51
|
Elevated endogenous GDNF induces altered dopamine signalling in mice and correlates with clinical severity in schizophrenia. Mol Psychiatry 2022; 27:3247-3261. [PMID: 35618883 PMCID: PMC9708553 DOI: 10.1038/s41380-022-01554-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/08/2022]
Abstract
Presynaptic increase in striatal dopamine is the primary dopaminergic abnormality in schizophrenia, but the underlying mechanisms are not understood. Here, we hypothesized that increased expression of endogenous GDNF could induce dopaminergic abnormalities that resemble those seen in schizophrenia. To test the impact of GDNF elevation, without inducing adverse effects caused by ectopic overexpression, we developed a novel in vivo approach to conditionally increase endogenous GDNF expression. We found that a 2-3-fold increase in endogenous GDNF in the brain was sufficient to induce molecular, cellular, and functional changes in dopamine signalling in the striatum and prefrontal cortex, including increased striatal presynaptic dopamine levels and reduction of dopamine in prefrontal cortex. Mechanistically, we identified adenosine A2a receptor (A2AR), a G-protein coupled receptor that modulates dopaminergic signalling, as a possible mediator of GDNF-driven dopaminergic abnormalities. We further showed that pharmacological inhibition of A2AR with istradefylline partially normalised striatal GDNF and striatal and cortical dopamine levels in mice. Lastly, we found that GDNF levels are increased in the cerebrospinal fluid of first episode psychosis patients, and in post-mortem striatum of schizophrenia patients. Our results reveal a possible contributor for increased striatal dopamine signalling in a subgroup of schizophrenia patients and suggest that GDNF-A2AR crosstalk may regulate dopamine function in a therapeutically targetable manner.
Collapse
|
52
|
Shulgin AA, Lebedev TD, Prassolov VS, Spirin PV. Plasmolipin and Its Role in Cell Processes. Mol Biol 2021; 55:773-785. [PMID: 34955555 PMCID: PMC8682038 DOI: 10.1134/s0026893321050113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 12/04/2022]
Abstract
The mechanisms involved in the origin and development of malignant and neurodegenerative diseases are an important area of modern biomedicine. A crucial task is to identify new molecular markers that are associated with rearrangements of intracellular signaling and can be used for prognosis and the development of effective treatment approaches. The proteolipid plasmolipin (PLLP) is a possible marker. PLLP is a main component of the myelin sheath and plays an important role in the development and normal function of the nervous system. PLLP is involved in intracellular transport, lipid raft formation, and Notch signaling. PLLP is presumably involved in various disorders, such as cancer, schizophrenia, Alzheimer's disease, and type 2 diabetes mellitus. PLLP and its homologs were identified as possible virus entry receptors. The review summarizes the data on the PLLP structure, normal functions, and role in diseases.
Collapse
Affiliation(s)
- A. A. Shulgin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Moscow oblast Russia
| | - T. D. Lebedev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - V. S. Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - P. V. Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
53
|
A near-infrared AIE fluorescent probe for myelin imaging: From sciatic nerve to the optically cleared brain tissue in 3D. Proc Natl Acad Sci U S A 2021; 118:2106143118. [PMID: 34740969 PMCID: PMC8609329 DOI: 10.1073/pnas.2106143118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 12/25/2022] Open
Abstract
The high spatial resolution of three-dimensional (3D) fluorescence imaging of myelinated fibers will greatly facilitate the understanding of 3D neural networks and the pathophysiology of demyelinating diseases. However, existing myelin probes are far from satisfactory because of their low–signal-to-background ratio and poor tissue permeability. We herein developed a near-infrared aggregation-induced emission-active probe, PM-ML, for high-performance myelin imaging. PM-ML could specifically image myelinated fibers in teased sciatic nerves and mouse brain tissues with high contrast, good photostability, and deep penetration depth. PM-ML staining is compatible with several tissue-clearing methods. Its application in assessing myelination for neuropathological studies was also demonstrated using a multiple sclerosis mouse model. Myelin, the structure that surrounds and insulates neuronal axons, is an important component of the central nervous system. The visualization of the myelinated fibers in brain tissues can largely facilitate the diagnosis of myelin-related diseases and understand how the brain functions. However, the most widely used fluorescent probes for myelin visualization, such as Vybrant DiD and FluoroMyelin, have strong background staining, low-staining contrast, and low brightness. These drawbacks may originate from their self-quenching properties and greatly limit their applications in three-dimensional (3D) imaging and myelin tracing. Chemical probes for the fluorescence imaging of myelin in 3D, especially in optically cleared tissue, are highly desirable but rarely reported. We herein developed a near-infrared aggregation-induced emission (AIE)-active probe, PM-ML, for high-performance myelin imaging. PM-ML is plasma membrane targeting with good photostability. It could specifically label myelinated fibers in teased sciatic nerves and mouse brain tissues with a high–signal-to-background ratio. PM-ML could be used for 3D visualization of myelin sheaths, myelinated fibers, and fascicles with high-penetration depth. The staining is compatible with different brain tissue–clearing methods, such as ClearT and ClearT2. The utility of PM-ML staining in demyelinating disease studies was demonstrated using the mouse model of multiple sclerosis. Together, this work provides an important tool for high-quality myelin visualization across scales, which may greatly contribute to the study of myelin-related diseases.
Collapse
|
54
|
Small molecule screening as an approach to encounter inefficient myelin repair. Curr Opin Pharmacol 2021; 61:127-135. [PMID: 34753035 DOI: 10.1016/j.coph.2021.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/20/2022]
Abstract
While current multiple sclerosis therapies are focused on immunomodulation, thereby slowing down disease progression, scientific interest has nowadays been shifted toward regenerative therapies aiming at reversing already existing deficits. The application of chemical compounds was proven to be valuable for the understanding of oligodendrogenesis and for exposing mechanisms that can boost remyelination. However, sufficient myelin repair has not been achieved yet, thus underscoring the need for more studies toward this unmet clinical goal. In this regard, many research groups have significantly contributed to the field via developing compound screening approaches or using single substances. We, here, present an overview of recent studies addressing the identification of myelin repair drugs and provide insights into technical aspects and identified substances.
Collapse
|
55
|
Ma Y, Liu H, Ou Z, Qi C, Xing R, Wang S, Han Y, Zhao TJ, Chen Y. DHHC5 facilitates oligodendrocyte development by palmitoylating and activating STAT3. Glia 2021; 70:379-392. [PMID: 34724258 DOI: 10.1002/glia.24113] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 02/03/2023]
Abstract
Myelin sheath is an important structure to maintain functions of the nerves in central nervous system. Protein palmitoylation has been established as a sorting determinant for the transport of myelin-forming proteins to the myelin membrane, however, its function in the regulation of oligodendrocyte development remains unknown. Here, we show that an Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases, DHHC5, is involved in the control of oligodendrocyte development. Loss of Zdhhc5 in oligodendrocytes inhibits myelination and remyelination by reducing total myelinating oligodendrocyte population. STAT3 is the primary substrate for DHHC5 palmitoylation in oligodendrocytes. Zdhhc5 ablation reduces STAT3 palmitoylation and suppresses STAT3 phosphorylation and activation. As a result, the transcription of the myelin-related and anti-apoptosis genes is inhibited, leading to suppressed oligodendrocyte development and myelination. Our findings demonstrate a key role DHHC5 in controlling myelinogenesis.
Collapse
Affiliation(s)
- Yanchen Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Huiqing Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhimin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chen Qi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Rui Xing
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shiyun Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yinuo Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tong-Jin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
56
|
Magwai T, Shangase KB, Oginga FO, Chiliza B, Mpofana T, Xulu KR. DNA Methylation and Schizophrenia: Current Literature and Future Perspective. Cells 2021; 10:2890. [PMID: 34831111 PMCID: PMC8616184 DOI: 10.3390/cells10112890] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by dissociation of thoughts, idea, identity, and emotions. It has no central pathophysiological mechanism and precise diagnostic markers. Despite its high heritability, there are also environmental factors implicated in the development of schizophrenia. Epigenetic factors are thought to mediate the effects of environmental factors in the development of the disorder. Epigenetic modifications like DNA methylation are a risk factor for schizophrenia. Targeted gene approach studies attempted to find candidate gene methylation, but the results are contradictory. Genome-wide methylation studies are insufficient in literature and the available data do not cover different populations like the African populations. The current genome-wide studies have limitations related to the sample and methods used. Studies are required to control for these limitations. Integration of DNA methylation, gene expression, and their effects are important in the understanding of the development of schizophrenia and search for biomarkers. There are currently no precise and functional biomarkers for the disorder. Several epigenetic markers have been reported to be common in functional and peripheral tissue. This makes the peripheral tissue epigenetic changes a surrogate of functional tissue, suggesting common epigenetic alteration can be used as biomarkers of schizophrenia in peripheral tissue.
Collapse
Affiliation(s)
- Thabo Magwai
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
- National Health Laboratory Service, Department of Chemical Pathology, University of Kwa-Zulu Natal, Durban 4085, South Africa
| | - Khanyiso Bright Shangase
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Fredrick Otieno Oginga
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Bonginkosi Chiliza
- Department of Psychiatry, Nelson R Mandela School of Medicine, University of Kwa-Zulu Natal, Durban 4001, South Africa;
| | - Thabisile Mpofana
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Khethelo Richman Xulu
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| |
Collapse
|
57
|
Murphy CE, Walker AK, Weickert CS. Neuroinflammation in schizophrenia: the role of nuclear factor kappa B. Transl Psychiatry 2021; 11:528. [PMID: 34650030 PMCID: PMC8516884 DOI: 10.1038/s41398-021-01607-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, particularly in the dorsolateral prefrontal cortex, is well-established in a subset of people with schizophrenia, with significant increases in inflammatory markers including several cytokines. Yet the cause(s) of cortical inflammation in schizophrenia remains unknown. Clues as to potential microenvironmental triggers and/or intracellular deficits in immunoregulation may be gleaned from looking further upstream of effector immune molecules to transcription factors that control inflammatory gene expression. Here, we focus on the 'master immune regulator' nuclear factor kappa B (NF-κB) and review evidence in support of NF-κB dysregulation causing or contributing to neuroinflammation in patients. We discuss the utility of 'immune biotyping' as a tool to analyse immune-related transcripts and proteins in patient tissue, and the insights into cortical NF-κB in schizophrenia revealed by immune biotyping compared to studies treating patients as a single, homogenous group. Though the ubiquitous nature of NF-κB presents several hurdles for drug development, targeting this key immunoregulator with novel or repurposed therapeutics in schizophrenia is a relatively underexplored area that could aid in reducing symptoms of patients with active neuroinflammation.
Collapse
Affiliation(s)
- Caitlin E. Murphy
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW 2031 Australia
| | - Adam K. Walker
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW 2031 Australia ,grid.1005.40000 0004 4902 0432School of Psychiatry, University of New South Wales, Randwick, NSW 2031 Australia ,grid.1002.30000 0004 1936 7857Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia. .,School of Psychiatry, University of New South Wales, Randwick, NSW, 2031, Australia. .,Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
58
|
Rodrigues RS, Paulo SL, Moreira JB, Tanqueiro SR, Sebastião AM, Diógenes MJ, Xapelli S. Adult Neural Stem Cells as Promising Targets in Psychiatric Disorders. Stem Cells Dev 2021; 29:1099-1117. [PMID: 32723008 DOI: 10.1089/scd.2020.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of new therapies for psychiatric disorders is of utmost importance, given the enormous toll these disorders pose to society nowadays. This should be based on the identification of neural substrates and mechanisms that underlie disease etiopathophysiology. Adult neural stem cells (NSCs) have been emerging as a promising platform to counteract brain damage. In this perspective article, we put forth a detailed view of how NSCs operate in the adult brain and influence brain homeostasis, having profound implications at both behavioral and functional levels. We appraise evidence suggesting that adult NSCs play important roles in regulating several forms of brain plasticity, particularly emotional and cognitive flexibility, and that NSC dynamics are altered upon brain pathology. Furthermore, we discuss the potential therapeutic value of utilizing adult endogenous NSCs as vessels for regeneration, highlighting their importance as targets for the treatment of multiple mental illnesses, such as affective disorders, schizophrenia, and addiction. Finally, we speculate on strategies to surpass current challenges in neuropsychiatric disease modeling and brain repair.
Collapse
Affiliation(s)
- Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara L Paulo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João B Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara R Tanqueiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria J Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
59
|
Global hypomyelination of the brain white and gray matter in schizophrenia: quantitative imaging using macromolecular proton fraction. Transl Psychiatry 2021; 11:365. [PMID: 34226491 PMCID: PMC8257619 DOI: 10.1038/s41398-021-01475-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Myelin deficiency is commonly recognized as an important pathological feature of brain tissues in schizophrenia (SZ). In this pilot study, global myelin content abnormalities in white matter (WM) and gray matter (GM) of SZ patients were non-invasively investigated using a novel clinically-targeted quantitative myelin imaging technique, fast macromolecular proton fraction (MPF) mapping. MPF maps were obtained from 23 healthy subjects and 31 SZ patients using a clinical 1.5T magnetic resonance imaging (MRI) scanner. Mean MPF in WM and GM was compared between the healthy control subjects and SZ patients with positive and negative leading symptoms using the multivariate analysis of covariance. The SZ patients had significantly reduced MPF in GM (p < 0.001) and WM (p = 0.02) with the corresponding relative decrease of 5% and 3%, respectively. The effect sizes for the myelin content loss in SZ relative to the control group were 1.0 and 1.5 for WM and GM, respectively. The SZ patients with leading negative symptoms had significantly lower MPF in GM (p < 0.001) and WM (p = 0.003) as compared to the controls and showed a significant MPF decrease in WM (p = 0.03) relative to the patients with leading positive symptoms. MPF in WM significantly negatively correlated with the disease duration in SZ patients (Pearson's r = -0.51; p = 0.004). This study demonstrates that chronic SZ is characterized by global microscopic brain hypomyelination of both WM and GM, which is associated with the disease duration and negative symptoms. Myelin deficiency in SZ can be detected and quantified by the fast MPF mapping method.
Collapse
|
60
|
Windrem MS, Schanz SJ, Zou L, Chandler-Militello D, Kuypers NJ, Nedergaard M, Lu Y, Mariani JN, Goldman SA. Human Glial Progenitor Cells Effectively Remyelinate the Demyelinated Adult Brain. Cell Rep 2021; 31:107658. [PMID: 32433967 DOI: 10.1016/j.celrep.2020.107658] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 02/14/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022] Open
Abstract
Neonatally transplanted human glial progenitor cells (hGPCs) can myelinate the brains of myelin-deficient shiverer mice, rescuing their phenotype and survival. Yet, it has been unclear whether implanted hGPCs are similarly able to remyelinate the diffusely demyelinated adult CNS. We, therefore, ask if hGPCs could remyelinate both congenitally hypomyelinated adult shiverers and normal adult mice after cuprizone demyelination. In adult shiverers, hGPCs broadly disperse and differentiate as myelinating oligodendrocytes after subcortical injection, improving both host callosal conduction and ambulation. Implanted hGPCs similarly remyelinate denuded axons after cuprizone demyelination, whether delivered before or after demyelination. RNA sequencing (RNA-seq) of hGPCs back from cuprizone-demyelinated brains reveals their transcriptional activation of oligodendrocyte differentiation programs, while distinguishing them from hGPCs not previously exposed to demyelination. These data indicate the ability of transplanted hGPCs to disperse throughout the adult CNS, to broadly myelinate regions of dysmyelination, and also to be recruited as myelinogenic oligodendrocytes later in life, upon demyelination-associated demand.
Collapse
Affiliation(s)
- Martha S Windrem
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven J Schanz
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Lisa Zou
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Devin Chandler-Militello
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Nicholas J Kuypers
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Yuan Lu
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - John N Mariani
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark; Neuroscience Center, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
61
|
Garcia-Ruiz B, de Moura MC, Muntané G, Martorell L, Bosch E, Esteller M, J Canales-Rodríguez E, Pomarol-Clotet E, Jiménez E, Vieta E, Vilella E. DDR1 methylation is associated with bipolar disorder and the isoform expression and methylation of myelin genes. Epigenomics 2021; 13:845-858. [PMID: 33942629 DOI: 10.2217/epi-2021-0006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate DDR1 methylation in the brains of bipolar disorder (BD) patients and its association with DDR1 mRNA levels and comethylation with myelin genes. Materials & methods: Genome-wide profiling of DNA methylation (Infinium MethylationEPIC BeadChip) corrected for glial composition and DDR1 gene expression analysis in the occipital cortices of individuals with BD (n = 15) and healthy controls (n = 15) were conducted. Results: DDR1 5-methylcytosine levels were increased and directly associated with DDR1b mRNA expression in the brains of BD patients. We also observed that DDR1 was comethylated with a group of myelin genes. Conclusion: DDR1 is hypermethylated in BD brain tissue and is associated with isoform expression. Additionally, DDR1 comethylation with myelin genes supports the role of this receptor in myelination.
Collapse
Affiliation(s)
- Beatriz Garcia-Ruiz
- Hospital Universitari Institut Pere Mata, Ctra. de l'Institut Pere Mata, s/n. 43206, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Visgili (IISPV), C/ Dr. Mallafrè Guasch, 4 Edifici modular Hospital Universitari de Tarragona Joan XXIII. 43007, Tarragona, Catalonia, Spain.,Universitat Rovira i Virgili (URV), Facultat de Medicina i Ciències de la Salut, Departament de Psiquiatria, C/Sant Llorenç, 21. 43201, Reus, Catalonia, Spain
| | - Manuel Castro de Moura
- Josep Carreras Leukaemia Research Institute (IJC), Josep Carreras Building, Ctra de Can Ruti, Camí de les Escoles, 08916, Badalona, Barcelona, Catalonia, Spain
| | - Gerard Muntané
- Hospital Universitari Institut Pere Mata, Ctra. de l'Institut Pere Mata, s/n. 43206, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Visgili (IISPV), C/ Dr. Mallafrè Guasch, 4 Edifici modular Hospital Universitari de Tarragona Joan XXIII. 43007, Tarragona, Catalonia, Spain.,Universitat Rovira i Virgili (URV), Facultat de Medicina i Ciències de la Salut, Departament de Psiquiatria, C/Sant Llorenç, 21. 43201, Reus, Catalonia, Spain.,Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), C/Melchor Fernández Almagro, 3. 28029, Madrid, Spain.,Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), C/Dr. Aiguader, 88, 08003, Barcelona, Catalonia, Spain
| | - Lourdes Martorell
- Hospital Universitari Institut Pere Mata, Ctra. de l'Institut Pere Mata, s/n. 43206, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Visgili (IISPV), C/ Dr. Mallafrè Guasch, 4 Edifici modular Hospital Universitari de Tarragona Joan XXIII. 43007, Tarragona, Catalonia, Spain.,Universitat Rovira i Virgili (URV), Facultat de Medicina i Ciències de la Salut, Departament de Psiquiatria, C/Sant Llorenç, 21. 43201, Reus, Catalonia, Spain.,Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), C/Melchor Fernández Almagro, 3. 28029, Madrid, Spain
| | - Elena Bosch
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), C/Dr. Aiguader, 88, 08003, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Josep Carreras Building, Ctra de Can Ruti, Camí de les Escoles, 08916, Badalona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), C/Melchor Fernández Almagro, 3. 28029, Madrid, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23. 08010, Barcelona, Catalonia, Spain.,Physiological Sciences Department, School of Medicine & Health Sciences, University of Barcelona (UB), Feixa Llarga, 08907, l'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Erick J Canales-Rodríguez
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), C/Melchor Fernández Almagro, 3. 28029, Madrid, Spain.,FIDMAG Research Foundation, Germanes Hospitalàries, Av. Jordà, 8. 08035, Barcelona, Catalonia, Spain.,Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Station 11. CH-1015, Lausanne, Switzerland
| | - Edith Pomarol-Clotet
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), C/Melchor Fernández Almagro, 3. 28029, Madrid, Spain.,FIDMAG Research Foundation, Germanes Hospitalàries, Av. Jordà, 8. 08035, Barcelona, Catalonia, Spain
| | - Esther Jiménez
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), C/Melchor Fernández Almagro, 3. 28029, Madrid, Spain.,Bipolar & Depressive Disorders Unit, Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, Villarroel, 170, 12-0. 08036, Barcelona, Catalonia, Spain
| | - Eduard Vieta
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), C/Melchor Fernández Almagro, 3. 28029, Madrid, Spain.,Bipolar & Depressive Disorders Unit, Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, Villarroel, 170, 12-0. 08036, Barcelona, Catalonia, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata, Ctra. de l'Institut Pere Mata, s/n. 43206, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Visgili (IISPV), C/ Dr. Mallafrè Guasch, 4 Edifici modular Hospital Universitari de Tarragona Joan XXIII. 43007, Tarragona, Catalonia, Spain.,Universitat Rovira i Virgili (URV), Facultat de Medicina i Ciències de la Salut, Departament de Psiquiatria, C/Sant Llorenç, 21. 43201, Reus, Catalonia, Spain.,Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), C/Melchor Fernández Almagro, 3. 28029, Madrid, Spain
| |
Collapse
|
62
|
Chen X, Huang NX, Cheng YJ, Cai QY, Tian YP, Chen XS, Xiao L. DNA Hypermethylation Induced by L-Methionine Leads to Oligodendroglial and Myelin Deficits and Schizophrenia-Like Behaviors in Adolescent Mice. Front Neurosci 2021; 15:659853. [PMID: 33958986 PMCID: PMC8095669 DOI: 10.3389/fnins.2021.659853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022] Open
Abstract
Increasing evidence has demonstrated that in addition to dysfunction of neuronal circuitry, oligodendroglial dysfunction and/or disruption of white matter integrity are found in the brains of patients with schizophrenia. DNA methylation, a well-established risk factor for schizophrenia, has been demonstrated to cause neuronal dysfunction; however, whether dysregulation of DNA methylation contributes to oligodendroglial/myelin deficits in the pathogenesis of schizophrenia remains unclear. In the present study, by using L-methionine-treated mice, we confirmed that mice with DNA hypermethylation exhibited an anxious phenotype, impaired sociability, and sensorimotor gating deficits. Notably, DNA hypermethylation in oligodendroglial cells led to dysregulation of multiple oligodendroglia-specific transcription factors, which indicated disruption of the transcriptional architecture. Furthermore, DNA hypermethylation caused a reduction of oligodendroglial lineage cells and myelin integrity in the frontal white matter of mice. Taken together, these results indicate that DNA hypermethylation leads to oligodendroglial and/or myelin deficits, which may, at least in part, contribute to schizophrenia-like behaviors in mice. This study provides new insights into the possibility that precise modulation of DNA methylation status in oligodendroglia could be beneficial for the white matter pathology in schizophrenia.
Collapse
Affiliation(s)
- Xianjun Chen
- Department of Histology and Embryology, Institute of Brain and Intelligence, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Physiology, Research Center of Neuroscience, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Nan-Xin Huang
- Department of Histology and Embryology, Institute of Brain and Intelligence, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yong-Jie Cheng
- Department of Histology and Embryology, Institute of Brain and Intelligence, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qi-Yan Cai
- Department of Histology and Embryology, Institute of Brain and Intelligence, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan-Ping Tian
- Department of Histology and Embryology, Institute of Brain and Intelligence, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xing-Shu Chen
- Department of Histology and Embryology, Institute of Brain and Intelligence, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Department of Military Medical Geography, Army Medical Training Base, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lan Xiao
- Department of Histology and Embryology, Institute of Brain and Intelligence, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
63
|
Martins-de-Souza D, Guest PC, Reis-de-Oliveira G, Schmitt A, Falkai P, Turck CW. An overview of the human brain myelin proteome and differences associated with schizophrenia. World J Biol Psychiatry 2021; 22:271-287. [PMID: 32602824 DOI: 10.1080/15622975.2020.1789217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Disturbances in the myelin sheath drive disruptions in neural transmission and brain connectivity as seen in schizophrenia. Here, the myelin proteome was characterised in schizophrenia patients and healthy controls to visualise differences in proteomic profiles. METHODS A liquid chromatography tandem mass spectrometry-based shotgun proteomic analysis was performed of a myelin-enriched fraction of postmortem brain samples from schizophrenia patients (n = 12) and mentally healthy controls (n = 8). In silico pathway analyses were performed on the resulting data. RESULTS The present characterisation of the human myelinome led to the identification of 480 non-redundant proteins, of which 102 proteins are newly annotated to be associated with the myelinome. Levels of 172 of these proteins were altered between schizophrenia patients and controls. These proteins were mainly associated with glial cell differentiation, metabolism/energy, synaptic vesicle function and neurodegeneration. The hub proteins with the highest degree of connectivity in the network included multiple kinases and synaptic vesicle transport proteins. CONCLUSIONS Together these findings suggest disruptive effects on synaptic activity and therefore neural transmission and connectivity, consistent with the dysconnectivity hypothesis of schizophrenia. Further studies on these proteins may lead to the identification of potential drug targets related to the synaptic dysconnectivity in schizophrenia and other psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION) Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil.,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil.,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Christoph W Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
64
|
Balestri S, Del Giovane A, Sposato C, Ferrarelli M, Ragnini-Wilson A. The Current Challenges for Drug Discovery in CNS Remyelination. Int J Mol Sci 2021; 22:ijms22062891. [PMID: 33809224 PMCID: PMC8001072 DOI: 10.3390/ijms22062891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
The myelin sheath wraps around axons, allowing saltatory currents to be transmitted along neurons. Several genetic, viral, or environmental factors can damage the central nervous system (CNS) myelin sheath during life. Unless the myelin sheath is repaired, these insults will lead to neurodegeneration. Remyelination occurs spontaneously upon myelin injury in healthy individuals but can fail in several demyelination pathologies or as a consequence of aging. Thus, pharmacological intervention that promotes CNS remyelination could have a major impact on patient’s lives by delaying or even preventing neurodegeneration. Drugs promoting CNS remyelination in animal models have been identified recently, mostly as a result of repurposing phenotypical screening campaigns that used novel oligodendrocyte cellular models. Although none of these have as yet arrived in the clinic, promising candidates are on the way. Many questions remain. Among the most relevant is the question if there is a time window when remyelination drugs should be administrated and why adult remyelination fails in many neurodegenerative pathologies. Moreover, a significant challenge in the field is how to reconstitute the oligodendrocyte/axon interaction environment representative of healthy as well as disease microenvironments in drug screening campaigns, so that drugs can be screened in the most appropriate disease-relevant conditions. Here we will provide an overview of how the field of in vitro models developed over recent years and recent biological findings about how oligodendrocytes mature after reactivation of their staminal niche. These data have posed novel questions and opened new views about how the adult brain is repaired after myelin injury and we will discuss how these new findings might change future drug screening campaigns for CNS regenerative drugs.
Collapse
|
65
|
Nägele FL, Pasternak O, Bitzan LV, Mußmann M, Rauh J, Kubicki M, Leicht G, Shenton ME, Lyall AE, Mulert C. Cellular and extracellular white matter alterations indicate conversion to psychosis among individuals at clinical high-risk for psychosis. World J Biol Psychiatry 2021; 22:214-227. [PMID: 32643526 PMCID: PMC7798359 DOI: 10.1080/15622975.2020.1775890] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES It is important to find biomarkers associated with transition to illness in individuals at clinical high-risk for psychosis (CHR). Here, we use free-water imaging, an advanced diffusion MRI technique, to identify white matter alterations in the brains of CHR subjects who subsequently develop psychosis (CHR-P) compared to those who do not (CHR-NP). METHODS Twenty-four healthy controls (HC) and 30 CHR individuals, 8 of whom converted to schizophrenia after a mean follow-up of 15.16 months, received baseline MRI scans. Maps of fractional anisotropy (FA), FA of cellular tissue (FAT), and extracellular free-water (FW) were extracted using tract-based spatial statistics after which voxel-wise non-parametric group statistics and correlations with symptom severity were performed. RESULTS There were no significant differences between HCs and the combined CHR group. However, prior to conversion, CHR-P showed widespread lower FA compared to CHR-NP (pFWE < 0.05). FA changes in CHR-P were associated with significantly lower FAT and higher FW, compared to CHR-NP. Positive symptoms correlated significantly with diffusion parameters in similar regions as those discriminating CHR-P from CHR-NP. CONCLUSIONS Our study suggests that cellular (FAT) and extracellular (FW) white matter alterations are associated with positive symptom severity and indicate an elevated illness risk among CHR individuals.
Collapse
Affiliation(s)
- Felix L. Nägele
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany;,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA;,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lisa V. Bitzan
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany;,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Marius Mußmann
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Jonas Rauh
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA;,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA;,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregor Leicht
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA;,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA;,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA;,VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Amanda E. Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA;,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany;,Centre for Psychiatry and Psychotherapy, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
66
|
A unique missense variant in the E1A-binding protein P400 gene is implicated in schizophrenia by whole-exome sequencing and mutant mouse models. Transl Psychiatry 2021; 11:132. [PMID: 33602898 PMCID: PMC7892873 DOI: 10.1038/s41398-021-01258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
Genetic and epidemiological evidence has suggested that genetic factors are important in schizophrenia, although its pathophysiology is poorly understood. This study used whole-exome sequencing to investigate potential novel schizophrenia-causing genes in a Japanese family containing several members affected by severe or treatment-resistant schizophrenia. A missense variant, chr12:132064747C>T (rs200626129, P2805L), in the E1A-binding protein P400 (EP400) gene completely segregated with schizophrenia in this family. Furthermore, numerous other EP400 mutations were identified in the targeted sequencing of a schizophrenia patient cohort. We also created two lines of Ep400 gene-edited mice, which had anxiety-like behaviours and reduced axon diameters. Our findings suggest that rs200626129 in EP400 is likely to cause schizophrenia in this Japanese family, and may lead to a better understanding and treatment of schizophrenia.
Collapse
|
67
|
Lyall AE, Nägele FL, Pasternak O, Gallego JA, Malhotra AK, McNamara RK, Kubicki M, Peters BD, Robinson DG, Szeszko PR. A 16-week randomized placebo-controlled trial investigating the effects of omega-3 polyunsaturated fatty acid treatment on white matter microstructure in recent-onset psychosis patients concurrently treated with risperidone. Psychiatry Res Neuroimaging 2021; 307:111219. [PMID: 33221631 PMCID: PMC8127861 DOI: 10.1016/j.pscychresns.2020.111219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 11/19/2022]
Abstract
We examined the impact of treatment with fish oil (FO), a rich source of omega-3 polyunsaturated fatty acids (n-3 PUFA), on white matter in 37 recent-onset psychosis patients receiving risperidone in a double-blind placebo-controlled randomized clinical trial. Patients were scanned at baseline and randomly assigned to receive 16-weeks of treatment with risperidone + FO or risperidone + placebo. Eighteen patients received follow-up MRIs (FO, n = 10/Placebo, n = 8). Erythrocyte levels of n-3 PUFAs eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and docosapentaenoic acid (DPA) were obtained at both time points. We employed Free Water Imaging metrics representing the extracellular free water fraction (FW) and fractional anisotropy of the tissue (FA-t). Analyses were conducted using Tract-Based-Spatial-Statistics and nonparametric permutation-based tests with family-wise error correction. There were significant positive correlations of FA-t with DHA and DPA among all patients at baseline. Patients treated with risperidone + placebo demonstrated reductions in FA-t and increases in FW, whereas patients treated with risperidone + FO exhibited no significant changes in FW and FA-t reductions were largely attenuated. The correlations of DPA and DHA with baseline FA-t support the hypothesis that n-3 PUFA intake or biosynthesis are associated with white matter abnormalities in psychosis. Adjuvant FO treatment may partially mitigate against white matter alterations observed in recent-onset psychosis patients following risperidone treatment.
Collapse
Affiliation(s)
- Amanda E Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Felix L Nägele
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Juan A Gallego
- Departments of Psychiatry and of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States; Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Anil K Malhotra
- Departments of Psychiatry and of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States; Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, Lipidomics Research Program, University of Cincinnati, United States
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Bart D Peters
- Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Delbert G Robinson
- Departments of Psychiatry and of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States; Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Philip R Szeszko
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, United States
| |
Collapse
|
68
|
Zhou B, Zhu Z, Ransom BR, Tong X. Oligodendrocyte lineage cells and depression. Mol Psychiatry 2021; 26:103-117. [PMID: 33144710 PMCID: PMC7815509 DOI: 10.1038/s41380-020-00930-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022]
Abstract
Depression is a common mental illness, affecting more than 300 million people worldwide. Decades of investigation have yielded symptomatic therapies for this disabling condition but have not led to a consensus about its pathogenesis. There are data to support several different theories of causation, including the monoamine hypothesis, hypothalamic-pituitary-adrenal axis changes, inflammation and immune system alterations, abnormalities of neurogenesis and a conducive environmental milieu. Research in these areas and others has greatly advanced the current understanding of depression; however, there are other, less widely known theories of pathogenesis. Oligodendrocyte lineage cells, including oligodendrocyte progenitor cells and mature oligodendrocytes, have numerous important functions, which include forming myelin sheaths that enwrap central nervous system axons, supporting axons metabolically, and mediating certain forms of neuroplasticity. These specialized glial cells have been implicated in psychiatric disorders such as depression. In this review, we summarize recent findings that shed light on how oligodendrocyte lineage cells might participate in the pathogenesis of depression, and we discuss new approaches for targeting these cells as a novel strategy to treat depression.
Collapse
Affiliation(s)
- Butian Zhou
- Center for Brain Science, Shanghai Children's Medical Center; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongqun Zhu
- Department of Cardiothoracic Surgery, Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bruce R Ransom
- Neuroscience Department, City University of Hong Kong, Hong Kong, China.
| | - Xiaoping Tong
- Center for Brain Science, Shanghai Children's Medical Center; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
69
|
Levenberg K, Hajnal A, George DR, Saunders EFH. Prolonged functional cerebral asymmetry as a consequence of dysfunctional parvocellular paraventricular hypothalamic nucleus signaling: An integrative model for the pathophysiology of bipolar disorder. Med Hypotheses 2020; 146:110433. [PMID: 33317848 DOI: 10.1016/j.mehy.2020.110433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/14/2020] [Accepted: 11/24/2020] [Indexed: 01/09/2023]
Abstract
Approximately 45 million people worldwide are diagnosed with bipolar disorder (BD). While there are many known risk factors and models of the pathologic processes influencing BD, the exact neurologic underpinnings of BD are unknown. We attempt to integrate the existing literature and create a unifying hypothesis regarding the pathophysiology of BD with the hope that a concrete model may potentially facilitate more specific diagnosis, prevention, and treatment of BD in the future. We hypothesize that dysfunctional signaling from the parvocellular neurons of the paraventricular hypothalamic nucleus (PVN) results in the clinical presentation of BD. Functional damage to this nucleus and its signaling pathways may be mediated by myriad factors (e.g. immune dysregulation and auto-immune processes, polygenetic variation, dysfunctional interhemispheric connections, and impaired or overactivated hypothalamic axes) which could help explain the wide variety of clinical presentations along the BD spectrum. The neurons of the PVN regulate ultradian rhythms, which are observed in cyclic variations in healthy individuals, and mediate changes in functional hemispheric lateralization. Theoretically, dysfunctional PVN signaling results in prolonged functional hemispheric dominance. In this model, prolonged right hemispheric dominance leads to depressive symptoms, whereas left hemispheric dominance correlated to the clinical picture of mania. Subsequently, physiologic processes that increase signaling through the PVN (hypothalamic-pituitaryadrenal axis, hypothalamic- pituitary-gonadal axis, and hypothalamic-pituitary-thyroid axis activity, suprachiasmatic nucleus pathways) as well as, neuro-endocrine induced excito-toxicity, auto-immune and inflammatory flairs may induce mood episodes in susceptible individuals. Potentially, ultradian rhythms slowing with age, in combination with changes in hypothalamic axes and maturation of neural circuitry, accounts for BD clinically presenting more frequently in young adulthood than later in life.
Collapse
Affiliation(s)
- Kate Levenberg
- College of Medicine, Penn State University College of Medicine, State College, USA.
| | - Andras Hajnal
- Neural & Behavioral Sciences, Penn State University College of Medicine, State College, USA
| | - Daniel R George
- Department of Humanities, Penn State University College of Medicine, Hershey, USA
| | - Erika F H Saunders
- Psychiatry and Behavioral Health, Penn State University College of Medicine, State College, USA
| |
Collapse
|
70
|
Yang A, Chen J, Zhao XM. nMAGMA: a network-enhanced method for inferring risk genes from GWAS summary statistics and its application to schizophrenia. Brief Bioinform 2020; 22:5998843. [PMID: 33230537 DOI: 10.1093/bib/bbaa298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022] Open
Abstract
MOTIVATION Annotating genetic variants from summary statistics of genome-wide association studies (GWAS) is crucial for predicting risk genes of various disorders. The multimarker analysis of genomic annotation (MAGMA) is one of the most popular tools for this purpose, where MAGMA aggregates signals of single nucleotide polymorphisms (SNPs) to their nearby genes. In biology, SNPs may also affect genes that are far away in the genome, thus missed by MAGMA. Although different upgrades of MAGMA have been proposed to extend gene-wise variant annotations with more information (e.g. Hi-C or eQTL), the regulatory relationships among genes and the tissue specificity of signals have not been taken into account. RESULTS We propose a new approach, namely network-enhanced MAGMA (nMAGMA), for gene-wise annotation of variants from GWAS summary statistics. Compared with MAGMA and H-MAGMA, nMAGMA significantly extends the lists of genes that can be annotated to SNPs by integrating local signals, long-range regulation signals (i.e. interactions between distal DNA elements), and tissue-specific gene networks. When applied to schizophrenia (SCZ), nMAGMA is able to detect more risk genes (217% more than MAGMA and 57% more than H-MAGMA) that are involved in SCZ compared with MAGMA and H-MAGMA, and more of nMAGMA results can be validated with known SCZ risk genes. Some disease-related functions (e.g. the ATPase pathway in Cortex) are also uncovered in nMAGMA but not in MAGMA or H-MAGMA. Moreover, nMAGMA provides tissue-specific risk signals, which are useful for understanding disorders with multitissue origins.
Collapse
Affiliation(s)
- Anyi Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, China
| | - Jingqi Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, China
| | | |
Collapse
|
71
|
Fear Deficits in Hypomyelinated Tppp Knock-Out Mice. eNeuro 2020; 7:ENEURO.0170-20.2020. [PMID: 32878961 PMCID: PMC7540923 DOI: 10.1523/eneuro.0170-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/03/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
Oligodendrocytes in the central nervous system (CNS) produce myelin sheaths that insulate axons to facilitate efficient electrical conduction. These myelin sheaths contain lamellar microtubules that enable vesicular transport into the inner sheath. Mechanistically, oligodendrocytes rely on Golgi outpost organelles and the associated protein tubulin polymerization promoting protein (TPPP) to nucleate or form new microtubules outside of the cell body. Consequently, elongation of lamellar microtubules is defective in Tppp knock-out (KO) mice, which have thinner and shorter myelin sheaths. We now explore the behavioral phenotypes of Tppp KO mice using a number of different assays. In open-field assays, Tppp KO mice display similar activity levels and movement patterns as wild-type mice, indicating that they do not display anxiety behavior. However, Tppp KO mice lack fear responses by two types of assays, traditional fear-conditioning assays and looming fear assays, which test for innate fear responses. Deficits in fear conditioning, which is a memory-dependent task, as well as in spatial memory tests, support possible short-term memory defects in Tppp KO mice. Together, our experiments indicate a connection between CNS myelination and behavioral deficits.
Collapse
|
72
|
Esaki K, Balan S, Iwayama Y, Shimamoto-Mitsuyama C, Hirabayashi Y, Dean B, Yoshikawa T. Evidence for Altered Metabolism of Sphingosine-1-Phosphate in the Corpus Callosum of Patients with Schizophrenia. Schizophr Bull 2020; 46:1172-1181. [PMID: 32346731 PMCID: PMC7505171 DOI: 10.1093/schbul/sbaa052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The disturbed integrity of myelin and white matter, along with dysregulation of the lipid metabolism, may be involved in schizophrenia pathophysiology. Considering the crucial role of sphingolipids in neurodevelopment, particularly in oligodendrocyte differentiation and myelination, we examined the role of sphingolipid dynamics in the pathophysiology of schizophrenia. We performed targeted mass spectrometry-based analysis of sphingolipids from the cortical area and corpus callosum of postmortem brain samples from patients with schizophrenia and controls. We observed lower sphingosine-1-phosphate (S1P) levels, specifically in the corpus callosum of patients with schizophrenia, but not in major depressive disorder or bipolar disorder, when compared with the controls. Patient data and animal studies showed that antipsychotic intake did not contribute to the lowered S1P levels. We also found that lowered S1P levels in the corpus callosum of patients with schizophrenia may stem from the upregulation of genes for S1P-degrading enzymes; higher expression of genes for S1P receptors suggested a potential compensatory mechanism for the lowered S1P levels. A higher ratio of the sum of sphingosine and ceramide to S1P, which can induce apoptosis and cell-cycle arrest, was also observed in the samples of patients with schizophrenia than in controls. These results suggest that an altered S1P metabolism may underlie the deficits in oligodendrocyte differentiation and myelin formation, leading to the structural and molecular abnormalities of white matter reported in schizophrenia. Our findings may pave the way toward a novel therapeutic strategy.
Collapse
Affiliation(s)
- Kayoko Esaki
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Shabeesh Balan
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
- Support Unit for Bio-Material Analysis, Research Division, RIKEN Center for Brain Science, Saitama, Japan
| | | | - Yoshio Hirabayashi
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Brian Dean
- The Florey Institute of Neuroscience and Mental Health, Howard Florey Laboratories, The University of Melbourne, Victoria, Australia
- The Centre for Mental Health, Swinburne University, Victoria, Australia
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
73
|
Genetic Variation in CNS Myelination and Functional Brain Connectivity in Recombinant Inbred Mice. Cells 2020; 9:cells9092119. [PMID: 32961889 PMCID: PMC7564997 DOI: 10.3390/cells9092119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/29/2023] Open
Abstract
Myelination greatly increases the speed of action potential propagation of neurons, thereby enhancing the efficacy of inter-neuronal communication and hence, potentially, optimizing the brain’s signal processing capability. The impact of genetic variation on the extent of axonal myelination and its consequences for brain functioning remain to be determined. Here we investigated this question using a genetic reference panel (GRP) of mouse BXD recombinant inbred (RI) strains, which partly model genetic diversity as observed in human populations, and which show substantial genetic differences in a variety of behaviors, including learning, memory and anxiety. We found coherent differences in the expression of myelin genes in brain tissue of RI strains of the BXD panel, with the largest differences in the hippocampus. The parental C57BL/6J (C57) and DBA/2J (DBA) strains were on opposite ends of the expression spectrum, with C57 showing higher myelin transcript expression compared with DBA. Our experiments showed accompanying differences between C57 and DBA in myelin protein composition, total myelin content, and white matter conduction velocity. Finally, the hippocampal myelin gene expression of the BXD strains correlated significantly with behavioral traits involving anxiety and/or activity. Taken together, our data indicate that genetic variation in myelin gene expression translates to differences observed in myelination, axonal conduction speed, and possibly in anxiety/activity related behaviors.
Collapse
|
74
|
Igg-Dependent Hydrolysis of Myelin Basic Protein of Patients with Different Courses of Schizophrenia. J Immunol Res 2020; 2020:8986521. [PMID: 32851101 PMCID: PMC7439796 DOI: 10.1155/2020/8986521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/04/2020] [Indexed: 02/03/2023] Open
Abstract
The level hydrolysis of myelin basic protein (MBP) by IgG in patients with schizophrenia was studied depending on the clinical features and course of the disease. The patients were grouped according to type of schizophrenia and type of disease course. We found that IgGs isolated and purified from sera of schizophrenia patients' blood hydrolyses human MBP, and the level of this hydrolysis significantly exceeds that of healthy individuals. Detection of protease activity corresponding only to intact IgGs in polyacrylamide gel fragments, together with data of gel filtration of antibodies under conditions of “acid shock” (concordance of optical density profile of IgG with profile of MBP-hydrolyzing activity) and with the absence of any other proteins and bands in gradient SDS-PAGE and in PVDF membrane provides direct evidence that the IgGs from the schizophrenia patients have MBP-hydrolyzing activity. The antibodies-specific proteolytic activity of patients with acute schizophrenia (1.026 [0.205; 3.372] mg MBP/mg IgG/h) significantly exceeds the activity of IgG in patients in remission (0.656 [0.279; 0.873] mg MBP/mg IgG/h) and in healthy individuals (0.000 [0.00; 0.367] mg MBP/mg IgG/h). When comparing the specific activity in patients with different types of disease course, we have found that patients with a continuous course of paranoid schizophrenia (1.810 [0.746; 4.101 mg MBP/mg IgG/h]) had maximal activity values. It can be assumed that the increase in the activity of MBP-hydrolyzing antibodies is due to the activation of humoral immunity in acute schizophrenia.
Collapse
|
75
|
Yang L, Zhou Y, Jia H, Qi Y, Tu S, Shao A. Affective Immunology: The Crosstalk Between Microglia and Astrocytes Plays Key Role? Front Immunol 2020; 11:1818. [PMID: 32973758 PMCID: PMC7468391 DOI: 10.3389/fimmu.2020.01818] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence demonstrates the critical role of the immune response in the mechanisms relating to mood disorders, such as major depression (MDD) and bipolar disorder (BD). This has cast a spotlight on a specialized branch committed to the research of dynamics of the fine interaction between emotion (or affection) and immune response, which has been termed as “affective immunology.” Inflammatory cytokines and gut microbiota are actively involved in affective immunology. Furthermore, abnormalities of the astrocytes and microglia have been observed in mood disorders from both postmortem and molecular imaging studies; however, the underlying mechanisms remain elusive. Notably, the crosstalk between astrocyte and microglia acts as a mutual and pivotal intermediary factor modulating the immune response posed by inflammatory cytokines and gut microbiota. In this study, we propose the “altered astrocyte-microglia crosstalk (AAMC)” hypothesis which suggests that the astrocyte-microglia crosstalk regulates emotional alteration through mediating immune response, and thus, contributing to the development of mood disorders.
Collapse
Affiliation(s)
- Linglin Yang
- Department of Psychiatry, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Honglei Jia
- Department of Student Affairs, Zhejiang University School of Medicine, Hangzhou, China
| | - Yadong Qi
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
76
|
Chwa WJ, Tishler TA, Raymond C, Tran C, Anwar F, Villablanca JP, Ventura J, Subotnik KL, Nuechterlein KH, Ellingson BM. Association between cortical volume and gray-white matter contrast with second generation antipsychotic medication exposure in first episode male schizophrenia patients. Schizophr Res 2020; 222:397-410. [PMID: 32487466 PMCID: PMC7572538 DOI: 10.1016/j.schres.2020.03.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/06/2020] [Accepted: 03/31/2020] [Indexed: 01/19/2023]
Abstract
This cross-sectional study examines the differences in cortical volume and gray-to-white matter contrast (GWC) in first episode schizophrenia patients (SCZ) compared to healthy control participants (HC) and in SCZ patients as a function of exposure to second generation antipsychotic medication. We hypothesize 1) SCZ exhibit regionally lower cortical volumes relative to HCs, 2) cortical volume will be greater with longer exposure to second generation antipsychotics prior to the MRI scan, and 3) lower GWC with longer exposure to second generation antipsychotics prior to the MRI scan, suggesting more blurring from greater intracortical myelin. To accomplish this, MRI scans from 71 male SCZ patients treated with second generation oral risperidone and 42 male HCs were examined. 3D T1-weighted MPRAGE images collected at 1.5T were used to estimate cortical volume and GWC by sampling signal intensity at 30% within the cortical ribbon. Average cortical volume and GWC were calculated and compared between SCZ and HC. Cortical volume and GWC in SCZ patients were correlated with duration of medication exposure for the time period prior to the scan. First-episode SCZ patients had significantly lower cortical volume compared to HCs in bilateral temporal, superior and rostral frontal, postcentral gyral, and parahippocampal regions. In SCZ patients, greater cortical volume was associated with (log-transformed) duration of second-generation antipsychotic medication exposure in bilateral precuneus, right lingual, and right superior parietal regions. Lower GWC was correlated with longer duration of medication exposure bilaterally in the superior frontal lobes. In summary, second generation antipsychotics may increase cortical volume and decrease GWC in first episode SCZ patients.
Collapse
Affiliation(s)
- Won Jong Chwa
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Todd A. Tishler
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Catalina Raymond
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Cathy Tran
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Faizan Anwar
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - J. Pablo Villablanca
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Joseph Ventura
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Kenneth L. Subotnik
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Keith H. Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Department of Psychology, University of California Los Angeles, Los Angeles, CA
| | - Benjamin M. Ellingson
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
77
|
Dysregulated Glial Differentiation in Schizophrenia May Be Relieved by Suppression of SMAD4- and REST-Dependent Signaling. Cell Rep 2020; 27:3832-3843.e6. [PMID: 31242417 DOI: 10.1016/j.celrep.2019.05.088] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/04/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022] Open
Abstract
Astrocytic differentiation is developmentally impaired in patients with childhood-onset schizophrenia (SCZ). To determine why, we used genetic gain- and loss-of-function studies to establish the contributions of differentially expressed transcriptional regulators to the defective differentiation of glial progenitor cells (GPCs) produced from SCZ patient-derived induced pluripotent cells (iPSCs). Negative regulators of the bone morphogenetic protein (BMP) pathway were upregulated in SCZ GPCs, including BAMBI, FST, and GREM1, whose overexpression retained SCZ GPCs at the progenitor stage. SMAD4 knockdown (KD) suppressed the production of these BMP inhibitors by SCZ GPCs and rescued normal astrocytic differentiation. In addition, the BMP-regulated transcriptional repressor REST was upregulated in SCZ GPCs, and its KD similarly restored normal glial differentiation. REST KD also rescued potassium-transport-associated gene expression and K+ uptake, which were otherwise deficient in SCZ glia. These data suggest that the glial differentiation defect in childhood-onset SCZ, and its attendant disruption in K+ homeostasis, may be rescued by targeting BMP/SMAD4- and REST-dependent transcription.
Collapse
|
78
|
Talukder MA. Relating diffusion-weighted magnetic resonance imaging of brain white matter to cognitive processing-speed deficits in schizophrenia. Biomed Phys Eng Express 2020; 6:055007. [PMID: 33444238 DOI: 10.1088/2057-1976/aba3ba] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) analyses of diffusion-weighted magnetic resonance imaging (MRI) show that diffusional fractional anisotropy (FA) and kurtosis anisotropy (KA) of water inside brain white matter decrease for schizophrenic patients from that for healthy persons. DTI and DKI are statistical approaches and do not directly point to the underlying neurobiological reasons. In schizophrenia, it is believed that the demyelination of axons-microstructures that constitute the brain white matter-increases lateral diffusion of water and causes defective neural communications, resulting cognitive processing-speed deficits. Here, we use a simple but realistic neurobiological model for brain white matter and solve the Bloch-Torrey equation using numerical finite-element method to find out the underlying reasons of cognitive deficits in schizophrenia. FA and KA are calculated from computationally obtained diffusion-weighted MRI data after a Stejskal-Tanner gradient pulse sequence is applied to a periodic array of tubular axons with circular cross-sections. The calculated FA and KA decrease when the axon walls are more permeable to water, agree with the experimental findings, and correlate with the cognitive processing speeds of healthy persons and schizophrenic patients, and thus, help to understand the underlying reasons of cognitive processing-speed deficits in schizophrenia.
Collapse
Affiliation(s)
- Muhammad Anisuzzaman Talukder
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| |
Collapse
|
79
|
Zhang XF, Chen T, Yan A, Xiao J, Xie YL, Yuan J, Chen P, Wong AOL, Zhang Y, Wong NK. Poly(I:C) Challenge Alters Brain Expression of Oligodendroglia-Related Genes of Adult Progeny in a Mouse Model of Maternal Immune Activation. Front Mol Neurosci 2020; 13:115. [PMID: 32714147 PMCID: PMC7340146 DOI: 10.3389/fnmol.2020.00115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Altered white matter connectivity, as evidenced by pervasive microstructural changes in myelination and axonal integrity in neuroimaging studies, has been implicated in the development of autism spectrum disorder (ASD) and related neurodevelopmental conditions such as schizophrenia. Despite an increasing appreciation that such white matter disconnectivity is linked to social behavior deficits, virtually no etiologically meaningful myelin-related genes have been identified in oligodendrocytes, the key myelinating cells in the CNS, to furnish an account on the causes. The impact of neurodevelopmental perturbations during pregnancy such as maternal immune activation (MIA) on these genes in memory-related neural networks has not been experimentally scrutinized. Methods: In this study, a mouse model of MIA by the viral dsRNA analog poly(I:C) was employed to mimic the effects of inflammation during pregnancy. Transcriptional expression levels of selected myelin- or oligodendroglia-related genes implicated in schizophrenia or ASD development were analyzed by in situ hybridization (ISH) and quantitative real-time PCR (qRT-PCR) with brain samples from MIA and control groups. The analysis focused on SOX-10 (SRY-related HMG-box 10), MAG (myelin-associated glycoprotein), and Tf (transferrin) expression in the hippocampus and the surrounding memory-related cortical regions in either hemisphere. Results: Specifically, ISH reveals that in the brain of prenatal poly(I:C)-exposed mouse offspring in the MIA model (gestation day 9), mRNA expression of the genes SOX10, MAG and Tf were generally reduced in the limbic system including the hippocampus, retrosplenial cortex and parahippocampal gyrus on either side of the hemispheres. qRT-PCR further confirms the reduction of SOX10, MAG, and Tf expression in the medial prefrontal cortex, sensory cortex, amygdala, and hippocampus. Conclusions: Our present results provide direct evidence that prenatal exposure to poly(I:C) elicits profound and long-term changes in transcript level and spatial distribution of myelin-related genes in multiple neocortical and limbic regions, notably the hippocampus and its surrounding memory-related neural networks. Our work demonstrates the potential utility of oligodendroglia-related genes as biomarkers for modeling neurodevelopmental disorders, in agreement with the hypothesis that MIA during pregnancy could lead to compromised white matter connectivity in ASD.
Collapse
Affiliation(s)
- Xiao-Fan Zhang
- Department of Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Aifen Yan
- School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Jia Xiao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yong-Li Xie
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Jing Yuan
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Pin Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Nai-Kei Wong
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China.,National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
80
|
Nir A, Barak B. White matter alterations in Williams syndrome related to behavioral and motor impairments. Glia 2020; 69:5-19. [PMID: 32589817 DOI: 10.1002/glia.23868] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
Myelin is the electrical insulator surrounding the neuronal axon that makes up the white matter (WM) of the brain. It helps increase axonal conduction velocity (CV) by inducing saltatory conduction. Damage to the myelin sheath and WM is associated with many neurological and psychiatric disorders. Decreasing myelin deficits, and thus improving axonal conduction, has the potential to serve as a therapeutic mechanism for reducing the severity of some of these disorders. Myelin deficits have been previously linked to abnormalities in social behavior, suggesting an interplay between brain connectivity and sociability. This review focuses on Williams syndrome (WS), a genetic disorder characterized by neurocognitive characteristics and motor abnormalities, mainly known for its hypersociability characteristic. We discuss fundamental aspects of WM in WS and how its alterations can affect motor abilities and social behavior. Overall, findings regarding changes in myelin genes and alterations in WM structure in WS suggest new targets for drug therapy aimed at improving conduction properties and altering brain-activity synchronization in this disorder.
Collapse
Affiliation(s)
- Ariel Nir
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,The School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
81
|
Salas-Lucia F, Pacheco-Torres J, González-Granero S, García-Verdugo JM, Berbel P. Transient Hypothyroidism During Lactation Alters the Development of the Corpus Callosum in Rats. An in vivo Magnetic Resonance Image and Electron Microscopy Study. Front Neuroanat 2020; 14:33. [PMID: 32676012 PMCID: PMC7333461 DOI: 10.3389/fnana.2020.00033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Magnetic resonance imaging (MRI) data of children with late diagnosed congenital hypothyroidism and cognitive alterations such as abnormal verbal memory processing suggest altered telencephalic commissural connections. The corpus callosum (CC) is the major inter-hemispheric commissure that contra-laterally connects neocortical areas. However, in late diagnosed neonates with congenital hypothyroidism, the possible effect of early transient and chronic postnatal hypothyroidism still remains unknown. We have studied the development of the anterior, middle and posterior CC, using in vivo MRI and electron microscopy in hypothyroid and control male rats. Four groups of methimazole (MMI) treated rats were studied. One group, as a model for early transient hypothyroidism, was MMI-treated from postnatal day (P) 0 to P21; some of these rats were also treated with L-thyroxine (T4) from P15 to 21. Another group modeling chronic hypothyroid, were treated with MMI from P0 to 150 and from embryonic day 10 to P170. The results obtained from these groups were compared with same age control rats. The normalized T2 signal obtained using MRI was higher in MMI-treated rats and correlated with a low number and percentage of myelinated axons. The number and density of myelinated axons decreased in transient and chronic hypothyroid rats at P150. The g-ratio (inner to outer diameter ratio) and the estimated conduction velocity of myelinated axons were similar between MMI-treated and controls, but the conduction delay decreased in the posterior CC of MMI-treated rats compared to controls. These data show that early postnatal transient and chronic hypothyroidism alters CC maturation in a way that may affect the callosal transfer of information. These alterations cannot be reversed after delayed T4-treatment. Our data support the findings of neurocognitive delay in late T4-treated children with congenital hypothyroidism.
Collapse
Affiliation(s)
- Federico Salas-Lucia
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández (UMH), Sant Joan d’Alacant, Spain
| | - Jesús Pacheco-Torres
- Instituto de Neurociencias de Alicante, UMH – Consejo Superior de Investigaciones Científicas, Sant Joan d’Alacant, Spain
| | - Susana González-Granero
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València - Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - José Manuel García-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València - Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Pere Berbel
- Departamento de Histología y Anatomía, Facultad de Medicina, Universidad Miguel Hernández (UMH), Sant Joan d’Alacant, Spain
| |
Collapse
|
82
|
Hartnell D, Schwehr BJ, Gillespie-Jones K, Alwis D, Rajan R, Hou H, Sylvain NJ, Pushie MJ, Kelly ME, Massi M, Hackett MJ. Imaging lipophilic regions in rodent brain tissue with halogenated BODIPY probes. Analyst 2020; 145:3809-3813. [PMID: 32400812 DOI: 10.1039/d0an00099j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effect of halogen substitution in fluorescent BODIPY species was evaluated in the context of staining lipids in situ within brain tissue sections. Herein we demonstrate that the halogenated species maintain their known in vitro affinity when applied to detect lipids in situ in brain tissue sections. Interestingly, the chlorine substituted compound revealed the highest specificify for white matter lipids. Furthermore, the halogen substituted compounds rapidly detected lipid enriched cells, in situ, associated with a case of brain pathology and neuroinflammation.
Collapse
Affiliation(s)
- David Hartnell
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Perth 6845, WA, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Exploring lithium's transcriptional mechanisms of action in bipolar disorder: a multi-step study. Neuropsychopharmacology 2020; 45:947-955. [PMID: 31652432 PMCID: PMC7162887 DOI: 10.1038/s41386-019-0556-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/01/2019] [Accepted: 10/17/2019] [Indexed: 12/22/2022]
Abstract
Lithium has been the first-line treatment for bipolar disorder (BD) for more than six decades. Although the molecular effects of lithium have been studied extensively and gene expression changes are generally believed to be involved, the specific mechanisms of action that mediate mood regulation are still not known. In this study, a multi-step approach was used to explore the transcriptional changes that may underlie lithium's therapeutic efficacy. First, we identified genes that are associated both with lithium exposure and with BD, and second, we performed differential expression analysis of these genes in brain tissue samples from BD patients (n = 42) and healthy controls (n = 42). To identify genes that are regulated by lithium exposure, we used high-sensitivity RNA-sequencing of corpus callosum (CC) tissue samples from lithium-treated (n = 8) and non-treated (n = 9) rats. We found that lithium exposure significantly affected 1108 genes (FDR < 0.05), 702 up-regulated and 406 down-regulated. These genes were mostly enriched for molecular functions related to signal transduction, including well-established lithium-related pathways such as mTOR and Wnt signaling. To identify genes with differential expression in BD, we performed expression quantitative trait loci (eQTL) analysis on BD-associated genetic variants from the most recent genome-wide association study (GWAS) using three different gene expression databases. We found 307 unique eQTL genes regulated by BD-associated variants, of which 12 were also significantly modulated by lithium treatment in rats. Two of these showed differential expression in the CC of BD cases: RPS23 was significantly down-regulated (p = 0.0036, fc = 0.80), while GRIN2A showed suggestive evidence of down-regulation in BD (p = 0.056, fc = 0.65). Crucially, GRIN2A was also significantly up-regulated by lithium in the rat brains (p = 2.2e-5, fc = 1.6), which suggests that modulation of GRIN2A expression may be a part of the therapeutic effect of the drug. These results indicate that the recent upsurge in research on this central component of the glutamatergic system, as a target of novel therapeutic agents for affective disorders, is warranted and should be intensified.
Collapse
|
84
|
Gouvêa-Junqueira D, Falvella ACB, Antunes ASLM, Seabra G, Brandão-Teles C, Martins-de-Souza D, Crunfli F. Novel Treatment Strategies Targeting Myelin and Oligodendrocyte Dysfunction in Schizophrenia. Front Psychiatry 2020; 11:379. [PMID: 32425837 PMCID: PMC7203658 DOI: 10.3389/fpsyt.2020.00379] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Oligodendrocytes are the glial cells responsible for the formation of the myelin sheath around axons. During neurodevelopment, oligodendrocytes undergo maturation and differentiation, and later remyelination in adulthood. Abnormalities in these processes have been associated with behavioral and cognitive dysfunctions and the development of various mental illnesses like schizophrenia. Several studies have implicated oligodendrocyte dysfunction and myelin abnormalities in the disorder, together with altered expression of myelin-related genes such as Olig2, CNP, and NRG1. However, the molecular mechanisms subjacent of these alterations remain elusive. Schizophrenia is a severe, chronic psychiatric disorder affecting more than 23 million individuals worldwide and its symptoms usually appear at the beginning of adulthood. Currently, the major therapeutic strategy for schizophrenia relies on the use of antipsychotics. Despite their widespread use, the effects of antipsychotics on glial cells, especially oligodendrocytes, remain unclear. Thus, in this review we highlight the current knowledge regarding oligodendrocyte dysfunction in schizophrenia, compiling data from (epi)genetic studies and up-to-date models to investigate the role of oligodendrocytes in the disorder. In addition, we examined potential targets currently investigated for the improvement of schizophrenia symptoms. Research in this area has been investigating potential beneficial compounds, including the D-amino acids D-aspartate and D-serine, that act as NMDA receptor agonists, modulating the glutamatergic signaling; the antioxidant N-acetylcysteine, a precursor in the synthesis of glutathione, protecting against the redox imbalance; as well as lithium, an inhibitor of glycogen synthase kinase 3β (GSK3β) signaling, contributing to oligodendrocyte survival and functioning. In conclusion, there is strong evidence linking oligodendrocyte dysfunction to the development of schizophrenia. Hence, a better understanding of oligodendrocyte differentiation, as well as the effects of antipsychotic medication in these cells, could have potential implications for understanding the development of schizophrenia and finding new targets for drug development.
Collapse
Affiliation(s)
- Danielle Gouvêa-Junqueira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Ana Caroline Brambilla Falvella
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - André Saraiva Leão Marcelo Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Gabriela Seabra
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
- D′Or Institute for Research and Education (IDOR), São Paulo, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
85
|
Abstract
PURPOSE OF REVIEW We review the ways in which stem cells are used in psychiatric disease research, including the related advances in gene editing and directed cell differentiation. RECENT FINDINGS The recent development of induced pluripotent stem cell (iPSC) technologies has created new possibilities for the study of psychiatric disease. iPSCs can be derived from patients or controls and differentiated to an array of neuronal and non-neuronal cell types. Their genomes can be edited as desired, and they can be assessed for a variety of phenotypes. This makes them especially interesting for studying genetic variation, which is particularly useful today now that our knowledge on the genetics of psychiatric disease is quickly expanding. The recent advances in cell engineering have led to powerful new methods for studying psychiatric illness including schizophrenia, bipolar disorder, and autism. There is a wide array of possible applications as illustrated by the many examples from the literature, most of which are cited here.
Collapse
Affiliation(s)
- Debamitra Das
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kyra Feuer
- Predoctoral Training Program in Human Genetics, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marah Wahbeh
- Predoctoral Training Program in Human Genetics, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dimitrios Avramopoulos
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
86
|
Komatsu H, Takeuchi H, Kikuchi Y, Ono C, Yu Z, Iizuka K, Takano Y, Kakuto Y, Funakoshi S, Ono T, Ito J, Kunii Y, Hino M, Nagaoka A, Iwasaki Y, Yamamori H, Yasuda Y, Fujimoto M, Azechi H, Kudo N, Hashimoto R, Yabe H, Yoshida M, Saito Y, Kakita A, Fuse N, Kawashima R, Taki Y, Tomita H. Ethnicity-Dependent Effects of Schizophrenia Risk Variants of the OLIG2 Gene on OLIG2 Transcription and White Matter Integrity. Schizophr Bull 2020; 46:1619-1628. [PMID: 32285113 PMCID: PMC7846078 DOI: 10.1093/schbul/sbaa049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Previous studies have indicated associations between several OLIG2 gene single-nucleotide polymorphisms (SNPs) and susceptibility to schizophrenia among Caucasians. Consistent with these findings, postmortem brain and diffusion tensor imaging studies have indicated that the schizophrenia-risk-associated allele (A) in the OLIG2 SNP rs1059004 predicts lower OLIG2 gene expression in the dorsolateral prefrontal cortex (DLPFC) of schizophrenia patients and reduced white matter (WM) integrity of the corona radiata in normal brains among Caucasians. In an effort to replicate the association between this variant and WM integrity among healthy Japanese, we found that the number of A alleles was positively correlated with WM integrity in some fiber tracts, including the right posterior limb of the internal capsule, and with mean blood flow in a widespread area, including the inferior frontal operculum, orbital area, and triangular gyrus. Because the A allele affected WM integrity in opposite directions in Japanese and Caucasians, we investigated a possible association between the OLIG2 gene SNPs and the expression level of OLIG2 transcripts in postmortem DLPFCs. We evaluated rs1059004 and additional SNPs in the 5' upstream and 3' downstream regions of rs1059004 to cover the broader region of the OLIG2 gene. The 2 SNPs (rs1059004 and rs9653711) had opposite effects on OLIG2 gene expression in the DLPFC in Japanese and Caucasians. These findings suggest ethnicity-dependent opposite effects of OLIG2 gene SNPs on WM integrity and OLIG2 gene expression in the brain, which may partially explain the failures in replicating associations between genetic variants and psychiatric phenotypes among ethnicities.
Collapse
Affiliation(s)
- Hiroshi Komatsu
- Department of Psychiatry, Miyagi Psychiatric Center, Natori, Japan,Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan,To whom correspondence should be addressed; Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aobaku, Sendai, 980-8573, Japan; Department of Psychiatry, Miyagi Psychiatric Center, Mubanchi, Tekurada, Natori, 981-1231, Japan; tel: +81-22-384-2236, fax: +81-22-384-9100, e-mail:
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yoshie Kikuchi
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Chiaki Ono
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Zhiqian Yu
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Kunio Iizuka
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yuji Takano
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yoshihisa Kakuto
- Department of Psychiatry, Miyagi Psychiatric Center, Natori, Japan
| | - Shunichi Funakoshi
- Department of Psychiatry, Miyagi Psychiatric Center, Natori, Japan,Department of Community Psychiatry, Tohoku University, Sendai, Japan
| | - Takashi Ono
- Department of Psychiatry, Miyagi Psychiatric Center, Natori, Japan
| | - Junko Ito
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yasuto Kunii
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan,Department of Psychiatry, Aizu Medical Center Fukushima Medical University, Fukushima, Japan
| | - Mizuki Hino
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Hidenaga Yamamori
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan,Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuka Yasuda
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan,Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Michiko Fujimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hirotsugu Azechi
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Noriko Kudo
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan,Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan,Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan,Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Yuko Saito
- Department of Pathology and Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Nobuo Fuse
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan,Smart Aging International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan,Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hiroaki Tomita
- Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan,Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan,Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
87
|
Wang J, Luo Y, Tang J, Liang X, Huang C, Gao Y, Qi Y, Yang C, Chao F, Zhang Y, Tang Y. The effects of fluoxetine on oligodendrocytes in the hippocampus of chronic unpredictable stress-induced depressed model rats. J Comp Neurol 2020; 528:2583-2594. [PMID: 32246847 DOI: 10.1002/cne.24914] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 12/18/2022]
Abstract
Depression is a mental illness which is harmful seriously to the society. This study investigated the effects of fluoxetine on the CNPase+ oligodendrocytes in hippocampus of the depressed rats to explore the new target structure of antidepressants. Male Sprague-Dawley rats were used to build chronic unpredictable stress (CUS) depressed model of rats. Then, the depressed rats were divided into the CUS standard group and the CUS + fluoxetine (CUS/FLX) group. The CUS/FLX group was treated with fluoxetine at dose of 5 mg/(kg·d) from the fifth week to seventh week. After 7 weeks CUS intervention, the sucrose preference of the CUS standard group was significantly lower than that of the control group and the CUS/FLX group. The stereological results showed that the total number of the CNPase+ cells in the CA1, CA3, and DG subfield of the hippocampus in the CUS standard group were significantly decreased, when compared with the CNPase+ cells in the control group. However, the total number of the CNPase+ cells in the CA1 and CA3 subfield of the hippocampus in the CUS standard group was significantly decreased when it compared with CNPase+ cells in the CUS/FLX group. Therefore, fluoxetine might prevent the loss of CNPase+ oligodendrocytes in CA1 and CA3 subfields of hippocampus of the depressed rats. The oligodendrocytes in hippocampus may play an important role in the pathogenesis of depression. The current result might provide structural basis for the future studies that search for new antidepressant strategies.
Collapse
Affiliation(s)
- Jin Wang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, People's Republic of China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yanmin Luo
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, People's Republic of China.,Department of Physiology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jing Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, People's Republic of China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xin Liang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, People's Republic of China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Chunxia Huang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, People's Republic of China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, People's Republic of China.,Department of Physiology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yuan Gao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, People's Republic of China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, People's Republic of China.,Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yingqiang Qi
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, People's Republic of China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Chunmao Yang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, People's Republic of China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - FengLei Chao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, People's Republic of China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yang Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, People's Republic of China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, People's Republic of China.,Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
88
|
Xu R, Li X, Boreland AJ, Posyton A, Kwan K, Hart RP, Jiang P. Human iPSC-derived mature microglia retain their identity and functionally integrate in the chimeric mouse brain. Nat Commun 2020; 11:1577. [PMID: 32221280 PMCID: PMC7101330 DOI: 10.1038/s41467-020-15411-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
Microglia, the brain-resident macrophages, exhibit highly dynamic functions in neurodevelopment and neurodegeneration. Human microglia possess unique features as compared to mouse microglia, but our understanding of human microglial functions is largely limited by an inability to obtain human microglia under homeostatic states. Here, we develop a human pluripotent stem cell (hPSC)-based microglial chimeric mouse brain model by transplanting hPSC-derived primitive macrophage progenitors into neonatal mouse brains. Single-cell RNA-sequencing of the microglial chimeric mouse brains reveals that xenografted hPSC-derived microglia largely retain human microglial identity, as they exhibit signature gene expression patterns consistent with physiological human microglia and recapitulate heterogeneity of adult human microglia. Importantly, the engrafted hPSC-derived microglia exhibit dynamic response to cuprizone-induced demyelination and species-specific transcriptomic differences in the expression of neurological disease-risk genes in microglia. This model will serve as a tool to study the role of human microglia in brain development and degeneration.
Collapse
Affiliation(s)
- Ranjie Xu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Xiaoxi Li
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Andrew J Boreland
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
- Graduate Program in Molecular Biosciences, Rutgers University, Piscataway, NJ, 08854, USA
| | - Anthony Posyton
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Kelvin Kwan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
89
|
Seth G, Sundaresh A, Mariaselvam CM, Kumar G, Chengappa KG, Adarsh MB, Tamouza R, Negi VS. Immunological biomarkers in neuropsychiatric systemic lupus erythematosus: a comparative cross-sectional study from a tertiary care center in South India. Lupus 2020; 29:413-420. [PMID: 32106787 DOI: 10.1177/0961203320908940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The prevalence of various immunological biomarkers in neuropsychiatric systemic lupus erythematosus (NPSLE) differs among various patients with varied neuropsychiatric manifestations and different populations. We studied the prevalence of these biomarkers; especially the neuron specific autoantibodies in patients with systemic lupus erythematosus (SLE) and compared them among patients with and without neuropsychiatric involvement. METHODOLOGY This is a comparative cross-sectional study conducted in a tertiary care hospital in South India. The prevalence of immunological biomarkers including complement levels, systemic and brain specific autoantibodies (anti-myelin antibody, anti-myelin oligodendrocyte glycoprotein and anti-myelin-associated glycoprotein antibody) were assessed and compared among those with and without NPSLE and with different NPSLE manifestations. RESULTS A total of 522 SLE patients were enrolled in the study. The mean age of the study participants was 28.5 ± 8.8 years and 93.5% were women. Neuropsychiatric manifestations were seen in 167 (32%) patients. Seizure was the most common neuropsychiatric manifestation seen in 41.3%, followed by psychosis (18.6%), mood disorder (16.8%), stroke (10.8%), mononeuropathy (10.2%), headache (9.6%), acute confusional state (6.6%) and aseptic meningitis (5.4%). Patients with NPSLE had a higher SLE disease activity index score. Most of the autoantibodies, that is anticardiolipin antibody (aCL), anti-β2 glycoprotein 1 antibody (β2GP1), lupus anticoagulant (LA), anti-nucleosome, anti-ribosomal P, anti-Ro52, anti-Ro60 and anti-La, were seen in higher proportion in the NPSLE group, although the difference failed to reach statistical significance. On subgroup analysis, psychosis was significantly higher in patients with anti-ribosomal P positivity than without (11.8% versus 4.1%, p.0.007; odds ratio (OR) 3.1, confidence interval (CI) 1.4-6.8), while stroke had a higher proportion among those with positive b2GP1 IgG (6.3% versus 1.8%, p.0.03; OR 3.6, CI 1.2-11.0). A higher proportion of demyelination was seen among the LA positive than the negative (10.3% versus 0.2%, p.0.03; OR 5.39, CI 1.15-24.17) and anti-myelin oligodendrocyte glycoprotein in mood disorder (14.3% versus 3.4%, p = 0.03; OR 4.66, CI 1.13-19.13). CONCLUSION No single biomarker correlated with NPSLE. Among different NPSLE manifestations, the prevalence of IgG β2GP1 in stroke, LA in demyelination, anti-ribosomal P in psychosis and anti-myelin oligodendrocyte glycoprotein in mood disorder were higher. Further studies on the pathogenic mechanisms underlying NPSLE and its different manifestations may help us to identify better biomarkers.
Collapse
Affiliation(s)
- G Seth
- Department of Rheumatology, Aakash Healthcare Super Speciality Hospital, Dwarka, India
| | - A Sundaresh
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - C M Mariaselvam
- INSERM U955, Psychiatrie Translationnelle, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - G Kumar
- Knowledge Integration and Translation Platform, Center for Health Research and Development, Society for Applied Studies, Kalu Sarai, India
| | - K G Chengappa
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - M B Adarsh
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - R Tamouza
- INSERM U955, Psychiatrie Translationnelle, Institut Mondor de Recherche Biomédicale, Créteil, France.,Fondation FondaMental, Créteil, France.,AP-HP, DHU PePSY, Department of Psychiatry, Hôpital Henri Mondor, Université Paris-Est, Créteil, France
| | - V S Negi
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
90
|
Santarelli DM, Carroll AP, Cairns HM, Tooney PA, Cairns MJ. Schizophrenia-associated MicroRNA-Gene Interactions in the Dorsolateral Prefrontal Cortex. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 17:623-634. [PMID: 32006661 PMCID: PMC7212302 DOI: 10.1016/j.gpb.2019.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 10/01/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022]
Abstract
Schizophrenia-associated anomalies in gene expression in postmortem brain can be attributed to a combination of genetic and environmental influences. Given the small effect size of common variants, it is likely that we may only see the combined impact of some of these at the pathway level in small postmortem studies. At the gene level, however, there may be more impact from common environmental exposures mediated by influential epigenomic modifiers, such as microRNA (miRNA). We hypothesise that dysregulation of miRNAs and their alteration of gene expression have significant implications in the pathophysiology of schizophrenia. In this study, we integrate changes in cortical gene and miRNA expression to identify regulatory interactions and networks associated with the disorder. Gene expression analysis in post-mortem prefrontal dorsolateral cortex (BA 46) (n = 74 matched pairs of schizophrenia, schizoaffective, and control samples) was integrated with miRNA expression in the same cohort to identify gene-miRNA regulatory networks. A significant gene-miRNA interaction network was identified, including miR-92a, miR-495, and miR-134, which converged with differentially expressed genes in pathways involved in neurodevelopment and oligodendrocyte function. The capacity for miRNA to directly regulate gene expression through respective binding sites in BCL11A, PLP1, and SYT11 was also confirmed to support the biological relevance of this integrated network model. The observations in this study support the hypothesis that miRNA dysregulation is an important factor in the complex pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Danielle M Santarelli
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| | - Adam P Carroll
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| | - Heath M Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; Centre for Brain and Mental Health Research, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia.
| |
Collapse
|
91
|
A Role of Microtubules in Oligodendrocyte Differentiation. Int J Mol Sci 2020; 21:ijms21031062. [PMID: 32033476 PMCID: PMC7037135 DOI: 10.3390/ijms21031062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
Oligodendrocytes are specialized cells that myelinate axons in the central nervous system. Defects in oligodendrocyte function and failure to form or maintain myelin sheaths can cause a number of neurological disorders. Oligodendrocytes are differentiated from oligodendrocyte progenitor cells (OPCs), which extend several processes that contact, elaborate, and eventually wrap axonal segments to form multilayered myelin sheaths. These processes require extensive changes in the cytoarchitecture and must be regulated by reorganization of the cytoskeleton. Here, we established a simple protocol to isolate and differentiate mouse OPCs, and by using this method, we investigated a role of microtubules (MTs) in oligodendrocyte differentiation. Oligodendrocytes developed a complex network of MTs during differentiation, and treatment of differentiating oligodendrocytes with nanomolar concentrations of MT-targeting agents (MTAs) markedly affected oligodendrocyte survival and differentiation. We found that acute exposure to vincristine and nocodazole at early stages of oligodendrocyte differentiation markedly increased MT arborization and enhanced differentiation, whereas taxol and epothilone B treatment produced opposing outcomes. Furthermore, treatment of myelinating co-cultures of oligodendrocytes and neurons with nanomolar concentrations of MTAs at late stages of oligodendrocyte differentiation induced dysmyelination. Together, these results suggest that MTs play an important role in the survival, differentiation, and myelination of oligodendrocytes.
Collapse
|
92
|
Cai S, Lv Y, Huang K, Zhang W, Kang Y, Huang L, Wang J. Association of rs1059004 polymorphism in the OLIG2 locus with whole-brain functional connectivity in first-episode schizophrenia. Behav Brain Res 2020; 379:112392. [PMID: 31785364 DOI: 10.1016/j.bbr.2019.112392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 01/10/2023]
Abstract
The rs1059004 in the oligodendrocyte lineage transcription factor 2 (OLIG2) gene has been reported to be a candidate single nucleotide polymorphism (SNP) for schizophrenia (SZ). A variety of functional magnetic resonance imaging (fMRI) studies have revealed disconnection in SZ. We aimed to investigate the association of rs1059004 polymorphism with whole-brain functional connectivity (FC) and to further explore the correlation between altered FC and cognitive behavioral scales. Fifty-five SZ patients and fifty-three matched healthy controls were included in this study. The general linear model was used to test the role of rs1059004 polymorphism in whole-brain FC based on resting-state fMRI. Spearman's rank correlation test was used to calculate the correlation coefficient between FC strength and behavior score. In the whole-brain FC analysis, we found that the FC pattern in SZ patients differs from healthy controls. Furthermore, compared to homozygous C carriers, risk A allele carriers have reduced FC strength in both SZ patients and healthy controls. For the correlation analysis in risk A allele carriers, we found a positive correlation between FC strength and verbal fluency score in SZ patients, while healthy controls appeared to have the opposite result. Our results revealed that participants carrying the risk A allele show FC patterns differing from those of homozygous C carriers. This result suggests that rs1059004 polymorphism and SZ have synergistic effects on brain connections. The correlation analysis result suggests that special attention should be paid to SZ patients who carry the risk A allele because the patients perform worse in verbal fluency.
Collapse
Affiliation(s)
- Suping Cai
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, 710071, PR China
| | - Yahui Lv
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, 710071, PR China
| | - Kexin Huang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, 710071, PR China
| | - Wei Zhang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, 710071, PR China
| | - Yafei Kang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, 710071, PR China
| | - Liyu Huang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, 710071, PR China.
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University, Shanghai, 200030, PR China.
| |
Collapse
|
93
|
Dooley N, O'Hanlon E, Healy C, Adair A, McCandless C, Coppinger D, Kelleher I, Clarke M, Leemans A, Frodl T, Cannon M. Psychotic experiences in childhood are associated with increased structural integrity of the left arcuate fasciculus - A population-based case-control study. Schizophr Res 2020; 215:378-384. [PMID: 31495700 DOI: 10.1016/j.schres.2019.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/26/2019] [Accepted: 08/19/2019] [Indexed: 01/03/2023]
Abstract
Around 1 in 5 children under 13 years old experience sub-clinical psychotic experiences (PEs) like hallucinations and delusions. While PEs in childhood are a significant risk factor for adult psychotic disorders, the majority of those experiencing childhood PEs do not develop a psychotic disorder. Individual differences in regional brain maturation rates may be responsible for this age-related and often transient emergence of PEs. Fronto-temporal association tracts undergo extensive maturation and myelination throughout childhood and adolescence, thus we focus on individual differences in one such tract, the arcuate fasciculus. A normative population-based sample of children (aged 11-13) attended a clinical interview and MRI (n = 100), 25 of whom were identified as reporting strong PEs. This group had reduced mean and radial diffusivity in the arcuate fasciculus compared with a group of matched controls (n = 25) who reported no PEs. The group difference was greater in the left hemisphere than the right. Mediation analyses showed that this group difference was driven predominantly by perceptual disturbances and an along-tract analysis showed that the group difference was greatest approximately halfway between the frontal and temporal termination points of the tract (adjacent to the left lateral ventricle). This study is the first to investigate links between arcuate fasciculus diffusivity and psychotic experiences in a population sample of children.
Collapse
Affiliation(s)
- Niamh Dooley
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| | - Erik O'Hanlon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| | - Colm Healy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Amy Adair
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| | - Conor McCandless
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - David Coppinger
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Ian Kelleher
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Mary Clarke
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, the Netherlands.
| | - Thomas Frodl
- Otto-von-Guericke University Magdeburg, Department of Psychiatry and Psychotherapy, Magdeburg, Germany.
| | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
94
|
Vostrikov VM, Uranova NA. Reduced density of oligodendrocytes and oligodendrocyte clusters in the caudate nucleus in major psychiatric illnesses. Schizophr Res 2020; 215:211-216. [PMID: 31653579 DOI: 10.1016/j.schres.2019.10.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/05/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022]
Abstract
Functional dysconnectivity in schizophrenia and affective disorders may be associated with myelin and oligodendrocyte abnormalities. Altered network integration involving the caudate nucleus (CN) and metabolic abnormalities in fronto-striatal-thalamic white matter tracts have been reported in schizophrenia and impaired patterns of cortico-caudate functional connectivity have been found in both bipolar disorder (BPD) and schizophrenia compared to healthy controls. Postmortem studies have found ultrastructural dystrophy and degeneration of oligodendrocytes and dysmyelination in the CN in schizophrenia and BPD. We aimed to test the hypothesis that oligodendrocyte density may be reduced in the CN in major psychiatric disorders and may thereby form the cellular basis for the functional dysconnectivity observed in these disorders. Optical disector was used to estimate the numerical density (Nv) of oligodendrocytes and oligodendrocyte clusters (OLC) in the CN of cases with schizophrenia, BPD and major depressive disorder (MDD) and in normal controls (15 cases per group). A significant reduction in the Nv of oligodendrocytes was found in schizophrenia and BPD as compared to the control group (p < 0.05), and the Nv of OLC was significantly lowered in schizophrenia and BPD compared to controls (p < 0.05). There were no significant differences between MDD and control groups. The Nv of OLC was significantly decreased in the left hemisphere in schizophrenia as compared to the left hemisphere of the control group (-52%, p < 0.01). The data indicates that a decreased density of oligodendrocytes and OLC could contribute to the altered functional connectivity of the CN in subjects with severe mental illnesses.
Collapse
Affiliation(s)
- V M Vostrikov
- Laboratory of Clinical Neuropathology, Mental Health Research Centre, Zagorodnoe shosse 2, Moscow, Russia
| | - N A Uranova
- Laboratory of Clinical Neuropathology, Mental Health Research Centre, Zagorodnoe shosse 2, Moscow, Russia.
| |
Collapse
|
95
|
Improvement in verbal learning over the first year of antipsychotic treatment is associated with serum HDL levels in a cohort of first episode psychosis patients. Eur Arch Psychiatry Clin Neurosci 2020; 270:49-58. [PMID: 31028479 PMCID: PMC7033047 DOI: 10.1007/s00406-019-01017-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 04/16/2019] [Indexed: 11/14/2022]
Abstract
To investigate whether changes in serum lipids are associated with cognitive performance in first episode psychosis (FEP) patients during their first year of antipsychotic drug treatment. One hundred and thirty-two antipsychotic-treated FEP patients were included through the TOP study along with 83 age- and gender-matched healthy controls (HC). Information regarding cognitive performance, psychotic symptoms, lifestyle, body mass index, serum lipids [total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein cholesterol, and triglycerides] and antipsychotic treatment was obtained at baseline and after 1 year. The cognitive test battery is comprised of assessments for verbal learning, processing speed, working memory, verbal fluency, and inhibition. Mixed-effects models were used to study the relationship between changes over time in serum lipids and cognitive domains, controlling for potential confounders. There was a significant group by HDL interaction effect for verbal learning (F = 11.12, p = 0.001), where an increase in HDL levels was associated with improvement in verbal learning in FEP patients but not in HC. Practice effects, lifestyle, and psychotic symptoms did not significantly affect this relationship. Antipsychotic-treated FEP patients who increased in HDL levels during the first year of follow-up exhibited better verbal learning capacity. Further investigations are needed to clarify the underlying mechanisms.
Collapse
|
96
|
Shaffer JJ, Mani M, Schmitz SL, Xu J, Owusu N, Wu D, Magnotta VA, Wemmie JA. Proton Exchange Magnetic Resonance Imaging: Current and Future Applications in Psychiatric Research. Front Psychiatry 2020; 11:532606. [PMID: 33192650 PMCID: PMC7542226 DOI: 10.3389/fpsyt.2020.532606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
Proton exchange provides a powerful contrast mechanism for magnetic resonance imaging (MRI). MRI techniques sensitive to proton exchange provide new opportunities to map, with high spatial and temporal resolution, compounds important for brain metabolism and function. Two such techniques, chemical exchange saturation transfer (CEST) and T1 relaxation in the rotating frame (T1ρ), are emerging as promising tools in the study of neurological and psychiatric illnesses to study brain metabolism. This review describes proton exchange for non-experts, highlights the current status of proton-exchange MRI, and presents advantages and drawbacks of these techniques compared to more traditional methods of imaging brain metabolism, including positron emission tomography (PET) and MR spectroscopy (MRS). Finally, this review highlights new frontiers for the use of CEST and T1ρ in brain research.
Collapse
Affiliation(s)
- Joseph J Shaffer
- Department of Radiology, University of Iowa, Iowa City, IA, United States
| | - Merry Mani
- Department of Radiology, University of Iowa, Iowa City, IA, United States
| | - Samantha L Schmitz
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
| | - Jia Xu
- Department of Radiology, University of Iowa, Iowa City, IA, United States
| | - Nana Owusu
- Department of Radiology, University of Iowa, Iowa City, IA, United States.,Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, United States.,Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Dee Wu
- Department of Radiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Vincent A Magnotta
- Department of Radiology, University of Iowa, Iowa City, IA, United States.,Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - John A Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States.,Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, United States.,Department of Veterans Affairs Medical Center, Iowa City, IA, United States.,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States.,Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
97
|
Scarr E, Udawela M, Dean B. Changed cortical risk gene expression in major depression and shared changes in cortical gene expression between major depression and bipolar disorders. Aust N Z J Psychiatry 2019; 53:1189-1198. [PMID: 31238704 DOI: 10.1177/0004867419857808] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Mood disorders likely occur in someone with a genetic predisposition who encounters a deleterious environmental factor leading to dysregulated physiological processes due to genetic mutations and epigenetic mechanisms altering gene expression. To gain data to support this hypothesis, we measured levels of gene expression in three cortical regions known to be affected by the pathophysiologies of major depression and bipolar disorders. METHODS Levels of RNA were measured using the Affymetrix™ Human Exon 1.0 ST Array in Brodmann's areas 9, 10 and 33 (left hemisphere) from individuals with major depression, bipolar disorder and age- and sex-matched controls with changed expression taken as a fold change in RNA ⩾1.2 at p < 0.01. Data were analysed using JMP® genomics 6.0 and the probable biological consequences of changes in gene expression determined using Core and Pathway Designer Analyses in Ingenuity Pathway Analysis. RESULTS There were altered levels of RNA in Brodmann's area 9 (major depression = 424; bipolar disorder = 331), Brodmann's area 10 (major depression = 52; bipolar disorder = 24) and Brodmann's area 33 (major depression = 59 genes; bipolar disorder = 38 genes) in mood disorders. No gene was differentially expressed in all three regions in either disorder. There was a high correlation between fold changes in levels of RNA from 112 genes in Brodmann's area 9 from major depression and bipolar disorder (r2 = 0.91, p < 0.001). Levels of RNA for four risk genes for major depression were lower in Brodmann's area 9 in that disorder. CONCLUSION Our data argue that there are complex regional-specific changes in cortical gene expression in major depression and bipolar disorder that includes the expression of some risk genes for major depression in those with that disorder. It could be hypothesised that the common changes in gene expression in major depression and bipolar disorder are involved in the genesis of symptoms common to both disorders.
Collapse
Affiliation(s)
- Elizabeth Scarr
- Molecular Psychiatry Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,CRC for Mental Health, Carlton, VIC, Australia.,Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, VIC, Australia
| | - Madhara Udawela
- Molecular Psychiatry Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,CRC for Mental Health, Carlton, VIC, Australia
| | - Brian Dean
- Molecular Psychiatry Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,CRC for Mental Health, Carlton, VIC, Australia.,Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University, Hawthorne, VIC, Australia
| |
Collapse
|
98
|
Al-Haddad BJS, Oler E, Armistead B, Elsayed NA, Weinberger DR, Bernier R, Burd I, Kapur R, Jacobsson B, Wang C, Mysorekar I, Rajagopal L, Adams Waldorf KM. The fetal origins of mental illness. Am J Obstet Gynecol 2019; 221:549-562. [PMID: 31207234 PMCID: PMC6889013 DOI: 10.1016/j.ajog.2019.06.013] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
Abstract
The impact of infections and inflammation during pregnancy on the developing fetal brain remains incompletely defined, with important clinical and research gaps. Although the classic infectious TORCH pathogens (ie, Toxoplasma gondii, rubella virus, cytomegalovirus [CMV], herpes simplex virus) are known to be directly teratogenic, emerging evidence suggests that these infections represent the most extreme end of a much larger spectrum of injury. We present the accumulating evidence that prenatal exposure to a wide variety of viral and bacterial infections-or simply inflammation-may subtly alter fetal brain development, leading to neuropsychiatric consequences for the child later in life. The link between influenza infections in pregnant women and an increased risk for development of schizophrenia in their children was first described more than 30 years ago. Since then, evidence suggests that a range of infections during pregnancy may also increase risk for autism spectrum disorder and depression in the child. Subsequent studies in animal models demonstrated that both pregnancy infections and inflammation can result in direct injury to neurons and neural progenitor cells or indirect injury through activation of microglia and astrocytes, which can trigger cytokine production and oxidative stress. Infectious exposures can also alter placental serotonin production, which can perturb neurotransmitter signaling in the developing brain. Clinically, detection of these subtle injuries to the fetal brain is difficult. As the neuropsychiatric impact of perinatal infections or inflammation may not be known for decades after birth, our construct for defining teratogenic infections in pregnancy (eg, TORCH) based on congenital anomalies is insufficient to capture the full adverse impact on the child. We discuss the clinical implications of this body of evidence and how we might place greater emphasis on prevention of prenatal infections. For example, increasing uptake of the seasonal influenza vaccine is a key strategy to reduce perinatal infections and the risk for fetal brain injury. An important research gap exists in understanding how antibiotic therapy during pregnancy affects the fetal inflammatory load and how to avoid inflammation-mediated injury to the fetal brain. In summary, we discuss the current evidence and mechanisms linking infections and inflammation with the increased lifelong risk of neuropsychiatric disorders in the child, and how we might improve prenatal care to protect the fetal brain.
Collapse
Affiliation(s)
| | - Elizabeth Oler
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA
| | - Blair Armistead
- Department of Global Health, University of Washington Seattle, WA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | - Nada A Elsayed
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Departments of Psychiatry, Neurology, Neuroscience, and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine Baltimore, MD
| | - Raphael Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Raj Kapur
- Department of Pediatrics, University of Washington, Seattle Children's Hospital, Seattle, WA
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Genetics and Bioinformatics, Domain of Health Data and Digitalization, Institute of Public Health, Oslo, Norway
| | - Caihong Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO
| | - Indira Mysorekar
- Departments of Obstetrics and Gynecology and Pathology and Immunology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO
| | - Lakshmi Rajagopal
- Center for Innate Immunity and Immune Disease, Department of Pediatrics, University of Washington, Seattle, WA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | - Kristina M Adams Waldorf
- Department of Obstetrics & Gynecology and Global Health, Center for Innate Immunity and Immune Disease, Center for Emerging and Reemerging Infectious Diseases, University of Washington, Seattle, WA; Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
99
|
Hirayama T, Hiraoka Y, Kitamura E, Miyazaki S, Horie K, Fukuda T, Hidema S, Koike M, Itakura A, Takeda S, Nishimori K. Oxytocin induced labor causes region and sex-specific transient oligodendrocyte cell death in neonatal mouse brain. J Obstet Gynaecol Res 2019; 46:66-78. [PMID: 31746074 DOI: 10.1111/jog.14149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022]
Abstract
AIM Previous reports showed associations between oxytocin induced labor and mental disorders in offspring. However, those reports are restricted in epidemiological analyses and its mechanism remains unclear. In this study, we hypothesized that induced labor directly causes brain damage in newborns and results in the development of mental disorders. Therefore we aimed to investigate this hypothesis with animal model. METHODS The animal model of induced labor was established by subcutaneous oxytocin administration to term-pregnant C57BL/6J mice. We investigated the neonatal brain damage with evaluating immediate early gene expression (c-Fos, c-Jun and JunB) by quantitative polymerase reaction and TdT-mediated dUTP nick end labeling staining. To investigate the injured brain cell types, we performed double-immunostaining with TdT-mediated dUTP nick end labeling staining and each brain component specific protein, such as Oligo2, NeuN, GFAP and Iba1. RESULTS Brain damage during induced labor led to cell death in specific brain regions, which are implicated in mental disorders, in only male offspring at P0. Furthermore, oligodendrocyte precursors were selectively vulnerable compared to the other cell types. This oligodendrocyte-specific impairment during the perinatal period led to an increased numbers of Olig2-positive cells at P5. Expression levels of oxytocin and Oxtr in the fetal brain were not affected by the oxytocin administered to mothers during induced labor. CONCLUSION Oligodendrocyte cell death in specific brain regions, which was unrelated to the oxytocin itself, was caused by induced labor in only male offspring. This may be an underlying mechanism explaining the human epidemiological data suggesting an association between induced labor and mental disorders.
Collapse
Affiliation(s)
- Takashi Hirayama
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yuichi Hiraoka
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Laboratory for Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eri Kitamura
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinji Miyazaki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kengo Horie
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tomokazu Fukuda
- Laboratory of Cell Engineering and Molecular Genetics, Iwate University Faculty of Science and Engineering, Morioka, Japan
| | - Shizu Hidema
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Atsuo Itakura
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | | |
Collapse
|
100
|
Lee J, Hamanaka G, Lo EH, Arai K. Heterogeneity of microglia and their differential roles in white matter pathology. CNS Neurosci Ther 2019; 25:1290-1298. [PMID: 31733036 PMCID: PMC6887901 DOI: 10.1111/cns.13266] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
Microglia are resident immune cells that play multiple roles in central nervous system (CNS) development and disease. Although the classical concept of microglia/macrophage activation is based on a biphasic beneficial‐versus‐deleterious polarization, growing evidence now suggests a much more heterogenous profile of microglial activation that underlie their complex roles in the CNS. To date, the majority of data are focused on microglia in gray matter. However, demyelination is a prominent pathologic finding in a wide range of diseases including multiple sclerosis, Alzheimer's disease, and vascular cognitive impairment and dementia. In this mini‐review, we discuss newly discovered functional subsets of microglia that contribute to white matter response in CNS disease onset and progression. Microglia show different molecular patterns and morphologies depending on disease type and brain region, especially in white matter. Moreover, in later stages of disease, microglia demonstrate unconventional immuno‐regulatory activities such as increased phagocytosis of myelin debris and secretion of trophic factors that stimulate oligodendrocyte lineage cells to facilitate remyelination and disease resolution. Further investigations of these multiple microglia subsets may lead to novel therapeutic approaches to treat white matter pathology in CNS injury and disease.
Collapse
Affiliation(s)
- Janice Lee
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Gen Hamanaka
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|