51
|
Dietary exposure to chlorpyrifos inhibits the polarization of regulatory T cells in C57BL/6 mice with dextran sulfate sodium-induced colitis. Arch Toxicol 2019; 94:141-150. [PMID: 31807802 DOI: 10.1007/s00204-019-02615-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is associated with loss of immune tolerance to antigens originating from the diet and from the gut microflora. T cells play crucial roles in the pathogenesis of IBD. Chlorpyrifos (CPF) is one of the most ubiquitous organophosphate pesticides in the world. The aim of the study was to investigate the effects of dietary exposure to CPF on T-cell populations in C57BL/6 mice with dextran sulfate sodium (DSS)-induced colitis. Mice received distilled water containing 3% DSS for 6 days to induce acute colitis, which was then replaced with distilled water for 21 days, allowing progression to chronic inflammation. During the experimental period, mice were given either an AIN-93-based control diet or a CPF diet-containing 7, 17.5, or 35 ppm of CPF. Results showed that dietary exposure to CPF significantly increased circulating neutrophils in colitic mice. CPF-exposed groups had lower percentages of blood and spleen T cells without altering the proportions of CD4+ and CD8+ T-cell subsets. The percentage of blood regulatory T (Treg) cells, as well as splenic expressions of Treg-related genes, were suppressed in CPF-exposed mice. CPF upregulated the colonic gene expression of tumor necrosis factor-α. Meanwhile, plasma haptoglobin, colon weights, and luminal immunoglobulin G levels were higher in CPF-exposed groups. Histopathological analyses also observed that colon injury was more severe in all CPF-exposed mice. These results suggest that dietary exposure to CPF aggravated tissue injuries in mice with DSS-induced chronic colitis by suppressing T-cell populations and Treg polarization.
Collapse
|
52
|
Bovine Endometritis and the Inflammatory Peripheral Cholinergic System. Appl Biochem Biotechnol 2019; 190:1242-1256. [PMID: 31735979 DOI: 10.1007/s12010-019-03157-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022]
Abstract
Endometritis is an inflammation of the endometrium associated with bacterial infection. The pathogenesis of endometritis in cows is still not completely understood. The combined analysis of the markers of inflammation and oxidative stress has contributed to a better understanding of disease mechanisms, but is still unexplored in uterine disorders. Moreover, research provides evidence about an important role of the vagus nerve in regulating the innate immune function through the cholinergic anti-inflammatory pathway in response to bacterial infections. This new pathway has demonstrated a critical role in controlling the inflammatory system. The aim of this study was to evaluate the activity of cholinesterase in total blood, lymphocytes, and serum of dairy cows with clinical and subclinical endometritis. Sixty-one Holstein cows, between 30 and 45 days in milk, were classified into 3 groups of animals: presenting clinical endometritis (n = 22), subclinical endometritis (n = 17), and healthy (n = 22). Mean leukocyte counts did not differ among groups, but the neutrophil number was significantly higher in cows with clinical endometritis than those in healthy animals. Also, serum concentration of interleukin-1beta (pg/mL) was significantly higher in cows with endometritis. The activity of acetylcholinesterase in blood and lymphocytes increased in both groups with endometritis. Animals with endometritis presented an increase in lipid peroxidation, but the antioxidant enzyme activity (catalase levels) was higher in endometritis groups than in normal cows. In conclusion, the inflammatory process of clinical and subclinical endometritis leads to systemic lipid peroxidation despite the compensatory increase of the antioxidant enzyme. These data also provide evidence of an important role of the cholinergic pathway in regulating dairy cows with clinical and subclinical endometritis.
Collapse
|
53
|
Inazu M. Functional Expression of Choline Transporters in the Blood-Brain Barrier. Nutrients 2019; 11:nu11102265. [PMID: 31547050 PMCID: PMC6835570 DOI: 10.3390/nu11102265] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/24/2022] Open
Abstract
Cholinergic neurons in the central nervous system play a vital role in higher brain functions, such as learning and memory. Choline is essential for the synthesis of the neurotransmitter acetylcholine by cholinergic neurons. The synthesis and metabolism of acetylcholine are important mechanisms for regulating neuronal activity. Choline is a positively charged quaternary ammonium compound that requires transporters to pass through the plasma membrane. Currently, there are three groups of choline transporters with different characteristics, such as affinity for choline, tissue distribution, and sodium dependence. They include (I) polyspecific organic cation transporters (OCT1-3: SLC22A1-3) with a low affinity for choline, (II) high-affinity choline transporter 1 (CHT1: SLC5A7), and (III) choline transporter-like proteins (CTL1-5: SLC44A1-5). Brain microvascular endothelial cells, which comprise part of the blood-brain barrier, take up extracellular choline via intermediate-affinity choline transporter-like protein 1 (CTL1) and low-affinity CTL2 transporters. CTL2 is responsible for excreting a high concentration of choline taken up by the brain microvascular endothelial cells on the brain side of the blood-brain barrier. CTL2 is also highly expressed in mitochondria and may be involved in the oxidative pathway of choline metabolism. Therefore, CTL1- and CTL2-mediated choline transport to the brain through the blood-brain barrier plays an essential role in various functions of the central nervous system by acting as the rate-limiting step of cholinergic neuronal activity.
Collapse
Affiliation(s)
- Masato Inazu
- Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan.
- Department of Molecular Preventive Medicine, Tokyo Medical University, Tokyo 160-8402, Japan.
| |
Collapse
|
54
|
Galdíková M, Holečková B, Šiviková K, Schwarzbacherová V, Koleničová S. Evaluating the genotoxic damage in bovine whole blood cells in vitro after exposure to thiacloprid. Toxicol In Vitro 2019; 61:104616. [PMID: 31400412 DOI: 10.1016/j.tiv.2019.104616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 01/09/2023]
Abstract
Possible genotoxic effect of thiacloprid on bovine cultures of whole blood was investigated using chromosomal aberrations (CAs), micronuclei (MN), sister chromatid exchanges (SCEs), DNA damage and apoptotic DNA fragmentation assays. The cells of whole blood were exposed to thiacloprid (30, 60, 120, 240 and 480 μg mL-1) for the last 24 and 48 h of cultivation. Thiacloprid did not induce significant increase in CAs after 24 and 48 h; only the concentration of 120 μg mL-1 caused elevation of CAs (p < 0.05) after 24 h treatment. No clastogenic/aneugenic effect was observed by scoring of micronuclei. Considering replication damage reflected in SCEs, significant elevations were observed in both donors for 24 h (120-480 μg mL-1; p < 0.01 or p < 0.05). In comet assay, statistically significant DNA damage was observed after 2 h exposure (240 and 480 μg mL-1; p < 0.05, p < 0.01). DNA electrophoretic separation did not confirm the late apoptotic effect of thiacloprid. The decrease in additional variables such as mitotic index, cytochalasin-blocked proliferation and proliferation indices indicates the possible ability of thiacloprid to induce cytotoxic/cytostatic effects by affecting and/or inhibiting cell proliferation and to influence the cell cycle respectively.
Collapse
Affiliation(s)
- Martina Galdíková
- Department of Biology and Genetics, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic.
| | - Beáta Holečková
- Department of Biology and Genetics, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - Katarína Šiviková
- Department of Biology and Genetics, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - Viera Schwarzbacherová
- Department of Biology and Genetics, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - Simona Koleničová
- Department of Biology and Genetics, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| |
Collapse
|
55
|
Yi TG, Cho YK, Lee HJ, Kim J, Jeon MS, Ham DS, Kim WC, Song SU. A Novel Immunomodulatory Mechanism Dependent on Acetylcholine Secreted by Human Bone Marrow-derived Mesenchymal Stem Cells. Int J Stem Cells 2019; 12:315-330. [PMID: 31242717 PMCID: PMC6657938 DOI: 10.15283/ijsc18098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/15/2019] [Accepted: 04/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background and Objectives Mesenchymal stem cells (MSCs) are used to treat autoimmune or inflammatory diseases. Our aim was to determine the immunomodulatory mechanisms elicited by MSCs during inflammation. Methods and Results We cocultured MSCs with peripheral blood mononuclear cells for a mixed lymphocyte reaction or stimulated them by phytohemagglutinin. Morphological changes of MSCs and secretion of acetylcholine (ACh) from MSCs were measured. The effects of an ACh antagonist and ACh agonist on lymphocyte proliferation and proinflammatory-cytokine production were determined. The inflammatory milieu created by immune-cell activation caused MSCs to adopt a neuronlike phenotype and induced them to release ACh. Additionally, nicotinic acetylcholine receptors (nAChRs) were upregulated in activated peripheral blood mononuclear cells. We observed that ACh bound to nAChR on activated immune cells and led to the inhibition of lymphocyte proliferation and of proinflammatory-cytokine production. MSC-mediated immunosuppression through ACh activity was reversed by an ACh antagonist called α-bungarotoxin, and lymphocyte proliferation was inhibited by an ACh agonist, ACh chloride. Conclusions Our findings point to a novel immunomodulatory mechanism in which ACh secreted by MSCs under inflammatory conditions might modulate immune cells. This study may provide a novel method for the treatment of autoimmune diseases by means of MSCs.
Collapse
Affiliation(s)
- Tac-Ghee Yi
- Department of Integrated Biomedical Sciences, Inha University School of Medicine, Incheon, Korea.,SCM Lifescience Co., Ltd., Incheon, Korea.,SunCreate Co., Ltd., Yangju, Korea
| | | | | | | | - Myung-Shin Jeon
- Department of Integrated Biomedical Sciences, Inha University School of Medicine, Incheon, Korea
| | | | - Woo Cheol Kim
- Department of Radiooncology, Inha University School of Medicine, Incheon, Korea
| | - Sun U Song
- Department of Integrated Biomedical Sciences, Inha University School of Medicine, Incheon, Korea.,SCM Lifescience Co., Ltd., Incheon, Korea
| |
Collapse
|
56
|
Elkhatib SK, Case AJ. Autonomic regulation of T-lymphocytes: Implications in cardiovascular disease. Pharmacol Res 2019; 146:104293. [PMID: 31176794 DOI: 10.1016/j.phrs.2019.104293] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/22/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022]
Abstract
The nervous and immune systems both serve as essential assessors and regulators of physiological function. Recently, there has been a great interest in how the nervous and immune systems interact to modulate both physiological and pathological states. In particular, the autonomic nervous system has a direct line of communication with immune cells anatomically, and moreover, immune cells possess receptors for autonomic neurotransmitters. This circumstantial evidence is suggestive of a functional interplay between the two systems, and extensive research over the past few decades has demonstrated neurotransmitters such as the catecholamines (i.e. dopamine, norepinephrine, and epinephrine) and acetylcholine have potent immunomodulating properties. Furthermore, immune cells, particularly T-lymphocytes, have now been found to express the cellular machinery for both the synthesis and degradation of neurotransmitters, which suggests the ability for both autocrine and paracrine signaling from these cells independent of the nervous system. The details underlying the functional interplay of this complex network of neuroimmune communication are still unclear, but this crosstalk is suggestive of significant implications on the pathogenesis of a number of autonomic-dysregulated and inflammation-mediated diseases. In particular, it is widely accepted that numerous forms of cardiovascular diseases possess imbalanced autonomic tone as well as altered T-lymphocyte function, but a paucity of literature exists discussing the direct role of neurotransmitters in shaping the inflammatory microenvironment during the progression or therapeutic management of these diseases. This review seeks to provide a fundamental framework for this autonomic neuroimmune interaction within T-lymphocytes, as well as the implications this may have in cardiovascular diseases.
Collapse
Affiliation(s)
- Safwan K Elkhatib
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Adam J Case
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
57
|
Mashimo M, Komori M, Matsui YY, Murase MX, Fujii T, Takeshima S, Okuyama H, Ono S, Moriwaki Y, Misawa H, Kawashima K. Distinct Roles of α7 nAChRs in Antigen-Presenting Cells and CD4 + T Cells in the Regulation of T Cell Differentiation. Front Immunol 2019; 10:1102. [PMID: 31214160 PMCID: PMC6554293 DOI: 10.3389/fimmu.2019.01102] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/30/2019] [Indexed: 11/21/2022] Open
Abstract
It is now apparent that immune cells express a functional cholinergic system and that α7 nicotinic acetylcholine receptors (α7 nAChRs) are involved in regulating T cell differentiation and the synthesis of antigen-specific antibodies and proinflammatory cytokines. Here, we investigated the specific function α7 nAChRs on T cells and antigen presenting cells (APCs) by testing the effect of GTS-21, a selective α7 nAChR agonist, on differentiation of CD4+ T cells from ovalbumin (OVA)-specific TCR transgenic DO11.10 mice activated with OVA or OVA peptide323−339 (OVAp). GTS-21 suppressed OVA-induced antigen processing-dependent development of CD4+ regulatory T cells (Tregs) and effector T cells (Th1, Th2, and Th17). By contrast, GTS-21 up-regulated OVAp-induced antigen processing-independent development of CD4+ Tregs and effector T cells. GTS-21 also suppressed production of IL-2, IFN-γ, IL-4, IL-17, and IL-6 during OVA-induced activation but, with the exception IL-2, enhanced their production during OVAp-induced activation. In addition, during antigen-nonspecific, APC-independent anti-CD3/CD28 antibody-induced CD4+ polyclonal T cell activation in the presence of respective polarizing cytokines, GTS-21 promoted development of all lineages, which indicates that GTS-21 also acts via α7 nAChRs on T cells. These results suggest 1) that α7 nAChRs on APCs suppress CD4+ T cell activation by interfering with antigen presentation through inhibition of antigen processing; 2) that α7 nAChRs on CD4+ T cells up-regulate development of Tregs and effector T cells; and that α7 nAChR agonists and antagonists could be potentially useful agents for immune response modulation and enhancement.
Collapse
Affiliation(s)
- Masato Mashimo
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Masayo Komori
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Yuriko Y Matsui
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Mami X Murase
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Takeshi Fujii
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Shiori Takeshima
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Hiromi Okuyama
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Shiro Ono
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Yasuhiro Moriwaki
- Department of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Hidemi Misawa
- Department of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
58
|
Kerage D, Sloan EK, Mattarollo SR, McCombe PA. Interaction of neurotransmitters and neurochemicals with lymphocytes. J Neuroimmunol 2019; 332:99-111. [PMID: 30999218 DOI: 10.1016/j.jneuroim.2019.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Neurotransmitters and neurochemicals can act on lymphocytes by binding to receptors expressed by lymphocytes. This review describes lymphocyte expression of receptors for a selection of neurotransmitters and neurochemicals, the anatomical locations where lymphocytes can interact with neurotransmitters, and the effects of the neurotransmitters on lymphocyte function. Implications for health and disease are also discussed.
Collapse
Affiliation(s)
- Daniel Kerage
- The University of Queensland Diamantina Institute, Brisbane, Australia; Transplant Research Program, Boston Children's Hospital, Boston, MA, United States of America
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Division of Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Cousins Center for Neuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, USA
| | | | - Pamela A McCombe
- The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, Australia; Royal Brisbane and Women's Hospital, Herston, Brisbane, Australia.
| |
Collapse
|
59
|
Effects of carbachol on apoptosis in human chronic myelogenous leukemic K562 cell line. MARMARA MEDICAL JOURNAL 2019. [DOI: 10.5472/marumj.518983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
60
|
Löfling L, Sundström A, Kieler H, Bahmanyar S, Linder M. Exposure to antimuscarinic medications for treatment of overactive bladder and risk of lung cancer and colon cancer. Clin Epidemiol 2019; 11:133-143. [PMID: 30774448 PMCID: PMC6350836 DOI: 10.2147/clep.s186842] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Introduction One out of six adults has symptoms of overactive bladder (OAB). Antimuscarinic medication is the main pharmacological group used in the treatment of OAB. In preclinical studies, antimuscarinic compounds have been found to inhibit cell proliferation in lung cancer and colon cancer. Objective The aim of this study was to investigate the association between exposure to anti-muscarinic medication and the risk of lung cancer and colon cancer. Methods Individuals in Sweden who first filled a prescription for an antimuscarinic medication used to treat OAB (ie, oxybutynin, solifenacin, darifenacin, fesoterodine, or tolterodine) between July 1, 2006, and December 31, 2012, were identified and classified as exposed. Each exposed individual was individually matched with up to ten unexposed individuals from the Swedish general population, based on year of birth, sex, and county of residence. Cox proportional hazard models with follow-up time as the underlying time scale were used to estimate HRs with 95% CIs. Results In total, 164,000 exposed and 1,446,472 unexposed individuals were included in this study. The estimated HRs for lung cancer, in follow-up time intervals of <1 year, 1–4 years, and ≥4 years, were as follows: 0.86 (95% CI: 0.75–0.98), 0.63 (95% CI: 0.56–0.70), and 0.43 (0.34–0.55), respectively. The corresponding estimates for colon cancer were as follows: 0.91 (95% CI: 0.80–1.03), 0.81 (95% CI: 0.74–0.88), and 0.61 (95% CI: 0.51–0.73), respectively. Conclusion There was an inverse association between exposure to antimuscarinic medications, used in the treatment of OAB, and a diagnosis of colon cancer or lung cancer, which is in line with the findings in preclinical studies.
Collapse
Affiliation(s)
- Lukas Löfling
- Centre for Pharmacoepidemiology, Department of Medicine, Karolinska Institute, Solna, Sweden,
| | - Anders Sundström
- Centre for Pharmacoepidemiology, Department of Medicine, Karolinska Institute, Solna, Sweden,
| | - Helle Kieler
- Centre for Pharmacoepidemiology, Department of Medicine, Karolinska Institute, Solna, Sweden,
| | - Shahram Bahmanyar
- Centre for Pharmacoepidemiology, Department of Medicine, Karolinska Institute, Solna, Sweden,
| | - Marie Linder
- Centre for Pharmacoepidemiology, Department of Medicine, Karolinska Institute, Solna, Sweden,
| |
Collapse
|
61
|
Suriyo T, Chotirat S, Auewarakul CU, Chaiyot K, Promsuwicha O, Satayavivad J. Variation of nicotinic subtype α7 and muscarinic subtype M3 acetylcholine receptor expression in three main types of leukemia. Oncol Lett 2019; 17:1357-1362. [PMID: 30655906 DOI: 10.3892/ol.2018.9663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/26/2018] [Indexed: 01/27/2023] Open
Abstract
Cholinergic receptors, such as α7-nicotinic acetylcholine receptor (α7-nAChR) and M3-muscarinic acetylcholine receptor (M3-mAChR), have been demonstrated to serve a significant role in the proliferation, differentiation and apoptosis of leukemic cells. However, the expression of these receptors in samples from patients with leukemia remains unclear. The present study aimed to determine the expression of M3-mAChR and α7-nAChR in the bone marrow or peripheral blood of 51 patients with leukemia, including acute myeloid leukemia (AML; n=33), acute lymphoblastic leukemia (ALL; n=13), and chronic myeloid leukemia (CML; n=5). Peripheral blood mononuclear cells (PBMCs) were also isolated from healthy subjects (n=5) for comparison. Western blot analysis was performed to determine the protein expression profiles, and a pattern of decreased α7-nAChR levels in patients with leukemia was observed. Among the leukemia types, the lowest expression of α7-nAChR and M3-mAChR were identified in patients with T-cell ALL/lymphoma (T-ALL). CML exhibited the highest level of M3-mAChR, which was significantly different from APL and AML-M4, yet not from healthy subjects (P<0.05). Therefore, different expression profiles of α7-nACR and M3-mAChR were detected amongst the leukemia types. Collectively, the present study supports the potential role of cholinergic signaling in mediating leukemogenesis. However, further studies in larger cohorts are required to validate these findings.
Collapse
Affiliation(s)
- Tawit Suriyo
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Education, Bangkok 10400, Thailand
| | - Sadudee Chotirat
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Chirayu U Auewarakul
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok 10210, Thailand.,Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Karnjana Chaiyot
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Orathai Promsuwicha
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Education, Bangkok 10400, Thailand.,Environmental Toxicology Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| |
Collapse
|
62
|
Eduardo CRC, Alejandra TIG, Guadalupe DRKJ, Herminia VRG, Lenin P, Enrique BV, Evandro BM, Oscar B, Iván GPM. Modulation of the extraneuronal cholinergic system on main innate response leukocytes. J Neuroimmunol 2019; 327:22-35. [PMID: 30683425 DOI: 10.1016/j.jneuroim.2019.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/17/2022]
Abstract
The expression of elements of the cholinergic system has been demonstrated in non-neuronal cells, such as immune cells, where acetylcholine modulates innate and adaptive responses. However, the study of the non-neuronal cholinergic system has focused on lymphocyte cholinergic mechanisms, with less attention to its role of innate cells. Considering this background, the aims of this review are 1) to review information regarding the cholinergic components of innate immune system cells; 2) to discuss the effect of cholinergic stimuli on cell functions; 3) and to describe the importance of cholinergic stimuli on host immunocompetence, in order to set the base for the design of intervention strategies in the biomedical field.
Collapse
Affiliation(s)
- Covantes-Rosales Carlos Eduardo
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico
| | - Toledo-Ibarra Gladys Alejandra
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n. Cd Industrial, Tepic, Nayarit, Mexico
| | - Díaz-Resendiz Karina Janice Guadalupe
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico
| | - Ventura-Ramón Guadalupe Herminia
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n. Cd Industrial, Tepic, Nayarit, Mexico
| | - Pavón Lenin
- Instituto Nacional de Psiquiatría "Ramón de la Fuente", Laboratorio de Psicoinmunología, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 México City, DF, Mexico
| | - Becerril-Villanueva Enrique
- Instituto Nacional de Psiquiatría "Ramón de la Fuente", Laboratorio de Psicoinmunología, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 México City, DF, Mexico
| | - Bauer Moisés Evandro
- Pontifícia Universidade Católica do Rio Grande do Sul, Instituto de Pesquisas Biomédicas, Laboratório de Imunologia do Envelhecimento, 90610-000 Porto Alegre, RS, Brazil
| | - Bottaso Oscar
- Universidad Nacional de Rosario-Consejo Nacional de Investigaciones Científicas y Técnicas (UNR-CONICET), Instituto de Inmunología Clínica y Experimental de Rosario, Rosario, Argentina
| | - Girón-Pérez Manuel Iván
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n. Cd Industrial, Tepic, Nayarit, Mexico.
| |
Collapse
|
63
|
Neuroprotective effects of 1`δ-1`-acetoxyeugenol acetate on Aβ(25-35) induced cognitive dysfunction in mice. Biomed Pharmacother 2019; 109:1454-1461. [DOI: 10.1016/j.biopha.2018.10.189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022] Open
|
64
|
Koarai A, Ichinose M. Possible involvement of acetylcholine-mediated inflammation in airway diseases. Allergol Int 2018; 67:460-466. [PMID: 29605098 DOI: 10.1016/j.alit.2018.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/18/2022] Open
Abstract
Inhaled bronchodilator treatment with a long acting muscarinic antagonist (LAMA) reduces symptoms and the risk of exacerbations in COPD and asthma. However, increasing evidence from cell culture and animal studies suggests that anti-muscarinic drugs could also possess anti-inflammatory effects. Recent studies have revealed that acetylcholine (ACh) can be synthesized and released from both neuronal and non-neuronal cells, and the released ACh can potentiate airway inflammation and remodeling in airway diseases. However, these anti-inflammatory effects of anti-muscarinic drugs have not yet been confirmed in COPD and asthma patients. This review will focus on recent findings about the possible involvement of ACh in airway inflammation and remodeling, and the anti-inflammatory effect of anti-muscarinic drugs in airway diseases. Clarifying the acetylcholine-mediated inflammation could provide insights into the mechanisms of airway diseases, which could lead to future therapeutic strategies for inhibiting the disease progression and exacerbations.
Collapse
|
65
|
Yang X, Liu W, Yi M, Zhang R, Xu Y, Huang Z, Liu S, Li T. Choline acetyltransferase may contribute to the risk of Tourette syndrome: Combination of family-based analysis and case-control study. World J Biol Psychiatry 2018; 19:521-526. [PMID: 28090804 DOI: 10.1080/15622975.2017.1282176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Twin and family analyses have revealed a genetic contribution to Tourette syndrome (TS) and post-mortem studies have raised the intriguing possibility of a reduction in cholinergic interneuronsin TS patients. METHODS We selected five tag SNPs (rs100824791, rs12264845, rs1880676, rs3793790 and rs3793798) of choline acetyltransferase (CHAT) from the Han Chinese population Hapmap database. Genotyping was conducted on 401 TS nuclear family trios and 405 control subjects. Transmission disequilibrium test (TDT) and haplotype relative risk (HRR) analyses were used to analyse the family-based study and a case-control study was also used to assess the genetic susceptibility to TS. RESULTS The results revealed a significant over-transmission of rs3793790 (TDT, χ2 = 9.121, P = 0.003; HRR, χ2 = 6.579, P = 0.01), while case-control analysis found no differences between the two groups (genotype, χ2 = 0.436, P = 0.804; allele, χ2 = 0.149, P = 0.700). Also, rs3793798 also indicated a positive association associated with TS (TDT, χ2 = 5.025, P = 0.028; HRR, χ2 = 0.250, P = 0.617). However, the other three SNPs investigated were found not to be associated with TS in both in the family-based and case-control studies. CONCLUSIONS Our association analysis demonstrates that CHAT may contribute to TS susceptibility in the Han Chinese population. This gives strong support to the involvement of cholinergic interneurons in the aetiology of TS and reveals a potential therapeutic target.
Collapse
Affiliation(s)
- Xiuling Yang
- a Department of Pediatrics , The Affiliated Hospital of Qingdao University , Qingdao , China.,b Department of Nursing , Medical College of Qingdao University , Qingdao , China
| | - Wenmiao Liu
- c Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University , Qingdao , China.,d Genetic Laboratory , The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Mingji Yi
- e Child Health Care Department , The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Ru Zhang
- c Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University , Qingdao , China.,d Genetic Laboratory , The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Yinglei Xu
- c Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University , Qingdao , China.,d Genetic Laboratory , The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Zuzhou Huang
- c Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University , Qingdao , China.,d Genetic Laboratory , The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Shiguo Liu
- c Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University , Qingdao , China.,d Genetic Laboratory , The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Tang Li
- a Department of Pediatrics , The Affiliated Hospital of Qingdao University , Qingdao , China
| |
Collapse
|
66
|
Zoli M, Pucci S, Vilella A, Gotti C. Neuronal and Extraneuronal Nicotinic Acetylcholine Receptors. Curr Neuropharmacol 2018; 16:338-349. [PMID: 28901280 PMCID: PMC6018187 DOI: 10.2174/1570159x15666170912110450] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/08/2017] [Accepted: 09/03/2017] [Indexed: 02/08/2023] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) belong to a super-family of Cys-loop ligand-gated ion chan-nels that respond to endogenous acetylcholine (ACh) or other cholinergic ligands. These receptors are also the targets of drugs such as nicotine (the main addictive agent delivered by cigarette smoke) and are involved in a variety of physiological and pathophysiological processes. Numerous studies have shown that the expression and/or function of nAChRs is com-promised in many neurological and psychiatric diseases. Furthermore, recent studies have shown that neuronal nAChRs are found in a large number of non-neuronal cell types in-cluding endothelial cells, glia, immune cells, lung epithelia and cancer cells where they regulate cell differentiation, prolifera-tion and inflammatory responses. The aim of this review is to describe the most recent findings concerning the structure and function of native nAChRs inside and outside the nervous system.
Collapse
Affiliation(s)
- Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Susanna Pucci
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia Gotti
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| |
Collapse
|
67
|
Hening P, Mataram Auriva MB, Wijayanti N, Kusindarta DL, Wihadmadyatami H. The neuroprotective effect of Ocimum sanctum Linn. ethanolic extract on human embryonic kidney-293 cells as in vitro model of neurodegenerative disease. Vet World 2018; 11:1237-1243. [PMID: 30410227 PMCID: PMC6200556 DOI: 10.14202/vetworld.2018.1237-1243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/24/2018] [Indexed: 11/22/2022] Open
Abstract
Aim: This study aimed to analyze the neuroprotective effect of Ocimum sanctum Linn. ethanolic extract (OSE) on human embryonic kidney-293 (HEK-293) cells as the in vitro model of neurodegenerative diseases. Materials and Methods: In this research, HEK-293 cells divided into five groups consisting of normal and healthy cells (NT), cells treated with Camptothecin 500 µM as the negative control, cells treated with trimethyltin 10 µM (TMT), cells treated with OSE 75 µg/ml, and cells pre-treated with OSE 75 µg/ml then induced by TMT 10 µM (OSE+TMT). MTT assay and phase contrast microscopy were applied to observe the cell viability quantitatively and morphological after Ocimum sanctum Linn extract treatment. Finally, the reverse transcription polymerase chain reaction was employed to study the expression of choline acetyltransferase (ChAT). Results: The MTT assay and phase contrast microscopy showed that OSE pre-treatment significantly increased the viability of TMT-induced apoptotic cells and maintained cell viability of the normal HEK-293 cells. Expression of ChAT markedly reduced on TMT treatment group, but OSE administration stabilized ChAT expression in TMT-induced HEK-293 cells. Conclusion: This present study proved that OSE administration has neuroprotective effect by increased HEK-293 cells viability and maintain ChAT expression.
Collapse
Affiliation(s)
- Puspa Hening
- Research Center of Biotechnology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Made Bagus Mataram Auriva
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Nastiti Wijayanti
- Department of Animal Physiology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Dwi Liliek Kusindarta
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
68
|
Arend J, Kegler A, Caprara ALF, Almeida C, Gabbi P, Pascotini ET, de Freitas LAV, Miraglia C, Bertazzo TL, Palma R, Arceno P, Duarte MMMF, Furian AF, Oliveira MS, Royes LFF, Mathern GW, Fighera MR. Depressive, inflammatory, and metabolic factors associated with cognitive impairment in patients with epilepsy. Epilepsy Behav 2018; 86:49-57. [PMID: 30077908 DOI: 10.1016/j.yebeh.2018.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 01/14/2023]
Abstract
PURPOSE The purpose of this study was to examine the cognitive function and depressive traits most frequently associated with the clinical assessment of patients with epilepsy and if these clinical parameters are linked to glycolipid levels and inflammatory and apoptotic markers. METHODS Patients with epilepsy (n = 32) and healthy subjects (n = 41) were recruited to participate in this study. Neuropsychological evaluation was performed in both groups through a battery of cognitive tests. Inflammatory markers, apoptotic factors, and deoxyribonucleic acid (DNA) damage were measured in blood samples. Additionally, the metabolic markers total cholesterol (CHO), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride (TG), and glucose (GLU) levels were analyzed. RESULTS Statistical analyses showed that patients with epilepsy presented decreased scores in memory, attention, language, and executive function tests compared with the control group. Analysis revealed that there was negative correlation in epilepsy for seizure duration vs. oral language (R = -0.4484, p < 0.05) and seizure duration vs. problem solving (executive functions) (R = -0.3995, p < 0.05). This was also observed when comparing depression with temporal-spatial orientation (TSO) (R = -0.39, p < 0.05). Furthermore, we observed a higher depression score in patients with epilepsy than in the healthy ones. Statistical analyses showed higher acetylcholinesterase (AChE) (p < 0.05), interleukin 1β (IL-1β, p < 0.001), and tumor necrosis factor-alpha (TNF-α) (p < 0.001) levels compared with those in the control group. Moreover, patients with epilepsy had significantly higher serum levels of caspase 3 (CASP 3) (p < 0.001) and Picogreen (p < 0.001) compared with the control subjects. Regarding the metabolic markers, higher glycolipid levels were observed in the patients with epilepsy (CHO < 0.05*, LDL < 0.0001*, TG < 0.05*, GLU p < 0.05). High-density lipoprotein levels were not significant. The patients with epilepsy had significant correlation when comparing total language with TNF-α (R = -0.4, p < 0.05), praxes with CASP 3 (R = -0.52, p < 0.01), total CHO with total language (R = -0.48, p < 0.05), TG with semantic memory (R = -0.54, p < 0.05), TG with prospective memory (R = -0.2165, p < 0.02), TG with total memory (R = -0.53, p < 0.02), and GLU with total attention (R = -0.62, p < 0.002). CONCLUSION This study supports the evidence of a distinct neuropsychological profile between patients with epilepsy and healthy subjects. Furthermore, our findings suggest that inflammatory pathway, glycolipid profile, and depressive factors may be associated with cognitive dysfunction in patients with epilepsy.
Collapse
Affiliation(s)
- Josi Arend
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil; Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Aline Kegler
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil; Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Ana Letícia Fornari Caprara
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil
| | - Camila Almeida
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil
| | - Patricia Gabbi
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil; Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Eduardo T Pascotini
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil; Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Lori Ane Vargas de Freitas
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil
| | - Cinara Miraglia
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil
| | - Taíse Leitemperger Bertazzo
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil
| | - Raphael Palma
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil
| | - Patrícia Arceno
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil
| | - Marta M M F Duarte
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Ana Flavia Furian
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Mauro Schneider Oliveira
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Luiz Fernando Freire Royes
- Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil; Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, RS, Brazil; Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Gary W Mathern
- UCLA, School of Medicine, Los Angeles, CA, United States
| | - Michele Rechia Fighera
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, RS, Brazil; Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil; Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, RS, Brazil; Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil.
| |
Collapse
|
69
|
Quercetin treatment regulates the Na +,K +-ATPase activity, peripheral cholinergic enzymes, and oxidative stress in a rat model of demyelination. Nutr Res 2018; 55:45-56. [PMID: 29914627 DOI: 10.1016/j.nutres.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/30/2018] [Accepted: 04/08/2018] [Indexed: 01/13/2023]
Abstract
Quercetin is reported to exert a plethora of health benefits through many different mechanisms of action. This versatility and presence in the human diet has attracted the attention of the scientific community, resulting in a huge output of in vitro and in vivo (preclinical) studies. Therefore, we hypothesized that quercetin can protect Na+,K+-ATPase activity in the central nervous system, reestablish the peripheral cholinesterases activities, and reduce oxidative stress during demyelination events in rats. In line with this expectation, our study aims to find out how quercetin acts on the Na+,K+-ATPase activity in the central nervous system, peripheral cholinesterases, and stress oxidative markers in an experimental model of demyelinating disease. Wistar rats were divided into 4 groups: vehicle, quercetin, ethidium bromide (EB), and EB plus quercetin groups. The animals were treated once a day with vehicle (ethanol 20%) or quercetin 50 mg/kg for 7 (demyelination phase, by gavage) or 21 days (remyelination phase) after EB (0.1%, 10 μL) injection (intrapontine).The encephalon was removed, and the pons, hypothalamus, cerebral cortex, hippocampus, striatum, and cerebellum were dissected to verify the Na+,K+-ATPase activity. Our results showed that quercetin protected against reduction in Na+,K+-ATPase in the pons and cerebellum in the demyelination phase, and it increased the activity of this enzyme in the remyelination phase. During the demyelination, quercetin promoted the increase in acetylcholinesterase activity in whole blood and lymphocytes induced by EB, and it reduced the increase in acetylcholinesterase activity in lymphocytes in the remyelination phase. On day 7, EB increased the superoxide dismutase and decreased catalase activities, as well as increased the thiobarbituric acid-reactive substance levels. Taken together, these results indicated that quercetin regulates the Na+,K+-ATPase activity, affects the alterations of redox state, and participates in the reestablishment of peripheral cholinergic activity during demyelinating and remyelination events.
Collapse
|
70
|
Mitra A, Sarkar M, Chatterjee C. Modulation of Immune Response by Organophosphate Pesticides: Mammals as Potential Model. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s12595-017-0256-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
71
|
Saldanha C. Human Erythrocyte Acetylcholinesterase in Health and Disease. Molecules 2017; 22:E1499. [PMID: 28885588 PMCID: PMC6151671 DOI: 10.3390/molecules22091499] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/04/2017] [Indexed: 01/11/2023] Open
Abstract
The biochemical properties of erythrocyte or human red blood cell (RBC) membrane acetylcholinesterase (AChE) and its applications on laboratory class and on research are reviewed. Evidence of the biochemical and the pathophysiological properties like the association between the RBC AChE enzyme activity and the clinical and biophysical parameters implicated in several diseases are overviewed, and the achievement of RBC AChE as a biomarker and as a prognostic factor are presented. Beyond its function as an enzyme, a special focus is highlighted in this review for a new function of the RBC AChE, namely a component of the signal transduction pathway of nitric oxide.
Collapse
Affiliation(s)
- Carlota Saldanha
- Instituto de Bioquímica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
72
|
Fujii T, Mashimo M, Moriwaki Y, Misawa H, Ono S, Horiguchi K, Kawashima K. Expression and Function of the Cholinergic System in Immune Cells. Front Immunol 2017; 8:1085. [PMID: 28932225 PMCID: PMC5592202 DOI: 10.3389/fimmu.2017.01085] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/21/2017] [Indexed: 12/29/2022] Open
Abstract
T and B cells express most cholinergic system components—e.g., acetylcholine (ACh), choline acetyltransferase (ChAT), acetylcholinesterase, and both muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively). Using ChATBAC-eGFP transgenic mice, ChAT expression has been confirmed in T and B cells, dendritic cells, and macrophages. Moreover, T cell activation via T-cell receptor/CD3-mediated pathways upregulates ChAT mRNA expression and ACh synthesis, suggesting that this lymphocytic cholinergic system contributes to the regulation of immune function. Immune cells express all five mAChRs (M1–M5). Combined M1/M5 mAChR-deficient (M1/M5-KO) mice produce less antigen-specific antibody than wild-type (WT) mice. Furthermore, spleen cells in M1/M5-KO mice produce less tumor necrosis factor (TNF)-α and interleukin (IL)-6, suggesting M1/M5 mAChRs are involved in regulating pro-inflammatory cytokine and antibody production. Immune cells also frequently express the α2, α5, α6, α7, α9, and α10 nAChR subunits. α7 nAChR-deficient (α7-KO) mice produce more antigen-specific antibody than WT mice, and spleen cells from α7-KO mice produce more TNF-α and IL-6 than WT cells. This suggests that α7 nAChRs are involved in regulating cytokine production and thus modulate antibody production. Evidence also indicates that nicotine modulates immune responses by altering cytokine production and that α7 nAChR signaling contributes to immunomodulation through modification of T cell differentiation. Together, these findings suggest the involvement of both mAChRs and nAChRs in the regulation of immune function. The observation that vagus nerve stimulation protects mice from lethal endotoxin shock led to the notion of a cholinergic anti-inflammatory reflex pathway, and the spleen is an essential component of this anti-inflammatory reflex. Because the spleen lacks direct vagus innervation, it has been postulated that ACh synthesized by a subset of CD4+ T cells relays vagal nerve signals to α7 nAChRs on splenic macrophages, which downregulates TNF-α synthesis and release, thereby modulating inflammatory responses. However, because the spleen is innervated solely by the noradrenergic splenic nerve, confirmation of an anti-inflammatory reflex pathway involving the spleen requires several more hypotheses to be addressed. We will review and discuss these issues in the context of the cholinergic system in immune cells.
Collapse
Affiliation(s)
- Takeshi Fujii
- Faculty of Pharmaceutical Sciences, Department of Pharmacology, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Masato Mashimo
- Faculty of Pharmaceutical Sciences, Department of Pharmacology, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Yasuhiro Moriwaki
- Faculty of Pharmacy, Department of Pharmacology, Keio University, Tokyo, Japan
| | - Hidemi Misawa
- Faculty of Pharmacy, Department of Pharmacology, Keio University, Tokyo, Japan
| | - Shiro Ono
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Kazuhide Horiguchi
- Department of Anatomy, Division of Medicine, University of Fukui Faculty of Medical Sciences, Fukui, Japan
| | - Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
73
|
Moussa AT, Rabung A, Reichrath S, Wagenpfeil S, Dinh T, Krasteva-Christ G, Meier C, Tschernig T. Modulation of macrophage phagocytosis in vitro-A role for cholinergic stimulation? Ann Anat 2017; 214:31-35. [PMID: 28823709 DOI: 10.1016/j.aanat.2017.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 01/24/2023]
Abstract
Acetylcholine is synthetized and released from neural cells, but also by non-neuronal cells such as epithelial cells or keratinocytes. Cholinergic agonists enhance the phagocytosis of zymosan particles in primary peritoneal macrophages. The aim of this study was to investigate the effect of carbachol stimulation on phagocytosis in a macrophage cell line using microspheres. The murine cell line MH-S was used in a phagocytosis assay with fluorescent latex beads. The amount of the ingested beads was determined using flow cytometry. Gene expression was investigated using polymerase chain reaction. Gene expression of the muscarinic receptors M1, M3, M4 and M5 but not M2 was found. Carbachol slightly increased the phagocytosis of microspheres in the macrophages. A co-stimulation using lipopolysaccharide and carbachol did not increase the effect of lipopolysaccharide alone. In conclusion, cholinergic stimulation in vitro only moderately modulates the phagocytosis of microspheres. M2 might have a role in stimulation of macrophage phagocytosis.
Collapse
Affiliation(s)
- Amira-Talaat Moussa
- Institute of Anatomy and Cell Biology, Medical Faculty, Saarland University, 66421 Homburg/Saar, Germany
| | - Andrea Rabung
- Institute of Anatomy and Cell Biology, Medical Faculty, Saarland University, 66421 Homburg/Saar, Germany
| | - Sandra Reichrath
- Institute of Anatomy and Cell Biology, Medical Faculty, Saarland University, 66421 Homburg/Saar, Germany
| | - Stefan Wagenpfeil
- Institute for Medical Biometry, Epidemiology and Medical Informatics, Medical Faculty, Saarland University, Homburg/Saar, Germany
| | - Thai Dinh
- Institute for Experimental Pulmonology, Medical Faculty, Saarland University, Homburg/Saar, Germany
| | - Gabriela Krasteva-Christ
- Institute of Anatomy and Cell Biology, Medical Faculty, Saarland University, 66421 Homburg/Saar, Germany
| | - Carola Meier
- Institute of Anatomy and Cell Biology, Medical Faculty, Saarland University, 66421 Homburg/Saar, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Medical Faculty, Saarland University, 66421 Homburg/Saar, Germany.
| |
Collapse
|
74
|
Effect of anti-muscarinic autoantibodies on leukocyte function in Sjögren's syndrome. Mol Immunol 2017; 90:136-142. [PMID: 28750255 DOI: 10.1016/j.molimm.2017.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023]
Abstract
Patients with primary Sjögren's syndrome, a systemic autoimmune disease, have been shown to have serum autoantibodies that react with the muscarinic acetylcholine type 3 receptor (M3R).Primary Sjögren's syndrome is a systemic autoimmune disease. Patients with primary Sjögren's syndrome have been shown to have serum autoantibodies that react with the muscarinic acetylcholine type 3 receptor (M3R). Leukopenia has been reported to be significantly more common in primary Sjögren's syndrome patients who have anti-M3R-autoantibodies in their sera. In this study, we investigated whether these anti-M3R autoantibodies have effects on M3R and MHCI expression in Jurkat T cells. Purified IgG antibodies were isolated from the serum of healthy individuals and primary Sjögren's syndrome patients. Jurkat cell line was used to represent T lymphocytes. In situ immunofluorescence confocal microscopy was used to confirm the binding reactivity of primary Sjögren's syndrome IgG antibodies to M3R. Co-immunoprecipitation and immunofluorescence results suggested a direct interaction between M3R and MHC I. Co-internalization of M3R and MHC I was observed when Jurkat cells were exposed to the primary Sjögren's syndrome IgG, but this primary Sjögren's syndrome IgG-induced co-internalization of M3R and MHC I was prevented by the presence of exogenous IFN-γ. Primary Sjögren's syndrome IgG itself did not affect the viability of Jurkat cells, but Jurkat cells exposed to primary Sjögren's syndrome IgG were observed to undergo significant cell death when co-cultured with primary Natural Killer cells. Our results suggest that anti-M3R autoantibodies in primary Sjögren's syndrome induce downregulation of plasma membrane-resident M3R and MHC class I molecules in leukocytes followed by NK cell-mediated cell death. This mechanism may explain the frequency of leukopenia occurrence in patients with primary Sjögren's syndrome.
Collapse
|
75
|
Soares MSP, Zanusso Costa M, da Silva TM, Gazal M, Couto CATD, Nogueira Debom G, Rodrigues R, Hofstätter Azambuja J, André Casali E, Moritz CEJ, Frescura Duarte M, Braganhol E, Moro Stefanello F, Maria Spanevello R. Methionine and/or Methionine Sulfoxide Alter Ectoenzymes Activities in Lymphocytes and Inflammatory Parameters in Serum from Young Rats: Acute and Chronic Effects. Cell Biochem Biophys 2017; 76:243-253. [PMID: 28726179 DOI: 10.1007/s12013-017-0815-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 05/24/2017] [Indexed: 02/06/2023]
Abstract
In this study we investigated the effect of acute and chronic treatment with Met and/or methionine sulfoxide (MetO) on ectonucleotidases and cholinesterases activities from lymphocytes and purine derivatives compounds, C-protein reactive, interleukin-10, interleukin-6, and tumor necrosis factor-α levels in serum of young rats. Adenosine triphosphate hydrolysis was decreased in lymphocytes 1 h after treatment by MetO and Met + MetO. However, adenosine triphosphate and adenosine diphosphate hydrolysis in lymphocytes was increased in the groups MetO and Met + MetO and adenosine deaminase activity was increased in MetO 3 h after the treatment. Acetylcholinesterase activity was increased in lymphocytes after 3 h and 21 days of treatment by MetO and Met + MetO, while serum butyrycholinesterase activity was decreased after 1 h and 21 days of treatment in the same groups. In chronic treatment, interleukin-6 and tumor necrosis factor-α level were increased, while that interleukin-10 level was decreased by Met, MetO, and Met + MetO when compared to control group. C-protein reactive level was increased by MetO and Met + MetO. Adenosine triphosphate and adenosine monophosphate levels were reduced in all amino acids treated groups, while adenosine diphosphate and hypoxanthine were enhanced by MetO and Met + MetO. Adenosine and xanthine were reduced in the MetO group, whereas inosine levels were decreased in the MetO and Met + MetO groups. These findings help to understand the inflammatory alterations observed in hypermethioninemia.
Collapse
Affiliation(s)
- Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Marcelo Zanusso Costa
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Tatiane Morgana da Silva
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Marta Gazal
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Carlus Augustu Tavares do Couto
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Gabriela Nogueira Debom
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Rodrigo Rodrigues
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Juliana Hofstätter Azambuja
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Emerson André Casali
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cesar Eduardo Jacintho Moritz
- Programa de Pós-Graduação em Ciências do Movimento Humano, Escola de Educação Física, Fisioterapia e Dança, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marta Frescura Duarte
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Laboratório de Análises Clínicas Labimed, Universidade Luterana do Brasil, Santa Maria, RS, Brazil
| | - Elizandra Braganhol
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção-Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| |
Collapse
|
76
|
Meng X, Xu X, Bao H, Wang J, Liu Z. Characterization of the Fifth Putative Acetylcholinesterase in the Wolf Spider, Pardosa pseudoannulata. Molecules 2017; 22:E1118. [PMID: 28696352 PMCID: PMC6152279 DOI: 10.3390/molecules22071118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 06/29/2017] [Accepted: 07/01/2017] [Indexed: 11/17/2022] Open
Abstract
Background: Acetylcholinesterase (AChE) is an important neurotransmitter hydrolase in invertebrate and vertebrate nervous systems. The number of AChEs is various among invertebrate species, with different functions including the 'classical' role in terminating synaptic transmission and other 'non-classical' roles. Methods: Using rapid amplification of cDNA ends (RACE) technology, a new putative AChE-encoding gene was cloned from Pardosa pseudoannulata, an important predatory natural enemy. Sequence analysis and in vitro expression were employed to determine the structural features and biochemical properties of this putative AChE. Results: The cloned AChE contained the most conserved motifs of AChEs family and was clearly clustered with Arachnida AChEs. Determination of biochemical properties revealed that the recombinant enzyme had the obvious preference for the substrate ATC (acetylthiocholine iodide) versus BTC (butyrylthiocholine iodide). The AChE was highly sensitive to AChE-specific inhibitor BW284C51, but not butyrylcholinesterase-specific inhibitor tetraisopropyl pyrophosphoramide (ISO-OMPA). Based on these results, we concluded that a new AChE was identified from P. pseudoannulata and denoted as PpAChE5. Conclusion: Here we report the identification of a new AChE from P. pseudoannulata and increased the AChE number to five in this species. Although PpAChE5 had the biggest Vmax value among five identified AChEs, it showed relatively low affinity with ATC. Similar sensitivity to test insecticides indicated that this AChE might serve as the target for both organophosphorus and carbamate insecticides.
Collapse
Affiliation(s)
- Xiangkun Meng
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Xixia Xu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| | - Haibo Bao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| |
Collapse
|
77
|
Gabbi P, Ribeiro LR, Jessié Martins G, Cardoso AS, Haupental F, Rodrigues FS, Machado AK, Sperotto Brum J, Medeiros Frescura Duarte MM, Schetinger MRC, da Cruz IBM, Flávia Furian A, Oliveira MS, Dos Santos ARS, Royes LFF, Fighera MR, de Freitas ML. Methylmalonate Induces Inflammatory and Apoptotic Potential: A Link to Glial Activation and Neurological Dysfunction. J Neuropathol Exp Neurol 2017; 76:160-178. [PMID: 28395089 DOI: 10.1093/jnen/nlw121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methylmalonic acid (MMA) accumulates in tissues in methylmalonic acidemia, a heterogeneous group of inherited childhood diseases characterized by neurological dysfunction, oxidative stress and neuroinflammation; it is associated with degeneration of striatal neurons and cerebral cortical atrophy. It is presently unknown, however, whether transient exposure to MMA in the neonatal period is sufficient to trigger inflammatory and apoptotic processes that lead to brain structural damage. Here, newborn mice were given a single intracerebroventricular dose of MMA at 12 hours after birth. Maze testing of 21- and 40-day-old mice showed that MMA-injected animals exhibited deficit in the working memory test but not in the reference test. MMA-injected mice showed increased levels of the reactive oxygen species marker 2',7'-dichlorofluorescein diacetate, tumor necrosis factor, interleukin-1β, caspases 1, 3, and 8, and increased acetylcholinesterase activity in the cortex, hippocampus and striatum. This was associated with increased astrocyte and microglial immunoreactivity in all brain regions. These findings suggest that transient exposure to MMA may alter the redox state and cause neuroinflammatory/apoptotic processes and glial activation during critical periods of brain development. Similar processes may underlie brain dysfunction and cognitive impairment in patients with methylmalonic acidemia.
Collapse
Affiliation(s)
- Patricia Gabbi
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde.,Laboratório de Bioquímica do Exercício, Centro, de, Departamento Métodos e Técnicas Desportivas, de Educação Física e Desportos, UFSM.,Centro, de Departamento Neuropsiquiatria; de Ciências da Saúde, UFSM
| | - Leandro Rodrigo Ribeiro
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde.,Laboratório de Bioquímica do Exercício, Centro, de, Departamento Métodos e Técnicas Desportivas, de Educação Física e Desportos, UFSM
| | | | - Alexandra Seide Cardoso
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde.,Laboratório de Bioquímica do Exercício, Centro, de, Departamento Métodos e Técnicas Desportivas, de Educação Física e Desportos, UFSM.,Centro, de Departamento Neuropsiquiatria; de Ciências da Saúde, UFSM
| | - Fernanda Haupental
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde.,Laboratório de Bioquímica do Exercício, Centro, de, Departamento Métodos e Técnicas Desportivas, de Educação Física e Desportos, UFSM.,Centro, de Departamento Neuropsiquiatria; de Ciências da Saúde, UFSM
| | - Fernanda Silva Rodrigues
- Laboratório de Bioquímica do Exercício, Centro, de, Departamento Métodos e Técnicas Desportivas, de Educação Física e Desportos, UFSM.,Centro, de Departamento Neuropsiquiatria; de Ciências da Saúde, UFSM.,de Programa Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica
| | - Alencar Kolinski Machado
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde
| | | | | | | | | | - Ana Flávia Furian
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde
| | - Mauro Schneider Oliveira
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde
| | - Adair Roberto Soares Dos Santos
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde.,de Programa Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica.,Universidade Federal de Santa Catarina, Centro, de Programa Pós-graduação em Neurociências, de Ciências Biológicas
| | - Luiz Fernando Freire Royes
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde.,Laboratório de Bioquímica do Exercício, Centro, de, Departamento Métodos e Técnicas Desportivas, de Educação Física e Desportos, UFSM.,de Programa Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica
| | - Michele Rechia Fighera
- Programa de Pós-Graduação em Farmacologia, Centro, de, Departamento Fisiologia e Farmacologia, de Ciências da Saúde.,Laboratório de Bioquímica do Exercício, Centro, de, Departamento Métodos e Técnicas Desportivas, de Educação Física e Desportos, UFSM.,Centro, de Departamento Neuropsiquiatria; de Ciências da Saúde, UFSM.,de Programa Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica
| | | |
Collapse
|
78
|
Wu P, Liu Y, Jiang WD, Jiang J, Zhang YA, Zhou XQ, Feng L. Intestinal immune responses of Jian carp against Aeromonas hydrophila depressed by choline deficiency: Varied change patterns of mRNA levels of cytokines, tight junction proteins and related signaling molecules among three intestinal segments. FISH & SHELLFISH IMMUNOLOGY 2017; 65:34-41. [PMID: 28366783 DOI: 10.1016/j.fsi.2017.03.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/21/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
This study aimed to investigate the effects of choline deficiency on intestinal inflammation of fish after Aeromonas hydrophila infection and the potential molecular mechanisms. Juvenile Jian carp (Cyprinus carpio var. Jian) were fed two diets containing choline at 165 (deficient group) and 607 mg/kg diet respectively for 65 days. Choline deficiency decreased intestinal lysozyme activity, C3 and IgM contents, increased acid phosphatase activity, downregulated mRNA levels of antimicrobial peptides [liver-expressed antimicrobial peptide (LEAP) 2A, LEAP-2B, hepcidin and defensin], cytokines [interleukin (IL) 6a, tumor necrosis factor α (TNF-α), interferon γ2b (IFN-γ2b), IL-6b and transforming growth factor β2 (TGF-β2) only in proximal intestine, IL-10 in mid and distal intestine], immune-related signaling molecules [Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), nuclear factor kappa B (NF-κB), inhibitor of NF-κB (IκB), Janus kinase 3 (JAK3), and signal transducers and activators of transcription 5 (STAT5)], tight junction proteins (claudin 3b, claudin 3c, claudin 11 and occludin), and mitogen-activated protein kinases p38 (p38MAPK) in proximal and distal intestine of juvenile Jian carp after A. hydrophila challenge. In contrast, choline deficiency upregulated mRNA levels of antimicrobial peptides (LEAP-2A, LEAP-2B, hepcidin and defensin), cytokines (IL-6b, IFN-γ2b and TGF-β2), immune-related signaling molecules (TLR4, MyD88, NF-κB, IκB, JAK3, STAT4 in three intestinal segments, and STAT6), claudin 11, and p38MAPK in mid intestine of fish. This study provides new finding that choline deficiency-induced immune responses against A. hydrophila infection were varied among three intestinal segments in fish.
Collapse
Affiliation(s)
- Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
79
|
Fujii T, Mashimo M, Moriwaki Y, Misawa H, Ono S, Horiguchi K, Kawashima K. Physiological functions of the cholinergic system in immune cells. J Pharmacol Sci 2017; 134:1-21. [DOI: 10.1016/j.jphs.2017.05.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/30/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023] Open
|
80
|
Gori S, Vermeulen M, Remes-Lenicov F, Jancic C, Scordo W, Ceballos A, Towstyka N, Bestach Y, Belli C, Sabbione F, Geffner J, Salamone G. Acetylcholine polarizes dendritic cells toward a Th2-promoting profile. Allergy 2017; 72:221-231. [PMID: 27138374 DOI: 10.1111/all.12926] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND A growing body of research shows a reciprocal regulation between the neural and immune systems. Acetylcholine (ACh) is the most important parasympathetic neurotransmitter, and increasing evidence indicates that it is able to modulate the immune response. Interestingly, in recent years, it has become clear that immune cells express a non-neuronal cholinergic system, which is stimulated in the course of inflammatory processes. We have previously shown that dendritic cells (DC) express muscarinic receptors, as well as the enzymes responsible for the synthesis and degradation of ACh. Here, we analyzed whether ACh could also modulate the functional profile of DC. METHODS Dendritic cells were obtained from monocytes cultured for 5 days with GM-CSF+IL-4 or isolated from peripheral blood (CD1c+ DC). The phenotype of DC was evaluated by flow cytometry, the production of cytokines was analyzed by ELISA or intracellular staining and flow cytometry, and the expression of muscarinic and nicotinic receptors was evaluated by flow cytometry or qRT-PCR. RESULTS Treatment of DC with ACh stimulated the expression of the Th2-promoter OX40L, the production of the Th2-chemokines MDC (macrophage-derived chemokine/CCL22) and TARC (thymus and activation-regulated chemokine/CCL17), and the synthesis of IL-4, IL-5, and IL-13 by T cells, in the course of the mixed lymphocyte reaction (MLR). Moreover, we found that the stimulation of OX40L, HLA-DR, and CD83 expressions in DC induced by the Th2-promoting cytokine TSLP, as well as the production of IL-13, IL-4, and IL-5 by T cells in the course of the MLR, was further enhanced when DC were treated with TSLP plus ACh, instead of TSLP or ACh alone. CONCLUSIONS Our observations suggest that ACh polarizes DC toward a Th2-promoting profile.
Collapse
Affiliation(s)
- S. Gori
- Instituto de Medicina Experimental (IMEX) CONICET; Academia Nacional de Medicina; CABA Argentina
| | - M. Vermeulen
- Instituto de Medicina Experimental (IMEX) CONICET; Academia Nacional de Medicina; CABA Argentina
- Departamento de Microbiología; Parasitología e Inmunología; Facultad de Medicina; Universidad de Buenos Aires; CABA Argentina
| | - F. Remes-Lenicov
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS); Universidad de Buenos Aires - CONICET; CABA Argentina
| | - C. Jancic
- Instituto de Medicina Experimental (IMEX) CONICET; Academia Nacional de Medicina; CABA Argentina
- Departamento de Microbiología; Parasitología e Inmunología; Facultad de Medicina; Universidad de Buenos Aires; CABA Argentina
| | - W. Scordo
- Servicio de Medicina Transfusional; Hospital Italiano de Buenos Aires; CABA Argentina
| | - A. Ceballos
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS); Universidad de Buenos Aires - CONICET; CABA Argentina
| | - N. Towstyka
- Instituto de Medicina Experimental (IMEX) CONICET; Academia Nacional de Medicina; CABA Argentina
| | - Y. Bestach
- Instituto de Medicina Experimental (IMEX) CONICET; Academia Nacional de Medicina; CABA Argentina
| | - C. Belli
- Instituto de Medicina Experimental (IMEX) CONICET; Academia Nacional de Medicina; CABA Argentina
| | - F. Sabbione
- Instituto de Medicina Experimental (IMEX) CONICET; Academia Nacional de Medicina; CABA Argentina
| | - J. Geffner
- Departamento de Microbiología; Parasitología e Inmunología; Facultad de Medicina; Universidad de Buenos Aires; CABA Argentina
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS); Universidad de Buenos Aires - CONICET; CABA Argentina
| | - G. Salamone
- Instituto de Medicina Experimental (IMEX) CONICET; Academia Nacional de Medicina; CABA Argentina
- Departamento de Microbiología; Parasitología e Inmunología; Facultad de Medicina; Universidad de Buenos Aires; CABA Argentina
| |
Collapse
|
81
|
Acetylcholine released from T cells regulates intracellular Ca 2+, IL-2 secretion and T cell proliferation through nicotinic acetylcholine receptor. Life Sci 2016; 172:13-18. [PMID: 28025040 DOI: 10.1016/j.lfs.2016.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 11/23/2022]
Abstract
AIMS T lymphocytes synthesize acetylcholine (ACh) and express muscarinic and nicotinic ACh receptors (mAChR and nAChR, respectively) responsible for increases in the intracellular Ca2+ concentration ([Ca2+]i). Our aim in the present study was to assess whether autocrine ACh released from T lymphocytes regulates their physiological functions. MAIN METHODS MOLT-3 human leukemic cell line and murine splenocytes were loaded with fura-2 to monitor [Ca2+]i changes in the absence or presence of several AChR antagonists, including mecamylamine, methyllycaconitine and scopolamine. Real-time PCR and ELISA were performed to measure interleukin-2 (IL-2) mRNA and protein levels. KEY FINDINGS T lymphocytes constitutively produce sufficient amounts of ACh to elicit autocrine changes in [Ca2+]i. These autocrine ACh-evoked [Ca2+]i transients were mediated by nAChRs and then influx of extracellular Ca2+. Mecamylamine, a nAChR inhibitor, suppressed not only these [Ca2+]i transients, but also IL-2 release and T cell proliferation. SIGNIFICANCE Here, we confirmed that T lymphocytes utilize ACh as a tool to interact with each other and that autocrine ACh-activated nAChRs are involved in cytokine release and cell proliferation. These findings suggest the possibility that nAChR agonists and antagonists and smoking are able to modulate immune function, which in turn suggests the therapeutic potential of immune activation or suppression using nAChR agonists or antagonists.
Collapse
|
82
|
Dobrovinskaya O, Valencia-Cruz G, Castro-Sánchez L, Bonales-Alatorre EO, Liñan-Rico L, Pottosin I. Cholinergic Machinery as Relevant Target in Acute Lymphoblastic T Leukemia. Front Pharmacol 2016; 7:290. [PMID: 27630569 PMCID: PMC5005329 DOI: 10.3389/fphar.2016.00290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/18/2016] [Indexed: 12/17/2022] Open
Abstract
Various types of non-neuronal cells, including tumors, are able to produce acetylcholine (ACh), which acts as an autocrine/paracrine growth factor. T lymphocytes represent a key component of the non-neuronal cholinergic system. T cells-derived ACh is involved in a stimulation of their activation and proliferation, and acts as a regulator of immune response. The aim of the present work was to summarize the data about components of cholinergic machinery in T lymphocytes, with an emphasis on the comparison of healthy and leukemic T cells. Cell lines derived from acute lymphoblastic leukemias of T lineage (T-ALL) were found to produce a considerably higher amount of ACh than healthy T lymphocytes. Additionally, ACh produced by T-ALL is not efficiently hydrolyzed, because acetylcholinesterase (AChE) activity is drastically decreased in these cells. Up-regulation of muscarinic ACh receptors was also demonstrated at expression and functional level, whereas nicotinic ACh receptors seem to play a less important role and not form functional channels in cells derived from T-ALL. We hypothesized that ACh over-produced in T-ALL may act as an autocrine growth factor and play an important role in leukemic clonal expansion through shaping of intracellular Ca2+ signals. We suggest that cholinergic machinery may be attractive targets for new drugs against T-ALL. Specifically, testing of high affinity antagonists of muscarinic ACh receptors as well as antagomiRs, which interfere with miRNAs involved in the suppression of AChE expression, may be the first choice options.
Collapse
Affiliation(s)
- Oxana Dobrovinskaya
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Colima, México
| | - Georgina Valencia-Cruz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Colima, México
| | - Luis Castro-Sánchez
- Centro Universitario de Investigaciones Biomédicas, Universidad de ColimaColima, México; Consejo Nacional de Ciencia y TecnologíaMéxico City, México
| | | | - Liliana Liñan-Rico
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Colima, México
| | - Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Colima, México
| |
Collapse
|
83
|
Reardon C. Neuro-immune interactions in the cholinergic anti-inflammatory reflex. Immunol Lett 2016; 178:92-6. [PMID: 27542331 DOI: 10.1016/j.imlet.2016.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 10/21/2022]
Abstract
Communication between the nervous and immune systems can significantly alter immune cell function in a number of inflammatory diseases. Elegant studies have defined a basic functional circuit in a "cholinergic anti-inflammatory pathway" that highlights a unique role for the vagus nerve, and has brought about a resurgence in the field of neuro-immunology. This research has further identified that in addition to tonic signals that can restrain immune cell activation; the anti-inflammatory reflex arc is amiable to targeted stimulation as a therapeutic modality. The success of vagal electrical neural stimulation in a plethora of pre-clinical inflammation models has spurred the development of "electroceuticals" or neurostimulatory devices in the treatment of chronic inflammation. This development has begun despite addressing of fundamental questions such as the functional neural circuitry being crudely mapped and unresolved mechanisms of action of acetylcholine on target immune cells. Perhaps fortuitously, rapid advances in neuroscience techniques may allow us to begin to answer some of these longstanding questions and clarify recent controversies.
Collapse
Affiliation(s)
- Colin Reardon
- University of California Davis, School of Veterinary Medicine, Department of Anatomy, Physiology, and Cell Biology, 1089 Veterinary Medicine Drive, VM3B, Room 2007, Davis, CA 95616, United States.
| |
Collapse
|
84
|
Grumelli S. Choline Triggers Exacerbations of Chronic Obstructive Pulmonary Disease in Patients Infected with Pseudomonas aeruginosa. CURRENT RESPIRATORY MEDICINE REVIEWS 2016; 12:167-174. [PMID: 29386986 DOI: 10.2174/1573398x12999160506104327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background Although exacerbations of chronic obstructive pulmonary disease produced by Pseudomonas aeruginosa infections are a major cause of death, the molecular mechanism that produces them is not well known. Here we focused on the energetic basis of dyspnoea, hypercapnia and acidosis symptoms. Methods and Findings We used an in vivo exacerbation model exposing mice to cigarette smoke and LPS, to mimic emphysema and infections, and choline challenges to trigger exacerbations, that showed 31% increased in the airway resistance for naïve mice and 250% for smoke/LPS treatment. Tissue resistance was increased 32%, in naïve mice, and 169% for smoke/LPS treatment. A decreased tissue elastance, was confirmed by decreased collagen content and increased alveoli chord length. Consequently, the O2 demanded was 260% greater for smoke/LPS treated mice, to provide the energy required to pump the same volume of air then for naïve mice. The extra CO2 produced per ml of air pumped caused hypercapnia and acidosis by 4% decrease in pH.In addition, the bacteria grown with choline had a decrease of 67% in phosphate, 23% ATP and 85% phospholipids with an increase of 57% in polyphosphates, 50% carbohydrates, 100% LPS, consuming 45% less energy relative to the bacteria grown with succinate. Conclusion choline, released by P. aeruginosa, triggers exacerbation symptoms by increasing lung resistance, O2 consumption and producing more pCO2 in blood with dyspnea, hypercapnia and acidosis. The energetic shift of decreased O2 bacterial demand and increased lung demand benefits the infection, thus restoring the energetic balance on the host will favor P. aeruginosa eradication.
Collapse
Affiliation(s)
- Sandra Grumelli
- Centro de Investigaciones en Medicina Respiratoria, Universidad Católica de Córdoba, Cordoba, Argentina.,Pulmonary Division of the Brigham and Women's Hospital, Harvard Medical School, Boston, USA.,Departamento de Biologia Molecular, Universidad Nacional de Rio Cuarto, Rio Cuarto, Córdoba, Argentina
| |
Collapse
|
85
|
Mashimo M, Yurie Y, Kawashima K, Fujii T. CRAC channels are required for [Ca(2+)]i oscillations and c-fos gene expression after muscarinic acetylcholine receptor activation in leukemic T cells. Life Sci 2016; 161:45-50. [PMID: 27474128 DOI: 10.1016/j.lfs.2016.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 11/30/2022]
Abstract
AIMS T lymphocytes express muscarinic acetylcholine receptors (mAChRs) involved in regulating their proliferation, differentiation and cytokine release. Activation of M1, M3 or M5 mAChRs increases the intracellular Ca(2+) concentration ([Ca(2+)]i) through inositol-1,4,5-phosphate (IP3)-mediated Ca(2+) release from endoplasmic reticulum Ca(2+) stores. In addition, T lymphocytes express Ca(2+)-release activated Ca(2+) (CRAC) channels to induce Ca(2+) influx and to regulate diverse immune functions. Our aim in the present study was to assess the role of CRAC channels during mAChR activation in the Ca(2+)-dependent transduction that contributes to the regulation of T cell function. MAIN METHODS Changes in [Ca(2+)]i following mAChR activation on human leukemic T cells, CCRF-CEM (CEM), were monitored using fura-2, based on the ratio of 510nm fluorescences elicited by excitation at 340nm and 380nm (R340/380). KEY FINDINGS We demonstrate that CEM cells express mainly M3 and M5 mAChRs, but little the M1 subtype, and that oxotremorine-M (Oxo-M), an mAChR agonist, induces an initial transient increase in [Ca(2+)]i followed by repetitive [Ca(2+)]i oscillations. Removing extracellular Ca(2+) or pharmacological blockade of CRAC channels abolished the [Ca(2+)]i oscillations without affecting the initial [Ca(2+)]i transient induced by Oxo-M. Moreover, CRAC channel blockade also suppressed Oxo-M-induced c-fos and interleukin-2 expression. SIGNIFICANCE These results suggest that upon M3 or M5 mAChR activation, IP3-mediated Ca(2+) release induces extracellular Ca(2+) influx through CRAC channels, which generates repetitive [Ca(2+)]i oscillations and, in turn, enhances c-fos gene expression in T lymphocytes.
Collapse
Affiliation(s)
- Masato Mashimo
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan
| | - Yukako Yurie
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan
| | - Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Minato-ku, Tokyo 108-8641, Japan
| | - Takeshi Fujii
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan.
| |
Collapse
|
86
|
Onodera A, Yayama K, Tanaka A, Morosawa H, Furuta T, Takeda N, Kakiguchi K, Yonemura S, Yanagihara I, Tsutsumi Y, Kawai Y. Amorphous nanosilica particles evoke vascular relaxation through PI3K/Akt/eNOS signaling. Fundam Clin Pharmacol 2016; 30:419-28. [PMID: 27214102 DOI: 10.1111/fcp.12206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/20/2016] [Indexed: 12/17/2022]
Abstract
There have been several reported studies on the distribution and/or toxicity of nanosilica particles. However, the influence of these particles on blood vessels through which they are distributed is poorly understood. Hence, we investigated the effects of nano- and micromaterials on blood vessel shrinkage and relaxation. Nanosilica particles with diameters of 70 nm (nSP70) were used as the nanomaterial, and particles of 300 and 1000 nm (nSP300 and mSP1000, respectively) were used as micromaterials. A rat thoracic aorta was used as the test blood vessel. The nano- and micromaterials had no effect on vessel shrinkage. Of the nano- and micromaterials tested, only nSP70 strongly evoked vascular relaxation. Vascular relaxation evoked by nSP70 was almost completely inhibited by the phosphoinositide 3-kinase (PI3K) inhibitor wortmannin. In addition, the selective nitric oxide synthesis inhibitor NG-nitro-l-arginine methyl ester, which inhibits endothelial nitric oxide synthase (eNOS) downstream of PI3K signaling, inhibited vascular relaxation evoked by nSP70. In an analysis using bovine aortic endothelial cells (bAECs), nSP70 phosphorylated protein kinase B (AKT) and eNOS acted downstream of PI3K signaling. PI3K inhibition by wortmannin reduced AKT and eNOS phosphorylation. These results demonstrated that 70-nm amorphous nanosilica particles evoked vascular relaxation through PI3K/Akt/eNOS signaling. Moreover, it was suggested that nanomaterials, in general, control or disrupt vascular function by activating a known signal cascade.
Collapse
Affiliation(s)
- Akira Onodera
- Department of Pharmaceutical Sciences, Kobegakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan.
| | - Katsutoshi Yayama
- Department of Pharmaceutical Sciences, Kobegakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Atsushi Tanaka
- Department of Pharmaceutical Sciences, Kobegakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Hideto Morosawa
- Department of Pharmaceutical Sciences, Kobegakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Takuya Furuta
- Department of Pharmaceutical Sciences, Kobegakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Naoya Takeda
- Department of Pharmaceutical Sciences, Kobegakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Kisa Kakiguchi
- Electron Microscope Laboratory, RIKEN Centre for Developmental Biology, 2-2-3 Minatojima Minami-Cho, Kobe, 650-0047, Japan
| | - Shigenobu Yonemura
- Electron Microscope Laboratory, RIKEN Centre for Developmental Biology, 2-2-3 Minatojima Minami-Cho, Kobe, 650-0047, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Osaka Medical Centre and Research Institute for Maternal and Child Health, 840 Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Yasuo Tsutsumi
- Department of Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yuichi Kawai
- Department of Pharmaceutical Sciences, Kobegakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| |
Collapse
|
87
|
Toledo-Ibarra GA, Díaz-Resendiz KJG, Pavón-Romero L, Rojas-García AE, Medina-Díaz IM, Girón-Pérez MI. Effects of diazinon on the lymphocytic cholinergic system of Nile tilapia fish (Oreochromis niloticus). Vet Immunol Immunopathol 2016; 176:58-63. [PMID: 27260186 DOI: 10.1016/j.vetimm.2016.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 05/02/2016] [Accepted: 05/20/2016] [Indexed: 11/24/2022]
Abstract
Fish rearing under intensive farming conditions can be easily disturbed by pesticides, substances that have immunotoxic properties and may predispose to infections. Organophosphorus pesticides (OPs) are widely used in agricultural activities; however, the mechanism of immunotoxicity of these substances is unclear. The aim of this study was to evaluate the effect of diazinon pesticides (OPs) on the cholinergic system of immune cells as a possible target of OP immunotoxicity. We evaluated ACh levels and cholinergic (nicotinic and muscarinic) receptor concentration. Additionally, AChE activity was evaluated in mononuclear cells of Nile tilapia (Oreochromis niloticus), a freshwater fish mostly cultivated in tropical regions around the world. The obtained results indicate that acute exposure to diazinon induces an increase in ACh concentration and a decrease in nAChR and mAChR concentrations and AChE activity in fish immune cells, This suggests that the non-neuronal lymphocytic cholinergic system may be the main target in the mechanism of OP immunotoxicity. This study contributes to the understanding of the mechanisms of immunotoxicity of pollutants and may help to take actions for animal health improvement.
Collapse
Affiliation(s)
- G A Toledo-Ibarra
- Laboratorio de Inmunotoxicología, Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63190, Tepic Nayarit, Mexico
| | - K J G Díaz-Resendiz
- Laboratorio de Inmunotoxicología, Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63190, Tepic Nayarit, Mexico
| | - L Pavón-Romero
- Departmento de Psicoimmunología, Instituto Nacional de Psiquiatría "Ramón de la Fuente", Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, DF, Mexico
| | - A E Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cu ltura Amado Nervo, C.P. 63190, Tepic Nayarit, Mexico
| | - I M Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cu ltura Amado Nervo, C.P. 63190, Tepic Nayarit, Mexico
| | - M I Girón-Pérez
- Laboratorio de Inmunotoxicología, Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63190, Tepic Nayarit, Mexico.
| |
Collapse
|
88
|
González-Arancibia C, Escobar-Luna J, Barrera-Bugueño C, Díaz-Zepeda C, González-Toro MP, Olavarría-Ramírez L, Zanelli-Massai F, Gotteland M, Bravo JA, Julio-Pieper M. What goes around comes around: novel pharmacological targets in the gut-brain axis. Therap Adv Gastroenterol 2016; 9:339-53. [PMID: 27134664 PMCID: PMC4830101 DOI: 10.1177/1756283x16630718] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The gut and the brain communicate bidirectionally through anatomic and humoral pathways, establishing what is known as the gut-brain axis. Therefore, interventions affecting one system will impact on the other, giving the opportunity to investigate and develop future therapeutic strategies that target both systems. Alterations in the gut-brain axis may arise as a consequence of changes in microbiota composition (dysbiosis), modifications in intestinal barrier function, impairment of enteric nervous system, unbalanced local immune response and exaggerated responses to stress, to mention a few. In this review we analyze and discuss several novel pharmacological targets within the gut-brain axis, with potential applications to improve intestinal and mental health.
Collapse
Affiliation(s)
- Camila González-Arancibia
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jorge Escobar-Luna
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Camila Barrera-Bugueño
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Camilo Díaz-Zepeda
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - María P. González-Toro
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Loreto Olavarría-Ramírez
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Francesca Zanelli-Massai
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Martin Gotteland
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Javier A. Bravo
- Grupo de NeuroGastroBioquímica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | |
Collapse
|
89
|
Campoy FJ, Vidal CJ, Muñoz-Delgado E, Montenegro MF, Cabezas-Herrera J, Nieto-Cerón S. Cholinergic system and cell proliferation. Chem Biol Interact 2016; 259:257-265. [PMID: 27083142 DOI: 10.1016/j.cbi.2016.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 12/31/2022]
Abstract
The cholinergic system, comprising acetylcholine, the proteins responsible for acetylcholine synthesis and release, acetylcholine receptors and cholinesterases, is expressed by most human cell types. Acetylcholine is a neurotransmitter, but also a local signalling molecule which regulates basic cell functions, and cholinergic responses are involved in cell proliferation and apoptosis. So, activation of nicotinic and muscarinic receptors has a proliferative and anti-apoptotic effect in many cells. The content of choline acetyltransferase, acetylcholine receptors and cholinesterases is altered in many tumours, and cholinesterase content correlates with patient survival in some cancers. During apoptosis, acetylcholinesterase is induced and appears in the nuclei. Acetylcholinesterase participates in the regulation of cell proliferation and apoptosis through hydrolysis of acetylcholine and by other catalytic and non catalytic mechanisms, in a variant-specific manner. This review gathers information on the role of cholinergic system and specially acetylcholinesterase in cell proliferation and apoptosis.
Collapse
Affiliation(s)
- F J Campoy
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", E-30071 Murcia, Spain.
| | - C J Vidal
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", E-30071 Murcia, Spain
| | - E Muñoz-Delgado
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", E-30071 Murcia, Spain
| | - M F Montenegro
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", E-30071 Murcia, Spain
| | - J Cabezas-Herrera
- Molecular Therapy and Biomarker Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, E-30120 El Palmar, Murcia, Spain
| | - S Nieto-Cerón
- Molecular Therapy and Biomarker Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, E-30120 El Palmar, Murcia, Spain
| |
Collapse
|
90
|
Marshall-Gradisnik S, Huth T, Chacko A, Johnston S, Smith P, Staines D. Natural killer cells and single nucleotide polymorphisms of specific ion channels and receptor genes in myalgic encephalomyelitis/chronic fatigue syndrome. APPLICATION OF CLINICAL GENETICS 2016; 9:39-47. [PMID: 27099524 PMCID: PMC4821384 DOI: 10.2147/tacg.s99405] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIM The aim of this paper was to determine natural killer (NK) cytotoxic activity and if single nucleotide polymorphisms (SNPs) and genotypes in transient receptor potential (TRP) ion channels and acetylcholine receptors (AChRs) were present in isolated NK cells from previously identified myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) patients. SUBJECTS AND METHODS A total of 39 ME/CFS patients (51.69±2 years old) and 30 unfatigued controls (47.60±2.39 years old) were included in this study. Patients were defined according to the 1994 Centers for Disease Control and Prevention criteria. Flow cytometry protocols were used to examine NK cytotoxic activity. A total of 678 SNPs from isolated NK cells were examined for 21 mammalian TRP ion channel genes and for nine mammalian AChR genes via the Agena Bioscience iPlex Gold assay. SNP association and genotype was determined using analysis of variance and Plink software. RESULTS ME/CFS patients had a significant reduction in NK percentage lysis of target cells (17%±4.68%) compared with the unfatigued control group (31%±6.78%). Of the 678 SNPs examined, eleven SNPs for TRP ion channel genes (TRPC4, TRPC2, TRPM3, and TRPM8) were identified in the ME/CFS group. Five of these SNPs were associated with TRPM3, while the remainder were associated with TRPM8, TRPC2, and TRPC4 (P<0.05). Fourteen SNPs were associated with nicotinic and muscarinic AChR genes: six with CHRNA3, while the remainder were associated with CHRNA2, CHRNB4, CHRNA5, and CHRNE (P<0.05). There were sixteen genotypes identified from SNPs in TRP ion channels and AChRs for TRPM3 (n=5), TRPM8 (n=2), TRPC4 (n=3), TRPC2 (n=1), CHRNE (n=1), CHRNA2 (n=2), CHRNA3 (n=1), and CHRNB4 (n=1) (P<0.05). CONCLUSION We identified a number of SNPs and genotypes for TRP ion channels and AChRs from isolated NK cells in patients with ME/CFS, suggesting these SNPs and genotypes may be involved in changes in NK cell function and the development of ME/CFS pathology. These anomalies suggest a role for dysregulation of Ca(2+) in AChR and TRP ion channel signaling in the pathomechanism of ME/CFS.
Collapse
Affiliation(s)
- Sonya Marshall-Gradisnik
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Teilah Huth
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Anu Chacko
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Samantha Johnston
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Pete Smith
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Donald Staines
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
91
|
Doyle RL, Da Silva AS, Oliveira CB, França RT, Carvalho FB, Abdalla FH, Costa P, Klafke GM, Martins JR, Tonin AA, Castro VSP, Santos FGB, Lopes STA, Andrade CM. Cholinesterases as markers of the inflammatory process associated oxidative stress in cattle infected by Babesia bigemina. Comp Immunol Microbiol Infect Dis 2016; 46:1-6. [PMID: 27260803 DOI: 10.1016/j.cimid.2016.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
The objective of this study was to assess the influence of an asymptomatic experimental infection by Babesia bigemina on cholinesterase's as markers of the inflammatory process and biomarkers of oxidative imbalance. For this purpose, eight naive animals were used, as follows: four as controls or uninfected; and four infected with an attenuated strain of B. bigemina. Blood samples were collected on days 0, 7 and 11 post-inoculation (PI). Parasitemia was determined by blood smear evaluation, showing that the infection by B. bigemina resulted in mean 0.725 and 0.025% on day 7 and 11 PI, respectively, as well as mild anemia. The activities of acetylcholinesterase, butyrylcholinesterase and catalase were lower, while levels of thiobarbituric acid reactive substances and superoxide dismutase activity were higher in infected animals, when compared with the control group. This attenuated strain of B. bigemina induced an oxidative stress condition, as well as it reduces the cholinesterasés activity in infected and asymptomatic cattle. Therefore, this decrease of cholinesterase in infection by B. bigemina purpose is to inhibit inflammation, for thereby increasing acetylcholine levels, potent anti-inflammatory molecules.
Collapse
Affiliation(s)
- Rovaina L Doyle
- Graduate Program in Veterinary Medicine, Department of Small Animal, Veterinary Hospital, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Laboratory of Toxicology Enzymology, Department of Chemistry, Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Aleksandro S Da Silva
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, SC, Brazil
| | - Camila B Oliveira
- Graduate Program in Veterinary Medicine, Department of Microbiology and Parasitology, Prédio 20, Universidade Federal de Santa Maria, Santa Maria , RS, Brazil
| | - Raqueli T França
- Graduate Program in Veterinary Medicine, Department of Small Animal, Veterinary Hospital, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fabiano B Carvalho
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Division of Biochemistry and Oxidative Stress, Laboratory of Cell Therapy, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fátima H Abdalla
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Division of Biochemistry and Oxidative Stress, Laboratory of Cell Therapy, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Pauline Costa
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Laboratory of Toxicology Enzymology, Department of Chemistry, Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Guilherme M Klafke
- Instituto de Pesquisas Veterinárias Desidério Finamor, Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Eldorado do Sul, RS , Brazil
| | - João R Martins
- Instituto de Pesquisas Veterinárias Desidério Finamor, Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Eldorado do Sul, RS , Brazil
| | - Alexandre A Tonin
- Graduate Program in Veterinary Medicine, Department of Microbiology and Parasitology, Prédio 20, Universidade Federal de Santa Maria, Santa Maria , RS, Brazil
| | - Verônica S P Castro
- Graduate Program in Veterinary Medicine, Department of Small Animal, Veterinary Hospital, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Franklin G B Santos
- Centre for Biological Sciences, Department of Epidemiology and Microbiology, Health Sciences, Universidade Federal do Piauí, Campus Senador Helvídio Nunes de Barros,Picos, PI , 64600-000, Brazil
| | - Sonia T A Lopes
- Graduate Program in Veterinary Medicine, Department of Small Animal, Veterinary Hospital, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Cinthia M Andrade
- Graduate Program in Veterinary Medicine, Department of Small Animal, Veterinary Hospital, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Division of Biochemistry and Oxidative Stress, Laboratory of Cell Therapy, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
92
|
Zakharchenko MV, Kovzan AV, Khunderyakova NV, Yachkula TV, Krukova OV, Khlebopros RG, Shvartsburd PM, Fedotcheva NI, Litvinova EG, Kondrashova MN. The effect of cell-phone radiation on rabbits: Lymphocyte enzyme-activity data. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916010279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
93
|
Functional expression of choline transporter like-protein 1 (CTL1) and CTL2 in human brain microvascular endothelial cells. Neurochem Int 2015; 93:40-50. [PMID: 26746385 DOI: 10.1016/j.neuint.2015.12.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/24/2015] [Accepted: 12/27/2015] [Indexed: 11/20/2022]
Abstract
In this study, we examined the molecular and functional characterization of choline transporter in human brain microvascular endothelial cells (hBMECs). Choline uptake into hBMECs was a saturable process that was mediated by a Na(+)-independent, membrane potential and pH-dependent transport system. The cells have two different [(3)H]choline transport systems with Km values of 35.0 ± 4.9 μM and 54.1 ± 8.1 μM, respectively. Choline uptake was inhibited by choline, acetylcholine (ACh) and the choline analog hemicholinium-3 (HC-3). Various organic cations also interacted with the choline transport system. Choline transporter-like protein 1 (CTL1) and CTL2 mRNA were highly expressed, while mRNA for high-affinity choline transporter 1 (CHT1) and organic cation transporters (OCTs) were not expressed in hBMECs. CTL1 and CTL2 proteins were localized to brain microvascular endothelial cells in human brain cortical sections. Both CTL1 and CTL2 proteins were expressed on the plasma membrane and mitochondria. CTL1 and CTL2 proteins are mainly expressed in plasma membrane and mitochondria, respectively. We conclude that choline is mainly transported via an intermediate-affinity choline transport system, CTL1 and CTL2, in hBMECs. These transporters are responsible for the uptake of extracellular choline and organic cations. CTL2 participate in choline transport mainly in mitochondria, and may be the major site for the control of choline oxidation.
Collapse
|
94
|
Murine embryonic stem cell line CGR8 expresses all subtypes of muscarinic receptors and multiple nicotinic receptor subunits: Down-regulation of α4- and β4-subunits during early differentiation. Int Immunopharmacol 2015; 29:110-4. [DOI: 10.1016/j.intimp.2015.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 07/14/2015] [Accepted: 07/20/2015] [Indexed: 02/06/2023]
|
95
|
pH-dependent hydrolysis of acetylcholine: Consequences for non-neuronal acetylcholine. Int Immunopharmacol 2015; 29:27-30. [DOI: 10.1016/j.intimp.2015.04.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/09/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
|
96
|
Reale M, Di Bari M, Di Nicola M, D'Angelo C, De Angelis F, Velluto L, Tata AM. Nicotinic receptor activation negatively modulates pro-inflammatory cytokine production in multiple sclerosis patients. Int Immunopharmacol 2015. [DOI: 10.1016/j.intimp.2015.06.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
97
|
Pochini L, Scalise M, Indiveri C. Immuno-detection of OCTN1 (SLC22A4) in HeLa cells and characterization of transport function. Int Immunopharmacol 2015; 29:21-6. [DOI: 10.1016/j.intimp.2015.04.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/01/2015] [Accepted: 04/17/2015] [Indexed: 11/27/2022]
|
98
|
Pascotini ET, Flores AE, Kegler A, Gabbi P, Bochi GV, Algarve TD, Prado ALC, Duarte MM, da Cruz IB, Moresco RN, Royes LFF, Fighera MR. Apoptotic markers and DNA damage are related to late phase of stroke: Involvement of dyslipidemia and inflammation. Physiol Behav 2015; 151:369-78. [DOI: 10.1016/j.physbeh.2015.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/30/2015] [Accepted: 08/01/2015] [Indexed: 12/01/2022]
|
99
|
Role of α7 nicotinic receptor in the immune system and intracellular signaling pathways. Cent Eur J Immunol 2015; 40:373-9. [PMID: 26648784 PMCID: PMC4655390 DOI: 10.5114/ceji.2015.54602] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/13/2015] [Indexed: 01/12/2023] Open
Abstract
Acetylcholine has been well known as one of the most exemplary neurotransmitters. In humans, this versatile molecule and its synthesizing enzyme, choline acetyltransferase, have been found in various non-neural tissues such as the epithelium, endothelium, mesothelium muscle, blood cells and immune cells. The non-neuronal acetylcholine is accompanied by the expression of acetylcholinesterase and nicotinic/muscarinic acetylcholine receptors. Increasing evidence of the non-neuronal acetylcholine system found throughout the last few years has indicated this neurotransmitter as one of the major cellular signaling molecules (associated e.g. with kinases and transcription factors activity). This system is responsible for maintenance and optimization of the cellular function, such as proliferation, differentiation, adhesion, migration, intercellular contact and apoptosis. Additionally, it controls proper activity of immune cells and affects differentiation, antigen presentation or cytokine production (both pro- and anti-inflammatory). The present article reviews recent findings about the non-neuronal cholinergic system in the field of immune system and intracellular signaling pathways.
Collapse
|
100
|
Cytotoxic and genotoxic effects mediated by M2 muscarinic receptor activation in human glioblastoma cells. Neurochem Int 2015; 90:261-70. [PMID: 26455407 DOI: 10.1016/j.neuint.2015.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 11/21/2022]
Abstract
Glioblastomas are the most common brain tumors in humans. Previously, we demonstrated that the muscarinic receptor agonist, arecaidine propargyl ester, via M2 receptors, inhibits cell proliferation in a time and dose-dependent manner and induces a severe apoptosis in human U251 and U87 glioblastoma cell lines. In order to clarify the mechanisms causing apoptosis after arecaidine treatment, we analyzed the ability of arecaidine to induce oxidative stress. By dichloro-dihydro-fluorescein diacetate (DCFDA) staining, we demonstrated that arecaidine increased the intracellular ROS levels. ROS accumulation was completely counteracted by the ROS scavenger, N-acetyl-l-cysteine (NAC). Apoptotic cell death appeared directly correlated to ROS production since NAC was able to counteract this effect. Although there was an up-regulation of some detoxifying enzyme expression such as superoxide dismutase (MnSOD) and sirtuin-1 (SIRT1), the cytotoxic effect caused by arecaidine treatment caused DNA damage, as demonstrated by the increase of histone γ-H2AX positive cells, and chromosomal aberrations. These effects were mediated by M2 receptor activation; in fact after silencing of M2 receptors by siRNA, the increase of γ-H2AX positive cells was abolished. In conclusion, in addition to a cytostatic effect previously described, in the present study we have better characterized the mechanisms causing the cytotoxic effects and the apoptotic cell death in glioblastoma cells after M2 receptor activation. These data allow to consider this receptor a new interesting therapeutic tool for the glioblastoma treatment.
Collapse
|