depression is well documented. This review reports and discusses studies suggesting a reduced release of brain-derived neurotrophic factor (BDNF) under stress as a possible mechanism. The studies show a reduction of BDNF secretion in stressful situations, a decreased blood concentration in depression and a normalization of BDNF by successful antidepressant therapy. As a possible mechanism of BDNF action, a reactivation of neuroplasticity is being discussed, especially in hippocampal and cortical networks. On the other hand, methodological limitations, such as the impossibility of determining the cerebral BDNF concentration in vivo and ruling out a variety of possible confounders, may restrict the significance of the studies. The question of whether the ascertained changes of BDNF levels are causally involved in the pathophysiology of depression or whether they are just an epiphenomenal result of depression-induced stress is still under debate.
Collapse
|
88
|
Takahashi M, Yoshino A, Yamanaka A, Asanuma C, Satou T, Hayashi S, Masuo Y, Sadamoto K, Koike K. Effects of Inhaled Lavender Essential Oil on Stress-Loaded Animals: Changes in Anxiety-Related Behavior and Expression Levels of Selected mRNAs and Proteins. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200701132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inhalation of various essential oils elicits behavioral changes as a consequence of a complex centrally coordinated response. To understand the molecular mechanisms of action of aromatic compounds on emotional responses, we evaluated the stress-induced changes in mouse brain and the efficacy of inhaled essential oil from Lavandula officinalis (LvEO) using two approaches: a behavioral test, and examining the expression levels of selected genes {fast nerve growth factor receptor (NGFR) mRNA, activity regulated cytoskeletal-associated protein (Arc) mRNA} and proteins {galactokinase 1 (GLK1) and brain-derived neurotrophic factor (BDNF)}. Animals were randomly divided into 4 groups depending on the treatment given: stress (-)/H2O, stress (-)/LvEO, stress (+)/H2O, and stress (+)/LvEO group. For behavioral testing, using an elevated plus-maze test, significant anxiolytic-like effects were seen in both the stress (-)/LvEO and stress (+)/LvEO groups, indicating that LvEO exerts anxiolytic-like effects regardless of the administration of water immersion stress. On expression analysis, the levels of NGFR and Arc mRNA were significantly lower in animals subjected to stress. Inhalation of LvEO, however, reversed this change, thus suggesting that LvEO negates the impact of stress on gene expression levels. Meanwhile, significant decreases in expression levels were also observed in the stress (-)/LvEO group, which implies that LvEO, when given in a stress-free situation, may act as a stress stimulus. Taken together, our data suggest that inhalation of LvEO exerts bidirectional influences in the central nervous system (CNS) of animals, either attenuating the effects of stress or acting as a stressor, depending on the subject state.
Collapse
Affiliation(s)
- Mizuho Takahashi
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Akiharu Yoshino
- Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Ayako Yamanaka
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Chihiro Asanuma
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Tadaaki Satou
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Shinichiro Hayashi
- Green Flask Labotatory, Green Flask Co., Ltd., Meguro, Tokyo 152-0035, Japan
| | - Yoshinori Masuo
- Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Kiyomi Sadamoto
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Kazuo Koike
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
89
|
Barreto RA, Walker FR, Dunkley PR, Day TA, Smith DW. Fluoxetine prevents development of an early stress-related molecular signature in the rat infralimbic medial prefrontal cortex. Implications for depression? BMC Neurosci 2012; 13:125. [PMID: 23075086 PMCID: PMC3528467 DOI: 10.1186/1471-2202-13-125] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 10/15/2012] [Indexed: 12/22/2022] Open
Abstract
Background Psychological stress, particularly in chronic form, can lead to mood and cognitive dysfunction and is a major risk factor in the development of depressive states. How stress affects the brain to cause psychopathologies is incompletely understood. We sought to characterise potential depression related mechanisms by analysing gene expression and molecular pathways in the infralimbic medial prefrontal cortex (ILmPFC), following a repeated psychological stress paradigm. The ILmPFC is thought to be involved in the processing of emotionally contextual information and in orchestrating the related autonomic responses, and it is one of the brain regions implicated in both stress responses and depression. Results Genome-wide microarray analysis of gene expression showed sub-chronic restraint stress resulted predominantly in a reduction in transcripts 24 hours after the last stress episode, with 239 genes significantly decreased, while just 24 genes had increased transcript abundance. Molecular pathway analysis using DAVID identified 8 pathways that were significantly enriched in the differentially expressed gene list, with genes belonging to the brain-derived neurotrophic factor – neurotrophin receptor tyrosine kinase 2 (BDNF-Ntrk2) pathway most enriched. Of the three intracellular signalling pathways that are downstream of Ntrk2, real-time quantitative PCR confirmed that only the PI3K-AKT-GSK3B and MAPK/ERK pathways were affected by sub-chronic stress, with the PLCγ pathway unaffected. Interestingly, chronic antidepressant treatment with the selective serotonin reuptake inhibitor, fluoxetine, prevented the stress-induced Ntrk2 and PI3K pathway changes, but it had no effect on the MAPK/ERK pathway. Conclusions These findings indicate that abnormal BDNF-Ntrk2 signalling may manifest at a relatively early time point, and is consistent with a molecular signature of depression developing well before depression-like behaviours occur. Targeting this pathway prophylactically, particularly in depression-susceptible individuals, may be of therapeutic benefit.
Collapse
Affiliation(s)
- Rafael A Barreto
- School of Biomedical Sciences and Pharmacy Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia
| | | | | | | | | |
Collapse
|
90
|
Neto FL, Borges G, Torres-Sanchez S, Mico JA, Berrocoso E. Neurotrophins role in depression neurobiology: a review of basic and clinical evidence. Curr Neuropharmacol 2012; 9:530-52. [PMID: 22654714 PMCID: PMC3263450 DOI: 10.2174/157015911798376262] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 08/18/2010] [Accepted: 08/09/2010] [Indexed: 01/02/2023] Open
Abstract
Depression is a neuropsychiatric disorder affecting a huge percentage of the active population especially in developed countries. Research has devoted much of its attention to this problematic and many drugs have been developed and are currently prescribed to treat this pathology. Yet, many patients are refractory to the available therapeutic drugs, which mainly act by increasing the levels of the monoamines serotonin and noradrenaline in the synaptic cleft. Even in the cases antidepressants are effective, it is usually observed a delay of a few weeks between the onset of treatment and remission of the clinical symptoms. Additionally, many of these patients who show remission with antidepressant therapy present a relapse of depression upon treatment cessation. Thus research has focused on other possible molecular targets, besides monoamines, underlying depression. Both basic and clinical evidence indicates that depression is associated with
several structural and neurochemical changes where the levels of neurotrophins, particularly of brain-derived neurotrophic factor (BDNF), are altered. Antidepressants, as well as other therapeutic strategies, seem to restore these levels. Neuronal atrophy, mostly detected in limbic structures that regulate mood and cognition, like the hippocampus, is observed in depressed patients and in animal behavioural paradigms for depression. Moreover, chronic antidepressant treatment enhances adult hippocampal neurogenesis, supporting the notion that this event underlies antidepressants effects. Here we review some of the preclinical and clinical studies, aimed at disclosing the role of neurotrophins in the pathophysiological
mechanisms of depression and the mode of action of antidepressants, which favour the neurotrophic/neurogenic hypothesis.
Collapse
Affiliation(s)
- Fani L Neto
- Instituto de Histologia e Embriologia, Faculdade de Medicina e IBMC, Universidade do Porto, 4200-319, Porto, Portugal
| | | | | | | | | |
Collapse
|
91
|
Park H, Yoo D, Kwon S, Yoo TW, Park HJ, Hahm DH, Lee H, Kim ST. Acupuncture stimulation at HT7 alleviates depression-induced behavioral changes via regulation of the serotonin system in the prefrontal cortex of maternally-separated rat pups. J Physiol Sci 2012; 62:351-7. [PMID: 22627707 PMCID: PMC10717640 DOI: 10.1007/s12576-012-0211-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/06/2012] [Indexed: 01/30/2023]
Abstract
A possible application of acupuncture in alleviating depression-like behavioral changes and regulating serotonin signaling in the prefrontal cortex (PFC) of maternally-separated rat pups was investigated in this study. On postnatal day 15, rat pups were maternally-separated and received acupuncture stimulation at acupoint HT7 or ST36 once a day for 7 days. On postnatal day 21, the tail suspension test was performed and the PFC was harvested. Tissue levels of serotonin (5-HT) and 5-hydroxyindole-3-acetic acid (5-HIAA) were then measured by high-performance liquid chromatography and expression of serotonin transporter (5-HTT) and brain-derived neurotrophic factor (BDNF) were assessed by western blotting. Levels of 5-HT and 5-HIAA were not significantly changed, but the 5-HIAA/5-HT ratio was significantly increased by maternal separation. The immobility time of maternally-separated rat pups was increased, and increased 5-HTT expression and reduced BDNF level were observed in the PFC. But acupuncture stimulation at HT7 alleviated the behavioral change and regulated the changes of 5-HIAA/5-HT ratio, 5-HTT, and BDNF. In conclusion, acupuncture stimulation at HT7 can relieve maternal separation-induced changes, and we propose that regulation of the 5-HIAA/5-HT ratio and of 5-HTT expression by acupuncture stimulation are important acupuncture-induced benefits in this animal model of depression.
Collapse
Affiliation(s)
- Hyemee Park
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Mulgeum-eup, Yangsan, Gyeongsangnam-do 626-870 Republic of Korea
| | - Doyoung Yoo
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Mulgeum-eup, Yangsan, Gyeongsangnam-do 626-870 Republic of Korea
| | - Sunoh Kwon
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 130-701 Republic of Korea
| | - Tae-Won Yoo
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Mulgeum-eup, Yangsan, Gyeongsangnam-do 626-870 Republic of Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 130-701 Republic of Korea
| | - Dae-Hyun Hahm
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 130-701 Republic of Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 130-701 Republic of Korea
| | - Seung-Tae Kim
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Mulgeum-eup, Yangsan, Gyeongsangnam-do 626-870 Republic of Korea
| |
Collapse
|
92
|
Molecular adaptation to chronic antidepressant treatment: evidence for a more rapid response to the novel α₂-adrenoceptor antagonist/5-HT-noradrenaline reuptake inhibitor (SNRI), S35966, compared to the SNRI, venlafaxine. Int J Neuropsychopharmacol 2012; 15:617-29. [PMID: 21733241 DOI: 10.1017/s1461145711000733] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Evidence of early changes in neural plasticity may aid the prediction of rapid-onset antidepressant drugs. Here we compared the dual α₂-adrenoceptor antagonist/5-HT-noradrenaline reuptake inhibitor (SNRI), S35966, to the SNRI, venlafaxine, with regards to their effect on rat brain expression of a panel of neural plasticity-related genes: Arc, BDNF, and VGLUT1, as well as Homer1a and Shank1B (not studied previously). Abundance of mRNA was determined by in-situ hybridization in cortical and hippocampal regions 2 h and 16 h following drug administration for 14, 7 and 1 d. After 14 d, both S35966 and venlafaxine increased mRNA of all genes, including Homer1a and Shank1B, and effects were similarly time- and region-dependent. After 7 d, S35966 elevated Arc, Shank1B and BDNF mRNA, whereas venlafaxine increased Shank1B mRNA only. Finally, after 1 d (acute administration), S35966 increased Arc and Homer1a mRNA whereas venlafaxine had no effect on any gene examined. In summary, a 14-d course of treatment with S35966 or venlafaxine induced similar region- and time-dependent increases in expression of neural plasticity-related genes including Shank1B and Homer1a. Some genes responded earlier to S35966, suggesting that drugs with combined α₂-adrenoceptor antagonist/SNRI properties may elicit more rapid changes in markers of neural plasticity than a SNRI alone.
Collapse
|
93
|
Assareh N, ElBatsh MM, Marsden CA, Kendall DA. The effects of chronic administration of tranylcypromine and rimonabant on behaviour and protein expression in brain regions of the rat. Pharmacol Biochem Behav 2012; 100:506-12. [DOI: 10.1016/j.pbb.2011.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/03/2011] [Accepted: 10/14/2011] [Indexed: 01/13/2023]
|
94
|
Brain-derived neurotrophic factor and exercise in fibromyalgia syndrome patients: a mini review. Rheumatol Int 2011; 32:2593-9. [DOI: 10.1007/s00296-011-2348-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/20/2011] [Indexed: 12/18/2022]
|
95
|
Effects of GABAB ligands alone and in combination with paroxetine on hippocampal BDNF gene expression. Eur J Pharmacol 2011; 671:33-8. [DOI: 10.1016/j.ejphar.2011.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/20/2011] [Accepted: 09/02/2011] [Indexed: 01/07/2023]
|
96
|
Calabrese F, Molteni R, Riva MA. Antistress properties of antidepressant drugs and their clinical implications. Pharmacol Ther 2011; 132:39-56. [DOI: 10.1016/j.pharmthera.2011.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/09/2011] [Indexed: 02/07/2023]
|
97
|
Abstract
Suicidal thoughts during antidepressant treatment have recently been the focus of several candidate gene and genome-wide association studies. Although the clinical risk factors for such events are well known, unfortunately they do not help to predict who will have a suicidal event during antidepressant treatment and who will not. Pharmacogenomic studies have therefore attempted to use genetic variants to predict individual susceptibility to treatment-related suicidal ideation. In this perspective, several genetic predictors have been highlighted, the majority of which relate to common mechanisms of antidepressant action: genes involved in the neurotrophic and synaptic plasticity systems (CREB1, and BDNF and its receptor NTRK2), noradrenergic system (ADRA2A), glutamatergic system (GRIA3, GRIK2 and GDA), inflammatory and hypothalamic-pituitary-adrenal (HPA) axis systems (IL28RA and FKBP5) and in other brain functions (PAPLN, APOO, KCNIP4 and ELP3). Although some of these genes may be of interest in predicting antidepressant-induced suicidal ideation, they still need to be validated in better phenotypically designed samples. Several methodological factors are indeed responsible for the problems involved in implicating these findings in the causation of a clinically relevant phenotype. These include discrepancies between studies in defining phenotypes, with several different thresholds used to establish significant suicidal ideation; the use of scales not truly designed to measure suicidal ideation; and the paucity of true suicidal events (suicide attempts and/or completion) in pharmacogenomic studies. In conclusion, pharmacogenomic studies are far from fulfilling their promise. There is a need for future pharmacogenetic studies targeting events that are clinically significant in order to find associated variants that will help clinicians to improve their treatment strategies. While awaiting these genetic predictors, clinicians need to bear in mind that all studies in this field support a beneficial effect of antidepressants on suicidal ideation. This should therefore encourage them to prescribe antidepressant medication even in patients with suicidal ideation.
Collapse
Affiliation(s)
- Nader Perroud
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
98
|
Agostinho FR, Réus GZ, Stringari RB, Ribeiro KF, Pfaffenseller B, Stertz L, Panizzutti BS, Kapczinski F, Quevedo J. Olanzapine plus fluoxetine treatment increases Nt-3 protein levels in the rat prefrontal cortex. Neurosci Lett 2011; 497:99-103. [PMID: 21545827 DOI: 10.1016/j.neulet.2011.04.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/14/2011] [Accepted: 04/18/2011] [Indexed: 01/19/2023]
Abstract
Evidence is emerging for a role for neurotrophins in the treatment of mood disorders. In this study, we evaluated the effects of chronic administration of fluoxetine, olanzapine and the combination of fluoxetine/olanzapine on the brain-derived-neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3) in the rat brain. Wistar rats received daily injections of olanzapine (3 or 6 mg/kg) and/or fluoxetine (12.5 or 25mg/kg) for 28 days, and we evaluated for BDNF, NGF and NT-3 protein levels in the prefrontal cortex, hippocampus and amygdala. Our results showed that treatment with fluoxetine and olanzapine alone or in combination did not alter BDNF in the prefrontal cortex (p=0.37), hippocampus (p=0.98) and amygdala (p=0.57) or NGF protein levels in the prefrontal cortex (p=0.72), hippocampus (p=0.23) and amygdala (p=0.64), but NT-3 protein levels were increased by olanzapine 6 mg/kg/fluoxetine 25mg/kg combination in the prefrontal cortex (p=0.03), in the hippocampus (p=0.83) and amygdala (p=0.88) NT-3 protein levels did not alter. Finally, these findings further support the hypothesis that NT-3 could be involved in the effect of treatment with antipsychotic and antidepressant combination in mood disorders.
Collapse
Affiliation(s)
- Fabiano R Agostinho
- Laboratório de Neurociências and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
O'Mahony CM, Clarke G, Gibney S, Dinan TG, Cryan JF. Strain differences in the neurochemical response to chronic restraint stress in the rat: Relevance to depression. Pharmacol Biochem Behav 2011; 97:690-9. [DOI: 10.1016/j.pbb.2010.11.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/13/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
|
100
|
Li JJ, Yuan YG, Hou G, Zhang XR. Dose-related effects of venlafaxine on pCREB and brain-derived neurotrophic factor (BDNF) in the hippocampus of the rat by chronic unpredictable stress. Acta Neuropsychiatr 2011; 23:20-30. [PMID: 25379693 DOI: 10.1111/j.1601-5215.2010.00512.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: The molecular pathogenesis of depression and psychopharmacology of antidepressants remain elusive. Recent hypotheses suggest that changes in neurogenesis and plasticity may underlie the aetiology of depression. The hippocampus is affected by depression and shows neuronal remodelling during adulthood.Objective: The present study on the adult rat hippocampus, was to evaluate the dose-related effects of chronic venlafaxine on the expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cyclic-AMP response element binding protein (pCREB).Methods: Sprague-Dawley rats were exposed to a variety of chronic unpredictable stressors (CUSs) to establish a depression model. Rats were treated for either 14 or 28 days with venlafaxine (5 and 10 mg/kg, respectively). The hippocampal expression of pCREB and BDNF mRNA and protein was assessed by using immunohistochemistry, western blotting and reverse transcription polymerase chain reaction (RT-PCR).Results: Rats subjected to CUS procedure consumed less sucrose solution compared with non-stressed rats. The CUS influenced exploratory activity resulting in a reduction of the motility counts. Chronic low dose (5 mg/kg, 14 and 28 days), but not high dose (10 mg/kg, 14 and 28 days) of venlafaxine treatment increased the expression of pCREB and BDNF mRNA and protein in the CUS rat hippocampus.Conclusion: Neuronal plasticity-associated proteins such as pCREB and BDNF play an important role both in stress-related depression and in antidepressant effect.
Collapse
Affiliation(s)
- Jing-Jing Li
- Department of Psychiatry, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yong-Gui Yuan
- Department of Psychiatry, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Gang Hou
- Department of Psychiatry, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang-Rong Zhang
- Department of Neuropsychiatry, ZhongDa Hospital, Southeast University, Nanjing, China
| |
Collapse
|