51
|
Shteinberg M, Waterer G, Chotirmall SH. A Global Effort to Stop the Vicious Vortex: A Special American Journal of Respiratory and Critical Care Medicine Issue for World Bronchiectasis Day 2024. Am J Respir Crit Care Med 2024; 210:1-3. [PMID: 38780090 PMCID: PMC11197068 DOI: 10.1164/rccm.202405-0947ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Indexed: 05/25/2024] Open
Affiliation(s)
- Michal Shteinberg
- Pulmonology Institute and CF Center Carmel Medical Center Haifa, Israel
- B. Rappaport Faculty of Medicine Technion - Israel Institute of Technology Haifa, Israel
| | - Grant Waterer
- University of Western Australia Royal Perth Hospital Perth, Western Australia, Australia
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore, Singapore
- Department of Respiratory and Critical Care Medicine Tan Tock Seng Hospital Singapore, Singapore
| |
Collapse
|
52
|
De Angelis A, Johnson ED, Sutharsan S, Aliberti S. Exacerbations of bronchiectasis. Eur Respir Rev 2024; 33:240085. [PMID: 39048130 PMCID: PMC11267293 DOI: 10.1183/16000617.0085-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Bronchiectasis presents a significant challenge due to its rising prevalence, associated economic burden and clinical heterogeneity. This review synthesises contemporary understanding and literature of bronchiectasis exacerbations, addressing the transition from stable state to exacerbations, underlining the importance of early and precise recognition, rigorous severity assessment, prompt treatment, and prevention measures, as well as emphasising the need for strategies to assess and improve early and long-term patient outcomes. The review highlights the interplay between stable state phases and exacerbations in bronchiectasis, introducing the concept of "exogenous and endogenous changes in airways homeostasis" and the "adapted island model" with a particular focus on "frequent exacerbators", a group of patients associated with specific clinical characteristics and worse outcomes. The pathophysiology of exacerbations is explored through the lens of microbial and nonmicrobial triggers and the presence and the activity of comorbidities, elaborating on the impact of both exogenous insults, such as infections and pollution, and endogenous factors such as inflammatory endotypes. Finally, the review proposes a multidisciplinary approach to care, integrating advancements in precision medicine and biomarker research, paving the way for tailored treatments that challenge the traditional antibiotic paradigm.
Collapse
Affiliation(s)
- Alessandro De Angelis
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy
| | - Emma D Johnson
- University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Sivagurunathan Sutharsan
- Division of Cystic Fibrosis, Department of Pulmonary Medicine, University Medicine Essen -Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy
| |
Collapse
|
53
|
Pieters ALP, van der Veer T, Meerburg JJ, Andrinopoulou ER, van der Eerden MM, Ciet P, Aliberti S, Burgel PR, Crichton ML, Shoemark A, Goeminne PC, Shteinberg M, Loebinger MR, Haworth CS, Blasi F, Tiddens HAWM, Caudri D, Chalmers JD. Structural Lung Disease and Clinical Phenotype in Bronchiectasis Patients: The EMBARC CT Study. Am J Respir Crit Care Med 2024; 210:87-96. [PMID: 38635862 DOI: 10.1164/rccm.202311-2109oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024] Open
Abstract
Rationale: Chest computed tomography (CT) scans are essential to diagnose and monitor bronchiectasis (BE). To date, few quantitative data are available about the nature and extent of structural lung abnormalities (SLAs) on CT scans of patients with BE. Objectives: To investigate SLAs on CT scans of patients with BE and the relationship of SLAs to clinical features using the EMBARC (European Multicenter Bronchiectasis Audit and Research Collaboration) registry. Methods: CT scans from patients with BE included in the EMBARC registry were analyzed using the validated Bronchiectasis Scoring Technique for CT (BEST-CT). The subscores of this instrument are expressed as percentages of total lung volume. The items scored are atelectasis/consolidation, BE with and without mucus plugging (MP), airway wall thickening, MP, ground-glass opacities, bullae, airways, and parenchyma. Four composite scores were calculated: total BE (i.e., BE with and without MP), total MP (i.e., BE with MP plus MP alone), total inflammatory changes (i.e., atelectasis/consolidation plus total MP plus ground-glass opacities), and total disease (i.e., all items but airways and parenchyma). Measurements and Main Results: CT scans of 524 patients with BE were analyzed. Mean subscores were 4.6 (range, 2.3-7.7) for total BE, 4.2 (1.2-8.1) for total MP, 8.3 (3.5-16.7) for total inflammatory changes, and 14.9 (9.1-25.9) for total disease. BE associated with primary ciliary dyskinesia was associated with more SLAs, whereas chronic obstructive pulmonary disease was associated with fewer SLAs. Lower FEV1, longer disease duration, Pseudomonas aeruginosa and nontuberculous mycobacterial infections, and severe exacerbations were all independently associated with worse SLAs. Conclusions: The type and extent of SLAs in patients with BE are highly heterogeneous. Strong relationships between radiological disease and clinical features suggest that CT analysis may be a useful tool for clinical phenotyping.
Collapse
Affiliation(s)
- Angelina L P Pieters
- Department of Radiology and Nuclear Medicine
- Department of Pediatrics, Division of Respiratory Medicine and Allergy, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Jennifer J Meerburg
- Department of Radiology and Nuclear Medicine
- Department of Pediatrics, Division of Respiratory Medicine and Allergy, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Eleni-Rosalina Andrinopoulou
- Department of Biostatistics, and
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Pierluigi Ciet
- Department of Radiology and Nuclear Medicine
- Department of Pediatrics, Division of Respiratory Medicine and Allergy, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Respiratory Unit, Milan, Italy
| | - Pierre-Regis Burgel
- Institut Cochin, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris Descartes, Paris, France
| | - Megan L Crichton
- School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Amelia Shoemark
- School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Pieter C Goeminne
- Department of Respiratory Medicine, AZ Nikolaas, Sint-Niklaas, Belgium
| | | | - Michael R Loebinger
- Host Defence Unit, Royal Brompton Hospital, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Charles S Haworth
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, United Kingdom
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; and
- Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Cà'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Harm A W M Tiddens
- Department of Radiology and Nuclear Medicine
- Department of Pediatrics, Division of Respiratory Medicine and Allergy, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Daan Caudri
- Department of Radiology and Nuclear Medicine
- Department of Pediatrics, Division of Respiratory Medicine and Allergy, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - James D Chalmers
- School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| |
Collapse
|
54
|
Mall MA, Davies JC, Donaldson SH, Jain R, Chalmers JD, Shteinberg M. Neutrophil serine proteases in cystic fibrosis: role in disease pathogenesis and rationale as a therapeutic target. Eur Respir Rev 2024; 33:240001. [PMID: 39293854 PMCID: PMC11409056 DOI: 10.1183/16000617.0001-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/09/2024] [Indexed: 09/20/2024] Open
Abstract
Chronic airway inflammation is a central feature in the pathogenesis of bronchiectasis (BE), which can be caused by cystic fibrosis (CFBE; hereafter referred to as CF lung disease) and non-CF-related conditions (NCFBE). Inflammation in both CF lung disease and NCFBE is predominantly driven by neutrophils, which release proinflammatory cytokines and granule proteins, including neutrophil serine proteases (NSPs). NSPs include neutrophil elastase, proteinase 3 and cathepsin G. An imbalance between NSPs and their antiproteases has been observed in people with CF lung disease and people with NCFBE. While the role of the protease/antiprotease imbalance is well established in both CF lung disease and NCFBE, effective therapies targeting NSPs are lacking. In recent years, the introduction of CF transmembrane conductance regulator (CFTR) modulator therapy has immensely improved outcomes in many people with CF (pwCF). Despite this, evidence suggests that airway inflammation persists, even in pwCF treated with CFTR modulator therapy. In this review, we summarise current data on neutrophilic inflammation in CF lung disease to assess whether neutrophilic inflammation and high, uncontrolled NSP levels play similar roles in CF lung disease and in NCFBE. We discuss similarities between the neutrophilic inflammatory profiles of people with CF lung disease and NCFBE, potentially supporting a similar therapeutic approach. Additionally, we present evidence suggesting that neutrophilic inflammation persists in pwCF treated with CFTR modulator therapy, at levels similar to those in people with NCFBE. Collectively, these findings highlight the ongoing need for new treatment strategies targeting neutrophilic inflammation in CF lung disease.
Collapse
Affiliation(s)
- Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jane C Davies
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Scott H Donaldson
- Department of Medicine, Division of Pulmonary Diseases and Critical Care Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Raksha Jain
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Michal Shteinberg
- Lady Davis Carmel Medical Center, Haifa, Israel
- The B. Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| |
Collapse
|
55
|
Perea L, Faner R, Chalmers JD, Sibila O. Pathophysiology and genomics of bronchiectasis. Eur Respir Rev 2024; 33:240055. [PMID: 38960613 PMCID: PMC11220622 DOI: 10.1183/16000617.0055-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/02/2024] [Indexed: 07/05/2024] Open
Abstract
Bronchiectasis is a complex and heterogeneous inflammatory chronic respiratory disease with an unknown cause in around 30-40% of patients. The presence of airway infection together with chronic inflammation, airway mucociliary dysfunction and lung damage are key components of the vicious vortex model that better describes its pathophysiology. Although bronchiectasis research has significantly increased over the past years and different endotypes have been identified, there are still major gaps in the understanding of the pathophysiology. Genomic approaches may help to identify new endotypes, as has been shown in other chronic airway diseases, such as COPD.Different studies have started to work in this direction, and significant contributions to the understanding of the microbiome and proteome diversity have been made in bronchiectasis in recent years. However, the systematic application of omics approaches to identify new molecular insights into the pathophysiology of bronchiectasis (endotypes) is still limited compared with other respiratory diseases.Given the complexity and diversity of these technologies, this review describes the key components of the pathophysiology of bronchiectasis and how genomics can be applied to increase our knowledge, including the study of new techniques such as proteomics, metabolomics and epigenomics. Furthermore, we propose that the novel concept of trained innate immunity, which is driven by microbiome exposures leading to epigenetic modifications, can complement our current understanding of the vicious vortex. Finally, we discuss the challenges, opportunities and implications of genomics application in clinical practice for better patient stratification into new therapies.
Collapse
Affiliation(s)
- Lidia Perea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rosa Faner
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias M.P. (CIBERES), Barcelona, Spain
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Oriol Sibila
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias M.P. (CIBERES), Barcelona, Spain
- Respiratory Department, Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
56
|
Mac Aogáin M, Xaverius Ivan F, Jaggi TK, Richardson H, Shoemark A, Narayana JK, Dicker AJ, Koh MS, Lee KCH, Thun How O, Poh ME, Chin KK, Hou ALY, Ser Hon P, Low TB, Abisheganaden JA, Dimakou K, Digalaki A, Kosti C, Gkousiou A, Hansbro PM, Blasi F, Aliberti S, Chalmers JD, Chotirmall SH. Airway "Resistotypes" and Clinical Outcomes in Bronchiectasis. Am J Respir Crit Care Med 2024; 210:47-62. [PMID: 38271608 PMCID: PMC11197066 DOI: 10.1164/rccm.202306-1059oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Rationale: Chronic infection and inflammation shapes the airway microbiome in bronchiectasis. Utilizing whole-genome shotgun metagenomics to analyze the airway resistome provides insight into interplay between microbes, resistance genes, and clinical outcomes. Objectives: To apply whole-genome shotgun metagenomics to the airway microbiome in bronchiectasis to highlight a diverse pool of antimicrobial resistance genes: the "resistome," the clinical significance of which remains unclear. Methods: Individuals with bronchiectasis were prospectively recruited into cross-sectional and longitudinal cohorts (n = 280), including the international multicenter cross-sectional Cohort of Asian and Matched European Bronchiectasis 2 (CAMEB 2) study (n = 251) and two independent cohorts, one describing patients experiencing acute exacerbation and a further cohort of patients undergoing Pseudomonas aeruginosa eradication treatment. Sputum was subjected to metagenomic sequencing, and the bronchiectasis resistome was evaluated in association with clinical outcomes and underlying host microbiomes. Measurements and Main Results: The bronchiectasis resistome features a unique resistance gene profile and increased counts of aminoglycoside, bicyclomycin, phenicol, triclosan, and multidrug resistance genes. Longitudinally, it exhibits within-patient stability over time and during exacerbations despite between-patient heterogeneity. Proportional differences in baseline resistome profiles, including increased macrolide and multidrug resistance genes, associate with shorter intervals to the next exacerbation, whereas distinct resistome archetypes associate with frequent exacerbations, poorer lung function, geographic origin, and the host microbiome. Unsupervised analysis of resistome profiles identified two clinically relevant "resistotypes," RT1 and RT2, the latter characterized by poor clinical outcomes, increased multidrug resistance, and P. aeruginosa. Successful targeted eradication in P. aeruginosa-colonized individuals mediated reversion from RT2 to RT1, a more clinically favorable resistome profile demonstrating reduced resistance gene diversity. Conclusions: The bronchiectasis resistome associates with clinical outcomes, geographic origin, and the underlying host microbiome. Bronchiectasis resistotypes link to clinical disease and are modifiable through targeted antimicrobial therapy.
Collapse
Affiliation(s)
- Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James’s Hospital, Dublin, Ireland
- Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Hollian Richardson
- University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Amelia Shoemark
- University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | | | - Alison J. Dicker
- University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Mariko Siyue Koh
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore
| | - Ken Cheah Hooi Lee
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore
| | - Ong Thun How
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore
| | - Mau Ern Poh
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ka Kiat Chin
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Albert Lim Yick Hou
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | - Puah Ser Hon
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | - Teck Boon Low
- Department of Respiratory and Critical Care Medicine, Changi General Hospital, Singapore
| | - John Arputhan Abisheganaden
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | - Katerina Dimakou
- 5th Respiratory Medicine Department, General Hospital for Chest Diseases of Athens “Sotiria”, Athens, Greece
| | - Antonia Digalaki
- 5th Respiratory Medicine Department, General Hospital for Chest Diseases of Athens “Sotiria”, Athens, Greece
| | - Chrysavgi Kosti
- 5th Respiratory Medicine Department, General Hospital for Chest Diseases of Athens “Sotiria”, Athens, Greece
| | - Anna Gkousiou
- 5th Respiratory Medicine Department, General Hospital for Chest Diseases of Athens “Sotiria”, Athens, Greece
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Francesco Blasi
- Respiratory Unit and Cystic Fibrosis Center, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; and
- IRCCS Humanitas Research Hospital, Respiratory Unit, Rozzano, Milan, Italy
| | - James D. Chalmers
- University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
57
|
Gao Y, Richardson H, Dicker AJ, Barton A, Kuzmanova E, Shteinberg M, Perea L, Goeminne PC, Cant E, Hennayake C, Pollock J, Abo Leyah H, Choi H, Polverino E, Blasi F, Welte T, Aliberti S, Long M, Shoemark A, Sibila O, Huang JTJ, Chalmers JD. Endotypes of Exacerbation in Bronchiectasis: An Observational Cohort Study. Am J Respir Crit Care Med 2024; 210:77-86. [PMID: 38717347 DOI: 10.1164/rccm.202310-1729oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/07/2024] [Indexed: 07/02/2024] Open
Abstract
Rationale: Bronchiectasis is characterized by acute exacerbations, but the biological mechanisms underlying these events are poorly characterized. Objectives: To investigate the inflammatory and microbial characteristics of exacerbations of bronchiectasis. Methods: A total of 120 patients with bronchiectasis were enrolled and presented with acute exacerbations within 12 months. Spontaneous sputum samples were obtained during a period of clinical stability and again at exacerbation before receipt of antibiotic treatment. A validated rapid PCR assay for bacteria and viruses was used to classify exacerbations as bacterial, viral, or both. Sputum inflammatory assessments included label-free liquid chromatography-tandem mass spectrometry and measurement of sputum cytokines and neutrophil elastase activity. 16 s rRNA sequencing was used to characterize the microbiome. Measurements and Main Results: Bronchiectasis exacerbations showed profound molecular heterogeneity. At least one bacterium was identified in 103 samples (86%), and a high bacterial load (total bacterial load > 107 copies/g) was observed in 81 patients (68%). Respiratory viruses were identified in 55 (46%) patients, with rhinovirus being the most common virus (31%). PCR testing was more sensitive than culture. No consistent change in the microbiome was observed at exacerbation. Exacerbations were associated with increased neutrophil elastase, proteinase-3, IL-1β, and CXCL8. These markers were particularly associated with bacterial and bacterial plus viral exacerbations. Distinct inflammatory and microbiome profiles were seen between different exacerbation subtypes, including bacterial, viral, and eosinophilic events in both hypothesis-led and hypothesis-free analysis using integrated microbiome and proteomics, demonstrating four subtypes of exacerbation. Conclusions: Bronchiectasis exacerbations are heterogeneous events with contributions from bacteria, viruses, and inflammatory dysregulation.
Collapse
Affiliation(s)
- Yonghua Gao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hollian Richardson
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Alison J Dicker
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Alun Barton
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Elena Kuzmanova
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Michal Shteinberg
- Pulmonology Institute and Cystic Fibrosis Center, Carmel Medical Center, Haifa, Israel
| | - Lidia Perea
- Respiratory Institute, Hospital Clínic, Institute of Biomedical Research August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Pieter C Goeminne
- Department of Respiratory Disease, AZ Nikolaas, Sint-Niklaas, Belgium
| | - Erin Cant
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Chandani Hennayake
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Jennifer Pollock
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Hani Abo Leyah
- Department of Respiratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Hayoung Choi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Eva Polverino
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, CIBERES, Barcelona, Spain
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; and
| | - Stefano Aliberti
- Istituto di Ricovero e Cura a Carattere Scientifico di natura pubblica Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Merete Long
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Oriol Sibila
- Respiratory Institute, Hospital Clínic, Institute of Biomedical Research August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Jeffrey T J Huang
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| |
Collapse
|
58
|
Lee JS, Yang B, Shin HS, Lee H, Chai HG, Choi H, Han JH, Yoon JH, Kim EG, Lee H. Increased bronchiectasis risk and related risk factors in inflammatory bowel disease: a 10-year Korean national cohort study. ERJ Open Res 2024; 10:00087-2024. [PMID: 39040586 PMCID: PMC11261352 DOI: 10.1183/23120541.00087-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/06/2024] [Indexed: 07/24/2024] Open
Abstract
Background The association between inflammatory bowel disease (IBD) and an increased risk of bronchiectasis, as well as contributing factors, remains unclear. Additionally, whether bronchiectasis increases disease burden in IBD remains unknown. Therefore, this study aimed to: 1) assess whether IBD increases the risk of incident bronchiectasis; 2) compare the risk of bronchiectasis between individuals with Crohn's disease (CD) and those with ulcerative colitis (UC); 3) identify risk factors for bronchiectasis in individuals with IBD; and 4) examine the disease burden in individuals with IBD and bronchiectasis versus those without. Methods We conducted a population-based matched cohort study involving adults aged ≥20 years with IBD, using data acquired from the Korean National Health Insurance Service-National Sample Cohort database between 2002 and 2012. Results During the mean follow-up of 9.6 years, the incidence rate of bronchiectasis was 419.63 out of 100 000 person-years (PY) and 309.65 out of 100 000 PY in the IBD and matched cohorts (adjusted hazard ratio (aHR) 1.21, 95% CI 1.05-1.39), respectively. UC was associated with increased bronchiectasis risk (aHR 1.42, 95% CI 1.19-1.69), but CD was not. Multivariate Cox regression analyses showed that age, male sex, medical aid, underweight status, COPD and diabetes mellitus were associated with an increased risk of bronchiectasis in the IBD cohort (p<0.05). The mortality, emergency department visit and hospitalisation rates were significantly higher for individuals with IBD and bronchiectasis compared with those without bronchiectasis (p<0.05). Conclusion IBD is associated with increased risk of bronchiectasis, which results in a greater disease burden in individuals with IBD.
Collapse
Affiliation(s)
- Jun Su Lee
- Division of Gastroenterology, Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
- J.S. Lee and B. Yang contributed equally to this work
| | - Bumhee Yang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
- J.S. Lee and B. Yang contributed equally to this work
| | - Hye Soon Shin
- Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Heajung Lee
- Department of Statistics and Data Science, Yonsei University, Seoul, Republic of Korea
| | | | - Hayoung Choi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Joung-Ho Han
- Division of Gastroenterology, Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Jai Hoon Yoon
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Eung-Gook Kim
- Division of Biochemistry, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyun Lee
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
59
|
Dougherty GW, Ostrowski LE, Nöthe-Menchen T, Raidt J, Schramm A, Olbrich H, Yin W, Sears PR, Dang H, Smith AJ, Beule AG, Hjeij R, Rutjes N, Haarman EG, Maas SM, Ferkol TW, Noone PG, Olivier KN, Bracht DC, Barbry P, Zaragosi LE, Fierville M, Kliesch S, Wohlgemuth K, König J, George S, Loges NT, Ceppe A, Markovetz MR, Luo H, Guo T, Rizk H, Eldesoky T, Dahlke K, Boldt K, Ueffing M, Hill DB, Pang YP, Knowles MR, Zariwala MA, Omran H. Recessively Inherited Deficiency of Secreted WFDC2 (HE4) Causes Nasal Polyposis and Bronchiectasis. Am J Respir Crit Care Med 2024; 210:63-76. [PMID: 38626355 PMCID: PMC11197063 DOI: 10.1164/rccm.202308-1370oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/16/2024] [Indexed: 04/18/2024] Open
Abstract
Rationale: Bronchiectasis is a pathological dilatation of the bronchi in the respiratory airways associated with environmental or genetic causes (e.g., cystic fibrosis, primary ciliary dyskinesia, and primary immunodeficiency disorders), but most cases remain idiopathic. Objectives: To identify novel genetic defects in unsolved cases of bronchiectasis presenting with severe rhinosinusitis, nasal polyposis, and pulmonary Pseudomonas aeruginosa infection. Methods: DNA was analyzed by next-generation or targeted Sanger sequencing. RNA was analyzed by quantitative PCR and single-cell RNA sequencing. Patient-derived cells, cell cultures, and secretions (mucus, saliva, seminal fluid) were analyzed by Western blotting and immunofluorescence microscopy, and mucociliary activity was measured. Blood serum was analyzed by electrochemiluminescence immunoassay. Protein structure and proteomic analyses were used to assess the impact of a disease-causing founder variant. Measurements and Main Results: We identified biallelic pathogenic variants in WAP four-disulfide core domain 2 (WFDC2) in 11 individuals from 10 unrelated families originating from the United States, Europe, Asia, and Africa. Expression of WFDC2 was detected predominantly in secretory cells of control airway epithelium and also in submucosal glands. We demonstrate that WFDC2 is below the limit of detection in blood serum and hardly detectable in samples of saliva, seminal fluid, and airway surface liquid from WFDC2-deficient individuals. Computer simulations and deglycosylation assays indicate that the disease-causing founder variant p.Cys49Arg structurally hampers glycosylation and, thus, secretion of mature WFDC2. Conclusions: WFDC2 dysfunction defines a novel molecular etiology of bronchiectasis characterized by the deficiency of a secreted component of the airways. A commercially available blood test combined with genetic testing allows its diagnosis.
Collapse
Grants
- UM1 HG006504 NHGRI NIH HHS
- U2C TR002818 NCATS NIH HHS
- U54 HL096458 NHLBI NIH HHS
- R01 HL117836 NHLBI NIH HHS
- R01 HL071798 NHLBI NIH HHS
- Wellcome Trust
- P30 DK065988 NIDDK NIH HHS
- OM6/7-2 Deutsche Forschungsgemeinschaft
- OM6/8-2 Deutsche Forschungsgemeinschaft
- OM6/10-1 Deutsche Forschungsgemeinschaft
- CRU 326 Deutsche Forschungsgemeinschaft
- OL450/3-1 Deutsche Forschungsgemeinschaft
- RA3522/1-1 Deutsche Forschungsgemeinschaft
- HJ 7/1-1 Deutsche Forschungsgemeinschaft
- HJ 7/1-3 Deutsche Forschungsgemeinschaft
- Om2/009/12 Interdisziplinäres Zentrum für klinische Forschung Münster (IZKF)
- Om2/015/16 Interdisziplinäres Zentrum für klinische Forschung Münster (IZKF)
- Om2/010/20 Interdisziplinäres Zentrum für klinische Forschung Münster (IZKF)
- Horizon2020 GA 777295 European Commission Registry Warehouse
- EU FP7 GA 305404 BESTCILIA
- Tistou and Charlotte Kerstan Stiftung
- 210585/Z/18/Z Wellcome Trust
- U54HL096458 US NIH/ Office of Rare Diseases Research/National Center for Advancing Translational Sciences (NCATS)/National Heart, Lung, and Blood Institute
- R01HL071798 US NIH
- R01HL117836 US NIH
- X01HL115246-01 US NIH
- 82070003 National Natural Science Foundation of China
- 82270048 National Natural Science Foundation of China
- 91967 Mayo Foundation for Medical Education and Research
- 21EQUI09Z6RCHX CNRS, Inserm, the infrastructure France Génomique and the French Government (Agence Nationale de Recherche, ANR)
- ANR-19-P3IA-0002 CNRS, Inserm, the infrastructure France Génomique and the French Government (Agence Nationale de Recherche, ANR)
- ANR-19-CE14-0027 CNRS, Inserm, the infrastructure France Génomique and the French Government (Agence Nationale de Recherche, ANR)
- ANR-19-P3IA-0002-3IA CNRS, Inserm, the infrastructure France Génomique and the French Government (Agence Nationale de Recherche, ANR)
- ANR-21-ESRE-0052 CNRS, Inserm, the infrastructure France Génomique and the French Government (Agence Nationale de Recherche, ANR)
- ANR-10-INBS-09-03 CNRS, Inserm, the infrastructure France Génomique and the French Government (Agence Nationale de Recherche, ANR)
- ANR-10-INBS-09-02 CNRS, Inserm, the infrastructure France Génomique and the French Government (Agence Nationale de Recherche, ANR)
- 2017-175159-5022 Canceropôle PACA, the H2020 Health (Discovair) and the Chan Zuckerberg Initiative
Collapse
Affiliation(s)
| | - Lawrence E. Ostrowski
- Department of Pediatrics
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center
| | | | | | | | | | - Weining Yin
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center
| | - Patrick R. Sears
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center
| | - Hong Dang
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center
| | - Amanda J. Smith
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center
| | | | | | - Niels Rutjes
- Department of Pediatric Pulmonology and Allergy, Emma Children’s Hospital, Amsterdam, the Netherlands
| | - Eric G. Haarman
- Department of Pediatric Pulmonology and Allergy, Emma Children’s Hospital, Amsterdam, the Netherlands
| | - Saskia M. Maas
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Peadar G. Noone
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center
- Department of Medicine
| | - Kenneth N. Olivier
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center
- Department of Medicine
| | | | - Pascal Barbry
- Université Côte d’Azur, CNRS, Institut Pharmacologie Moléculaire et Cellulaire, Sophia-Antipolis, France
| | - Laure-Emmanuelle Zaragosi
- Université Côte d’Azur, CNRS, Institut Pharmacologie Moléculaire et Cellulaire, Sophia-Antipolis, France
| | - Morgane Fierville
- Université Côte d’Azur, CNRS, Institut Pharmacologie Moléculaire et Cellulaire, Sophia-Antipolis, France
| | - Sabine Kliesch
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Muenster, Muenster, Germany
| | | | | | | | | | - Agathe Ceppe
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center
| | | | - Hong Luo
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Ting Guo
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Hoda Rizk
- Department of Pediatrics, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
| | - Tarek Eldesoky
- Department of Pediatrics, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
| | - Katrin Dahlke
- Institute for Ophthalmic Research and Core Facility for Medical Proteomics, Tübingen, Germany
- Eberhard Karls University Tübingen, Tübingen, Germany; and
| | - Karsten Boldt
- Institute for Ophthalmic Research and Core Facility for Medical Proteomics, Tübingen, Germany
- Eberhard Karls University Tübingen, Tübingen, Germany; and
| | - Marius Ueffing
- Institute for Ophthalmic Research and Core Facility for Medical Proteomics, Tübingen, Germany
- Eberhard Karls University Tübingen, Tübingen, Germany; and
| | - David B. Hill
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center
- Department of Physics and Astronomy, and
| | - Yuan-Ping Pang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Michael R. Knowles
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center
- Department of Medicine
| | - Maimoona A. Zariwala
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | |
Collapse
|
60
|
Ross MH, Jia S. Heterogeneity in non-cystic fibrosis bronchiectasis: insights from ASPEN trial participants. ERJ Open Res 2024; 10:00372-2024. [PMID: 39081500 PMCID: PMC11288401 DOI: 10.1183/23120541.00372-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 08/02/2024] Open
Abstract
ASPEN trial participant characteristics highlight the heterogeneity of non-cystic fibrosis bronchiectasis and global variations in clinical practice patterns https://bit.ly/447XeP0.
Collapse
Affiliation(s)
- Melissa H. Ross
- Departments of Internal Medicine and Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Shijing Jia
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
61
|
Chalmers JD, Mall MA, McShane PJ, Nielsen KG, Shteinberg M, Sullivan SD, Chotirmall SH. A systematic literature review of the clinical and socioeconomic burden of bronchiectasis. Eur Respir Rev 2024; 33:240049. [PMID: 39231597 PMCID: PMC11372470 DOI: 10.1183/16000617.0049-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/04/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND The overall burden of bronchiectasis on patients and healthcare systems has not been comprehensively described. Here, we present the findings of a systematic literature review that assessed the clinical and socioeconomic burden of bronchiectasis with subanalyses by aetiology (PROSPERO registration: CRD42023404162). METHODS Embase, MEDLINE and the Cochrane Library were searched for publications relating to bronchiectasis disease burden (December 2017-December 2022). Journal articles and congress abstracts reporting on observational studies, randomised controlled trials and registry studies were included. Editorials, narrative reviews and systematic literature reviews were included to identify primary studies. PRISMA guidelines were followed. RESULTS 1585 unique publications were identified, of which 587 full texts were screened and 149 were included. A further 189 citations were included from reference lists of editorials and reviews, resulting in 338 total publications. Commonly reported symptoms and complications included dyspnoea, cough, wheezing, sputum production, haemoptysis and exacerbations. Disease severity across several indices and increased mortality compared with the general population was reported. Bronchiectasis impacted quality of life across several patient-reported outcomes, with patients experiencing fatigue, anxiety and depression. Healthcare resource utilisation was considerable and substantial medical costs related to hospitalisations, treatments and emergency department and outpatient visits were accrued. Indirect costs included sick pay and lost income. CONCLUSIONS Bronchiectasis causes significant clinical and socioeconomic burden. Disease-modifying therapies that reduce symptoms, improve quality of life and reduce both healthcare resource utilisation and overall costs are needed. Further systematic analyses of specific aetiologies and paediatric disease may provide more insight into unmet therapeutic needs.
Collapse
Affiliation(s)
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Pamela J McShane
- University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Kim G Nielsen
- Paediatric Pulmonary Service, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- European Reference Network on rare respiratory diseases (ERN-LUNG)
| | - Michal Shteinberg
- Lady Davis Carmel Medical Center, Haifa, Israel
- Technion - Israel Institute of Technology, The B. Rappaport Faculty of Medicine, Haifa, Israel
| | - Sean D Sullivan
- CHOICE Institute, University of Washington, Seattle, WA, USA
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
62
|
Mac Aogáin M, Dicker AJ, Mertsch P, Chotirmall SH. Infection and the microbiome in bronchiectasis. Eur Respir Rev 2024; 33:240038. [PMID: 38960615 PMCID: PMC11220623 DOI: 10.1183/16000617.0038-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/02/2024] [Indexed: 07/05/2024] Open
Abstract
Bronchiectasis is marked by bronchial dilatation, recurrent infections and significant morbidity, underpinned by a complex interplay between microbial dysbiosis and immune dysregulation. The identification of distinct endophenotypes have refined our understanding of its pathogenesis, including its heterogeneous disease mechanisms that influence treatment and prognosis responses. Next-generation sequencing (NGS) has revolutionised the way we view airway microbiology, allowing insights into the "unculturable". Understanding the bronchiectasis microbiome through targeted amplicon sequencing and/or shotgun metagenomics has provided key information on the interplay of the microbiome and host immunity, a central feature of disease progression. The rapid increase in translational and clinical studies in bronchiectasis now provides scope for the application of precision medicine and a better understanding of the efficacy of interventions aimed at restoring microbial balance and/or modulating immune responses. Holistic integration of these insights is driving an evolving paradigm shift in our understanding of bronchiectasis, which includes the critical role of the microbiome and its unique interplay with clinical, inflammatory, immunological and metabolic factors. Here, we review the current state of infection and the microbiome in bronchiectasis and provide views on the future directions in this field.
Collapse
Affiliation(s)
- Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James's Hospital, Dublin, Ireland
- Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Alison J Dicker
- Respiratory Research Group, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Pontus Mertsch
- Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center (CPC), Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
63
|
Chalmers JD, Burgel PR, Daley CL, De Soyza A, Haworth CS, Mauger D, Mange K, Teper A, Fernandez C, Conroy D, Metersky M. Brensocatib in non-cystic fibrosis bronchiectasis: ASPEN protocol and baseline characteristics. ERJ Open Res 2024; 10:00151-2024. [PMID: 39040578 PMCID: PMC11261371 DOI: 10.1183/23120541.00151-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/20/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Brensocatib is an investigational, oral, reversible inhibitor of dipeptidyl peptidase-1 shown to prolong time to first exacerbation in adults with bronchiectasis. Outlined here are the clinical trial design, and baseline characteristics and treatment patterns of adult patients enrolled in the phase 3 ASPEN trial (NCT04594369). Methods The ASPEN trial is a global study enrolling patients with a clinical history consistent with bronchiectasis (cough, chronic sputum production and/or recurrent respiratory infections), diagnosis confirmed radiologically and ≥2 exacerbations in the prior 12 months. It was designed to evaluate the impact of two brensocatib doses (10 mg and 25 mg) on exacerbation rate over a 52-week treatment period versus placebo. Comprehensive clinical data, including demographics, disease severity, lung function, Pseudomonas aeruginosa status and quality of life, were collected at baseline. Results 1682 adults from 35 countries were randomised from December 2020 to March 2023. Mean age was 61.3 years and 64.7% were female. ∼70% had moderate-to-severe Bronchiectasis Severity Index (BSI) scores, 29.3% had ≥3 exacerbations in the prior 12 months and 35.7% were positive for P. aeruginosa. Mean BSI scores were highest in Australia/New Zealand (8.3) and lowest in Latin America (5.9). Overall, the most common aetiology was idiopathic (58.4%). In P. aeruginosa-positive versus P. aeruginosa-negative patients, lung function was lower, with greater long-term macrolide (21.5% versus 14.0%) and inhaled corticosteroid use (63.5% versus 53.9%). There was wide regional variation in long-term antibiotic use in patients with bronchiectasis and P. aeruginosa. Discussion ASPEN baseline characteristics and treatment profiles were representative of a global bronchiectasis population.
Collapse
Affiliation(s)
- James D. Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Pierre-Régis Burgel
- Hôpital Cochin and Cystic Fibrosis National Reference Center, Service de Pneumologie, AP-HP and Université Paris-Cité, Inserm U1016-Institut Cochin, Paris, France
| | - Charles L. Daley
- National Jewish Health and the University of Colorado, Denver, CO, USA
| | - Anthony De Soyza
- Population and Health Sciences Institute, NIHR Biomedical Research Centre for Aging Newcastle University and Department of Respiratory Medicine, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Charles S. Haworth
- Royal Papworth Hospital NHS Foundation Trust and University of Cambridge, Cambridge, UK
| | | | | | | | | | - Dan Conroy
- Insmed Incorporated, Bridgewater, NJ, USA
| | - Mark Metersky
- University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
64
|
Aksamit TR, Lapinel NC, Choate R, Feliciano J, Winthrop KL, Schmid A, Wu J, Fucile S, Metersky ML. Association between bronchiectasis exacerbations and longitudinal changes in FEV 1 in patients from the US bronchiectasis and NTM research registry. Respir Med 2024; 228:107660. [PMID: 38734153 DOI: 10.1016/j.rmed.2024.107660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND This study aimed to evaluate the association between the number of non-cystic fibrosis bronchiectasis (bronchiectasis) exacerbations during baseline and follow-up (objective 1) and to identify longitudinal changes in FEV1 associated with exacerbation frequency (objective 2). METHODS This was a retrospective cohort study of adult patients enrolled in the US Bronchiectasis and Nontuberculous Mycobacteria Research Registry September 2008 to March 2020. Objective 1 outcome was association between exacerbations during baseline (24 months) and 0-to-24 month and 24-to-48 month follow-up windows. Objective 2 outcomes were change in FEV1 and FEV1 % predicted over 24 months stratified by baseline exacerbation frequency. RESULTS Objective 1 cohort (N = 520) baseline frequency of any exacerbations was 59.2%. Overall, 71.4% and 75.0% of patients with ≥1 baseline exacerbations had ≥1 exacerbations during the 0-to-24 and 24-to-48 month follow-ups. Having ≥1 exacerbation during baseline was significantly associated with ≥1 exacerbation during the 0-to-24 month (P = 0.0085) and 24-to-48 month follow-ups (P=<0.0001). Objective 2 cohort (N = 431) baseline FEV1 was significantly lower in patients who had more exacerbations; however, decline in FEV1 from baseline was not significantly different between patients with 0, 1, and ≥2 exacerbations. In patients with more baseline exacerbations, FEV1 % predicted was significantly lower at baseline (P < 0.0001) and at 12 (P = 0.0002) and 24 month follow-ups (P < 0.0001). CONCLUSIONS Patients with frequent bronchiectasis exacerbations may be more likely than those with less frequent exacerbations to experience disease progression based on future exacerbation frequency and lower FEV1 at baseline, although FEV1 decline may not differ by baseline exacerbation frequency.
Collapse
Affiliation(s)
| | - Nicole C Lapinel
- Northwell Health, New Hyde Park, NY, USA; Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Radmila Choate
- University of Kentucky College of Public Health, Lexington, KY, USA
| | | | | | - Andreas Schmid
- University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | - Mark L Metersky
- University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
65
|
Johnson E, Long MB, Chalmers JD. Biomarkers in bronchiectasis. Eur Respir Rev 2024; 33:230234. [PMID: 38960612 PMCID: PMC11220624 DOI: 10.1183/16000617.0234-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/09/2024] [Indexed: 07/05/2024] Open
Abstract
Bronchiectasis is a heterogeneous disease with multiple aetiologies and diverse clinical features. There is a general consensus that optimal treatment requires precision medicine approaches focused on specific treatable disease characteristics, known as treatable traits. Identifying subtypes of conditions with distinct underlying biology (endotypes) depends on the identification of biomarkers that are associated with disease features, prognosis or treatment response and which can be applied in clinical practice. Bronchiectasis is a disease characterised by inflammation, infection, structural lung damage and impaired mucociliary clearance. Increasingly there are available methods to measure each of these components of the disease, revealing heterogeneous inflammatory profiles, microbiota, radiology and mucus and epithelial biology in patients with bronchiectasis. Using emerging biomarkers and omics technologies to guide treatment in bronchiectasis is a promising field of research. Here we review the most recent data on biomarkers in bronchiectasis.
Collapse
Affiliation(s)
- Emma Johnson
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Merete B Long
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
66
|
Raboso B, Pou C, Abril R, Erro M, Sánchez C, Manzano C, Zamarrón E, Suarez-Cuartin G, González J. Bronchiectasis. OPEN RESPIRATORY ARCHIVES 2024; 6:100339. [PMID: 39026515 PMCID: PMC11255363 DOI: 10.1016/j.opresp.2024.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/02/2024] [Indexed: 07/20/2024] Open
Abstract
Non-cystic fibrosis bronchiectasis, a condition that remains relatively underrecognized, has garnered increasing research focus in recent years. This scientific interest has catalyzed advancements in diagnostic methodologies, enabling comprehensive clinical and molecular profiling. Such progress facilitates the development of personalized treatment strategies, marking a significant step toward precision medicine for these patients. Bronchiectasis poses significant diagnostic challenges in both clinical settings and research studies. While computed tomography (CT) remains the gold standard for diagnosis, novel alternatives are emerging. These include artificial intelligence-powered algorithms, ultra-low dose chest CT, and magnetic resonance imaging (MRI) techniques, all of which are becoming recognized as feasible diagnostic tools. The precision medicine paradigm calls for refined characterization of bronchiectasis patients by analyzing their inflammatory and molecular profiles. Research into the underlying mechanisms of inflammation and the evaluation of biomarkers such as neutrophil elastase, mucins, and antimicrobial peptides have led to the identification of distinct patient endotypes. These endotypes present variable clinical outcomes, necessitating tailored therapeutic interventions. Among these, eosinophilic bronchiectasis is notable for its prevalence and specific prognostic factors, calling for careful consideration of treatable traits. A deeper understanding of the microbiome's influence on the pathogenesis and progression of bronchiectasis has inspired a holistic approach, which considers the multibiome as an interconnected microbial network rather than treating pathogens as solitary entities. Interactome analysis therefore becomes a vital tool for pinpointing alterations during both stable phases and exacerbations. This array of innovative approaches has revolutionized the personalization of treatments, incorporating therapies such as inhaled mannitol or ARINA-1, brensocatib for anti-inflammatory purposes, and inhaled corticosteroids specifically for patients with eosinophilic bronchiectasis.
Collapse
Affiliation(s)
| | | | - Rosa Abril
- University Hospital Complex Insular-Materno Infantil (CHUIMI) of Gran Canaria, Gran Canaria, Spain
| | - Marta Erro
- Puerta del Hierro University Hospital, Madrid, Spain
| | | | - Carlos Manzano
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | | | - Guillermo Suarez-Cuartin
- Hospital Universitari Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Jessica González
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
67
|
Chotirmall SH, Chalmers JD. The Precision Medicine Era of Bronchiectasis. Am J Respir Crit Care Med 2024; 210:24-34. [PMID: 38949497 PMCID: PMC11197062 DOI: 10.1164/rccm.202403-0473pp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 07/02/2024] Open
Affiliation(s)
- Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore; and
| | - James D. Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| |
Collapse
|
68
|
Wiltingh H, Marchant JM, Goyal V. Cough in Protracted Bacterial Bronchitis and Bronchiectasis. J Clin Med 2024; 13:3305. [PMID: 38893016 PMCID: PMC11172502 DOI: 10.3390/jcm13113305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic cough in children is a common condition for which patients seek medical attention, and there are many etiologies. Of the various causes of chronic cough in children, protracted bacterial bronchitis (PBB) is one of the commonest causes, and bronchiectasis is one of the most serious. Together, they lie on different ends of the spectrum of chronic wet cough in children. Cough is often the only symptom present in children with PBB and bronchiectasis. This review highlights the role of cough as a marker for the presence of these conditions, as well as an outcome endpoint for treatment and research.
Collapse
Affiliation(s)
- Hinse Wiltingh
- Department of Respiratory and Sleep Medicine, Queensland Children’s Hospital, Brisbane, QLD 4101, Australia; (H.W.); (J.M.M.)
| | - Julie Maree Marchant
- Department of Respiratory and Sleep Medicine, Queensland Children’s Hospital, Brisbane, QLD 4101, Australia; (H.W.); (J.M.M.)
- Australian Centre for Health Services Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Vikas Goyal
- Department of Respiratory and Sleep Medicine, Queensland Children’s Hospital, Brisbane, QLD 4101, Australia; (H.W.); (J.M.M.)
- Australian Centre for Health Services Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Department of Pediatrics, Gold Coast Health, Gold Coast, QLD 4215, Australia
| |
Collapse
|
69
|
Azoicai A, Lupu A, Alexoae MM, Starcea IM, Mocanu A, Lupu VV, Mitrofan EC, Nedelcu AH, Tepordei RT, Munteanu D, Mitrofan C, Salaru DL, Ioniuc I. Lung microbiome: new insights into bronchiectasis' outcome. Front Cell Infect Microbiol 2024; 14:1405399. [PMID: 38895737 PMCID: PMC11183332 DOI: 10.3389/fcimb.2024.1405399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
The present treatments for bronchiectasis, which is defined by pathological dilatation of the airways, are confined to symptom relief and minimizing exacerbations. The condition is becoming more common worldwide. Since the disease's pathophysiology is not entirely well understood, developing novel treatments is critically important. The interplay of chronic infection, inflammation, and compromised mucociliary clearance, which results in structural alterations and the emergence of new infection, is most likely responsible for the progression of bronchiectasis. Other than treating bronchiectasis caused by cystic fibrosis, there are no approved treatments. Understanding the involvement of the microbiome in this disease is crucial, the microbiome is defined as the collective genetic material of all bacteria in an environment. In clinical practice, bacteria in the lungs have been studied using cultures; however, in recent years, researchers use next-generation sequencing methods, such as 16S rRNA sequencing. Although the microbiome in bronchiectasis has not been entirely investigated, what is known about it suggests that Haemophilus, Pseudomonas and Streptococcus dominate the lung bacterial ecosystems, they present significant intraindividual stability and interindividual heterogeneity. Pseudomonas and Haemophilus-dominated microbiomes have been linked to more severe diseases and frequent exacerbations, however additional research is required to fully comprehend the role of microbiome in the evolution of bronchiectasis. This review discusses recent findings on the lung microbiota and its association with bronchiectasis.
Collapse
Affiliation(s)
- Alice Azoicai
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ancuta Lupu
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Monica Mihaela Alexoae
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Iuliana Magdalena Starcea
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Adriana Mocanu
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Vasile Valeriu Lupu
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Razvan Tudor Tepordei
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Dragos Munteanu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Costica Mitrofan
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ileana Ioniuc
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
70
|
Choi H, McShane PJ, Aliberti S, Chalmers JD. Bronchiectasis management in adults: state of the art and future directions. Eur Respir J 2024; 63:2400518. [PMID: 38782469 PMCID: PMC11211698 DOI: 10.1183/13993003.00518-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Formerly regarded as a rare disease, bronchiectasis is increasingly recognised. A renewed interest in this disease has led to significant progress in bronchiectasis research. Randomised clinical trials (RCTs) have demonstrated the benefits of airway clearance techniques, inhaled antibiotics and long-term macrolide therapy in bronchiectasis patients. However, the heterogeneity of bronchiectasis remains one of the most challenging aspects of management. Phenotypes and endotypes of bronchiectasis have been identified to help find "treatable traits" and partially overcome disease complexity. The goals of therapy for bronchiectasis are to reduce the symptom burden, improve quality of life, reduce exacerbations and prevent disease progression. We review the pharmacological and non-pharmacological treatments that can improve mucociliary clearance, reduce airway inflammation and tackle airway infection, the key pathophysiological features of bronchiectasis. There are also promising treatments in development for the management of bronchiectasis, including novel anti-inflammatory therapies. This review provides a critical update on the management of bronchiectasis focusing on treatable traits and recent RCTs.
Collapse
Affiliation(s)
- Hayoung Choi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Pamela J McShane
- Division of Pulmonary and Critical Care, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
71
|
Marmor M, McShane PJ. Mind the gap: challenges to overcome in airway clearance. Eur Respir J 2024; 63:2400687. [PMID: 38843939 DOI: 10.1183/13993003.00687-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 07/03/2024]
Affiliation(s)
- Meghan Marmor
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Pamela J McShane
- Division of Pulmonary and Critical Care Medicine, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| |
Collapse
|
72
|
Spinou A, Hererro-Cortina B, Aliberti S, Goeminne PC, Polverino E, Dimakou K, Haworth CS, Loebinger MR, De Soyza A, Vendrell M, Burgel PR, McDonnell M, Sutharsan S, Škrgat S, Maiz-Carro L, Sibila O, Stolz D, Kauppi P, Bossios A, Hill AT, Clifton I, Crichton ML, Walker P, Menendez R, Borekci S, Obradovic D, Nowinski A, Amorim A, Torres A, Lorent N, Welte T, Blasi F, Jankovic Makek M, Shteinberg M, Boersma W, Elborn JS, Chalmers JD, Ringshausen FC. Airway clearance management in people with bronchiectasis: data from the European Bronchiectasis Registry (EMBARC). Eur Respir J 2024; 63:2301689. [PMID: 38609097 PMCID: PMC11154755 DOI: 10.1183/13993003.01689-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/03/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND International guidelines recommend airway clearance management as one of the important pillars of bronchiectasis treatment. However, the extent to which airway clearance is used for people with bronchiectasis in Europe is unclear. The aim of the study was to identify the use of airway clearance management in patients with bronchiectasis across different countries and factors influencing airway clearance use. METHODS This was a prospective observational study using data from the European Multicentre Bronchiectasis Audit and Research Collaboration (EMBARC) Registry between January 2015 and April 2022. Prespecified options for airway clearance management were recorded, including airway clearance techniques, devices and use of mucoactive drugs. RESULTS 16 723 people with bronchiectasis from 28 countries were included in the study. The mean age was 67 years (interquartile range 57-74 years, range 18-100 years) and 61% were female. 72% of the participants reported daily sputum expectoration and 52% (95% CI 51-53%) of all participants reported using regular airway clearance management. Active cycle of breathing technique was used by 28% of the participants and airway clearance devices by 16% of participants. The frequency of airway clearance management and techniques used varied significantly between different countries. Participants who used airway clearance management had greater disease severity and worse symptoms, including a higher daily sputum volume, compared to those who did not use it regularly. Mucoactive drugs were also more likely to be used in participants with more severe disease. Access to specialist respiratory physiotherapy was low throughout Europe, but particularly low in Eastern Europe. CONCLUSIONS Only a half of people with bronchiectasis in Europe use airway clearance management. Use of and access to devices, mucoactive drugs and specialist chest physiotherapy appears to be limited in many European countries.
Collapse
Affiliation(s)
- Arietta Spinou
- Population Health Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- King's Centre for Lung Health, King's College London, London, UK
- A. Spinou and B. Herrero-Cortina contributed equally to this paper
| | - Beatriz Hererro-Cortina
- Universidad San Jorge, Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Zaragoza, Spain
- A. Spinou and B. Herrero-Cortina contributed equally to this paper
| | - Stefano Aliberti
- IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Pieter C Goeminne
- Department of Respiratory Disease, AZ Nikolaas, Sint-Niklaas, Belgium
| | - Eva Polverino
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, CIBERES, Barcelona, Spain
| | - Katerina Dimakou
- 5th Respiratory Department and Bronchiectasis Unit, "SOTIRIA" General Hospital of Chest Diseases Medical Practice, Athens, Greece
| | - Charles S Haworth
- Cambridge Centre for Lung Infection, Royal Papworth Hospital and University of Cambridge, Cambridge, UK
| | - Michael R Loebinger
- Royal Brompton and Harefield Hospitals and National Heart and Lung Institute, Imperial College London, London, UK
| | - Anthony De Soyza
- Population and Health Science Institute, Newcastle University and NIHR Biomedical Research Centre for Ageing, Freeman Hospital, Newcastle, UK
| | - Montserrat Vendrell
- Department of Pulmonology, Dr Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), University of Girona, Girona, Spain
| | - Pierre Regis Burgel
- Department of Respiratory Medicine and French Cystic Fibrosis National Reference Center, Hôpital Cochin, AP-HP, Paris, France
- Université Paris Cité, Inserm U1016, Institut Cochin, Paris, France
| | - Melissa McDonnell
- Department of Respiratory Medicine, Galway University Hospital, Galway, Ireland
| | - Sivagurunathan Sutharsan
- Department of Pulmonary Medicine, University Hospital Essen - Ruhrlandklinik, Adult Cystic Fibrosis Center, University of Duisburg-Essen, Essen, Germany
| | - Sabina Škrgat
- University Medical Centre Ljubljana, Department of Pulmonary Diseases and Allergy, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
| | - Luiz Maiz-Carro
- Chronic Bronchial Infection Unit, Pneumology Service, Ramón y Cajal Hospital, Alcalá de Henares University, Madrid, Spain
| | - Oriol Sibila
- Servicio de Neumología, Instituto Clínico de Respiratorio, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Daiana Stolz
- Department of Pneumology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University of Basel, Basel, Switzerland
| | - Paula Kauppi
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Apostolos Bossios
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Adam T Hill
- Royal Infirmary of Edinburgh, Department of Respiratory Medicine, Edinburgh, UK
| | - Ian Clifton
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Megan L Crichton
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Paul Walker
- Liverpool University Hospitals Foundation NHS Trust, Liverpool, UK
| | - Rosario Menendez
- Pneumology Department, Hospital Universitario y Politécnico La Fe-Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Sermin Borekci
- Istanbul University - Cerrahpasa, Cerrahpasa Medical Faculty, Department of Pulmonology Diseases, Istanbul, Turkey
| | - Dusanka Obradovic
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Institute for Pulmonary Diseases, University of Novi Sad, Sremska Kamenica, Serbia
| | - Adam Nowinski
- Department of Epidemiology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Adelina Amorim
- Pulmonology Department, Centro Hospitalar Universitário S. João, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Antoni Torres
- Department of Pulmonology Hospital Clinic of Barcelona, Spain University of Barcelona, CIBERES, IDIBAPS, ICREA Barcelona, Barcelona, Spain
| | - Natalie Lorent
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Tobias Welte
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases, Frankfurt, Germany
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mateja Jankovic Makek
- University of Zagreb School of Medicine and University Hospital Centre Zagreb, Zagreb, Croatia
- Clinic for Pulmonary Diseases, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Michal Shteinberg
- Pulmonology Institute and CF Center, Carmel Medical Center, Haifa, Israel
- The Technion, Israel Institute of Technology, The B. Rappaport Faculty of Medicine, Haifa, Israel
| | - Wim Boersma
- Department of Pulmonary Diseases, Northwest Clinics, Alkmaar, The Netherlands
| | - J Stuart Elborn
- Faculty of Medicine, Health and Life Sciences, Queen's University, Belfast, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Felix C Ringshausen
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases, Frankfurt, Germany
| |
Collapse
|
73
|
Motta H, Reuwsaat JCV, Lopes FC, Viezzer G, Volpato FCZ, Barth AL, de Tarso Roth Dalcin P, Staats CC, Vainstein MH, Kmetzsch L. Comparative microbiome analysis in cystic fibrosis and non-cystic fibrosis bronchiectasis. Respir Res 2024; 25:211. [PMID: 38762736 PMCID: PMC11102160 DOI: 10.1186/s12931-024-02835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Bronchiectasis is a condition characterized by abnormal and irreversible bronchial dilation resulting from lung tissue damage and can be categorized into two main groups: cystic fibrosis (CF) and non-CF bronchiectasis (NCFB). Both diseases are marked by recurrent infections, inflammatory exacerbations, and lung damage. Given that infections are the primary drivers of disease progression, characterization of the respiratory microbiome can shed light on compositional alterations and susceptibility to antimicrobial drugs in these cases compared to healthy individuals. METHODS To assess the microbiota in the two studied diseases, 35 subjects were recruited, comprising 10 NCFB and 13 CF patients and 12 healthy individuals. Nasopharyngeal swabs and induced sputum were collected, and total DNA was extracted. The DNA was then sequenced by the shotgun method and evaluated using the SqueezeMeta pipeline and R. RESULTS We observed reduced species diversity in both disease cohorts, along with distinct microbial compositions and profiles of antimicrobial resistance genes, compared to healthy individuals. The nasopharynx exhibited a consistent microbiota composition across all cohorts. Enrichment of members of the Burkholderiaceae family and an increased Firmicutes/Bacteroidetes ratio in the CF cohort emerged as key distinguishing factors compared to NCFB group. Staphylococcus aureus and Prevotella shahii also presented differential abundance in the CF and NCFB cohorts, respectively, in the lower respiratory tract. Considering antimicrobial resistance, a high number of genes related to antibiotic efflux were detected in both disease groups, which correlated with the patient's clinical data. CONCLUSIONS Bronchiectasis is associated with reduced microbial diversity and a shift in microbial and resistome composition compared to healthy subjects. Despite some similarities, CF and NCFB present significant differences in microbiome composition and antimicrobial resistance profiles, suggesting the need for customized management strategies for each disease.
Collapse
Affiliation(s)
- Heryk Motta
- Laboratório de Biologia Molecular de Patógenos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Júlia Catarina Vieira Reuwsaat
- Laboratório de Biologia Molecular de Patógenos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Cortez Lopes
- Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Graciele Viezzer
- Serviço de Pneumologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Fabiana Caroline Zempulski Volpato
- Laboratório de Pesquisa em Resistência Bacteriana, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Afonso Luís Barth
- Laboratório de Pesquisa em Resistência Bacteriana, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Paulo de Tarso Roth Dalcin
- Serviço de Pneumologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Charley Christian Staats
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marilene Henning Vainstein
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Microrganismos de Importância Médica e Biotecnológica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lívia Kmetzsch
- Laboratório de Biologia Molecular de Patógenos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
74
|
de la Rosa-Carrillo D, de Granda-Orive JI, Diab Cáceres L, Gutiérrez Pereyra F, Raboso Moreno B, Martínez-García MÁ, Suárez-Cuartin G. The impact of smoking on bronchiectasis and its comorbidities. Expert Rev Respir Med 2024; 18:255-268. [PMID: 38888096 DOI: 10.1080/17476348.2024.2369716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Bronchiectasis, characterized by irreversible bronchial dilatation, is a growing global health concern with significant morbidity. This review delves into the intricate relationship between smoking and bronchiectasis, examining its epidemiology, pathophysiology, clinical manifestations, and therapeutic approaches. Our comprehensive literature search on PubMed utilized MESH terms including 'smoking,' 'smoking cessation,' 'bronchiectasis,' and 'comorbidities' to gather relevant studies. AREAS COVERED This review emphasizes the role of smoking in bronchiectasis development and exacerbation by compromising airways and immune function. Interconnected comorbidities, including chronic obstructive pulmonary disease, asthma, and gastroesophageal reflux disease, create a detrimental cycle affecting patient outcomes. Despite limited studies on smoking cessation in bronchiectasis, the review stresses its importance. Advocating for tailored cessation programs, interventions like drainage, bronchodilators, and targeted antibiotics are crucial to disrupting the inflammatory-infection-widening cycle. EXPERT OPINION The importance of smoking cessation in bronchiectasis management is paramount due to its extensive negative impact on related conditions. Proactive cessation programs utilizing technology and targeted education for high-risk groups aim to reduce smoking's impact on disease progression and related comorbidities. In conclusion, a personalized approach centered on smoking cessation is deemed vital for bronchiectasis, aiming to improve outcomes and enhance patients' quality of life in the face of this complex respiratory condition.
Collapse
Affiliation(s)
| | - José Ignacio de Granda-Orive
- Respiratory Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- School of Medicine, Complutense University, Madrid, Spain
| | - Layla Diab Cáceres
- Respiratory Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | | | | |
Collapse
|
75
|
Granton E, Brown L, Defaye M, Moazen P, Almblad H, Randall TE, Rich JD, Geppert A, Abdullah NS, Hassanabad MF, Hiroki CH, Farias R, Nguyen AP, Schubert C, Lou Y, Andonegui G, Iftinca M, Raju D, Vargas MA, Howell PL, Füzesi T, Bains J, Kurrasch D, Harrison JJ, Altier C, Yipp BG. Biofilm exopolysaccharides alter sensory-neuron-mediated sickness during lung infection. Cell 2024; 187:1874-1888.e14. [PMID: 38518773 DOI: 10.1016/j.cell.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/04/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain. Using genome-engineered Pseudomonas aeruginosa (P. aeruginosa) strains, we compared EPS-producers versus non-producers and a virulent Escherichia coli (E. coli) lung infection model in male and female mice. EPS-negative P. aeruginosa and virulent E. coli infection caused severe sickness, behavioral alterations, inflammation, and hypothermia mediated by TLR4 detection of the exposed lipopolysaccharide (LPS) in lung TRPV1+ sensory neurons. However, inflammation did not account for sickness. Stimulation of lung nociceptors induced acute stress responses in the paraventricular hypothalamic nuclei by activating corticotropin-releasing hormone neurons responsible for sickness behavior and hypothermia. Thus, EPS-producing biofilm pathogens evade initiating a lung-brain sensory neuronal response that results in sickness.
Collapse
Affiliation(s)
- Elise Granton
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luke Brown
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Manon Defaye
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Parisa Moazen
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Henrik Almblad
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Trevor E Randall
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jacquelyn D Rich
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Andrew Geppert
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Nasser S Abdullah
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Mortaza F Hassanabad
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carlos H Hiroki
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Raquel Farias
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Angela P Nguyen
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Courtney Schubert
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yuefei Lou
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Graciela Andonegui
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mircea Iftinca
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Deepa Raju
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mario A Vargas
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tamás Füzesi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Cumming School of Medicine Optogenetics Core Facility, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jaideep Bains
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada.
| | - Deborah Kurrasch
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Joe Jonathan Harrison
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
| | - Christophe Altier
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Bryan G Yipp
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
76
|
Dean SG, Blakney RA, Ricotta EE, Chalmers JD, Kadri SS, Olivier KN, Prevots DR. Bronchiectasis-associated infections and outcomes in a large, geographically diverse electronic health record cohort in the United States. BMC Pulm Med 2024; 24:172. [PMID: 38600466 PMCID: PMC11008033 DOI: 10.1186/s12890-024-02973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Bronchiectasis is a pulmonary disease characterized by irreversible dilation of the bronchi and recurring respiratory infections. Few studies have described the microbiology and prevalence of infections in large patient populations outside of specialized tertiary care centers. METHODS We used the Cerner HealthFacts Electronic Health Record database to characterize the nature, burden, and frequency of pulmonary infections among persons with bronchiectasis. Chronic infections were defined based on organism-specific guidelines. RESULTS We identified 7,749 patients who met our incident bronchiectasis case definition. In this study population, the organisms with the highest rates of isolate prevalence were Pseudomonas aeruginosa with 937 (12%) individuals, Staphylococcus aureus with 502 (6%), Mycobacterium avium complex (MAC) with 336 (4%), and Aspergillus sp. with 288 (4%). Among persons with at least one isolate of each respective pathogen, 219 (23%) met criteria for chronic P. aeruginosa colonization, 74 (15%) met criteria for S. aureus chronic colonization, 101 (30%) met criteria for MAC chronic infection, and 50 (17%) met criteria for Aspergillus sp. chronic infection. Of 5,795 persons with at least two years of observation, 1,860 (32%) had a bronchiectasis exacerbation and 3,462 (60%) were hospitalized within two years of bronchiectasis diagnoses. Among patients with chronic respiratory infections, the two-year occurrence of exacerbations was 53% and for hospitalizations was 82%. CONCLUSIONS Patients with bronchiectasis experiencing chronic respiratory infections have high rates of hospitalization.
Collapse
Affiliation(s)
- Samantha G Dean
- Epidemiology and Population Studies Unit, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, USA
| | - Rebekah A Blakney
- Epidemiology and Population Studies Unit, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, USA
| | - Emily E Ricotta
- Epidemiology and Population Studies Unit, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, USA
| | - James D Chalmers
- University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland
| | - Sameer S Kadri
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, USA
| | - Kenneth N Olivier
- Laboratory of Chronic Airway Infection, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, USA
- Department of Medicine, Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina School of Medicine, Chapel Hill, USA
| | - D Rebecca Prevots
- Epidemiology and Population Studies Unit, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, USA.
| |
Collapse
|
77
|
Aliberti S, Ringshausen FC, Dhar R, Haworth CS, Loebinger MR, Dimakou K, Crichton ML, De Soyza A, Vendrell M, Burgel PR, McDonnell M, Skrgat S, Maiz Carro L, de Roux A, Sibila O, Bossios A, van der Eerden M, Kauppi P, Wilson R, Milenkovic B, Menendez R, Murris M, Borekci S, Munteanu O, Obradovic D, Nowinski A, Amorim A, Torres A, Lorent N, Van Braeckel E, Altenburg J, Shoemark A, Shteinberg M, Boersma W, Goeminne PC, Elborn JS, Hill AT, Welte T, Blasi F, Polverino E, Chalmers JD. Objective sputum colour assessment and clinical outcomes in bronchiectasis: data from the European Bronchiectasis Registry (EMBARC). Eur Respir J 2024; 63:2301554. [PMID: 38609095 PMCID: PMC11024393 DOI: 10.1183/13993003.01554-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/02/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND A validated 4-point sputum colour chart can be used to objectively evaluate the levels of airway inflammation in bronchiectasis patients. In the European Bronchiectasis Registry (EMBARC), we tested whether sputum colour would be associated with disease severity and clinical outcomes. METHODS We used a prospective, observational registry of adults with bronchiectasis conducted in 31 countries. Patients who did not produce spontaneous sputum were excluded from the analysis. The Murray sputum colour chart was used at baseline and at follow-up visits. Key outcomes were frequency of exacerbations, hospitalisations for severe exacerbations and mortality during up to 5-year follow-up. RESULTS 13 484 patients were included in the analysis. More purulent sputum was associated with lower forced expiratory volume in 1 s (FEV1), worse quality of life, greater bacterial infection and a higher bronchiectasis severity index. Sputum colour was strongly associated with the risk of future exacerbations during follow-up. Compared to patients with mucoid sputum (reference group), patients with mucopurulent sputum experienced significantly more exacerbations (incident rate ratio (IRR) 1.29, 95% CI 1.22-1.38; p<0.0001), while the rates were even higher for patients with purulent (IRR 1.55, 95% CI 1.44-1.67; p<0.0001) and severely purulent sputum (IRR 1.91, 95% CI 1.52-2.39; p<0.0001). Hospitalisations for severe exacerbations were also associated with increasing sputum colour with rate ratios, compared to patients with mucoid sputum, of 1.41 (95% CI 1.29-1.56; p<0.0001), 1.98 (95% CI 1.77-2.21; p<0.0001) and 3.05 (95% CI 2.25-4.14; p<0.0001) for mucopurulent, purulent and severely purulent sputum, respectively. Mortality was significantly increased with increasing sputum purulence, hazard ratio 1.12 (95% CI 1.01-1.24; p=0.027), for each increment in sputum purulence. CONCLUSION Sputum colour is a simple marker of disease severity and future risk of exacerbations, severe exacerbations and mortality in patients with bronchiectasis.
Collapse
Affiliation(s)
- Stefano Aliberti
- Respiratory Unit, IRCCS Humanitas Research Hospital, Pieve Emanuele, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Felix C Ringshausen
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover, German Center for Lung Research (DZL), Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases, Frankfurt, Germany
| | | | - Charles S Haworth
- Cambridge Centre for Lung Infection, Royal Papworth Hospital and University of Cambridge, Cambridge, UK
| | - Michael R Loebinger
- Royal Brompton and Harefield Hospitals and National Heart and Lung Institute, Imperial College London, London, UK
| | - Katerina Dimakou
- 5th Respiratory Department and Bronchiectasis Unit, "Sotiria" General Hospital of Chest Diseases Medical Practice, Athens, Greece
| | - Megan L Crichton
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Anthony De Soyza
- Population and Health Science Institute, Newcastle University and NIHR Biomedical Research Centre for Ageing, Freeman Hospital, Newcastle, UK
| | - Montse Vendrell
- Department of Pulmonology, Dr Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), University of Girona, Girona, Spain
| | - Pierre-Regis Burgel
- Department of Respiratory Medicine and French Cystic Fibrosis National Reference Center, Hôpital Cochin, AP-HP, Paris, France
- Université Paris Cité, Inserm U1016, Institut Cochin, Paris, France
| | - Melissa McDonnell
- Department of Respiratory Medicine, Galway University Hospital, Galway, Ireland
| | - Sabina Skrgat
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Division of Internal Medicine, Pulmonary Department, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Luis Maiz Carro
- Chronic Bronchial Infection Unit, Pneumology Service, Ramón y Cajal Hospital, Alcalá de Henares University, Madrid, Spain
| | - Andres de Roux
- Pneumologische Praxis am Schloss Charlottenburg, Berlin, Germany
| | - Oriol Sibila
- Servicio de Neumología, Instituto Clínico de Respiratorio, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Apostolos Bossios
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Robert Wilson
- Royal Brompton and Harefield Hospitals and National Heart and Lung Institute, Imperial College London, London, UK
| | - Branislava Milenkovic
- Clinic for Pulmonary Diseases, University Clinical Center of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Rosario Menendez
- Pneumology Department, Hospital Universitario y Politécnico La Fe - Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Marlene Murris
- Department of Respiratory Diseases, CHU Toulouse, Toulouse, France
| | - Sermin Borekci
- Department of Pulmonology Diseases, Cerrahpasa Medical Faculty, Istanbul University - Cerrahpasa, Istanbul, Turkey
| | - Oxana Munteanu
- Pneumology/Allergology Division, University of Medicine and Pharmacy Nicolae Testemitanu, Chisinau, Moldova
| | - Dusanka Obradovic
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Institute for Pulmonary Diseases, Sremska Kamenica, Serbia
| | - Adam Nowinski
- Department of Epidemiology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Adelina Amorim
- Pulmonology Department, Centro Hospitalar Universitário S. João and Faculty of Medicine, University of Porto, Porto, Portugal
| | - Antoni Torres
- Servicio de Neumología, Instituto Clínico de Respiratorio, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Natalie Lorent
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Eva Van Braeckel
- Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Josje Altenburg
- Department of Pulmonary Diseases, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Michal Shteinberg
- Pulmonology Institute and CF Center, Carmel Medical Center, Haifa, Israel
- B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Wim Boersma
- Department of Pulmonary Diseases, Northwest Clinics, Alkmaar, The Netherlands
| | - Pieter C Goeminne
- Department of Respiratory Disease, AZ Nikolaas, Sint-Niklaas, Belgium
| | - J Stuart Elborn
- Faculty of Medicine, Health and Life Sciences, Queen's University, Belfast, UK
| | - Adam T Hill
- Department of Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Tobias Welte
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover, German Center for Lung Research (DZL), Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases, Frankfurt, Germany
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eva Polverino
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, CIBERES, Barcelona, Spain
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
78
|
Tang RD, Yue JQ, Guan WJ. Sputum colour as a simplified effective biomarker for clinical assessment of bronchiectasis. Eur Respir J 2024; 63:2400152. [PMID: 38636972 DOI: 10.1183/13993003.00152-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 04/20/2024]
Affiliation(s)
- Rui-di Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
- Guangzhou National Laboratory, Guangzhou, PR China
- Joint first authors
| | - Jun-Qing Yue
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
- Guangzhou National Laboratory, Guangzhou, PR China
- Joint first authors
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
- Guangzhou National Laboratory, Guangzhou, PR China
| |
Collapse
|
79
|
Gibbs C, Howarth T, Ticoalu A, Chen W, Ford PL, Abeyaratne A, Jayaram L, McCallum G, Heraganahally SS. Bronchiectasis among Indigenous adults in the Top End of the Northern Territory, 2011-2020: a retrospective cohort study. Med J Aust 2024; 220:188-195. [PMID: 38225723 DOI: 10.5694/mja2.52204] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/09/2023] [Indexed: 01/17/2024]
Abstract
OBJECTIVES To assess the prevalence of bronchiectasis among Aboriginal and Torres Strait Islander (Indigenous) adults in the Top End of the Northern Territory, and mortality among Indigenous adults with bronchiectasis. STUDY DESIGN Retrospective cohort study. SETTING, PARTICIPANTS Aboriginal and Torres Strait Islander adults (18 years or older) living in the Top End Health Service region of the NT in whom bronchiectasis was confirmed by chest computed tomography (CT) during 1 January 2011 - 31 December 2020. MAIN OUTCOME MEASURES Prevalence of bronchiectasis, and all-cause mortality among Indigenous adults with CT-confirmed bronchiectasis - overall, by sex, and by health district - based on 2011 population numbers (census data). RESULTS A total of 23 722 Indigenous adults lived in the Top End Health Service region in 2011; during 2011-2020, 459 people received chest CT-confirmed diagnoses of bronchiectasis. Their median age was 47.5 years (interquartile range [IQR], 39.9-56.8 years), 254 were women (55.3%), and 425 lived in areas classified as remote (93.0%). The estimated prevalence of bronchiectasis was 19.4 per 1000 residents (20.6 per 1000 women; 18.0 per 1000 men). The age-adjusted prevalence of bronchiectasis was 5.0 (95% CI, 1.4-8.5) cases per 1000 people in the Darwin Urban health area, and 18-36 cases per 1000 people in the three non-urban health areas. By 30 April 2023, 195 people with bronchiectasis had died (42.5%), at a median age of 60.3 years (IQR, 50.3-68.9 years). CONCLUSION The prevalence of bronchiectasis burden among Indigenous adults in the Top End of the NT is high, but differed by health district, as is all-cause mortality among adults with bronchiectasis. The socio-demographic and other factors that contribute to the high prevalence of bronchiectasis among Indigenous Australians should be investigated so that interventions for reducing its burden can be developed.
Collapse
Affiliation(s)
- Claire Gibbs
- Royal Darwin Hospital, Darwin, NT
- Flinders University, Darwin, NT
| | - Timothy Howarth
- Charles Darwin University, Darwin, NT
- University of Eastern Finland, Kuopio, Finland
| | | | - Winnie Chen
- Flinders University, Darwin, NT
- Menzies School of Health Research, Darwin, NT
| | - Payi L Ford
- Northern Institute, Charles Darwin University, Darwin, NT
| | | | - Lata Jayaram
- Western Health, Melbourne, VIC
- The University of Melbourne, Melbourne, VIC
| | | | | |
Collapse
|
80
|
Basavaraj A, Choate R, Becker BC, Aksamit TR, Metersky ML. Severity of bronchiectasis predicts use of and adherence to high frequency chest wall oscillation therapy - Analysis from the United States Bronchiectasis and NTM research registry. Respir Med 2024; 223:107555. [PMID: 38307319 DOI: 10.1016/j.rmed.2024.107555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND High frequency chest wall oscillation (HFCWO) is a form of airway clearance therapy that has been available since the mid-1990s and is routinely used by patients suffering from retained pulmonary secretions. Patients with cystic fibrosis (CF), neuromuscular disease (NMD), and other disorders, including bronchiectasis (BE) and COPD (without BE), are commonly prescribed this therapy. Limited evidence exists describing HFCWO use in the BE population, its impact on long-term management of disease, and the specific patient populations most likely to benefit from this therapy. This study sought to characterize the clinical characteristics of patients with BE who have documented use of HFCWO at baseline and 1-year follow-up. METHODS An analysis from a large national database registry of patients with BE was performed. Demographic and clinical characteristics of all patients receiving HFCWO therapy at baseline are reported. Patients were stratified into two groups based on continued or discontinued use of HFCWO therapy at 1-year follow-up. RESULTS Over half (54.8 %) of patients who reported using HFCWO therapy had a Modified Bronchiectasis Severity Index (m-BSI) classified as severe, and the majority (81.4 %) experienced an exacerbation in the prior two years. Of patients with 1-year follow-up data, 73 % reported continued use of HFCWO. Compared to patients who discontinued therapy, these patients were more severe at baseline and at follow-up suggesting that patients with more severe disease are more likely to continue HFCWO therapy. CONCLUSIONS Patients who have more severe disease and continue to experience exacerbations and hospitalizations are more likely to continue HFCWO therapy. CLINICAL TRIAL REGISTRATION NA.
Collapse
Affiliation(s)
- Ashwin Basavaraj
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine, 462 First Avenue, Administration Building OBV, A601, New York, NY, 10016, USA.
| | - Radmila Choate
- University of Kentucky College of Public Health, Lexington, KY, USA
| | - Brian C Becker
- Department of Medical Affairs, Baxter, St. Paul, Minnesota, USA
| | - Timothy R Aksamit
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mark L Metersky
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
81
|
Shen D, Lv X, Zhang H, Fei C, Feng J, Zhou J, Cao L, Ying Y, Li N, Ma X. Association between Clinical Characteristics and Microbiota in Bronchiectasis Patients Based on Metagenomic Next-Generation Sequencing Technology. Pol J Microbiol 2024; 73:59-68. [PMID: 38437464 PMCID: PMC10911701 DOI: 10.33073/pjm-2024-007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/15/2024] [Indexed: 03/06/2024] Open
Abstract
This study aimed to investigate the disparities between metagenomic next-generation sequencing (mNGS) and conventional culture results in patients with bronchiectasis. Additionally, we sought to investigate the correlation between the clinical characteristics of patients and their microbiome profiles. The overarching goal was to enhance the effective management and treatment of bronchiectasis patients, providing a theoretical foundation for healthcare professionals. A retrospective survey was conducted on 67 bronchiectasis patients admitted to The First Hospital of Jiaxing from October 2019 to March 2023. Clinical baseline information, inflammatory indicators, and pathogen detection reports, including mNGS, conventional blood culture, bronchoalveolar lavage fluid (BALF) culture, and sputum culture results, were collected. By comparing the results of mNGS and conventional culture, the differences in pathogen detection rate and pathogen types were explored, and the diagnostic performance of mNGS compared to conventional culture was evaluated. Based on the various pathogens detected by mNGS, the association between clinical characteristics of bronchiectasis patients and mNGS microbiota results was analyzed. The number and types of pathogens detected by mNGS were significantly larger than those detected by conventional culture. The diagnostic efficacy of mNGS was significantly superior to conventional culture for all types of pathogens, particularly in viral detection (p < 0.01). Regarding pathogen detection rate, the bacteria with the highest detection rate were Pseudomonas aeruginosa (17/58) and Haemophilus influenzae (11/58); the fungus with the highest detection rate was Aspergillus fumigatus (10/21), and the virus with the highest detection rate was human herpes virus 4 (4/11). Differences were observed between the positive and negative groups for P. aeruginosa in terms of common scoring systems for bronchiectasis and whether the main symptom of bronchiectasis manifested as thick sputum (p < 0.05). Significant distinctions were also noted between the positive and negative groups for A. fumigatus regarding Reiff score, neutrophil percentage, bronchiectasis etiology, and alterations in treatment plans following mNGS results reporting (p < 0.05). Notably, 70% of patients with positive A. fumigatus infection opted to change their treatment plans. The correlation study between clinical characteristics of bronchiectasis patients and mNGS microbiological results revealed that bacteria, such as P. aeruginosa, and fungi, such as A. fumigatus, were associated with specific clinical features of patients. This underscored the significance of mNGS in guiding personalized treatment approaches. mNGS could identify multiple pathogens in different types of bronchiectasis samples and was a rapid and effective diagnostic tool for pathogen identification. Its use was recommended for diagnosing the causes of infections in bronchiectasis patients.
Collapse
Affiliation(s)
- Dongfeng Shen
- The Intensive Care of Unit, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| | - Xiaodong Lv
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| | - Hui Zhang
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| | - Chunyuan Fei
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| | - Jing Feng
- Department of Respiratory, Zhengzhou YIHE Hospital, Zhengzhou, China
| | - Jiaqi Zhou
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| | - Linfeng Cao
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| | - Ying Ying
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| | - Na Li
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| | - Xiaolong Ma
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| |
Collapse
|
82
|
Chalmers JD, Badorrek P, Diefenbach C, Kögler H, Sauter W, Kreideweiss S, Hohlfeld JM. The preclinical and phase 1 development of the novel oral cathepsin C inhibitor BI 1291583. ERJ Open Res 2024; 10:00725-2023. [PMID: 38529344 PMCID: PMC10962448 DOI: 10.1183/23120541.00725-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/15/2024] [Indexed: 03/27/2024] Open
Abstract
Preclinical and phase 1 study results indicate that BI 1291583 is a reversible, highly potent and highly selective CatC inhibitor that markedly inhibits active NSP production in a dose-dependent manner, supporting phase 2 trials in bronchiectasis patients https://bit.ly/47PZ8E5.
Collapse
Affiliation(s)
- James D. Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Philipp Badorrek
- Department of Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | | | - Harald Kögler
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | - Wiebke Sauter
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Jens M. Hohlfeld
- Department of Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Centre for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
83
|
Asakura T, Okuda K, Chen G, Dang H, Kato T, Mikami Y, Schworer SA, Gilmore RC, Radicioni G, Hawkins P, Barbosa Cardenas SM, Saito M, Cawley AM, De la Cruz G, Chua M, Alexis NE, Masugi Y, Noone PG, Ribeiro CMP, Kesimer M, Olivier KN, Hasegawa N, Randell SH, O’Neal WK, Boucher RC. Proximal and Distal Bronchioles Contribute to the Pathogenesis of Non-Cystic Fibrosis Bronchiectasis. Am J Respir Crit Care Med 2024; 209:374-389. [PMID: 38016030 PMCID: PMC10878387 DOI: 10.1164/rccm.202306-1093oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023] Open
Abstract
Rationale: Non-cystic fibrosis bronchiectasis (NCFB) may originate in bronchiolar regions of the lung. Accordingly, there is a need to characterize the morphology and molecular characteristics of NCFB bronchioles. Objectives: Test the hypothesis that NCFB exhibits a major component of bronchiolar disease manifest by mucus plugging and ectasia. Methods: Morphologic criteria and region-specific epithelial gene expression, measured histologically and by RNA in situ hybridization and immunohistochemistry, identified proximal and distal bronchioles in excised NCFB lungs. RNA in situ hybridization and immunohistochemistry assessed bronchiolar mucus accumulation and mucin gene expression. CRISPR-Cas9-mediated IL-1R1 knockout in human bronchial epithelial cultures tested IL-1α and IL-1β contributions to mucin production. Spatial transcriptional profiling characterized NCFB distal bronchiolar gene expression. Measurements and Main Results: Bronchiolar perimeters and lumen areas per section area were increased in proximal, but not distal, bronchioles in NCFB versus control lungs, suggesting proximal bronchiolectasis. In NCFB, mucus plugging was observed in ectatic proximal bronchioles and associated nonectatic distal bronchioles in sections with disease. MUC5AC and MUC5B mucins were upregulated in NCFB proximal bronchioles, whereas MUC5B was selectively upregulated in distal bronchioles. Bronchiolar mucus plugs were populated by IL-1β-expressing macrophages. NCFB sterile sputum supernatants induced human bronchial epithelial MUC5B and MUC5AC expression that was >80% blocked by IL-1R1 ablation. Spatial transcriptional profiling identified upregulation of genes associated with secretory cells, hypoxia, interleukin pathways, and IL-1β-producing macrophages in mucus plugs and downregulation of epithelial ciliogenesis genes. Conclusions: NCFB exhibits distinctive proximal and distal bronchiolar disease. Both bronchiolar regions exhibit bronchiolar secretory cell features and mucus plugging but differ in mucin gene regulation and ectasia.
Collapse
Affiliation(s)
- Takanori Asakura
- Marsico Lung Institute/Cystic Fibrosis Research Center
- Department of Clinical Medicine, Laboratory of Bioregulatory Medicine, Kitasato University School of Pharmacy, Tokyo, Japan
- Department of Respiratory Medicine, Kitasato University, Kitasato Institute Hospital, Tokyo, Japan
- Division of Pulmonary Medicine, Department of Medicine
| | - Kenichi Okuda
- Marsico Lung Institute/Cystic Fibrosis Research Center
| | - Gang Chen
- Marsico Lung Institute/Cystic Fibrosis Research Center
| | - Hong Dang
- Marsico Lung Institute/Cystic Fibrosis Research Center
| | - Takafumi Kato
- Marsico Lung Institute/Cystic Fibrosis Research Center
| | - Yu Mikami
- Marsico Lung Institute/Cystic Fibrosis Research Center
| | | | | | | | | | | | - Minako Saito
- Marsico Lung Institute/Cystic Fibrosis Research Center
| | | | | | - Michael Chua
- Marsico Lung Institute/Cystic Fibrosis Research Center
| | - Neil E. Alexis
- Center for Environmental Medicine, Asthma, and Lung Biology, Division of Allergy and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | | - Kenneth N. Olivier
- Marsico Lung Institute/Cystic Fibrosis Research Center
- Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan; and
| | | | | | | |
Collapse
|
84
|
Dickinson JD, Evans CM, Dickey BF. Small Airways in Non-Cystic Fibrosis Bronchiectasis. Am J Respir Crit Care Med 2024; 209:347-349. [PMID: 38190706 PMCID: PMC10878373 DOI: 10.1164/rccm.202312-2275ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024] Open
Affiliation(s)
- John D Dickinson
- Department of Internal Medicine University of Nebraska Medical Center Omaha, Nebraska
| | - Christopher M Evans
- Division of Pulmonary Sciences and Critical Care Medicine University of Colorado Denver School of Medicine Denver, Colorado
| | - Burton F Dickey
- Department of Pulmonary Medicine The University of Texas MD Anderson Cancer Center Houston, Texas
| |
Collapse
|
85
|
Mulette P, Perotin JM, Muggeo A, Guillard T, Brisebarre A, Meyer H, Hagenburg J, Ancel J, Dormoy V, Vuiblet V, Launois C, Lebargy F, Deslee G, Dury S. Bronchiectasis in renal transplant patients: a cross-sectional study. Eur J Med Res 2024; 29:120. [PMID: 38350996 PMCID: PMC10863148 DOI: 10.1186/s40001-024-01701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Bronchiectasis is a chronic airway disease characterized by permanent and irreversible abnormal dilatation of bronchi. Several studies have reported the development of bronchiectasis after renal transplantation (RT), but no prospective study specifically assessed bronchiectasis in this population. This study aimed to compare features of patients with bronchiectasis associated with RT to those with idiopathic bronchiectasis. METHODS Nineteen patients with bronchiectasis associated with RT (RT-B group) and 23 patients with idiopathic bronchiectasis (IB group) were prospectively included in this monocentric cross-sectional study. All patients underwent clinical, functional, laboratory, and CT scan assessments. Sputum was collected from 25 patients (n = 11 with RT-B and n = 14 with IB) and airway microbiota was analyzed using an extended microbiological culture. RESULTS Dyspnea (≥ 2 on mMRC scale), number of exacerbations, pulmonary function tests, total bronchiectasis score, severity and prognosis scores (FACED and E-FACED), and quality of life scores (SGRQ and MOS SF-36) were similar in the RT-B and IB groups. By contrast, chronic cough was less frequent in the RT-B group than in the IB group (68% vs. 96%, p = 0.03). The prevalence and diversity of the airway microbiota in sputum were similar in the two groups. CONCLUSION Clinical, functional, thoracic CT scan, and microbiological characteristics of bronchiectasis are overall similar in patients with IB and RT-B. These results highlight that in RT patients, chronic respiratory symptoms and/or airway infections should lead to consider the diagnosis of bronchiectasis. Further studies are required to better characterize the pathophysiology of RT-B including airway microbiota, its incidence, and impact on therapeutic management.
Collapse
Affiliation(s)
- Pauline Mulette
- Department of Respiratory Diseases, Reims University Hospital, Maison Blanche University Hospital, 45, Rue de Cognacq-Jay, 51 092, Reims Cedex, France.
| | - Jeanne-Marie Perotin
- Department of Respiratory Diseases, Reims University Hospital, Maison Blanche University Hospital, 45, Rue de Cognacq-Jay, 51 092, Reims Cedex, France
- Inserm UMR-S 1250, P3Cell, SFR CAP-Santé, University of Reims Champagne-Ardenne, Reims, France
| | - Anaëlle Muggeo
- Inserm UMR-S 1250, P3Cell, SFR CAP-Santé, University of Reims Champagne-Ardenne, Reims, France
- Laboratory of Bacteriology, Virology and Hygiene, Reims University Hospital, Reims, France
| | - Thomas Guillard
- Inserm UMR-S 1250, P3Cell, SFR CAP-Santé, University of Reims Champagne-Ardenne, Reims, France
- Laboratory of Bacteriology, Virology and Hygiene, Reims University Hospital, Reims, France
| | - Audrey Brisebarre
- Inserm UMR-S 1250, P3Cell, SFR CAP-Santé, University of Reims Champagne-Ardenne, Reims, France
| | - Hélène Meyer
- Department of Respiratory Diseases, Valenciennes Hospital Center, Valenciennes, France
| | - Jean Hagenburg
- Department of Respiratory Diseases, Reims University Hospital, Maison Blanche University Hospital, 45, Rue de Cognacq-Jay, 51 092, Reims Cedex, France
| | - Julien Ancel
- Department of Respiratory Diseases, Reims University Hospital, Maison Blanche University Hospital, 45, Rue de Cognacq-Jay, 51 092, Reims Cedex, France
| | - Valérian Dormoy
- Inserm UMR-S 1250, P3Cell, SFR CAP-Santé, University of Reims Champagne-Ardenne, Reims, France
| | - Vincent Vuiblet
- Department of Nephrology and Renal Transplantation, Reims University Hospital, Reims, France
| | - Claire Launois
- Department of Respiratory Diseases, Reims University Hospital, Maison Blanche University Hospital, 45, Rue de Cognacq-Jay, 51 092, Reims Cedex, France
- Inserm UMR-S 1250, P3Cell, SFR CAP-Santé, University of Reims Champagne-Ardenne, Reims, France
| | - François Lebargy
- Department of Respiratory Diseases, Reims University Hospital, Maison Blanche University Hospital, 45, Rue de Cognacq-Jay, 51 092, Reims Cedex, France
| | - Gaëtan Deslee
- Department of Respiratory Diseases, Reims University Hospital, Maison Blanche University Hospital, 45, Rue de Cognacq-Jay, 51 092, Reims Cedex, France
- Inserm UMR-S 1250, P3Cell, SFR CAP-Santé, University of Reims Champagne-Ardenne, Reims, France
| | - Sandra Dury
- Department of Respiratory Diseases, Reims University Hospital, Maison Blanche University Hospital, 45, Rue de Cognacq-Jay, 51 092, Reims Cedex, France
- EA7509 IRMAIC, University of Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
86
|
Chen W, Ran S, Li C, Li Z, Wei N, Li J, Li N. Elevated Eosinophil Counts in Acute Exacerbations of Bronchiectasis: Unveiling a Distinct Clinical Phenotype. Lung 2024; 202:53-61. [PMID: 38228883 PMCID: PMC10896926 DOI: 10.1007/s00408-023-00668-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Non-cystic fibrosis bronchiectasis is a chronic respiratory disease characterized by bronchial dilation. However, the significance of elevated eosinophil counts in acute exacerbations of bronchiectasis remains unclear. METHODS This retrospective case-control study included 169 hospitalized patients with acute exacerbations of non-cystic fibrosis bronchiectasis. Based on blood eosinophil levels, patients were categorized into eosinophilic and non-eosinophilic bronchiectasis groups. Various clinical variables, including lung function, comorbidities and clinical features were collected for analysis. The study aimed to examine the differences between these groups and their clinical phenotypes. RESULTS Eosinophilic bronchiectasis (EB) was present in approximately 22% of all hospitalized patients with bronchiectasis, and it was more prevalent among male smokers (P < 0.01). EB exhibited greater severity of bronchiectasis, including worse airway obstruction, higher scores in the E-FACED (FACED combined with exacerbations) and bronchiectasis severity index (BSI), a high glucocorticoids medication possession ratio, and increased hospitalization cost (P < 0.05 or P < 0.01). Furthermore, we observed a significant positive correlation between blood eosinophil count and both sputum eosinophils (r = 0.49, P < 0.01) and serum total immunoglobulin E levels (r = 0.21, P < 0.05). Additional analysis revealed that patients with EB had a higher frequency of shortness of breath (P < 0.05), were more likely to have comorbid sinusitis (P < 0.01), and exhibited a greater number of lung segments affected by bronchiectasis (P < 0.01). CONCLUSIONS These findings suggest that EB presents a distinct pattern of bronchiectasis features, confirming the notion that it is a specific phenotype.
Collapse
Affiliation(s)
- Weixin Chen
- Department of Chinese and Western Medicine in Clinical Medicine, The Clinical School of Chinese and Western Medicine of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Siyi Ran
- Department of Chinese and Western Medicine in Clinical Medicine, The Clinical School of Chinese and Western Medicine of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Chenchang Li
- Department of Chinese and Western Medicine in Clinical Medicine, The Clinical School of Chinese and Western Medicine of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhixin Li
- Department of Chinese and Western Medicine in Clinical Medicine, The Clinical School of Chinese and Western Medicine of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Nili Wei
- State Key Laboratory of Respiratory Disease, Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Naijian Li
- State Key Laboratory of Respiratory Disease, Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
87
|
van der Bie S, Haaksma ME, Vermin B, van Assema H, van Gorp ECM, Langerak T, Endeman H, Snijders D, van den Akker JPC, van Houten MA, van Lelyveld SFL, Goeijenbier M. A Systematic Review of the Pulmonary Microbiome in Patients with Acute Exacerbation COPD Requiring ICU Admission. J Clin Med 2024; 13:472. [PMID: 38256606 PMCID: PMC10816170 DOI: 10.3390/jcm13020472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) is a major health concern. Acute exacerbations (AECOPD) may require intensive care unit (ICU) admission and mechanical ventilation. Acute infections and chronic colonization of the respiratory system are known to precipitate AECOPD. Detailed knowledge of the respiratory microbiome could lead to effective treatment and prevention of exacerbations. Objective: The aim of this review is to summarize the available evidence on the respiratory microbiome of patients with a severe AECOPD requiring mechanical ventilation and intensive care admission. Methods: A systematic literature search was conducted to identify the published papers until January 2023. The collected data were then subjected to qualitative analysis. After the first analysis, a secondary focused review of the most recent publications studying the relationship between microbiome and mortality in AECOPD was performed. Results: Out of 120 screened articles six articles were included in this review. Potentially pathogenic microorganisms (PPMs) were identified in 30% to 72% of the patients with community-acquired bacteria, gram-negative enteric bacilli, Stenotrophomonas and Pseudomonas being the most frequently isolated. During hospitalization, 21% of patients experienced colonization by PPMs. Adequate antimicrobial therapy resulted in the eradication of 77% of the identified PPMs. However, 24% of the bacteria displayed multi-drug resistance leading to prolonged or failure of eradication. Conclusion: PPMs are prevalent in a significant proportion of patients experiencing an AECOPD. The most identified PPMs include community-acquired pathogens and gram-negative enteric bacilli. Notably, no differences in mortality or duration of ventilation were observed between patients with and without isolated PPMs. However, the included studies did not investigate the virome of the patients, which may influence the microbiome and the outcome of infection. Therefore, further research is essential to comprehensively investigate the complete microbial and viral composition of the lower respiratory system in COPD patients admitted to the ICU.
Collapse
Affiliation(s)
- Sjoerd van der Bie
- Department of Intensive Care Medicine, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands; (S.v.d.B.); (M.E.H.); (B.V.); (H.v.A.)
| | - Mark E. Haaksma
- Department of Intensive Care Medicine, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands; (S.v.d.B.); (M.E.H.); (B.V.); (H.v.A.)
| | - Ben Vermin
- Department of Intensive Care Medicine, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands; (S.v.d.B.); (M.E.H.); (B.V.); (H.v.A.)
| | - Hidde van Assema
- Department of Intensive Care Medicine, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands; (S.v.d.B.); (M.E.H.); (B.V.); (H.v.A.)
| | - Eric C. M. van Gorp
- Department of Viroscience, Erasmus MC, 3000 CA Rotterdam, The Netherlands; (E.C.M.v.G.); (T.L.)
| | - Thomas Langerak
- Department of Viroscience, Erasmus MC, 3000 CA Rotterdam, The Netherlands; (E.C.M.v.G.); (T.L.)
| | - Henrik Endeman
- Department of Intensive Care Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; (H.E.); (J.P.C.v.d.A.)
| | - Dominic Snijders
- Department of Pulmonology, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands;
| | | | - Marlies A. van Houten
- Department of Pediatric Medicine, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands;
| | | | - Marco Goeijenbier
- Department of Intensive Care Medicine, Spaarne Gasthuis Hoofddorp, 2134 TM Hoofddorp, The Netherlands; (S.v.d.B.); (M.E.H.); (B.V.); (H.v.A.)
- Department of Viroscience, Erasmus MC, 3000 CA Rotterdam, The Netherlands; (E.C.M.v.G.); (T.L.)
- Department of Intensive Care Medicine, Erasmus MC, 3000 CA Rotterdam, The Netherlands; (H.E.); (J.P.C.v.d.A.)
| |
Collapse
|
88
|
Keicho N, Hijikata M, Miyabayashi A, Wakabayashi K, Yamada H, Ito M, Morimoto K. Impact of primary ciliary dyskinesia: Beyond sinobronchial syndrome in Japan. Respir Investig 2024; 62:179-186. [PMID: 38154292 DOI: 10.1016/j.resinv.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
Primary ciliary dyskinesia (PCD) is a rare genetic disorder characterized by impaired motile cilia function, particularly in the upper and lower airways. To date, more than 50 causative genes related to the movement, development, and maintenance of cilia have been identified. PCD mostly follows an autosomal recessive inheritance pattern, in which PCD symptoms manifest only in the presence of pathogenic variants in both alleles. Several genes causing PCD have been recently identified that neither lead to situs inversus nor cause definitive abnormalities in ciliary ultrastructure. Importantly, the distribution of disease-causing genes and pathogenic variants varies depending on ethnicity. In Japan, homozygosity for a ∼27.7-kb deletion of DRC1 is estimated to be the most common cause of PCD, presumably as a founder mutation. The clinical picture of PCD is similar to that of sinobronchial syndrome, thus making its differentiation from diffuse panbronchiolitis and other related disorders difficult. Given the diagnostic challenges, many cases remain undiagnosed or misdiagnosed, particularly in adults. While no fundamental cure is currently available, lifelong medical subsidies are provided in Japan, and proper respiratory management, along with continued prevention and treatment of infections, is believed to mitigate the decline in respiratory function. Timely action will be necessary when specific treatments for PCD become available in the future. This narrative review focuses on variations in the disease status of PCD in a non-Western country.
Collapse
Affiliation(s)
- Naoto Keicho
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan.
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Akiko Miyabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Keiko Wakabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Hiroyuki Yamada
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Masashi Ito
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Kozo Morimoto
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| |
Collapse
|
89
|
Franklin M, Minshall ME, Pontenani F, Devarajan S. Impact of Pseudomonas aeruginosa on resource utilization and costs in patients with exacerbated non-cystic fibrosis bronchiectasis. J Med Econ 2024; 27:671-677. [PMID: 38646702 DOI: 10.1080/13696998.2024.2340382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024]
Abstract
AIMS Non-cystic fibrosis bronchiectasis (NCFB) is a chronic progressive respiratory disorder occurring at a rate ranging from 4.2 to 278.1 cases per 100,000 persons, depending on age, in the United States. For many patients with NCFB, the presence of Pseudomonas aeruginosa (PA) makes treatment more complicated and typically has worse outcomes. Management of NCFB can be challenging, warranting a better understanding of the burden of illness for NCFB, treatments applied, healthcare resources used, and subsequent treatment costs. Comparing patients diagnosed with exacerbated NCFB, with or without PA on antibiotic utilization, treatments, and healthcare resources utilization and costs was the purpose of this study. MATERIALS AND METHODS This was a retrospective cohort study of commercial claims from IQVIA's PharMetrics Plus database (January 1,2006-December 31, 2020). Study patients with a diagnosis of NCFB were stratified into two groups based on the presence or absence of PA, then followed to identify demographic characteristics, comorbid conditions, antibiotic treatment regimen prescribed, healthcare resources utilized, and costs of care. RESULTS The results showed that patients with exacerbated NCFB who were PA+ had significantly more oral antibiotic fills per patient per year, more inpatient admissions with a longer length of stay, and more outpatient encounters than those who were PA-. For costs, PA+ patients also had significantly greater total healthcare costs per patient when compared to those who were PA-. CONCLUSION Exacerbated NCFB with PA+ was associated with increased antibiotic usage, greater resource utilization, and increased costs. The major contributor to the cost differences was the use of inpatient services. Treatment strategies aimed at reducing the need for inpatient treatment could lessen the disparities observed in patients with NCFB.
Collapse
Affiliation(s)
- Meg Franklin
- Franklin Pharmaceutical Consulting, Cary, NC, USA
- PRECISIONheor, Boston, MA, USA
| | | | | | - Sunjay Devarajan
- Department of Pulmonary/Critical Care Medicine, Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
90
|
Atto B, Anteneh Y, Bialasiewicz S, Binks MJ, Hashemi M, Hill J, Thornton RB, Westaway J, Marsh RL. The Respiratory Microbiome in Paediatric Chronic Wet Cough: What Is Known and Future Directions. J Clin Med 2023; 13:171. [PMID: 38202177 PMCID: PMC10779485 DOI: 10.3390/jcm13010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic wet cough for longer than 4 weeks is a hallmark of chronic suppurative lung diseases (CSLD), including protracted bacterial bronchitis (PBB), and bronchiectasis in children. Severe lower respiratory infection early in life is a major risk factor of PBB and paediatric bronchiectasis. In these conditions, failure to clear an underlying endobronchial infection is hypothesised to drive ongoing inflammation and progressive tissue damage that culminates in irreversible bronchiectasis. Historically, the microbiology of paediatric chronic wet cough has been defined by culture-based studies focused on the detection and eradication of specific bacterial pathogens. Various 'omics technologies now allow for a more nuanced investigation of respiratory pathobiology and are enabling development of endotype-based models of care. Recent years have seen substantial advances in defining respiratory endotypes among adults with CSLD; however, less is understood about diseases affecting children. In this review, we explore the current understanding of the airway microbiome among children with chronic wet cough related to the PBB-bronchiectasis diagnostic continuum. We explore concepts emerging from the gut-lung axis and multi-omic studies that are expected to influence PBB and bronchiectasis endotyping efforts. We also consider how our evolving understanding of the airway microbiome is translating to new approaches in chronic wet cough diagnostics and treatments.
Collapse
Affiliation(s)
- Brianna Atto
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Yitayal Anteneh
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
| | - Seweryn Bialasiewicz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Michael J. Binks
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Mostafa Hashemi
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (M.H.); (J.H.)
| | - Jane Hill
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (M.H.); (J.H.)
- Spire Health Technology, PBC, Seattle, WA 98195, USA
| | - Ruth B. Thornton
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, WA 6009, Australia
| | - Jacob Westaway
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD 4811, Australia
| | - Robyn L. Marsh
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
| |
Collapse
|
91
|
McCallum GB, Marchant JM, Goyal V. Editorial: Current advances in paediatric bronchiectasis: from early childhood prevention to transition to adult care. Front Pediatr 2023; 11:1336029. [PMID: 38125820 PMCID: PMC10731353 DOI: 10.3389/fped.2023.1336029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Affiliation(s)
- G. B. McCallum
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - J. M. Marchant
- Department of Respiratory and Sleep Medicine, Queensland Children’s Hospital Queensland University of Technology, Brisbane, QLD, Australia
| | - V. Goyal
- Department of Respiratory and Sleep Medicine, Queensland Children’s Hospital Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
92
|
Bleakley AS, Kho S, Binks MJ, Pizzutto S, Chang AB, Beissbarth J, Minigo G, Marsh RL. Extracellular traps are evident in Romanowsky-stained smears of bronchoalveolar lavage from children with non-cystic fibrosis bronchiectasis. Respirology 2023; 28:1126-1135. [PMID: 37648649 PMCID: PMC10947271 DOI: 10.1111/resp.14587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND AND OBJECTIVE The importance of extracellular traps (ETs) in chronic respiratory conditions is increasingly recognized but their role in paediatric bronchiectasis is poorly understood. The specialized techniques currently required to study ETs preclude routine clinical use. A simple and cost-effective ETs detection method is needed to support diagnostic applications. We aimed to determine whether ETs could be detected using light microscopy-based assessment of Romanowsky-stained bronchoalveolar lavage (BAL) slides from children with bronchiectasis, and whether the ETs cellular origin could be determined. METHODS Archived Romanowsky-stained BAL slides from a cross-sectional study of children with bronchiectasis were examined for ETs using light microscopy. The cellular origin of individual ETs was determined based on morphology and physical contact with surrounding cell(s). RESULTS ETs were observed in 78.7% (70/89) of BAL slides with neutrophil (NETs), macrophage (METs), eosinophil (EETs) and lymphocyte (LETs) ETs observed in 32.6%, 51.7%, 4.5% and 9%, respectively. ETs of indeterminate cellular origin were present in 59.6% of slides. Identifiable and indeterminate ETs were co-detected in 43.8% of slides. CONCLUSION BAL from children with bronchiectasis commonly contains multiple ET types that are detectable using Romanowsky-stained slides. While specialist techniques remain necessary to determining the cellular origin of all ETs, screening of Romanowsky-stained slides presents a cost-effective method that is well-suited to diagnostic settings. Our findings support further research to determine whether ETs can be used to define respiratory endotypes and to understand whether ETs-specific therapies may be required to resolve airway inflammation among children with bronchiectasis.
Collapse
Affiliation(s)
- Amy S. Bleakley
- Child and Maternal Health DivisionMenzies School of Health Research, Charles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Steven Kho
- Global and Tropical Health DivisionMenzies School of Health Research, Charles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Michael J. Binks
- Child and Maternal Health DivisionMenzies School of Health Research, Charles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Susan Pizzutto
- Research Institute for the Environment and Livelihoods, Faculty of Science and TechnologyCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Anne B. Chang
- Child and Maternal Health DivisionMenzies School of Health Research, Charles Darwin UniversityDarwinNorthern TerritoryAustralia
- Department of Respiratory and Sleep MedicineQueensland Children's Hospital and Australian Centre for Health Services Innovation, Queensland University of TechnologyBrisbaneQueenslandAustralia
| | - Jemima Beissbarth
- Child and Maternal Health DivisionMenzies School of Health Research, Charles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Gabriela Minigo
- Global and Tropical Health DivisionMenzies School of Health Research, Charles Darwin UniversityDarwinNorthern TerritoryAustralia
- School of Medicine, Faculty of HealthCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Robyn L. Marsh
- Child and Maternal Health DivisionMenzies School of Health Research, Charles Darwin UniversityDarwinNorthern TerritoryAustralia
- School of Health SciencesUniversity of TasmaniaLauncestonTasmaniaAustralia
| |
Collapse
|
93
|
Choi H, Ryu S, Keir HR, Giam YH, Dicker AJ, Perea L, Richardson H, Huang JTJ, Cant E, Blasi F, Pollock J, Shteinberg M, Finch S, Aliberti S, Sibila O, Shoemark A, Chalmers JD. Inflammatory Molecular Endotypes in Bronchiectasis: A European Multicenter Cohort Study. Am J Respir Crit Care Med 2023; 208:1166-1176. [PMID: 37769155 DOI: 10.1164/rccm.202303-0499oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
Rationale: Although inflammation and infection are key disease drivers in bronchiectasis, few studies have integrated host inflammatory and microbiome data to guide precision medicine. Objectives: To identify clusters among patients with bronchiectasis on the basis of inflammatory markers and to assess the association between inflammatory endotypes, microbiome characteristics, and exacerbation risk. Methods: Patients with stable bronchiectasis were enrolled at three European centers, and cluster analysis was used to stratify the patients according to the levels of 33 sputum and serum inflammatory markers. Clusters were compared in terms of microbiome composition (16S ribosomal RNA sequencing) and exacerbation risk over a 12-month follow-up. Measurements and Main Results: A total of 199 patients were enrolled (109 [54.8%] female; median age, 69 yr). Four clusters of patients were defined according to their inflammatory profiles: cluster 1, milder neutrophilic inflammation; cluster 2, mixed-neutrophilic and type 2; cluster 3, most severe neutrophilic; and cluster 4, mixed-epithelial and type 2. Lower microbiome diversity was associated with more severe inflammatory clusters (P < 0.001), and β-diversity analysis demonstrated distinct microbiome profiles associated with each inflammatory cluster (P = 0.001). Proteobacteria and Pseudomonas at phylum and genus levels, respectively, were more enriched in clusters 2 and 3 than in clusters 1 and 4. Furthermore, patients in cluster 2 (rate ratio [RR], 1.49; 95% confidence interval [CI], 1.16-1.92) and cluster 3 (RR, 1.61; 95% CI, 1.12-2.32) were at higher risk of exacerbation over a 12-month follow-up compared with cluster 1, even after adjustment for prior exacerbation history. Conclusions: Bronchiectasis inflammatory endotypes are associated with distinct microbiome profiles and future exacerbation risk.
Collapse
Affiliation(s)
- Hayoung Choi
- Division of Molecular and Clinical Medicine and
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Soorack Ryu
- Biostatistical Consulting and Research Lab, Medical Research Collaborating Center, Hanyang University, Seoul, Republic of Korea
| | | | | | | | - Lidia Perea
- Division of Molecular and Clinical Medicine and
| | | | - Jeffrey T J Huang
- Division of Systems Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Erin Cant
- Division of Molecular and Clinical Medicine and
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Michal Shteinberg
- Pulmonology Institute and CF Center, Carmel Medical Center and the Technion-Israel Institute of Technology, Haifa, Israel
| | - Simon Finch
- Division of Molecular and Clinical Medicine and
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Milan, Italy; and
| | - Oriol Sibila
- Respiratory Department, Hospital Clínic, IDIBAPS, CIBERES, Universitat de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
94
|
McShane PJ. Precision Endotyping in Bronchiectasis. Am J Respir Crit Care Med 2023; 208:1147-1148. [PMID: 37917354 PMCID: PMC10868361 DOI: 10.1164/rccm.202310-1827ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 11/04/2023] Open
Affiliation(s)
- Pamela J McShane
- Division of Pulmonary and Critical Care Medicine The University of Texas Health Science Center at Tyler Tyler, Texas
| |
Collapse
|
95
|
McShane PJ. Investigation and Management of Bronchiectasis in Nontuberculous Mycobacterial Pulmonary Disease. Clin Chest Med 2023; 44:731-742. [PMID: 37890912 DOI: 10.1016/j.ccm.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Patients with nontuberculous mycobacterial (NTM) lung infection require life-long attention to their bronchiectasis, whether or not their NTM infection has been cured. The identification of the cause of bronchiectasis and/or coexisting diseases is important because it may affect therapeutic strategies. Airway clearance is the mainstay of bronchiectasis management. It can include multiple breathing techniques, devices, and mucoactive agents. The exact airway clearance regimen should be customized to each individual patient. Chronic pathogenic airway bacteria, such as Pseudomonas aeruginosa, may warrant consideration of eradication therapy and/or chronic use of maintenance inhaled antibiotics.
Collapse
Affiliation(s)
- Pamela J McShane
- Department of Medicine, University of Texas Health Science Center at Tyler, 11937 Hwy 271, Tyler, TX 75708, USA.
| |
Collapse
|
96
|
Ito M, Furuuchi K, Fujiwara K, Watanabe F, Kodama T, Uesugi F, Tanaka Y, Yoshiyama T, Kurashima A, Ohta K, Morimoto K. Multiple bacterial culture positivity reflects the severity and prognosis as bronchiectasis in Mycobacterium avium complex pulmonary disease. Respir Med 2023; 219:107417. [PMID: 37775085 DOI: 10.1016/j.rmed.2023.107417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/21/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Bacterial coinfections are observed in 19-66% of patients with Mycobacterium avium complex pulmonary disease (MAC-PD) during the entire duration of the disease. The impact of bacterial coinfection at diagnosis on the clinical course of MAC-PD has not been reported. METHODS Among 558 patients diagnosed with MAC-PD between January 2016 and December 2020, 218 patients who underwent sputum culture tests twice or more within one year before and after diagnosis were included. We compared the patient characteristics and disease courses between the patients who had the same bacterial species detected twice or more (bacterial culture positive group: BCP group) and those who never had bacteria cultured (bacterial culture negative group: BCN group). RESULTS We included 70 patients in the BCP group and 74 in the BCN group. The radiological findings showed that BCP at diagnosis correlated with a high modified Reiff score. During the median follow-up period of 42 months, the patients in the BCP group were more likely to accomplish spontaneous sputum conversion of MAC. The treatment initiation rate for MAC-PD in the BCP group was lower than that in the BCN group (41.4% vs. 67.6%, P = 0.003). In contrast, the time to the first bronchiectasis exacerbation in the BCP group was shorter than that in the BCN group, and the frequency of bronchiectasis exacerbations was higher in the BCP group. CONCLUSIONS Patients with BCP at diagnosis are less likely to initiate treatment for MAC-PD and more likely to develop bronchiectasis exacerbation.
Collapse
Affiliation(s)
- Masashi Ito
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Koji Furuuchi
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan; Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Keiji Fujiwara
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan; Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Fumiya Watanabe
- Department of Pharmacometrics and Pharmacokinetics, Meiji Pharmaceutical University, Tokyo, Japan
| | - Tatsuya Kodama
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan; Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Fumiko Uesugi
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Yoshiaki Tanaka
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Takashi Yoshiyama
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Atsuyuki Kurashima
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Ken Ohta
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Kozo Morimoto
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan; Department of Clinical Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Division of Clinical Research, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan.
| |
Collapse
|
97
|
Martínez-García MÁ, Oscullo G, Gomez-Olivas JD. Peripheral cellular biomarkers in bronchiectasis. Respir Med Res 2023; 84:101063. [PMID: 38029651 DOI: 10.1016/j.resmer.2023.101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/29/2023] [Indexed: 12/01/2023]
Affiliation(s)
- Miguel Ángel Martínez-García
- Servicio de Neumología, Hospital Universitario y Politécnico La Fe, Valencia, España; CIBERES de Enfermedades Respiratorias, ISCIII, Madrid, Spain.
| | - Grace Oscullo
- Servicio de Neumología, Hospital Universitario y Politécnico La Fe, Valencia, España
| | | |
Collapse
|
98
|
Martins M, Keir HR, Chalmers JD. Endotypes in bronchiectasis: moving towards precision medicine. A narrative review. Pulmonology 2023; 29:505-517. [PMID: 37030997 DOI: 10.1016/j.pulmoe.2023.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 04/09/2023] Open
Abstract
Bronchiectasis is a highly complex entity that can be very challenging to investigate and manage. Patients are diverse in their aetiology, symptoms, risk of complications and outcomes. "Endotypes"- subtypes of disease with distinct biological mechanisms, has been proposed as a means of better managing bronchiectasis. This review discusses the emerging field of endotyping in bronchiectasis. We searched PubMed and Google Scholar for randomized controlled trials (RCT), observational studies, systematic reviews and meta-analysis published from inception until October 2022, using the terms: "bronchiectasis", "endotypes", "biomarkers", "microbiome" and "inflammation". Exclusion criteria included commentaries and non-English language articles as well as case reports. Duplicate articles between databases were initially identified and appropriately excluded. Studies identified suggest that it is possible to classify bronchiectasis patients into multiple endotypes deriving from their co-morbidities or underlying causes to complex infective or inflammatory endotypes. Specific biomarkers closely related to a particular endotype might be used to determine response to treatment and prognosis. The most clearly defined examples of endotypes in bronchiectasis are the underlying causes such as immunodeficiency or allergic bronchopulmonary aspergillosis where the underlying causes are clearly related to a specific treatment. The heterogeneity of bronchiectasis extends, however, far beyond aetiology and it is now possible to identify subtypes of disease based on inflammatory mechanisms such airway neutrophil extracellular traps and eosinophilia. In future biomarkers of host response and infection, including the microbiome may be useful to guide treatments and to increase the success of randomized trials. Advances in the understanding the inflammatory pathways, microbiome, and genetics in bronchiectasis are key to move towards a personalized medicine in bronchiectasis.
Collapse
Affiliation(s)
- M Martins
- Pulmonology Department, Centro Hospitalar Universitário de São João, Porto, Portugal.
| | - H R Keir
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, DD1 9SY, Scotland, United Kinkdom
| | - J D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, DD1 9SY, Scotland, United Kinkdom
| |
Collapse
|
99
|
Welford A, McCallum GB, Hodson M, Johnston H. Physiotherapy management of first nations children with bronchiectasis from remote top end communities of the northern territory: a retrospective chart audit. Front Pediatr 2023; 11:1230474. [PMID: 37900672 PMCID: PMC10613054 DOI: 10.3389/fped.2023.1230474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/15/2023] [Indexed: 10/31/2023] Open
Abstract
Background Bronchiectasis is a chronic pulmonary disorder which is prevalent among Australian First Nations people in the Northern Territory (NT). Current guidelines recommend physiotherapy as part of multi-disciplinary management of children with bronchiectasis, however in our setting, involvement of physiotherapy remains unknown. We thus undertook a retrospective chart audit to examine physiotherapy management of First Nations children (<18 years) from remote First Nations communities in the Top End of the NT at the index bronchiectasis diagnosis and 12 months following diagnosis. Methods Participants were identified from a larger prospective study of children investigated for bronchiectasis at Royal Darwin Hospital, NT (2007-2016). Children were included if they were First Nations, aged <18 years, had a radiological diagnosis of bronchiectasis on high resolution computed tomography scan and lived in a remote community serviced by NT Government health clinics. The medical records from NT Government hospitals, health clinics and where possible other medical service attendance were reviewed for physiotherapy referral and management at the time of bronchiectasis diagnosis and in the following 12 months in the community. Results Of 143 children included, the mean age was 3.1 (standard deviation 2.4) years and 84 (58.7%) were males. At the index diagnosis, 76/122 (62.3%) children were reviewed by a physiotherapist, consisting of airway clearance techniques (83.8%), physical activity/exercise (81.7%) and caregiver education (83.3%), with only 7/127 (5.5%) having evidence of referral for community-based physiotherapy. In the following 12 months, only 11/143 (7.7%) children were reviewed by a physiotherapist, consisting of airway clearance techniques (54.5%), physical activity/exercise (45.5%) and caregiver education (36.4%). Conclusion This study demonstrates a significant gap in the provision of physiotherapy services in our setting and the need to develop a standardized pathway, to support the best practice management of children with bronchiectasis in remote Top End communities of the NT.
Collapse
Affiliation(s)
- A Welford
- Community Allied Health Team, Top End Population and Primary Healthcare, NT Health, Darwin, NT, Australia
| | - GB McCallum
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - M Hodson
- Community Allied Health Team, Top End Population and Primary Healthcare, NT Health, Darwin, NT, Australia
| | - H Johnston
- Community Allied Health Team, Top End Population and Primary Healthcare, NT Health, Darwin, NT, Australia
| |
Collapse
|
100
|
Gao J, Yi X, Wang Z. The application of multi-omics in the respiratory microbiome: Progresses, challenges and promises. Comput Struct Biotechnol J 2023; 21:4933-4943. [PMID: 37867968 PMCID: PMC10585227 DOI: 10.1016/j.csbj.2023.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023] Open
Abstract
The study of the respiratory microbiome has entered a multi-omic era. Through integrating different omic data types such as metagenome, metatranscriptome, metaproteome, metabolome, culturome and radiome surveyed from respiratory specimens, holistic insights can be gained on the lung microbiome and its interaction with host immunity and inflammation in respiratory diseases. The power of multi-omics have moved the field forward from associative assessment of microbiome alterations to causative understanding of the lung microbiome in the pathogenesis of chronic, acute and other types of respiratory diseases. However, the application of multi-omics in respiratory microbiome remains with unique challenges from sample processing, data integration, and downstream validation. In this review, we first introduce the respiratory sample types and omic data types applicable to studying the respiratory microbiome. We next describe approaches for multi-omic integration, focusing on dimensionality reduction, multi-omic association and prediction. We then summarize progresses in the application of multi-omics to studying the microbiome in respiratory diseases. We finally discuss current challenges and share our thoughts on future promises in the field.
Collapse
Affiliation(s)
- Jingyuan Gao
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| |
Collapse
|