51
|
Villa E, Paul R, Meynet O, Volturo S, Pinna G, Ricci JE. The E3 ligase UBR2 regulates cell death under caspase deficiency via Erk/MAPK pathway. Cell Death Dis 2020; 11:1041. [PMID: 33288741 PMCID: PMC7721896 DOI: 10.1038/s41419-020-03258-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/14/2023]
Abstract
Escape from cell death is a key event in cancer establishment/progression. While apoptosis is often considered as the main cell death pathway, upon caspase inhibition, cell death is rather delayed than blocked leading to caspase-independent cell death (CICD). Although described for years, CICD's underlying mechanism remains to be identified. Here, we performed a genome-wide siRNA lethality screening and identified the RING-Type E3 Ubiquitin Transferase (UBR2) as a specific regulator of CICD. Strikingly, UBR2 downregulation sensitized cells towards CICD while its overexpression was protective. We established that UBR2-dependent protection from CICD was mediated by the MAPK/Erk pathway. We then observed that UBR2 is overexpressed in several cancers, especially in breast cancers and contributes to CICD resistance. Therefore, our work defines UBR2 as a novel regulator of CICD, found overexpressed in cancer cells, suggesting that its targeting may represent an innovative way to kill tumor cells.
Collapse
Affiliation(s)
- Elodie Villa
- Université Côte d'Azur, INSERM, C3M, Nice, France
| | - Rachel Paul
- Université Côte d'Azur, INSERM, C3M, Nice, France
| | | | - Sophie Volturo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Guillaume Pinna
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | | |
Collapse
|
52
|
Guo L, Zheng J, Zeng H, Zhang Z, Shao G. Atorvastatin potentiates the chemosensitivity of human liver cancer cells to cisplatin via downregulating YAP1. Oncol Lett 2020; 21:82. [PMID: 33363619 PMCID: PMC7723154 DOI: 10.3892/ol.2020.12343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/14/2020] [Indexed: 01/21/2023] Open
Abstract
Atorvastatin is a competitive inhibitor of β-hydroxy β-methylglutaryl-CoA reductase, which is involved in anticancer effects in numerous types of cancer, including in human liver cancer. However, its functions and underlying mechanisms of chemosensitivity in liver cancer remain to be elucidated. The present study investigated the effect of atorvastatin on cisplatin chemosensitivity and its molecular mechanisms, with a focus on the Yes1-associated transcriptional regulator (YAP1) protein. The present study demonstrated that atorvastatin significantly potentiated chemosensitivity to cisplatin in the liver cancer HepG2 and Huh-7 cell lines. Furthermore, cell survival and apoptosis in liver cancer cell lines were analyzed using MTT assay and flow cytometry, respectively. Atorvastatin suppressed HepG2 and Huh-7 cell viability in a dose-dependent manner, similar to cisplatin and paclitaxel. Subtoxic levels of atorvastatin significantly increased cisplatin-induced apoptosis in Huh-7 cells. Atorvastatin-promoted chemosensitivity was predominantly mediated by caspase 3, caspase 9 and poly-(ADP ribose)-polymerase activation, and YAP1 downregulation. Finally, YAP1 overexpression significantly reversed the susceptibility of Huh-7 cells to cisplatin. Overall, the results of the present study suggested the underlying mechanisms of atorvastatin chemosensitivity in inducing liver cancer cell apoptosis via downregulating YAP1 and implicated the potential application of atorvastatin-potentiated chemosensitivity in liver cancer therapy.
Collapse
Affiliation(s)
- Liwen Guo
- Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Jiaping Zheng
- Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Hui Zeng
- Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Zhewei Zhang
- Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Guoliang Shao
- Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
53
|
Anticoccidial and Antioxidant Activities of Moringa oleifera Leaf Extract on Murine Intestinal Eimeriosis. Acta Parasitol 2020; 65:823-830. [PMID: 32472400 DOI: 10.2478/s11686-020-00219-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/23/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Coccidiosis is an intestinal disease caused by protozoan parasites of the genus Eimeria and responsible for considerable economic loss in the livestock and poultry industries. Resistance to the current anticoccidial drugs is now a major challenge to efforts to control the disease, and this has stimulated the search for new compounds as alternative treatments. In this context, plant extracts have emerged as an alternative and complementary approach to control coccidiosis. In the present study, an ethanol extract of Moringa oleifera leaves was screened for its anticoccidial activity against Eimeria papillata infection in mice. METHODS To this end, albino mice were allocated into three groups: the first group was the non-infected control; the second and third groups were infected with 103 E. papillata oocysts. Of these, the second group was kept as an infected control; while the third group was gavaged with 100 μl of moringa leaf extract (MLE) at a dose of 400 mg MLE/kg, once daily, for five days. RESULTS MLE significantly suppressed oocyst excretion in faeces, and histological study of the jejunum showed a significant decrease in the number of parasitic stages, with significant improvement in the numbers of goblet cells. Furthermore, the expression of MUC2 gene was upregulated in the treated mice compared with infected, which further supports the anticoccidial potential of MLE. Moreover, our study evidenced that MLE reduced oxidative damage by decreasing TBARS and iNOS expression, and increasing the GSH and GPX levels. Also, treatment with MLE promoted the expression of Bcl-2 and ultimately, inhibited the apoptosis of host cells in the treated mice. CONCLUSION Our data indicate that MLE has anticoccidial, anti-oxidant and anti-apoptotic activities in mice infected with Eimeria papillata.
Collapse
|
54
|
Zhang Y, Chen J, Zhao Y, Weng L, Xu Y. Ceramide Pathway Regulators Predict Clinical Prognostic Risk and Affect the Tumor Immune Microenvironment in Lung Adenocarcinoma. Front Oncol 2020; 10:562574. [PMID: 33194633 PMCID: PMC7653182 DOI: 10.3389/fonc.2020.562574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/28/2020] [Indexed: 01/29/2023] Open
Abstract
Purpose The ceramide pathway is strongly associated with the regulation of tumor proliferation, differentiation, senescence, and apoptosis. This study aimed to explore the gene signatures, prognostic value, and immune-related effects of ceramide-regulated genes in lung adenocarcinoma (LUAD). Methods Public datasets of LUAD from The Cancer Genome Atlas and Gene Expression Omnibus were selected. Consensus clustering was adopted to classify LUAD patients, and a least absolute shrinkage and selection operator (LASSO) regression model was employed to develop a prognostic risk signature. CIBERSORT algorithm was used to estimate the association between the risk signature and the tumor immune microenvironment. Results Most of the 22 ceramide-regulated genes were differentially expressed between LUAD and normal samples. LUAD patients were classified into two subgroups (cluster 1 and 2) and cluster 2 was associated with a poor prognosis. Furthermore, a prognostic risk signature was developed based on the three ceramide-regulated genes, Cytochrome C (CYCS), V-rel reticuloendotheliosis viral oncogene homolog A (RELA) and Fas-associated via death domain (FADD). LUAD patients with low- and high-risk scores differed concerning the subtypes of tumor-infiltrating immune cells. A moderate to weak correlation was observed between the risk score and tumor-infiltrating immune cells. Conclusions Ceramide-regulated genes could predict clinical prognostic risk and affect the tumor immune microenvironment in LUAD.
Collapse
Affiliation(s)
- Yuan Zhang
- The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jianbo Chen
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Clinical Medicine, Fujian Medical University, Xiamen, China
| | - Yunan Zhao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Lihong Weng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yiquan Xu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
55
|
Orabi SH, Allam TS, Shawky SM, Tahoun EAEA, Khalifa HK, Almeer R, Abdel-Daim MM, El-Borai NB, Mousa AA. The Antioxidant, Anti-Apoptotic, and Proliferative Potency of Argan Oil against Betamethasone-Induced Oxidative Renal Damage in Rats. BIOLOGY 2020; 9:E352. [PMID: 33114212 PMCID: PMC7690873 DOI: 10.3390/biology9110352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022]
Abstract
The present study aimed to investigate the protective effect of argan oil (AO) against nephrotoxic effects following overdose and long-term administration of betamethasone (BM). The phytochemical compositions of AO were assessed using GC/MS. Forty eight male Wister albino rats were divided into six groups and treated for 3 successive weeks. The control group was orally administrated distilled water daily, the BM group received BM (1 mg/kg, IM, day after day), AO/0.5 and AO/1 groups received AO (0.5 mL/kg, 1 mL/kg, orally, daily, respectively), BM + AO/0.5 group and BM + AO/1 group. The results revealed that BM induced hematological changes, including reduction of red blood cells with leukocytosis, neutrophilia, monocytosis, lymphocytopenia, and thrombocytopenia. Moreover, BM caused a significant increase of serum urea and creatinine levels, and renal malondialdehyde and nitric oxide contents with significant decrease of reduced glutathione content. BM also caused vascular, degenerative, and inflammatory histopathological alterations in kidney, along with an increase in the Bax/Bcl-2 ratio, activation of caspase-3, and decrease of proliferating cell nuclear antigen expression. Conversely, the concomitant administration of AO (0.5, 1 mL/kg) with BM ameliorated the aforementioned hematological, biochemical, pathological, and histochemical BM adverse effects. In conclusion, AO has protective effects against BM-induced renal damage, possibly via its antioxidant, anti-apoptotic, and proliferative properties.
Collapse
Affiliation(s)
- Sahar Hassan Orabi
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt; (H.K.K.); (A.A.M.)
| | - Tamer S. Allam
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt; or
| | - Sherif Mohamed Shawky
- Department of Physiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt;
| | - Enas Abd El-aziz Tahoun
- Department of Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt;
| | - Hanem K. Khalifa
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt; (H.K.K.); (A.A.M.)
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Nermeen Borai El-Borai
- Department of Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt
| | - Ahmed Abdelmoniem Mousa
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt; (H.K.K.); (A.A.M.)
| |
Collapse
|
56
|
Liu J, Liu X, Wu M, Qi G, Liu B. Engineering Living Mitochondria with AIE Photosensitizer for Synergistic Cancer Cell Ablation. NANO LETTERS 2020; 20:7438-7445. [PMID: 32969665 DOI: 10.1021/acs.nanolett.0c02778] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Photodynamic therapy (PDT) has been increasingly studied in cancer treatment, and several factors have been identified to limit the PDT therapeutic efficiency. Taking Bcl-2 protein as an example, its overexpressing in cancer cells could strengthen the antioxidant and antiapoptotic capability of the cells, making PDT less effective in cancer cell treatment. To address this issue, we developed an engineered living system by integrating an aggregation-induced emission photosensitizer (AIE PS) with bioactive mitochondria (Mito-AIEgen-lipid) for enhanced PDT. The AIE PS engineered mitochondria could not only change the energetic metabolism of cancer cells from aerobic glycolysis to normal oxide phosphorylation for cancer cell growth inhibition but also activate the apoptotic pathway and reduce the expression of antiapoptotic protein Bcl-2. This specific organelle-based living system holds great promise to enhance the therapeutic efficiency of PDT by integrating the advantages of synthetic organic small molecules with biological components.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Xingang Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Min Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Guobin Qi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
57
|
Joshi P, Bodnya C, Rasmussen ML, Romero-Morales AI, Bright A, Gama V. Modeling the function of BAX and BAK in early human brain development using iPSC-derived systems. Cell Death Dis 2020; 11:808. [PMID: 32978370 PMCID: PMC7519160 DOI: 10.1038/s41419-020-03002-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/27/2022]
Abstract
Intrinsic apoptosis relies on the ability of the BCL-2 family to induce the formation of pores on the outer mitochondrial membrane. Previous studies have shown that both BAX and BAK are essential during murine embryogenesis, and reports in human cancer cell lines identified non-canonical roles for BAX and BAK in mitochondrial fission during apoptosis. BAX and BAK function in human brain development remains elusive due to the lack of appropriate model systems. Here, we generated BAX/BAK double knockout human-induced pluripotent stem cells (hiPSCs), hiPSC-derived neural progenitor cells (hNPCs), neural rosettes, and cerebral organoids to uncover the effects of BAX and BAK deletion in an in vitro model of early human brain development. We found that BAX and BAK-deficient cells have abnormal mitochondrial morphology and give rise to aberrant cortical structures. We suggest crucial functions for BAX and BAK during human development, including maintenance of homeostatic mitochondrial morphology, which is crucial for proper development of progenitors and neurons of the cortex. Human pluripotent stem cell-derived systems can be useful platforms to reveal novel functions of the apoptotic machinery in neural development.
Collapse
Affiliation(s)
- Piyush Joshi
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Caroline Bodnya
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Megan L Rasmussen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | | | - Anna Bright
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Vivian Gama
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
58
|
Wang L, Liu W, Li Z, Wang X, Feng X, Wang Z, Wu J, Zhang H, Wu H, Kong W, Yu B, Yu X. A tropism-transformed Oncolytic Adenovirus with Dual Capsid Modifications for enhanced Glioblastoma Therapy. J Cancer 2020; 11:5713-5726. [PMID: 32913465 PMCID: PMC7477443 DOI: 10.7150/jca.46463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma, the most common human brain tumor, is highly invasive and difficult to cure using conventional cancer therapies. As an alternative, adenovirus-mediated virotherapies represent a popular and maturing technology. However, the cell surface coxsackievirus and adenovirus receptor (CAR)-dependent infection mechanism limits the infectivity and oncolytic effects of Adenovirus type 5. To address this limitation, in this study we aimed to develop a novel oncolytic adenovirus for enhanced infectivity and therapeutic efficacy toward glioblastoma. We developed a novel genetically modified oncolytic adenovirus vector with dual capsid modifications to facilitate infection and specific cytotoxicity toward glioma cells. Modification of the adenoviral capsid proteins involved the incorporation of a synthetic leucine zipper-like dimerization domain into the capsid protein IX (pIX) of human adenovirus serotype 5 (Ad5) and the exchange of the fiber knob from Ad37. The virus infection mechanism and anti-tumor efficacy of modified vectors were evaluated in both in vitro (cell) and in vivo (mouse) models. Ad37-knob exchange efficiently promoted the virus infection and replication-induced glioma cell lysis by oncolytic Ad5. We also found that gene therapy mediated by the dual-modified oncolytic Ad5 vector coupled with the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) exhibited significantly enhanced anti-tumor efficacy in vitro and in vivo. This genetically modified oncolytic adenovirus provides a promising vector for future use in glioblastoma gene-viral-based therapies.
Collapse
Affiliation(s)
- Lizheng Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wenmo Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhe Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xupu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xinyao Feng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zixuan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
59
|
Hussain SS, Zhang F, Zhang Y, Thakur K, Naudhani M, Cespedes-Acuña CL, Wei Z. Stevenleaf from Gynostemma Pentaphyllum inhibits human hepatoma cell (HepG2) through cell cycle arrest and apoptotic induction. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
60
|
Sato M, Toyama T, Kim MS, Lee JY, Hoshi T, Miura N, Naganuma A, Hwang GW. Increased putrescine levels due to ODC1 overexpression prevents mitochondrial dysfunction-related apoptosis induced by methylmercury. Life Sci 2020; 256:118031. [PMID: 32615186 DOI: 10.1016/j.lfs.2020.118031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/23/2022]
Abstract
AIMS We had previously reported that addition of putrescine to the culture medium was reported to reduce methylmercury toxicity in C17.2 neural stem cells. Here, we have examined the inhibition of methylmercury-induced cytotoxicity by putrescine using ODC1-overexpressing C17.2 cells. MATERIALS AND METHODS We established stable ODC1-overexpressing C17.2 cells and evaluated methylmercury-induced apoptosis by examining the TUNEL assay and cleaved caspase-3 levels. Mitochondria-mediated apoptosis was also evaluated by reduction of mitochondrial membrane potential and recruitment of Bax and Bak to the mitochondria. KEY FINDINGS ODC is encoded by ODC1 gene, and putrescine levels in ODC1-overexpressing cells were significantly higher than in control cells. Overexpression of ODC1 and addition of putrescine to the culture medium suppressed DNA fragmentation and caspase-3 activation, which are observed when apoptosis is induced by methylmercury. Moreover, mitochondrial dysfunction and reactive oxygen species (ROS) generation, caused by methylmercury, were also inhibited by the overexpression of ODC1 and putrescine; pretreatment with ODC inhibitor, however, promoted both ROS generation and apoptosis by methylmercury. Finally, we found that Bax and Bak, the apoptosis-promoting factors, to be increased in mitochondria, following methylmercury treatment, and the same was inhibited by overexpression of ODC1. These results suggest that overexpression of ODC1 may prevent mitochondria-mediated apoptosis by methylmercury via increase of putrescine levels. SIGNIFICANCE Our findings provide important clues to clarify mechanisms involved in the defense against methylmercury toxicity and suggest novel biological functions of putrescine.
Collapse
Affiliation(s)
- Masayuki Sato
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Takashi Toyama
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Min-Seok Kim
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; Inhalation Toxicology Research Group, Korea Institute of Toxicology, 30, Baekhak1-gil Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Jin-Yong Lee
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Takayuki Hoshi
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Nobuhiko Miura
- Laboratory of Environmental and Molecular Toxicology, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa 245-0066, Japan
| | - Akira Naganuma
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Gi-Wook Hwang
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| |
Collapse
|
61
|
De Wang X, Li T, Li Y, Yuan WH, Zhao YQ. 2-Pyrazine-PPD, a novel dammarane derivative, showed anticancer activity by reactive oxygen species-mediate apoptosis and endoplasmic reticulum stress in gastric cancer cells. Eur J Pharmacol 2020; 881:173211. [PMID: 32464194 DOI: 10.1016/j.ejphar.2020.173211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 01/13/2023]
Abstract
20 (R)-Dammarane-3β, 12β, 20, 25-tetrol (25-OH-PPD), a ginsenoside, was derived from Panax ginseng (C. A. Meyer) and inhibited growth of several cancer cell lines. To improve the anti-cancer activity, we introduced the pyrazine ring to 25-OH-PPD and obtained the compound 20(R)-[2,3-β]-Pyrazine-dammarane-12β,20,25-triol (2-Pyrazine-PPD). we evaluated the anti-cancer activity of 2-Pyrazine-PPD and investigated the main anti-cancer mechanisms of 2-Pyrazine-PPD in gastric cancer cells. We found that 2-Pyrazine-PPD remarkably suppressed the proliferation of gastric cancer cells in a concentration-dependent, and showed little toxicity to the normal cell (human gastric epithelial cell line-GES-1). Further study indicated that 2-Pyrazine-PPD induced apoptosis by mitochondria pathway in BGC-803 cancer cells, and activated unfolded protein response and the protein kinase RNA-activated (PKR)-like ER kinase (PERK)/Eukaryotic translation initiation factor-2α (eIF-2α)/Activating transcription factor 4 (ATF4) axis, the expression level of the protein C/EBP homologous protein (CHOP), the marker of endoplasmic reticulum stress, and the apoptosis inducing by 2-Pyrazine-PPD can partly be inhibited by siRNA-mediated knockdown of CHOP. Moreover, the production of reactive oxygen species was remarkably up-regulated in BGC-803 cancer cells treated with 2-Pyrazine-PPD. N-acetylcysteine (NAC, a reactive oxygen species scavenger) can attenuate 2-Pyrazine-PPD-induced apoptosis and endoplasmic reticulum stress. Taken together, we suggested that 2-Pyrazine-PPD exhibited remarkable anti-cancer activity by reactive oxygen species-mediate cell apoptosis and endoplasmic reticulum stress in gastric cancer cells. Our results uncovered the mechanism of 2-Pyrazine-PPD as a promising anti-tumor candidate for gastric cancer therapy.
Collapse
Affiliation(s)
- Xu De Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR China; Key Laboratory of Structure-based Drug Design and Discovery of Education, Shenyang Pharmaceurical University, Shenyang, 110016, PR China
| | - Tao Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR China; Key Laboratory of Structure-based Drug Design and Discovery of Education, Shenyang Pharmaceurical University, Shenyang, 110016, PR China
| | - Yan Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR China; Key Laboratory of Structure-based Drug Design and Discovery of Education, Shenyang Pharmaceurical University, Shenyang, 110016, PR China
| | - Wei Hui Yuan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR China; Key Laboratory of Structure-based Drug Design and Discovery of Education, Shenyang Pharmaceurical University, Shenyang, 110016, PR China
| | - Yu Qing Zhao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR China; Key Laboratory of Structure-based Drug Design and Discovery of Education, Shenyang Pharmaceurical University, Shenyang, 110016, PR China.
| |
Collapse
|
62
|
Shen J, Rees TW, Zhou Z, Yang S, Ji L, Chao H. A mitochondria-targeting magnetothermogenic nanozyme for magnet-induced synergistic cancer therapy. Biomaterials 2020; 251:120079. [PMID: 32387686 DOI: 10.1016/j.biomaterials.2020.120079] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Magnetic hyperthermia therapy (MHT) and chemodynamic therapy (CDT) are non-invasive in situ treatments without depth limitations and with minimum adverse effects on surrounding healthy tissue. We herein report a mitochondria-targeting magnetothermogenic nanozyme (Ir@MnFe2O4 NPs) for highly efficient cancer therapy. An iridium(III) complex (Ir) acts as a mitochondria-targeting agent on the surface of MnFe2O4 NPs. On exposure to an alternating magnetic field (AMF), the Ir@MnFe2O4 NPs induce a localized increase in temperature causing mitochondrial damage (MHT effect). Meanwhile glutathione (GSH) reduces Fe(III) to Fe(II) on the NPs surface, which in turn catalyzes the conversion of H2O2 to cytotoxic •OH (CDT effect). The depletion of GSH (a •OH scavenger) increases CDT efficacy, while the localized increase in temperature increases the rate of conversion of both Fe(III) to Fe(II) and H2O2 to •OH further enhancing the CDT effect. In addition, the disruption of cellular redox homeostasis due to CDT, leads to greater sensitivity of the cell towards MHT. This nanoplatform integrates these excellent therapeutic properties, with two-photon microscopy (TPM) (demonstrated in vitro) and magnetic resonance imaging (MRI) (demonstrated in vivo) to enable the precise and effective treatment of cancer.
Collapse
Affiliation(s)
- Jinchao Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Zhiguo Zhou
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, PR China.
| | - Shiping Yang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, PR China.
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
63
|
Ozmen O, Topsakal S. Pregabalin Ameliorates Lipopolysaccharide-Induced Pancreatic Inflammation in Aged Rats. Endocr Metab Immune Disord Drug Targets 2020; 19:1141-1147. [PMID: 30843496 DOI: 10.2174/1871530319666190306095532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/06/2019] [Accepted: 02/21/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The aim of this study was to examine pancreatic pathology and the prophylactic effects of pregabalin in lipopolysaccharide (LPS) induced sepsis model in aged rats. METHODS Twenty-four female, one-year-old, Wistar Albino rats were assigned to three groups; Group I (control), Group II (study group: 5mg/kg LPS intraperitoneal, single dose) and Group III(treatment group: 5mg/kg LPS+30 mg/kg oral pregabalin one hour before LPS). Animals were sacrificed by exsanguination 6 hours after LPS administration. Blood and pancreatic tissue samples were collected for biochemical, pathological, and immunohistochemical analyses. RESULTS LPS caused increases in serum amylase and lipase level but led to a reduction in glucose levels. Following histopathological analysis, numerous neutrophil leucocyte infiltrations were observed in vessels and pancreatic tissues. Increased caspase-3 expression was observed in both the endocrine and exocrine pancreas in the LPS group. Similarly, IL-6, caspase-3 (Cas-3), inducible nitric oxide synthase (iNOS), granulocyte colony-stimulating factor (G-CSF) and serum amyloid-A (SAA) expressions were increased by LPS. Pregabalin improved biochemical, histopathological, and immunohistochemical findings. CONCLUSION This study showed that LPS causes pathological findings in the pancreas, but pregabalin has ameliorative effects in aged rats with sepsis. Cas-3, IL-6, iNOS, G-CSF, and SAA all play pivotal roles in the pathogenesis of LPS-induced pancreatic damage.
Collapse
Affiliation(s)
- Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Senay Topsakal
- Pamukkale University, Department of Endocrinology and Metabolism, Denizli, Turkey
| |
Collapse
|
64
|
TBHQ Attenuates Neurotoxicity Induced by Methamphetamine in the VTA through the Nrf2/HO-1 and PI3K/AKT Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8787156. [PMID: 32351675 PMCID: PMC7174937 DOI: 10.1155/2020/8787156] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/17/2020] [Indexed: 12/29/2022]
Abstract
Methamphetamine (METH) leads to nervous system toxicity. Long-term exposure to METH results in damage to dopamine neurons in the ventral tegmental area (VTA), and depression-like behavior is a clinical symptom of this toxicity. The current study was designed to investigate whether the antioxidant tertiary butylhydroquinone (TBHQ) can alleviate neurotoxicity through both antioxidative stress and antiapoptotic signaling pathways in the VTA. Rats were randomly divided into a control group, a METH-treated group (METH group), and a METH+TBHQ-treated group (METH+TBHQ group). Intraperitoneal injections of METH at a dose of 10 mg/kg were administered to the rats in the METH and METH+TBHQ groups for one week, and METH was then administered at a dose that increased by 1 mg/kg per week until the sixth week, when the daily dosage reached 15 mg/kg. The rats in the METH+TBHQ group received 12.5 mg/kg TBHQ intragastrically. Chronic exposure to METH resulted in increased immobility times in the forced swimming test (FST) and tail suspension test (TST) and led to depression-like behavior. The production of reactive oxygen species (ROS) and apoptosis levels were increased in the VTA of animals in the METH-treated group. METH downregulated Nrf2, HO-1, PI3K, and AKT, key factors of oxidative stress, and the apoptosis signaling pathway. Moreover, METH increased the caspase-3 immunocontent. These changes were reversed by treatment with the antioxidant TBHQ. The results indicate that TBHQ can enhance Nrf2-induced antioxidative stress and PI3K-induced antiapoptotic effects, which can alleviate METH-induced ROS and apoptosis, and that the crosstalk between Nrf2 and PI3K/AKT is likely the key factor involved in the protective effect of TBHQ against METH-induced chronic nervous system toxicity.
Collapse
|
65
|
Hao G, Zhai J, Jiang H, Zhang Y, Wu M, Qiu Y, Fan C, Yu L, Bai S, Sun L, Yang Z. Acetylshikonin induces apoptosis of human leukemia cell line K562 by inducing S phase cell cycle arrest, modulating ROS accumulation, depleting Bcr-Abl and blocking NF-κB signaling. Biomed Pharmacother 2020; 122:109677. [PMID: 31810012 DOI: 10.1016/j.biopha.2019.109677] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022] Open
Abstract
Acetylshikonin, a natural naphthoquinone derivative compound from Lithospermum erythrorhyzon, has been reported to kill bacteria, suppress inflammation, and inhibit tumor growth. However, the effect of acetylshikonin on human chronic myelocytic leukemia (CML) cells apoptosis and its detailed mechanisms remains unknown. The purpose of the present study was to investigate whether acetylshikonin could inhibit proliferation or induce apoptosis of the K562 cells, and whether by regulating the NF-κB signaling pathway to suppress the development of CML. K562 cells were treated with serial diluted acetylshikonin at different concentrations. Our data showed that K562 cell growth was significantly inhibited by acetylshikonin with an IC50 of 2.03 μM at 24 h and 1.13 μM at 48 h, with increased cell cycle arrest in S-phase. The results of annexin V-FITC/PI and AO/EB staining showed that acetylshikonin induced cell apoptosis in a dose-dependent manner. K562 cells treated with acetylshikonin underwent massive apoptosis accompanied by a rapid generation of reactive oxygen species (ROS). Scavenging the ROS completely blocked the induction of apoptosis following acetylshikonin treatment. The levels of the pro-apoptotic proteins Bax, cleaved caspase-9, cleaved PARP and cleaved caspase-3 increased with increased concentrations of acetylshikonin, while the level of the anti-apoptotic protein Bcl-2 was downregulated. The levels of Cyt C and AIF, which are characteristic proteins of the mitochondria-regulated intrinsic apoptotic pathway, also increased in the cytosol after acetylshikonin treatment. However, the mitochondrial fraction of Cyt C and AIF were decreased under acetylshikonin treatment. In addition, acetylshikonin decreased Bcr-Abl expression and inhibited its downstream signaling. Acetylshikonin could lead to a blockage of the NF-κB signaling pathway via decreasing nuclear NF-κB P65 and increasing cytoplasmic NF-κB P65. Moreover, acetylshikonin significantly inhibited the phosphorylation of IkBα and IKKα/β in K562 cells. These results demonstrated that acetylshikonin significantly inhibited K562 cell growth and induced cell apoptosis through the mitochondria-regulated intrinsic apoptotic pathway. The mechanisms may involve the modulating ROS accumulation, inhibition of NF-κB and BCR-ABL expression. The inhibition of BCR-ABL expression and the inactivation of the NF-κB signaling pathway caused by acetylshikonin treatment resulted in K562 cell apoptosis. Together, our results indicate that acetylshikonin could serve as a potential therapeutic agent for the future treatment of CML.
Collapse
Affiliation(s)
- Gangping Hao
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China.
| | - Jing Zhai
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Hanming Jiang
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Yuanying Zhang
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Mengdi Wu
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Yuyu Qiu
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Cundong Fan
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Lijuan Yu
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Suyun Bai
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Lingyun Sun
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Zhongfa Yang
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China; Institute of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
66
|
Al-Quraishy S, Thagfan FA, Al-Shaebi EM, Qasem M, Abdel-Gaber R, Dkhil MAM. Salvadora persica protects mouse intestine from eimeriosis. ACTA ACUST UNITED AC 2020; 28:605-612. [PMID: 31721926 DOI: 10.1590/s1984-29612019068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/26/2019] [Indexed: 02/16/2023]
Abstract
Eimeriosis is a global poultry health problem. In the current study, we investigated the role of Salvadora persica leaf extracts (SE) against murine eimeriosis induced by Eimeria papillata. The infection induced an oocyst output of 6242 ± 731 oocysts/g feces. After treatment with 300 mg⁄kg SE, the oocysts expelled in feces decreased by approximately 3-fold. In addition, the total number of E. papillata in the parasitic stage decreased in the jejunum of mice after treatment with SE. In addition, SE significantly reduced the number of apoptotic cells by approximately 2-fold in the infected jejunum. SE ameliorated the changes in glutathione, malondialdehyde, and catalase due to E. papillata infection. Finally, SE regulated the cytokine genes, interleukin (IL)-1β, IL-6, interferon-γ, and tumor necrosis factor-α, and the apoptotic genes, B-cell lymphoma-2, Bax, and Caspase-3. SE protects the jejunum from E. papillata induced injury and may have potential therapeutic value as a food additive during eimeriosis.
Collapse
Affiliation(s)
- Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Felwa Abdullah Thagfan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Mahmood Qasem
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rewaida Abdel-Gaber
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Mohamed Abdel Monam Dkhil
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
67
|
Nowak KL, Edelstein CL. Apoptosis and autophagy in polycystic kidney disease (PKD). Cell Signal 2019; 68:109518. [PMID: 31881325 DOI: 10.1016/j.cellsig.2019.109518] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 02/08/2023]
Abstract
Apoptosis in the cystic epithelium is observed in most rodent models of polycystic kidney disease (PKD) and in human autosomal dominant PKD (ADPKD). Apoptosis inhibition decreases cyst growth, whereas induction of apoptosis in the kidney of Bcl-2 deficient mice increases proliferation of the tubular epithelium and subsequent cyst formation. However, alternative evidence indicates that both induction of apoptosis as well as increased overall rates of apoptosis are associated with decreased cyst growth. Autophagic flux is suppressed in cell, zebra fish and mouse models of PKD and suppressed autophagy is known to be associated with increased apoptosis. There may be a link between apoptosis and autophagy in PKD. The mammalian target of rapamycin (mTOR), B-cell lymphoma 2 (Bcl-2) and caspase pathways that are known to be dysregulated in PKD, are also known to regulate both autophagy and apoptosis. Induction of autophagy in cell and zebrafish models of PKD results in suppression of apoptosis and reduced cyst growth supporting the hypothesis autophagy induction may have a therapeutic role in decreasing cyst growth, perhaps by decreasing apoptosis and proliferation in PKD. Future research is needed to evaluate the effects of direct autophagy inducers on apoptosis in rodent PKD models, as well as the cause and effect relationship between autophagy, apoptosis and cyst growth in PKD.
Collapse
Affiliation(s)
- Kristen L Nowak
- Division of Renal Diseases and Hypertension, Univ. of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, Univ. of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
68
|
Vuradi RK, Nambigari N, Pendyala P, Gopu S, Kotha LR, G D, M VR, Sirasani S. Study of Anti‐Apoptotic mechanism of Ruthenium (II)Polypyridyl Complexes via RT‐PCR and DNA binding. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Navaneetha Nambigari
- Department of ChemistryOsmania University Hyderabad 500007 India
- Department of Chemistry, University College of Science, SaifabadOsmania University Hyderabad 500 004 India
| | - Pushpanjali Pendyala
- Institute of Genetics & Hospital for Genetic Diseases, BegumpetOsmania University Hyderabad 500 016 India
| | - Srinivas Gopu
- Department of ChemistryOsmania University Hyderabad 500007 India
| | | | - Deepika G
- Institute of Genetics & Hospital for Genetic Diseases, BegumpetOsmania University Hyderabad 500 016 India
| | - Vinoda Rani M
- Department of PhysicsOsmania University Hyderabad 500007 India
| | | |
Collapse
|
69
|
Xu J, Hua X, Yang R, Jin H, Li J, Zhu J, Tian Z, Huang M, Jiang G, Huang H, Huang C. XIAP Interaction with E2F1 and Sp1 via its BIR2 and BIR3 domains specific activated MMP2 to promote bladder cancer invasion. Oncogenesis 2019; 8:71. [PMID: 31811115 PMCID: PMC6898186 DOI: 10.1038/s41389-019-0181-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 11/09/2022] Open
Abstract
XIAP has generally been thought to function in bladder cancer. However, the potential function of structure-based function of XIAP in human BC invasion has not been well explored before. We show here that ectopic expression of the BIR domains of XIAP specifically resulted in MMP2 activation and cell invasion in XIAP-deleted BC cells, while Src was further defined as an XIAP downstream negative regulator for MMP2 activation and BC cell invasion. The inhibition of Src expression by the BIR domains was caused by attenuation of Src protein translation upon miR-203 upregulation; which was resulted from direct interaction of BIR2 and BIR3 with E2F1 and Sp1, respectively. The interaction of BIR2/BIR3 with E2F1/Sp1 unexpectedly occurred, which could be blocked by serum-induced XIAP translocation. Taken together, our studies, for the first time revealed that: (1) BIR2 and BIR3 domains of XIAP play their role in cancer cell invasion without affecting cell migration by specific activation of MMP2 in human BC cells; (2) by BIR2 interacting with E2F1 and BIR3 interacting with Sp1, XIAP initiates E2F1/Sp1 positive feedback loop-dependent transcription of miR-203, which in turn inhibits Src protein translation, further leading to MMP2-cleaved activation; (3) XIAP interaction with E2F1 and Sp1 is observed in the nucleus. Our findings provide novel insights into understanding the specific function of BIR2 and BIR3 of XIAP in BC invasion, which will be highly significant for the design/synthesis of new BIR2/BIR3-based compounds for invasive BC treatment.
Collapse
Affiliation(s)
- Jiheng Xu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Xiaohui Hua
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Rui Yang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Junlan Zhu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Zhongxian Tian
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Maowen Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Guosong Jiang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, China.
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA.
| |
Collapse
|
70
|
Yoshimura S, Sano E, Hanashima Y, Yamamuro S, Sumi K, Ueda T, Nakayama T, Hara H, Yoshino A, Katayama Y. IFN‑β sensitizes TRAIL‑induced apoptosis by upregulation of death receptor 5 in malignant glioma cells. Oncol Rep 2019; 42:2635-2643. [PMID: 31638255 PMCID: PMC6859459 DOI: 10.3892/or.2019.7383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
Tumor necrosis factor‑related apoptosis‑inducing ligand (TRAIL), a member of the tumor necrosis factor (TNF) family, induces apoptosis in cancer cells by binding to its receptors, death receptor 4 (DR4) and DR5, without affecting normal cells, and is therefore considered to be a promising antitumor agent for use in cancer treatment. However, several studies have indicated that most glioma cell lines display resistance to TRAIL‑induced apoptosis. To overcome such resistance and to improve the efficacy of TRAIL‑based therapies, identification of ideal agents for combinational treatment is important for achieving rational clinical treatment in glioblastoma patients. The main aim of this study was to investigate whether interferon‑β (IFN‑β) (with its pleiotropic antitumor activities) could sensitize malignant glioma cells to TRAIL‑induced apoptosis using glioma cell lines. TRAIL exhibited a dose‑dependent antitumor effect in all of the 7 types of malignant glioma cell lines, although the intensity of the effect varied among the cell lines. In addition, combined treatment with TRAIL (low clinical dose: 1 ng/ml) and IFN‑β (clinically relevant concentration: 10 IU/ml) in A‑172, AM‑38, T98G, U‑138MG and U‑251MG demonstrated a more marked antitumor effect than TRAIL alone. Furthermore, the antitumor effect of the combined treatment with TRAIL and IFN‑β may be enhanced via an extrinsic apoptotic system, and upregulation of DR5 was revealed to play an important role in this process in U‑138MG cells. These findings provide an experimental basis to suggest that combined treatment with TRAIL and IFN‑β may offer a new therapeutic strategy for malignant gliomas.
Collapse
Affiliation(s)
- Sodai Yoshimura
- Division of Neurosurgery, Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Emiko Sano
- Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Yuya Hanashima
- Division of Neurosurgery, Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Shun Yamamuro
- Division of Neurosurgery, Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Koichiro Sumi
- Division of Neurosurgery, Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Takuya Ueda
- Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Tomohiro Nakayama
- Division of Companion Diagnostics, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Hiroyuki Hara
- Division of Functional Morphology, Department of Functional Morphology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Atsuo Yoshino
- Division of Neurosurgery, Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yoichi Katayama
- Division of Neurosurgery, Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
- Center for Brain and Health Science, Aomori University, Aomori 030-8505, Japan
| |
Collapse
|
71
|
Shi Y, Qiu X, Dai M, Zhang X, Jin G. Hyperoside Attenuates Hepatic Ischemia-Reperfusion Injury by Suppressing Oxidative Stress and Inhibiting Apoptosis in Rats. Transplant Proc 2019; 51:2051-2059. [PMID: 31399183 DOI: 10.1016/j.transproceed.2019.04.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/22/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Hepatic ischemia-reperfusion (IR) injury is a serious complication of many clinical conditions, which may lead to liver or multiple organ failure. Hyperoside, a flavonoid compound, has been reported to protect against myocardial and cerebral injury induced by IR. This study aimed to investigate the protective effects of hyperoside on hepatic IR injury in rats. METHODS Using the 70% hepatic IR injury model, we divided 32 male Wistar rats into 4 groups (n = 8): sham-operated, IR+saline (saline/p.o.), IR+vehicle (carboxy methyl cellulose/p.o.), and IR+hyperoside (50 mg/kg/d/p.o.). At 24 hours after reperfusion, blood and liver tissue were collected. The effects of hyperoside on hepatic IR injury were assessed through tests of serum transaminase, hepatic histopathology, and measurement of markers of oxidative stress and apoptosis. RESULTS Pretreatment with hyperoside protected the liver from IR injury by a reduction in serum aspartate aminotransferase/alanine aminotransferase levels and a decrease in the severity of histologic changes. Hyperoside treatment also decreased the activity of malondialdehyde, increased the activities of superoxide dismutase and glutathione peroxidase, up-regulated the expression of heme oxygenase 1 and NAD(P)H:quinone oxidoreductase 1, and reduced the apoptotic index after IR injury. A decrease in the expression of caspase-3 and an increase in the ratio of B cell lymphoma 2 to B cell lymphoma 2-associated X also were observed. CONCLUSION Hyperoside has a protective effect on hepatic IR injury in rats, which may be due to its antioxidant and antiapoptotic properties.
Collapse
Affiliation(s)
- Yaoping Shi
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoxia Qiu
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Mengjun Dai
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xuebin Zhang
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Guangxin Jin
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
72
|
Han J, Lv W, Sheng H, Wang Y, Cao L, Huang S, Zhu L, Hu J. Ecliptasaponin A induces apoptosis through the activation of ASK1/JNK pathway and autophagy in human lung cancer cells. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:539. [PMID: 31807521 DOI: 10.21037/atm.2019.10.07] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Non-small cell lung cancer (NSCLC) is one of the causes of carcinomas mortality worldwide. Ecliptasaponin A (ES), a natural product extracted from the plant known as Eclipta prostrata, has been reported as an anti-cancer drug against various cancer cell lines. However, the exact mechanisms of ES have not yet been fully characterized. Methods Numerous studies have been done to support that ES has a powerful inhibiting effect on the growth of cancers via the activation of apoptosis and autophagy. To explore the underlying mechanisms of anti-cancer and investigate the relationships of the apoptosis and autophagy, we used apoptosis signal-regulating kinase 1 (ASK1) inhibitor (GS-4997), c-Jun N-terminal kinase (JNK) inhibitor (SP600125), and autophagy inhibitor [chloroquine (CQ) and 3-methyladenine (3-MA)]. Results ES could potently suppress cell viability and induces apoptotic cell death of human lung cancer cells H460 and H1975. ES activated apoptosis via ASK1/JNK pathway, GS-4997 and SP600125 can attenuated these effects. Furthermore, ES could triggered autophagy in lung cancer cell lines, and the autophagy inhibitor 3-MA and CQ reversed ES-induced apoptosis in H460 and H1975 cells. Furthermore, SP600125 can inhibit autophagy. Conclusions This study showed that ES induces apoptosis in human lung cancer cells by triggering enhanced autophagy and ASK1/JNK pathway, which may thus be a promising agent against lung cancer.
Collapse
Affiliation(s)
- Jia Han
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wang Lv
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hongxu Sheng
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yiqing Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Longxiang Cao
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Sha Huang
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Linhai Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
73
|
Calreticulin is a Critical Cell Survival Factor in Malignant Neoplasms. PLoS Biol 2019; 17:e3000402. [PMID: 31568485 PMCID: PMC6768457 DOI: 10.1371/journal.pbio.3000402] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/22/2019] [Indexed: 01/05/2023] Open
Abstract
Calreticulin (CRT) is a high-capacity Ca2+ protein whose expression is up-regulated during cellular transformation and is associated with disease progression in multiple types of malignancies. At the same time, CRT has been characterized as an important stress-response protein capable of inducing immunogenic cell death (ICD) when translocated to the cell surface. It remains unclear why CRT expression is preserved by malignant cells during the course of transformation despite its immunogenic properties. In this study, we identify a novel, critical function of CRT as a cell survival factor in multiple types of human solid-tissue malignancies. CRT knockdown activates p53, which mediates cell-death response independent of executioner caspase activity and accompanied full-length poly ADP ribose polymerase (PARP) cleavage. Mechanistically, we show that down-regulation of CRT results in mitochondrial Ca2+ overload and induction of mitochondria permeability transition pore (mPTP)-dependent cell death, which can be significantly rescued by the mPTP inhibitor, Cyclosporin A (CsA). The clinical importance of CRT expression was revealed in the analysis of the large cohort of cancer patients (N = 2,058) to demonstrate that high levels of CRT inversely correlates with patient survival. Our study identifies intracellular CRT as an important therapeutic target for tumors whose survival relies on its expression. This study reveals a novel role for the calcium-binding protein calreticulin in the survival of cancer cells; downregulation of calreticulin leads to mitochondrial calcium overload and an induction of non-apoptotic cell death. Calreticulin levels inversely correlate with the survival of patients diagnosed with various types of solid cancers.
Collapse
|
74
|
Helmy SA, El-Mesery M, El-Karef A, Eissa LA, El Gayar AM. Thymoquinone upregulates TRAIL/TRAILR2 expression and attenuates hepatocellular carcinoma in vivo model. Life Sci 2019; 233:116673. [DOI: 10.1016/j.lfs.2019.116673] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
|
75
|
Lv L, Lu J, Zhang H, Wang X, Su G, Piao H, Zhao Y. Acylation of 25-hydroxyprotopanaxatriol with aromatic acids increases cytotoxicity. Fitoterapia 2019; 137:104279. [DOI: 10.1016/j.fitote.2019.104279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 01/27/2023]
|
76
|
Wang XD, Sun YY, Qu FZ, Su GY, Zhao YQ. 4-XL-PPD, a novel ginsenoside derivative, as potential therapeutic agents for gastric cancer shows anti-cancer activity via inducing cell apoptosis medicated generation of reactive oxygen species and inhibiting migratory and invasive. Biomed Pharmacother 2019; 118:108589. [PMID: 31382131 DOI: 10.1016/j.biopha.2019.01.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
Abstract
(20R)-Dammarane-3β, 12β, 20, 25-tetrol (25-OH-PPD) is a ginsenoside isolated from Panax ginseng (C. A. Meyer). Previous research shows that the compound exhibits anti-cancer activities on many human cancer cell lines. In an attempt to enhance 25-OH-PPD activity, some derivatives were synthesized. Through screening of the derivative compounds for anti-cancer activity against gastric carcinoma cells, 12β-O-(L-Chloracetyl)-dammar-20(22)-ene-3β, 25-diol (4-XL-PPD) was selected as a strong anti-cancer agent. In this study, the anti-cancer mechanisms of 4-XL-PPD were investigated. The results showed that compound 4-XL-PPD resulted in a concentration-dependent inhibition of cells viability in gastric cancer cells, without affecting the viability of normal cell (human gastric epithelial cell line-GES-1). In BGC-803 cancer cells, 4-XL-PPD triggered apoptosis, and stimulated reactive oxygen species production. Apoptosis can be attenuated by the reactive oxygen species scavenger N-acetylcysteine. Meantime, 4-XL-PPD effectively suppressed the migratory and invasive capabilities of BGC-803 cancer cell and inhibited the expression levels of proteins associated with migratory and invasive capabilities (MMP-2, MMP-9, E-cadherin and CD34). All the results suggest that 4-XL-PPD exhibited remarkable anticancer activity base on inducing apoptosis via generating reactive oxygen species and inhibiting migratory and invasive, which support development of 4-XL-PPD as a potential agent for cancer therapy.
Collapse
Affiliation(s)
- Xu De Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR China; Key Laboratory of Structure-based Drug Design and Discovery of Education, Shenyang Pharmaceurical University, Shenyang, 110016, PR China
| | - Yuan Yuan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR China; Key Laboratory of Structure-based Drug Design and Discovery of Education, Shenyang Pharmaceurical University, Shenyang, 110016, PR China
| | - Fan Zhi Qu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR China; Key Laboratory of Structure-based Drug Design and Discovery of Education, Shenyang Pharmaceurical University, Shenyang, 110016, PR China
| | - Guang Yue Su
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR China; Key Laboratory of Structure-based Drug Design and Discovery of Education, Shenyang Pharmaceurical University, Shenyang, 110016, PR China.
| | - Yu Qing Zhao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR China; Key Laboratory of Structure-based Drug Design and Discovery of Education, Shenyang Pharmaceurical University, Shenyang, 110016, PR China.
| |
Collapse
|
77
|
Wang K, Chu D, Wu J, Zhao M, Zhang M, Li B, Du W, Du J, Guo R. WITHDRAWN: Cinobufagin induced cell apoptosis and protective autophagy through the ROS/MAPK signaling pathway. Life Sci 2019:116642. [PMID: 31301417 DOI: 10.1016/j.lfs.2019.116642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022]
Abstract
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Kaili Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Road, Zhengzhou 450000, PR China; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Zhengzhou 450000, PR China
| | - Danxia Chu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Road, Zhengzhou 450000, PR China
| | - Jie Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Road, Zhengzhou 450000, PR China
| | - Mengling Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Road, Zhengzhou 450000, PR China
| | - Miaomiao Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Road, Zhengzhou 450000, PR China
| | - Bijun Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Road, Zhengzhou 450000, PR China
| | - Wenjun Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Road, Zhengzhou 450000, PR China
| | - Jianmin Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Road, Zhengzhou 450000, PR China
| | - Ruixia Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshedong Road, Zhengzhou 450000, PR China.
| |
Collapse
|
78
|
Huang Y, Liu Q, Wang Y, He N, Zhao R, Choo J, Chen L. Gold nanorods functionalized by a glutathione response near-infrared fluorescent probe as a promising nanoplatform for fluorescence imaging guided precision therapy. NANOSCALE 2019; 11:12220-12229. [PMID: 31204757 DOI: 10.1039/c9nr02296a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Theranostics nanoplatforms offer opportunities for imaging-guided precision therapy and hold great potential for clinical applications. In most reported works, the imaging unit has a lack of site selectivity, and is always kept in the "on" modality regardless of whether it is in normal tissues or tumor sites, increasing the risk of unsafe treatment. Herein, we designed a near-infrared (NIR) fluorescence-guided theranostics nanoplatform by integrating the functions of tumor-response and photodynamic therapy (PDT)/photothermal therapy (PTT). A novel NIR fluorescent dye, CyPT, with excellent optical and PDT/PTT properties, was synthesized and linked onto the gold nanorods (AuNRs) to form CyPT-AuNRs nanohybrids via a sulfur-sulfur bond that can be broken by glutathione (GSH) with high selectivity and sensitivity. In normal cells where the concentration of GSH is low, the fluorescence of CyPT is quenched by the AuNRs. By contrast, the high level of GSH in tumor cells leads to the breaking of the sulfur-sulfur bond, resulting in the release of CyPT and the accomplishment of a "off-on" fluorescence response. Followed by precise NIR tumor-imaging diagnosis, the PDT and PTT treatment which rely on the released CyPT and AuNRs, respectively, can be effectively performed. The CyPT-AuNRs nanoplatform has been successfully applied to the treatment of tumor xenograft models and no distinct damage has been observed in the nearby normal tissues. This versatile nanoplatform has potential for use in targeted tumor imaging and precision therapy.
Collapse
Affiliation(s)
- Yan Huang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Qingluan Liu
- The Third Division of Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Na He
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Rongfang Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China. and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China and Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
79
|
Feng ST, Wang ZZ, Yuan YH, Sun HM, Chen NH, Zhang Y. Mangiferin: A multipotent natural product preventing neurodegeneration in Alzheimer's and Parkinson's disease models. Pharmacol Res 2019; 146:104336. [PMID: 31271846 DOI: 10.1016/j.phrs.2019.104336] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are recognized as the universal neurodegenerative diseases, with the involvement of misfolded proteins pathology, leading to oxidative stress, glial cells activation, neuroinflammation, mitochondrial dysfunction, and cellular apoptosis. Several discoveries indicate that accumulation of pathogenic proteins, i.e. amyloid β (Aβ), the microtubule-binding protein tau, and α-synuclein, are parallel with oxidative stress, neuroinflammation, and mitochondrial dysfunction. Whether the causative factors are misfolded proteins or these pathophysiological changes, leading to neurodegeneration still remain ambiguous. Importantly, directing pharmacological researches towards the prevention of AD and PD seem a promising approach to detect these complicating mechanisms, and provide new insight into therapy for AD and PD patients. Mangiferin (MGF, 2-C-β-D-glucopyranosyl-1, 3, 6, 7-tetrahydroxyxanthone), well-known as a natural product, is detached from multiple plants, including Mangifera indica L. With the structure of C-glycosyl and phenolic moiety, MGF possesses multipotent properties starting from anti-oxidant effects, to the alleviation of mitochondrial dysfunction, neuroinflammation, and cellular apoptosis. In particular, MGF can cross the blood-brain barrier to exert neuronal protection. Different researches implicate that MGF is able to protect the central nervous system from oxidative stress, mitochondrial dysfunction, neuroinflammation, and apoptosis under in vitro and in vivo models. Additional facts support that MGF plays a role in improving the declined memory and cognition of rat models. Taken together, the neuroprotective capacity of MGF may stand out as an agent candidate for AD and PD therapy.
Collapse
Affiliation(s)
- Si-Tong Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hong-Mei Sun
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
80
|
Zhang B, Liu B, Chen D, Setroikromo R, Haisma HJ, Quax WJ. Histone Deacetylase Inhibitors Sensitize TRAIL-Induced Apoptosis in Colon Cancer Cells. Cancers (Basel) 2019; 11:cancers11050645. [PMID: 31083396 PMCID: PMC6562715 DOI: 10.3390/cancers11050645] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 01/04/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered as a promising anti-cancer therapeutic. However, many cancers have been found to be or to become inherently resistant to TRAIL. A combination of epigenetic modifiers, such as histone deacetylase inhibitors (HDACi's), with TRAIL was effective to overcome TRAIL resistance in some cancers. Broad spectrum HDACi's, however, show considerable toxicity constraining clinical use. Since overexpression of class I histone deacetylase (HDAC) has been found in colon tumors relative to normal mucosa, we have focused on small spectrum HDACi's. We have now tested agonistic receptor-specific TRAIL variants rhTRAIL 4C7 and DHER in combination with several class I specific HDACi's on TRAIL-resistant colon cancer cells DLD-1 and WiDr. Our data show that TRAIL-mediated apoptosis is largely improved in WiDr cells by pre-incubation with Entinostat-a HDAC1, 2, and 3 inhibitor- and in DLD-1 cells by RGFP966-a HDAC3-specific inhibitor- or PCI34051-a HDAC8-specific inhibitor. We are the first to report that using RGFP966 or PCI34051 in combination with rhTRAIL 4C7 or DHER represents an effective cancer therapy. The intricate relation of HDACs and TRAIL-induced apoptosis was confirmed in cells by knockdown of HDAC1, 2, or 3 gene expression, which showed more early apoptotic cells upon adding rhTRAIL 4C7 or DHER. We observed that RGFP966 and PCI34051 increased DR4 expression after incubation on DLD-1 cells, while RGFP966 induced more DR5 expression on WiDr cells, indicating a different role for DR4 or DR5 in these combinations. At last, we show that combined treatment of RGFP966 with TRAIL variants (rhTRAIL 4C7/DHER) increases apoptosis on 3D tumor spheroid models.
Collapse
Affiliation(s)
- Baojie Zhang
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Bin Liu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Deng Chen
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Hidde J Haisma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
81
|
Trotta T, Panaro MA, Prifti E, Porro C. Modulation of Biological Activities in Glioblastoma Mediated by Curcumin. Nutr Cancer 2019; 71:1241-1253. [PMID: 31007066 DOI: 10.1080/01635581.2019.1604978] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Curcumin is an alkaloid with various pharmacologic properties; numerous investigations have suggested that in the Central Nervous System, Curcumin has anti-inflammatory, antimicrobial, antioxidant, and antitumor effects. Gliomas are the most common primary intracranial tumors in adults. The prognosis of glioblastoma is still dismal. In this review, we profile that Curcumin could suppress cell proliferation and induce apoptosis of cancer cells and genomic modulation. In particular, Curcumin could exert its therapeutic effect via modulating miRNA, affecting a variety of miRNAs involved in the response to cancer therapy. The combination of Curcumin with chemotherapeutic drugs or radiotherapy could prime the sensitivity of cancer cells to chemotherapy or radiotherapy. We also discuss the use of exosomes as Curcumin delivery vehicles. In this context, exosomes containing Curcumin may change the behavior of recipient cells by targeting a sequence of cellular and molecular pathways. Hence, the application of exosomes containing Curcumin may prove to be an emerging area of research in cancer therapy.
Collapse
Affiliation(s)
- Teresa Trotta
- Department of Clinical and Experimental Medicine, University of Foggia , Foggia , Italy
| | - Maria A Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics University of Bari , Bari , Italy
| | - Elona Prifti
- Department of Clinical Materies, University of Elbasan "Aleksander Xhuvani", Faculty of Medical and Technical Science , Albania
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia , Foggia , Italy
| |
Collapse
|
82
|
Zhou P, Chen X, Li M, Tan J, Zhang Y, Yuan W, Zhou J, Wang G. 2-D08 as a SUMOylation inhibitor induced ROS accumulation mediates apoptosis of acute myeloid leukemia cells possibly through the deSUMOylation of NOX2. Biochem Biophys Res Commun 2019; 513:1063-1069. [PMID: 31010676 DOI: 10.1016/j.bbrc.2019.04.079] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous clonal hematopoietic malignancy with poor survival and frequent relapse. Recently, a posttranslational modification of proteins with small ubiquitin-like modifiers (SUMO) has been notably implicated in a wide spectrum of diseases, especially cancers. Ubc9, as the sole E2-conjugating enzyme in SUMOylation cascade, particularly has been associated with adverse clinical outcomes. 2-D08, a small molecular agent, functions by blocking the transfer of SUMO from the Ubc9 thioester to SUMO substrates without any effects on other individual steps in this process. However, both the effects and mechanisms of 2-D08 on AML cells are still unknown. In this study, we found that 2-D08 significantly suppressed cell viability and colony formation ability. Additionally, it induced mitochondrial-mediated apoptosis with dramatic accumulation of the reactive oxygen species (ROS), which could be almost completely rescued by the ROS scavenger N-acetylcysteine (NAC). Furthermore, we confirmed that the fatal accumulation of ROS was due to its aberrant generation instead of defective scavenging. In summary, our results suggest that 2-D08, as a specific SUMOylation inhibitor, induces ROS accumulation-mediated intrinsic apoptosis of AML cells possibly through deSUMOylation of NOX2. Therefore, 2-D08 might be a promising therapeutic agent for the treatment of AML in the future.
Collapse
Affiliation(s)
- Pan Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xing Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengke Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Jiaqi Tan
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gaoxiang Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
83
|
Hseu YC, Huang YC, Thiyagarajan V, Mathew DC, Lin KY, Chen SC, Liu JY, Hsu LS, Li ML, Yang HL. Anticancer activities of chalcone flavokawain B from Alpinia pricei Hayata in human lung adenocarcinoma (A549) cells via induction of reactive oxygen species-mediated apoptotic and autophagic cell death. J Cell Physiol 2019; 234:17514-17526. [PMID: 30847898 DOI: 10.1002/jcp.28375] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 12/20/2022]
Abstract
Chalcones found in fruits and vegetables have promising cancer chemopreventive properties. This study attempts to identify the anticancer efficacies of chalcone flavokawain B (FKB) in the rhizomes of Alpinia pricei Hayata by examining key molecular events in non-small-cell lung cancer (A549) cells. Our results indicated that in human A549 cells, FKB (0-15 μg/ml) decreases cell viability and colony formation, dysregulates the Bax:B-cell lymphoma 2 ratio and increases apoptotic DNA fragmentation. Mitochondrial (caspase-9/-3 and poly ADP ribose polymerase [PARP]) signaling was found to be involved in FKB-induced apoptosis. In addition, FKB-induced reactive oxygen species (ROS) generation, and N-acetylcysteine attenuated FKB-induced apoptotic cell death. Moreover, FKB triggered autophagy, as evidenced by the improved acidic vesicular organelle formation, lipidated light chain 3 (microtubule-related light chain 3) accumulation, and ATG7 expression and the decreased mammalian target of rapamycin phosphorylation. Furthermore, FKB suppressed ROS-mediated ATG4B expression. Inhibiting autophagy using 3-methyladenine/chloroquine diminished FKB-induced cell death, indicating that autophagy is triggered as a death mechanism by FKB. In summary, FKB has a crucial role in the execution and propagation of ROS-mediated apoptotic and autophagic cell death of lung adenocarcinoma cells.
Collapse
Affiliation(s)
- You-Cheng Hseu
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Research Center of Chinese Herbal Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chi Huang
- Department of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Varadharajan Thiyagarajan
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Dony Chacko Mathew
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Kai-Yuan Lin
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Chung-Li, Taiwan
| | - Jer-Yuh Liu
- Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Li-Sung Hsu
- Department of Biomedical Sciences, Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Mei-Ling Li
- Department of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Hsin-Ling Yang
- Department of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
84
|
Abstract
Drug-induced liver injury (DILI) is an important cause of liver toxicity which can have varying clinical presentations, the most severe of which being acute liver failure. Hepatocyte death as a cause of drug toxicity is a feature of DILI. There are multiple cell death subroutines; some, like apoptosis, necroptosis, autophagy, and necrosis have been extensively studied, while others such as pyroptosis and ferroptosis have been more recently described. The mode of cell death in DILI depends on the culprit drug, as it largely dictates the mechanism and extent of injury. The main cell death subroutines in DILI are apoptosis and necrosis, with mitochondrial involvement being pivotal for the execution of both. A few drugs such as acetaminophen (APAP) can cause direct, dose-dependent toxicity, while the majority of drugs cause idiosyncratic DILI (IDILI). IDILI is an unpredictable form of liver injury that is not dose dependent, occurs in individuals with a genetic predisposition, and presents with variable latency. APAP-induced programmed necrosis has been extensively studied. However, the mechanisms and pathogenesis of cell death from drugs causing IDILI are harder to elucidate due to the complex and multifactorial nature of the disease. Cell death in IDILI is likely death receptor-mediated apoptosis and the result of an activated innate and adaptive immune system, compounded by other host factors such as genetics, gender, age, and capacity for immune tolerance. This chapter will review the different modes of cell death, namely apoptosis, necrosis, necroptosis, autophagy, pyroptosis, and ferroptosis and their pertinence to DILI.
Collapse
|
85
|
Yang J, Zhu C, Ye J, Lv Y, Wang L, Chen Z, Jiang Z. Protection of Porcine Intestinal-Epithelial Cells from Deoxynivalenol-Induced Damage by Resveratrol via the Nrf2 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1726-1735. [PMID: 30449092 DOI: 10.1021/acs.jafc.8b03662] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Deoxynivalenol (DON), a common mycotoxin, usually induces oxidative stress and affects the intestinal health of humans and animals. This study investigated the protective effect of resveratrol (RES), a natural antioxidant, on alleviating the cytotoxicity induced by DON in the porcine intestinal-epithelial cell line (IPEC-J2). Cells were incubated with RES for 24 h and then exposed to DON for another 24 h. Cell viability, proliferation, apoptosis, and oxidative-stress indicators were determined. In comparison with DON-only-treated cells, pretreatment with RES (15 μM) increased the cell viability (79.74 ± 2.02 vs 90.98 ± 2.66%, P < 0.01), improved proliferation (EdU-positive cells, 26.42 ± 1.12 vs 32.05 ± 0.78%, P < 0.01), decreased accumulation of intracellular reactive oxygen species (ROS, 1.68 ± 0.05 vs 1.29 ± 0.06, P < 0.01), stabilized mitochondrial-membrane potential (MMP, 8.98 ± 1.40 vs 2.29 ± 0.76, P < 0.001), and prevented apoptosis induced by DON (13.91 ± 1.20 vs 6.83 ± 0.52%, P < 0.01). RES activated the Nrf2 signaling pathway, and transfection with Nrf2 siRNA abrogated the protection of RES against DON-induced cytotoxicity, accumulation of intracellular ROS, and mitochondria-dependent apoptosis. Collectively, RES protects IPEC-J2 cells against DON-induced damage at least partly via the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Jun Yang
- College of Animal Science , South China Agricultural University , Guangzhou 510642 , PR China
- Agro-biological Gene Research Center , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , PR China
| | - Cui Zhu
- Agro-biological Gene Research Center , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , PR China
| | - Jinling Ye
- Agro-biological Gene Research Center , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , PR China
| | - Yantao Lv
- Agro-biological Gene Research Center , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , PR China
| | - Li Wang
- Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , PR China
| | - Zhuang Chen
- Agro-biological Gene Research Center , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , PR China
| | - Zongyong Jiang
- Agro-biological Gene Research Center , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , PR China
- Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , PR China
| |
Collapse
|
86
|
Engineered beta-cyclodextrin-based carrier for targeted doxorubicin delivery in breast cancer therapy in vivo. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.09.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
87
|
Jiang Z, Zhang H. Curvature effect and stabilize ruptured membrane of BAX derived peptide studied by molecular dynamics simulations. J Mol Graph Model 2019; 88:152-159. [PMID: 30703689 DOI: 10.1016/j.jmgm.2019.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 11/19/2022]
Abstract
BAX protein plays a key role in mitochondrial membrane permeabilization and cytochrome c release upon apoptosis. The C-terminal transmembrane domain (TMD) of BAX is supposed to act a membrane anchor when BAX is activated leading to programmed cell death. Previous studies indicate that the C-terminal transmembrane domain of BAX mediates membrane disruption and pore formation, however, the mechanism of the membrane disruption and pore-forming capability of BAX C-terminal transmembrane domain still unclear. Here, we performed all-atom (AA) molecular dynamics simulations to study the membrane effect of TMD peptide. We also conducted coarse-grained (CG) molecular dynamics simulations to study the membrane curvature and the stabilization of ruptured membrane pores effect of TMD peptides. Our results indicated that TMD peptide decreases the local POPC lipids order. The membrane binding of TMD induced a positive membrane curvature, moreover, certain numbers of TMD could stabilize ruptured membrane pore in both CG and AA simulations. These results provide insight into the structure details of membrane pore formation by TMD peptides. The diameters of the pore are qualitatively in good agreement with available experimental data.
Collapse
Affiliation(s)
- Zhenyan Jiang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Hansi Zhang
- College of Basic Medical Sciences, Jilin University, Changchun, 130000, China.
| |
Collapse
|
88
|
Xu Y, Wang L, Cao L, Chen L, Liu Q. Involvement of NYD-SP15 in growth and oxidative-stress responses of ARPE-19. J Cell Biochem 2019; 120:1362-1375. [PMID: 30368880 DOI: 10.1002/jcb.27104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/07/2018] [Indexed: 01/24/2023]
Abstract
The aim of this study was to investigate the role of NYD-SP15 in the growth and oxidative-stress responses of ARPE-19 cells. ARPE-19 cell lines overexpressing wild type or RNA interference against NYD-SP15 were established via lentivirus transfection. Cell growth and proliferation, migration, apoptosis, and cell cycle progression were monitored using the Cell Counting Kit-8 assay, the wound scratch assay, and flow cytometry, respectively. Caspase-3/8/9 activity was examined using the caspase-3/8/9 assay kit. An hydrogen peroxide (H 2 O 2 )-induced oxidative-stress damage model was used to study the effect of NYD-SP15 knockdown by examining the activity of reactive oxygen species (ROS). Expressions of Kelch-like ECH-associated protein 1 (Keap-1)/heme oxygenase-1 (HO-1)/nuclear factor erythroid 2-related factor 2 (Nrf2), mitogen-activated protein kinase (MAPK), and Akt were detected by Western blot analysis. The mRNA chip of NYD-SP15 overexpressed ARPE-19 cells as well as controls were performed by one array plus process. Overexpression (OE) of NYD-SP15 inhibited the proliferation and migration of ARPE-19 cells, and led to apoptosis and caspase-3/9 activation. OE of NYD-SP15 inhibited MAPKs and Akt signaling. Downregulation of NYD-SP15 had no effect on the growth of normally cultured ARP19 cells with 10% fetal bovine serum, but promoted the growth of ARP19 cells in the presence of starvation challenge. Gene chip showed that OE of NYD-SP15 led to downregulation of 254 genes and upregulation of 57 genes. Downregulation of NYD-SP15 also exerted a protective effect on H 2 O 2 -induced cell apoptosis and ROS. NYD-SP15 downregulation led to increments in the expression of Nrf2, Keap-1, and HO-1 in response to 200 μM H 2 O 2 . NYD-SP15 might inhibit the growth, proliferation, and migration and promote apoptosis of ARPE-19 cells via MAPK and Akt signaling. Downregulation of NYD-SP15 could protect ARPE-19 cells from H 2 O 2 -induced oxidative damage by active Keap-1/HO-1/Nrf2, Akt, and MAPK signaling.
Collapse
Affiliation(s)
- Yidan Xu
- Department of Ophthalmology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Linnong Wang
- Department of Ophthalmology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Liu Cao
- Department of Ophthalmology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Lixun Chen
- Department of Ophthalmology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Qinghuai Liu
- Department of Ophthalmology, The first affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China
| |
Collapse
|
89
|
Antiproliferative and Proapoptotic Effects of a Protein Component Purified from Aspongopus chinensis Dallas on Cancer Cells In Vitro and In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8934794. [PMID: 30719067 PMCID: PMC6335791 DOI: 10.1155/2019/8934794] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 11/18/2022]
Abstract
Aspongopus chinensis Dallas is used as a traditional Chinese medicine. In China, clinical evidence suggests that it has anticancer activity. However, the anticancer active components are not fully elucidated. In the present study, we purified an anticancer active component (named CHP) from A. chinensis. To gain a comprehensive insight into the protein components, shotgun proteomic analysis was conducted. The anticancer active protein band was cut from the sodium dodecyl sulphate-polyacrylamide gel electrophoresis gel and digested with trypsin to generate peptide mixture. The peptide fragments were then analysed by liquid chromatography tandem mass spectrometry; 18 proteins were identified. In addition, we evaluated the effects of CHP on the proliferation and apoptosis of two human gastric cancer cell lines (SGC-7901 and BGC-823). The cultured cells were treated with CHP at concentrations of 20, 30, and 40 μg/mL. Inhibition of cell growth was determined by the MTT assay. Hoechst 33258 staining was adopted to detect apoptosis morphologically. Apoptotic cells were quantified by Annexin V-FITC/propidium iodide staining and flow cytometry. Tumour growth was assessed by subcutaneous inoculation of 4T1 cells into BALB/c mice. There was a concentration- and time-dependent decrease in the proliferation of both cell lines at CHP concentrations of 20–40 μg/mL. Apoptotic characteristics, such as karyopyknotic pyknic hyperfluorescence bolus and nuclear fragmentation, were observed in both the cell lines by Hoechst 33258 staining. Flow cytometry showed that CHP induced significant (P < 0.01) concentration-dependent apoptosis of SGC-7901 cells. In vivo assay showed that CHP can partially inhibit tumour growth derived from 4T1 cells in vivo. The present study is the first to report that CHP in A. chinensis inhibits the proliferation of cancer cell lines via the suppression of cancer cell proliferation and acceleration of apoptosis.
Collapse
|
90
|
Almatroudi A, Alsahli MA, Alrumaihi F, Allemailem KS, Rahmani AH. Ginger: A Novel Strategy to Battle Cancer through Modulating Cell Signalling Pathways: A Review. Curr Pharm Biotechnol 2019; 20:5-16. [PMID: 30659535 DOI: 10.2174/1389201020666190119142331] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/17/2018] [Accepted: 01/07/2019] [Indexed: 12/24/2022]
Abstract
Numerous studies have been performed in understanding the development of cancer. Though, the mechanism of action of genes in the development of cancer remains to be explained. The current mode of treatment of cancer shows adverse effects on normal cells and also alter the cell signalling pathways. However, ginger and its active compound have fascinated research based on animal model and laboratories during the past decade due to its potentiality in killing cancer cells. Ginger is a mixture of various compounds including gingerol, paradol, zingiberene and shogaol and such compounds are the main players in diseases management. Most of the health-promoting effects of ginger and its active compound can be attributed due to its antioxidant and anti-tumour activity. Besides, the active compound of ginger has proven its role in cancer management through its modulatory effect on tumour suppressor genes, cell cycle, apoptosis, transcription factors, angiogenesis and growth factor. In this review, the role of ginger and its active compound in the inhibition of cancer growth through modulating cell signalling pathways will be reviewed and discussed.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Arshad H Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
91
|
Chen X, Chen X, Zhang X, Wang L, Cao P, Rajamanickam V, Wu C, Zhou H, Cai Y, Liang G, Wang Y. Curcuminoid B63 induces ROS-mediated paraptosis-like cell death by targeting TrxR1 in gastric cells. Redox Biol 2018; 21:101061. [PMID: 30590310 PMCID: PMC6306695 DOI: 10.1016/j.redox.2018.11.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 01/07/2023] Open
Abstract
Gastric cancer is one of the leading causes of cancer-related deaths. Chemotherapy has improved long-term survival of patients with gastric cancer. Unfortunately, cancer readily develops resistance to apoptosis-inducing agents. New mechanisms, inducing caspase-independent paraptosis-like cell death in cancer cells is presently emerging as a potential direction. We previously developed a curcumin analog B63 as an anti-cancer agent in pre-clinical evaluation. In the present study, we evaluated the effect and mechanism of B63 on gastric cancer cells. Our studies show that B63 targets TrxR1 protein and increases cellular reactive oxygen species (ROS) level, which results in halting gastric cancer cells and inducing caspase-independent paraptotic modes of death. The paraptosis induced by B63 was mediated by ROS-mediated ER stress and MAPK activation. Either overexpression of TrxR1 or suppression of ROS normalized B63-induced paraptosis in gastric cancer cells. Furthermore, B63 caused paraptosis in 5-fluorouracil-resistant gastric cancer cells, and B63 treatment reduced the growth of gastric cancer xenografts, which was associated with increased ROS and paraptosis. Collectively, our findings provide a novel strategy for the treatment of gastric cancer by utilizing TrxR1-mediated oxidative stress generation and subsequent cell paraptosis.
Collapse
Affiliation(s)
- Xi Chen
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Xiaoming Chen
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xi Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Li Wang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peihai Cao
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Vinothkumar Rajamanickam
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chao Wu
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huiping Zhou
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuepiao Cai
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China.
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China.
| |
Collapse
|
92
|
Can crude alkaloids extract of Rhazya stricta induce apoptosis in pancreatic cancer: In vitro study? ACTA ACUST UNITED AC 2018; 26:97-101. [PMID: 30473323 DOI: 10.1016/j.pathophys.2018.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/01/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022]
Abstract
Cancer is a complicateddisease that reveals genetic variability even among the cells within the same tumor. Pancreatic cancer is the 12th cause of cancer deaths over the world. As a result of the incomplete recovery and the many side effects of current clinical treatment approaches, Herbal diet therapy as a single or adjuvant therapy show high significant output in cancer treatment. Our study focused on the role of the crude alkaloid extract of Rhazya stricter (R. stricta) on pancreatic cancer cells using MTT assay. The cytotoxic effect of different concentrations of R. Strict crude alkaloid on the pancreatic cancer cells showed significant decrease in cell viability with dose dependent manner and the effect was observed at higher concentration of crude R. Stricta alkaloids. On the other hand, no significant cytotoxic effect was observed with the normal WISH cells at all R. Stricta crude alkaloid concentrations with IC50. Moving on, in AsPC-1cells under the same concentrations mRNA expression was increased by 1.5 and 6 folds with 10 and 100 μg/ Ml treatment when compared with control. Under the same experimental conditions, the anti- apoptotic marker Bcl-2 showed high significant decrease in mRNA expression in both PANC-1 and AsPC-1 pancreatic cancer cells. The present study indicated that the crude alkaloids extract of R. stricta significantly induce apoptotic cell death in pancreatic cancer cells.
Collapse
|
93
|
Erekat NS. Cerebellar Upregulation of Cell Surface Death Receptor-Mediated Apoptotic Factors in Harmaline-Induced Tremor: An Immunohistochemistry Study. J Cell Death 2018; 11:1179066018809091. [PMID: 30450003 PMCID: PMC6236486 DOI: 10.1177/1179066018809091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 09/30/2018] [Indexed: 11/24/2022] Open
Abstract
Active caspase-3-mediated apoptosis has been implicated in the pathogenesis of
harmaline-induced tremor. The aim of this study is to illustrate the impact of
tremor induction on the expression of factors mediating the cell surface death
receptor–dependent apoptosis. A total of 20 normal Wistar rats were randomly
selected and equally divided into control and experimental groups. Tremor was
induced in the experimental group by injecting the rats with a single dose of
harmaline (50 mg/kg). After that, cerebellar tissues were evaluated by
immunohistochemistry to examine the expression of tumor necrosis factor α
(TNF-α) and active caspase-8 in the 2 groups of animals. TNF-α and active
caspase-8 expression was significantly higher in cerebella from experimental
rats compared with that in those from the control rats (P
value < .01). Thus, our present data suggest the association of tremor
induction with the cerebellar overexpression of TNF-α and active caspase-8,
correlative with Purkinje cell (PC) loss indicated by loss of calbindin
immunoreactivity, indicating the induction of the cell surface death
receptor–mediated apoptosis.
Collapse
Affiliation(s)
- Nour S Erekat
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
94
|
Geyikoglu F, Yilmaz EG, Erol HS, Koc K, Cerig S, Ozek NS, Aysin F. Hepatoprotective Role of Thymol in Drug-Induced Gastric Ulcer Model. Ann Hepatol 2018; 17:980-991. [PMID: 30600301 DOI: 10.5604/01.3001.0012.7198] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND AIM Indo is widely one of the non-steroidal anti-inflammatory drugs and one of the common toxic effects of this drug is hepatic failure. Thymol is a monoterpene phenol with many different pharmacological activities. However, up to now its hepatoprotective effects on Indo-induced gastric ulcer model in rats have not been explored yet. MATERIAL AND METHODS Thirty five Sprague-Dawley rats were divided into seven groups: control, ulcer control (30 mg/kg Indo), Indo + reference standard (50 mg/kg Rantidine), Indo + Thymol (75, 100, 250 and 500 mg/kg) groups. 10 minutes after the induction of ulcer with Indo; Thymol was orally administered to the rats. Liver function enzymes (AST, ALT and LDH) were measured from serum samples. TOS/TAC, TNF-α and PGE2 levels, eNOS and Caspase-3 activity were assessed from tissue homogenate samples. In addition, histopathologic analysis on liver sections was performed. RESULTS Indo significantly increased the levels of hepatic enzymes, TNF-α and eNOS, and caspase-3 activation, while decreased PGE2 levels. Furthermore, it induced oxidative stress as evidenced by elevated TOS and decreased TAC levels. However, Thymol treatment induced a significant improvement in these parameters, especially in 250 mg/kg dose. On the other hand, treatment with Thymol 500 mg/kg dramatically affected the parameters much worse than the Indo treated group. CONCLUSION The findings of the current study demonstrated that Thymol administration significantly ameliorated liver injury due to Indo toxicity. This effect of Thymol (250 mg/kg) may be mediated by its anti-oxidative or anti-inflammatory effect, and up-regulation the synthesis of PGE2.
Collapse
Affiliation(s)
- Fatime Geyikoglu
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, TURKEY
| | - Elif Gülcan Yilmaz
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, TURKEY
| | - Huseyin Serkan Erol
- Department of Biochemistry, Faculty of Veterinary, Ataturk University, Erzurum, TURKEY
| | - Kubra Koc
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, TURKEY
| | - Salim Cerig
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, TURKEY
| | - Nihal Simsek Ozek
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, TURKEY
| | - Ferhunde Aysin
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, TURKEY
| |
Collapse
|
95
|
Xu Z, Li T, Li M, Yang L, Xiao R, Liu L, Chi X, Liu D. eRF3b-37 inhibits the TGF-β1-induced activation of hepatic stellate cells by regulating cell proliferation, G0/G1 arrest, apoptosis and migration. Int J Mol Med 2018; 42:3602-3612. [PMID: 30272252 DOI: 10.3892/ijmm.2018.3900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/20/2018] [Indexed: 11/05/2022] Open
Abstract
The therapeutic management of liver fibrosis remains an unresolved clinical problem. The activation of hepatic stellate cells (HSCs) serves a pivotal role in the formation of liver fibrosis. In our previous study, matrix‑assisted laser desorption/ionization time‑of‑flight mass spectrometry (MALDI‑TOF MS) was employed to identify potential serum markers for liver cirrhosis, such as eukaryotic peptide chain releasing factor 3b polypeptide (eRF3b‑37), which was initially confirmed by our group to serve a protective role in liver tissues in a C‑C motif chemokine ligand 4‑induced liver cirrhosis mouse model. Therefore, eRF3b‑37 was hypothesized to affect the activation state of HSCs, which was determined by the expression of pro‑fibrogenic associated factors in HSCs. In the present study, peptide synthesis technology was employed to elucidate the role of eRF3b‑37 in the expression of pro‑fibrogenic factors induced by transforming growth factor‑β1 (TGF‑β1) in LX‑2 cells that were treated with either control, TGF‑β1 and TGF‑β1+eRF3b‑37. 3‑(4,5‑Dimethyl‑2‑thiazolyl)‑2,5‑diphenyltetrazolium bromide and flow cytometric assays, and fluorescent microscope examinations were performed to evaluate the effects of eRF3b‑37 on proliferation viability, G0/G1 arrest, apoptosis and cell migration. The results of the present study indicated that eRF3b‑37 inhibited the activation of HSCs. The increased mRNA and protein expression of the pro‑fibrogenic factors collagen I, connective tissue growth factor and α‑smooth muscle actin (SMA) stimulated by TGF‑β1 were reduced by eRF3b‑37 via the following mechanisms: i) Inhibiting LX‑2 cell proliferation, leading to G0/G1 cell cycle arrest and inhibition of DNA synthesis by downregulating the mRNA expressions of Cyclin D1 and cyclin dependent kinase‑4, and upregulating the levels of P21; ii) increasing cell apoptosis by upregulating the mRNA level of B‑cell lymphoma-2 (Bcl‑2)‑associated X protein (Bax) and Fas, and downregulating the expression of Bcl‑2; and iii) reducing cell migration by downregulating the mRNA and protein expression of α‑SMA. In addition, eRF3b‑37 is thought to serve a role in HSCs by inhibiting TGF‑β signaling. Therefore, eRF3b‑37 may be a novel therapeutic agent for targeting HSCs for hepatic fibrosis.
Collapse
Affiliation(s)
- Zhengrong Xu
- Department of Epidemiology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Tao Li
- Department of Epidemiology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Man Li
- Department of Epidemiology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Lei Yang
- Department of Epidemiology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Rudan Xiao
- Department of Epidemiology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Li Liu
- Department of Epidemiology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Xin Chi
- Department of Epidemiology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Dianwu Liu
- Department of Epidemiology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
96
|
Shen B, Mao W, Ahn JC, Chung PS, He P. Mechanism of HN‑3 cell apoptosis induced by carboplatin: Combination of mitochondrial pathway associated with Ca2+ and the nucleus pathways. Mol Med Rep 2018; 18:4978-4986. [PMID: 30272304 PMCID: PMC6236313 DOI: 10.3892/mmr.2018.9507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/31/2018] [Indexed: 12/24/2022] Open
Abstract
Laryngeal carcinomas have been recognized as a serious health threat worldwide. In the present study, the mechanism of apoptosis in HN-3 cells induced by carboplatin (CBCDA), a widely used anti-cancer drug, was investigated. The pro-apoptotic effect of CBCDA in HN-3 cells was demonstrated to be time- and dose-dependent. Therefore, the stages of apoptosis were investigated in chronological order. The results demonstrated that excessive generation of cytosolic Ca2+ in HN-3 cells was initially triggered when cells were exposed to CBCDA, followed by the appearance of mitochondrial depolarization and oxidative stress, leading to the release of apoptosis-inducing factor. At later stages, expression of caspase-8 was increased due to the apoptotic signals originating from CBCDA-induced DNA damage, as well as caspase-9 and poly ADP ribose polymerase (PARP) expression upregulation. Glutathione decreased the available CBDCA concentration, decreased apoptosis and alleviating oxidative stress, thus reducing the actual effective concentration. Mechanistic research may benefit the rational design of more efficient therapeutic strategies as well as development of novel platinum-based agents.
Collapse
Affiliation(s)
- Bo Shen
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, P.R. China
| | - Wenjing Mao
- Department of Otolaryngology‑Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| | - Jin-Chul Ahn
- Department of Otolaryngology‑Head and Neck Surgery, Dankook University, Cheonan, Chungcheongnam 330‑715, Republic of Korea
| | - Phil-Sang Chung
- Department of Otolaryngology‑Head and Neck Surgery, Dankook University, Cheonan, Chungcheongnam 330‑715, Republic of Korea
| | - Peijie He
- Department of Otolaryngology‑Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| |
Collapse
|
97
|
Wei Q, Liang X, Peng Y, Yu D, Zhang R, Jin H, Fan J, Cai W, Ren C, Yu J. 17β-estradiol ameliorates oxidative stress and blue light-emitting diode-induced retinal degeneration by decreasing apoptosis and enhancing autophagy. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2715-2730. [PMID: 30233136 PMCID: PMC6129027 DOI: 10.2147/dddt.s176349] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Purpose This study aimed to assess the effects of 17β-estradiol (βE2) on blue light-emitting diode (LED)-induced retinal degeneration (RD) in rats and hydrogen peroxide (H2O2)-induced retinal pigment epithelium cell injury in humans and elucidate the protective mechanism of βE2 underlying these processes. Methods Female ovariectomized (OVX) rats were intravitreally injected with βE2 before blue LED exposure (3,000 lux, 2 hours). Retinal function and morphology were assayed via electroretinogram (ERG) and H&E, respectively. Cell viability was assayed using the Cell Counting Kit-8. Cell ROS were measured using dichlorofluorescein fluorescence. Apoptosis was evaluated by TUNEL and Annexin V/propidium iodide staining. Gene expression and protein expression were quantified using quantitative real-time RT-PCR, Western blotting, and immunohistochemistry. Autophagosomes were examined by electron microscopy. Results Female OVX rats were exposed to blue LED, inducing RD. βE2 significantly prevented the reduction in the a- and b-wave ERG amplitudes and the disruption of retinal structure, the loss of photoreceptor cells, and the decrease in the thickness of the outer nuclear layer caused by blue LED exposure. βE2 also decreased cell apoptosis in the retina in blue LED-induced RD. Additionally, βE2 reduced ROS levels and apoptosis in H2O2-treated human retinal pigment epithelial (ARPE-19) cells. Furthermore, βE2 increased the protein expression of p-Akt and Bcl-2 and decreased the protein expression of cleaved caspase-3 and Bax during blue LED-induced retinal damage and in H2O2-treated ARPE-19 cells. βE2 also increased the number of autopha-gosomes and upregulated the expression of LC3-II/LC3-I and Beclin 1 in these processes. Conclusion βE2 protects against blue LED-induced RD and H2O2-induced oxidative stress by acting as an antioxidant, and its protective mechanism might occur by reducing apoptosis and enhancing autophagy; βE2 may be a novel and effective therapy for age-related macular degeneration.
Collapse
Affiliation(s)
- Qingquan Wei
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, ,
| | - Xiuwei Liang
- Department of Ophthalmology, Nanchang University, Nanchang, People's Republic of China
| | - Ye Peng
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China
| | - Donghui Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, ,
| | - Ruiling Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, ,
| | - Huizi Jin
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, ,
| | - Jiaqi Fan
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, ,
| | - Wenting Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, ,
| | - Chengda Ren
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, ,
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, , .,Department of Ophthalmology, Ninghai First Hospital, Zhejiang, People's Republic of China,
| |
Collapse
|
98
|
Biçer Ş, Gürsul C, Sayar İ, Akman O, Çakarlı S, Aydın M. Role of Ozone Therapy in Preventing Testicular Damage in an Experimental Cryptorchid Rat Model. Med Sci Monit 2018; 24:5832-5839. [PMID: 30130360 PMCID: PMC6113856 DOI: 10.12659/msm.910459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Cryptorchidism is the most common developmental abnormality of the male reproductive system. If left untreated, it results with infertility and testicular cancer. According to current evidence, surgery is the mainstay of treatment, and hormonal therapy approaches are still under investigation. For the protection of testicular functions, antioxidants have emerged as novel options. This study aimed to evaluate the protective properties of ozone, a strong antioxidant, on testicular tissue. Material/Methods Thirty-five male Wistar-albino rats, 1-month-old, were used for the study. Groups were formed as follows: 1) control, 2) sham surgery (cryptorchidism), 3) cryptorchidism plus ozone, 4) cryptorchidism plus human chorionic gonadotropin (hCG), and 5) ozone plus hCG. Surgical procedures were performed on all rats except the control group. All rats except the control group were used to create an experimental cryptorchidism model, and left testes of animals were surgically placed into the abdomen. After 1 month of surgery, groups 3, 4, and 5 were given corresponding treatments intraperitoneally for 4 weeks. At the end of the study period, testicular atrophy index (TAI) and testicular sperm motility (TSM) were assessed and biochemical, histopathological, and immunohistochemical tests were performed. Results TAI and TSM were higher in the ozone, hCG, and ozone plus hCG groups than in the sham surgery group (p=0.001). TSM in the ozone group was significantly higher than in the hCG and ozone plus hCG groups. In biochemical analyses, the parameters of oxidative stress (GPx1, MDA, CAT, GSH, SOD) indicated increased oxidative activity in cryptorchidism, which was resolved by applying ozone and hCG (p=0.001). In addition, apoptotic markers, Caspase 3 and bcl-2 were significantly decreased by applying ozone and hCG (p=0.001). Conclusions Results of this study suggest that ozone therapy, either as a single agent or in combination with hCG, is a promising approach for protection of testicular functions.
Collapse
Affiliation(s)
- Şenol Biçer
- Department of Pediatric Surgery, Medical School of Erzincan University, Erzincan, Turkey
| | - Cebrail Gürsul
- Department of Physiology, Medical School of Erzincan University, Erzincan, Turkey
| | - İlyas Sayar
- Department of Pathology, Medical School of Erzincan University, Erzincan, Turkey
| | - Orhan Akman
- Faculty of Veterinary Sciences, Ataturk University, Erzurum, Turkey
| | - Seçil Çakarlı
- Department of Pediatric Surgery, Medical School of Erzincan University, Erzincan, Turkey
| | - Merve Aydın
- Department of Medical Microbiology, Medical School of KTO Karatay University, Konya, Turkey
| |
Collapse
|
99
|
Wang S, Guo F, Ji Y, Yu M, Wang J, Li N. Dual-Mode Imaging Guided Multifunctional Theranosomes with Mitochondria Targeting for Photothermally Controlled and Enhanced Photodynamic Therapy in Vitro and in Vivo. Mol Pharm 2018; 15:3318-3331. [DOI: 10.1021/acs.molpharmaceut.8b00351] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Siyu Wang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, PR China
| | - Fang Guo
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, PR China
| | - Yanhui Ji
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, 300052 Tianjin, PR China
| | - Meng Yu
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, PR China
| | - Jinping Wang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, PR China
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, PR China
| |
Collapse
|
100
|
A novel HDAC6 inhibitor exerts an anti-cancer effect by triggering cell cycle arrest and apoptosis in gastric cancer. Eur J Pharmacol 2018; 828:67-79. [DOI: 10.1016/j.ejphar.2018.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/27/2022]
|