51
|
Fish oil prevents excessive accumulation of subcutaneous fat caused by an adverse effect of pioglitazone treatment and positively changes adipocytes in KK mice. Toxicol Rep 2015; 3:4-14. [PMID: 28959521 PMCID: PMC5615378 DOI: 10.1016/j.toxrep.2015.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 12/17/2022] Open
Abstract
Pioglitazone, a thiazolidinedione (TZD), is widely used as an insulin sensitizer in the treatment of type 2 diabetes. However, body weight gain is frequently observed in TZD-treated patients. Fish oil improves lipid metabolism dysfunction and obesity. In this study, we demonstrated suppression of body weight gain in response to pioglitazone administration by combination therapy of pioglitazone and fish oil in type 2 diabetic KK mice. Male KK mice were fed experimental diets for 8 weeks. In safflower oil (SO), safflower oil/low-dose pioglitazone (S/PL), and safflower oil/high-dose pioglitazone (S/PH) diets, 20% of calories were provided by safflower oil containing 0%, 0.006%, or 0.012% (wt/wt) pioglitazone, respectively. In fish oil (FO), fish oil/low-dose pioglitazone (F/PL), and fish oil/high-dose pioglitazone (F/PH) diets, 20% of calories were provided by a mixture of fish oil and safflower oil. Increased body weight and subcutaneous fat mass were observed in the S/PL and S/PH groups; however, diets containing fish oil were found to ameliorate these changes. Hepatic mRNA levels of lipogenic enzymes were significantly decreased in fish oil-fed groups. These findings demonstrate that the combination of pioglitazone and fish oil decreases subcutaneous fat accumulation, ameliorating pioglitazone-induced body weight gain, through fish oil-mediated inhibition of hepatic de novo lipogenesis.
Collapse
Key Words
- ACC, acetyl-CoA carboxylase
- AOX, acyl-CoA oxidase
- ATM, adipose tissue macrophage
- AUC, area under the curve
- Adverse effect
- BAT, brown adipose tissue
- CPT-1, carnitine palmitoyl transferase 1
- CT, computed tomography
- DHA, docosahexaenoic acid
- ELISA, enzyme-linked immunosorbent assay
- EPA, eicosapentaenoic acid
- FAS, fatty acid synthase
- FFA, free fatty acid
- Fish oil
- G6pase, glucose-6-phosphatase
- GPAT, glycerol-3-phosphate acyltransferase
- H&E, hematoxylin and eosin
- HDL-C, high-density lipoprotein cholesterol
- HOMA-IR, homeostasis model assessment of insulin resistance
- IR, insulin resistance
- ITT, insulin tolerance test
- Insig-1, insulin-induced gene 1
- MCAD, medium-chain acyl-CoA dehydrogenase
- MCP-1, monocyte chemoattractant protein-1
- OGTT, oral glucose tolerance test
- PEPCK, phosphoenolpyruvate carboxykinase
- PPARα, peroxisome proliferator-activated receptor alpha
- PPARγ, peroxisome proliferator-activated receptor gamma
- Pioglitazone
- RT-PCR, real-time polymerase chain reaction
- SCD-1, stearoyl-CoA desaturase 1
- SREBP, sterol regulatory element-binding protein
- TLR-4, toll-like receptor-4
- TNF-α, tumor necrosis factor-α
- TZD, thiazolidinedione
- UCP-2, uncoupling protein 2
- VLDL, very low-density lipoprotein
- WAT, white adipose tissue
Collapse
|
52
|
Jia C, Huan Y, Liu S, Hou S, Sun S, Li C, Liu Q, Jiang Q, Wang Y, Shen Z. Effect of Chronic Pioglitazone Treatment on Hepatic Gene Expression Profile in Obese C57BL/6J Mice. Int J Mol Sci 2015; 16:12213-29. [PMID: 26035752 PMCID: PMC4490440 DOI: 10.3390/ijms160612213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 01/07/2023] Open
Abstract
Pioglitazone, a selective ligand of peroxisome proliferator-activated receptor gamma (PPARγ), is an insulin sensitizer drug that is being used in a number of insulin-resistant conditions, including non-alcoholic fatty liver disease (NAFLD). However, there is a discrepancy between preclinical and clinical data in the literature and the benefits of pioglitazone treatment as well as the precise mechanism of action remain unclear. In the present study, we determined the effect of chronic pioglitazone treatment on hepatic gene expression profile in diet-induced obesity (DIO) C57BL/6J mice in order to understand the mechanisms of NAFLD induced by PPARγ agonists. DIO mice were treated with pioglitazone (25 mg/kg/day) for 38 days, the gene expression profile in liver was evaluated using Affymetrix Mouse GeneChip 1.0 ST array. Pioglitazone treatment resulted in exacerbated hepatic steatosis and increased hepatic triglyceride and free fatty acids concentrations, though significantly increased the glucose infusion rate in hyperinsulinemic-euglycemic clamp test. The differentially expressed genes in liver of pioglitazone treated vs. untreated mice include 260 upregulated and 86 downregulated genes. Gene Ontology based enrichment analysis suggests that inflammation response is transcriptionally downregulated, while lipid metabolism is transcriptionally upregulated. This may underlie the observed aggravating liver steatosis and ameliorated systemic insulin resistance in DIO mice.
Collapse
Affiliation(s)
- Chunming Jia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yi Huan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Shuainan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Shaocong Hou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Sujuan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Caina Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Quan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Qian Jiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yue Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Zhufang Shen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
53
|
Soares e Silva AK, de Oliveira Cipriano Torres D, dos Santos Gomes FO, dos Santos Silva B, Lima Ribeiro E, Costa Oliveira A, dos Santos LAM, de Lima MDCA, Pitta IDR, Peixoto CA. LPSF/GQ-02 inhibits the development of hepatic steatosis and inflammation in a mouse model of non-alcoholic fatty liver disease (NAFLD). PLoS One 2015; 10:e0123787. [PMID: 25875942 PMCID: PMC4397012 DOI: 10.1371/journal.pone.0123787] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 03/08/2015] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) defines a wide spectrum of liver diseases that extends from simple steatosis to non-alcoholic steatohepatitis. Although the pathogenesis of NAFLD remains undefined, it is recognized that insulin resistance is present in almost all patients who develop this disease. Thiazolidinediones (TZDs) act as an insulin sensitizer and have been used in the treatment of patients with type 2 diabetes and other insulin-resistant conditions, including NAFLD. Hence, therapy of NAFLD with insulin-sensitizing drugs should ideally improve the key hepatic histological changes, while also reducing cardiometabolic and cancer risks. Controversially, TZDs are associated with the development of cardiovascular events and liver problems. Therefore, there is a need for the development of new therapeutic strategies to improve liver function in patients with chronic liver diseases. The aim of the present study was to assess the therapeutic effects of LPSF/GQ-02 on the liver of LDLR-/- mice after a high-fat diet. Eighty male mice were divided into 4 groups and two different experiments: 1-received a standard diet; 2-fed with a high-fat diet (HFD); 3–HFD+pioglitazone; 4–HFD+LPSF/GQ-02. The experiments were conducted for 10 or 12 weeks and in the last two or four weeks respectively, the drugs were administered daily by gavage. The results obtained with an NAFLD murine model indicated that LPSF/GQ-02 was effective in improving the hepatic architecture, decreasing fat accumulation, reducing the amount of collagen, decreasing inflammation by reducing IL-6, iNOS, COX-2 and F4 / 80, and increasing the protein expression of IκBα, cytoplasmic NFκB-65, eNOS and IRS-1 in mice LDLR -/-. These results suggest a direct action by LPSF/GQ-02 on the factors that affect inflammation, insulin resistance and fat accumulation in the liver of these animals. Further studies are being conducted in our laboratory to investigate the possible mechanism of action of LPSF/GQ-02 on hepatic lipid metabolism.
Collapse
Affiliation(s)
| | | | | | - Bruna dos Santos Silva
- Laboratório de Ultraestrutura, Centro de Pesquisa Aggeu Magalhães (FIOCRUZ), Pernambuco, Recife, Brazil
| | - Edlene Lima Ribeiro
- Laboratório de Ultraestrutura, Centro de Pesquisa Aggeu Magalhães (FIOCRUZ), Pernambuco, Recife, Brazil
| | - Amanda Costa Oliveira
- Laboratório de Ultraestrutura, Centro de Pesquisa Aggeu Magalhães (FIOCRUZ), Pernambuco, Recife, Brazil
| | | | - Maria do Carmo Alves de Lima
- Laboratório de planejamento e síntese de fármacos, Universidade federal de Pernambuco, Pernambuco, Recife, Brazil
| | - Ivan da Rocha Pitta
- Laboratório de planejamento e síntese de fármacos, Universidade federal de Pernambuco, Pernambuco, Recife, Brazil
| | - Christina Alves Peixoto
- Laboratório de Ultraestrutura, Centro de Pesquisa Aggeu Magalhães (FIOCRUZ), Pernambuco, Recife, Brazil
| |
Collapse
|
54
|
Bhaswant M, Poudyal H, Brown L. Mechanisms of enhanced insulin secretion and sensitivity with n-3 unsaturated fatty acids. J Nutr Biochem 2015; 26:571-84. [PMID: 25841249 DOI: 10.1016/j.jnutbio.2015.02.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 12/16/2022]
Abstract
The widespread acceptance that increased dietary n-3 polyunsaturated fatty acids (PUFAs), especially α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), improve health is based on extensive studies in animals, isolated cells and humans. Visceral adiposity is part of the metabolic syndrome, together with insulin resistance, dyslipidemia, hypertension and inflammation. Alleviation of metabolic syndrome requires normalization of insulin release and responses. This review assesses our current knowledge of the mechanisms that allow n-3 PUFAs to improve insulin secretion and sensitivity. EPA has been more extensively studied than either ALA or DHA. The complex actions of EPA include increased G-protein-receptor-mediated release of glucagon-like peptide 1 (GLP-1) from enteroendocrine L-cells in the intestine, up-regulation of the apelin pathway and down-regulation of other control pathways to promote insulin secretion by the pancreatic β-cells, together with suppression of inflammatory responses to adipokines, inhibition of peroxisome proliferator-activated receptor α actions and prevention of decreased insulin-like growth factor-1 secretion to improve peripheral insulin responses. The receptors involved and the mechanisms of action probably differ for ALA and DHA, with antiobesity effects predominating for ALA and anti-inflammatory effects for DHA. Modifying both GLP-1 release and the actions of adipokines by n-3 PUFAs could lead to additive improvements in both insulin secretion and sensitivity.
Collapse
Affiliation(s)
- Maharshi Bhaswant
- Centre for Chronic Disease Prevention & Management, College of Health and Biomedicine, Victoria University, Melbourne VIC 3021, Australia; School of Health and Wellbeing, University of Southern Queensland, Toowoomba QLD 4350, Australia
| | - Hemant Poudyal
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine and The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8302, Japan
| | - Lindsay Brown
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba QLD 4350, Australia.
| |
Collapse
|
55
|
Zhang Y, Yu L, Cai W, Fan S, Feng L, Ji G, Huang C. Protopanaxatriol, a novel PPARγ antagonist from Panax ginseng, alleviates steatosis in mice. Sci Rep 2014; 4:7375. [PMID: 25487878 PMCID: PMC4260220 DOI: 10.1038/srep07375] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/17/2014] [Indexed: 01/25/2023] Open
Abstract
Obesity is prevalent worldwide, and is highly associated with metabolic disorders, such as insulin resistance, hyperlipidemia and steatosis. Ginseng has been used as food and traditional herbal medicine for the treatment of various metabolic diseases. However, the molecular mechanisms how ginseng and its components participate in the regulation of lipogenesis are still largely unclear. Here, we identified that protopanaxatriol (PPT), a major ginseng constituent, inhibited rosiglitazone-supported adipocyte differentiation of 3T3-L1 cells by repressing the expression of lipogenesis-related gene expression. In high-fat diet-induced obesity (DIO) mice, PPT reduced body weight and serum lipid levels, improved insulin resistance, as well as morphology and lipid accumulation, particular macrovesicular steatosis, in the livers. These effects were confirmed with genetically obese ob/ob mice. A reporter gene assay showed that PPT specifically inhibited the transactivity of PPARγ, but not PPAR α, β/δ and LXR α, β. TR-FRET assay revealed that PPT was specifically bound to PPARγ LBD, which was further confirmed by the molecular docking study. Our data demonstrate that PPT is a novel PPARγ antagonist. The inhibition of PPARγ activity could be a promising therapy for obesity and steatosis. Our findings shed new light on the mechanism of ginseng in the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Lijing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Wujie Cai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Li Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Guang Ji
- Institutes of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
56
|
Ghrelin promotes hepatic lipogenesis by activation of mTOR-PPARγ signaling pathway. Proc Natl Acad Sci U S A 2014; 111:13163-8. [PMID: 25157160 DOI: 10.1073/pnas.1411571111] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although ghrelin has been demonstrated to stimulate energy intake and storage through a central mechanism, its effect on hepatic lipid metabolism remains largely uncharacterized. Ghrelin receptor antagonism or gene deletion significantly decreased obesity-associated hepatic steatosis by suppression of de novo lipogenesis, whereas exogenous ghrelin stimulated lipogenesis, leading to hepatic lipid accumulation in mice. The effects of ghrelin were mediated by direct activation of its receptor on hepatocytes. Cultured hepatocytes responded to ghrelin with increased lipid content and expression of lipogenesis-related genes. Ghrelin increased phosphorylation of S6, the downstream target of mammalian target of rapamycin (mTOR) signaling in cultured hepatocytes, whereas ghrelin receptor antagonism reduced hepatic phosphorylation of S6 in db/db mice. Inhibition of mTOR signaling by rapamycin markedly attenuated ghrelin-induced up-regulation of lipogenesis in hepatocytes, whereas activation of hepatic mTOR signaling by deletion of TSC1 increased hepatic lipogenesis. By interacting with peroxisome proliferator-activated receptor-γ (PPARγ), mTOR mediates the ghrelin-induced up-regulation of lipogenesis in hepatocytes. The stimulatory effect of ghrelin on hepatic lipogenesis was significantly attenuated by PPARγ antagonism in cultured hepatocytes and in PPARγ gene-deficient mice. Our study indicates that ghrelin activates its receptor on hepatocytes to promote lipogenesis via a mechanism involving the mTOR-PPARγ signaling pathway.
Collapse
|
57
|
Matsusue K, Aibara D, Hayafuchi R, Matsuo K, Takiguchi S, Gonzalez FJ, Yamano S. Hepatic PPARγ and LXRα independently regulate lipid accumulation in the livers of genetically obese mice. FEBS Lett 2014; 588:2277-81. [PMID: 24857376 DOI: 10.1016/j.febslet.2014.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/22/2014] [Accepted: 05/02/2014] [Indexed: 12/23/2022]
Abstract
The nuclear hormone receptors liver X receptor α (LXRα) and peroxisome proliferator-activated receptor γ (PPARγ) play key roles in the development of fatty liver. To determine the link between hepatic PPARγ and LXRα signaling and the development of fatty liver, a LXRα-specific ligand, T0901317, was administered to normal OB/OB and genetically obese (ob/ob) mice lacking hepatic PPARγ (Pparγ(ΔH)). In ob/ob-Pparγ(ΔH) and OB/OB-Pparγ(ΔH) mice, as well as ob/ob-Pparγ(WT) and OB/OB-Pparγ(WT) mice, the liver weights and hepatic triglyceride levels were markedly increased in response to T0901317 treatment. These results suggest that hepatic PPARγ and LXRα signals independently contribute to the development of fatty liver.
Collapse
Affiliation(s)
- Kimihiko Matsusue
- Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Daisuke Aibara
- Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Risa Hayafuchi
- Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kohei Matsuo
- Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Soichi Takiguchi
- Institute for Clinical Research, National Kyushu Cancer Center, 3-1-1 Notame, Minami-ku, Fukuoka 811-1395, Japan
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shigeru Yamano
- Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
58
|
Kim DH, Zhang T, Lee S, Calabuig-Navarro V, Yamauchi J, Piccirillo A, Fan Y, Uppala R, Goetzman E, Dong HH. FoxO6 integrates insulin signaling with MTP for regulating VLDL production in the liver. Endocrinology 2014; 155:1255-67. [PMID: 24437489 PMCID: PMC3959596 DOI: 10.1210/en.2013-1856] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Excessive production of triglyceride-rich very low-density lipoproteins (VLDL-TG) contributes to hypertriglyceridemia in obesity and type 2 diabetes. To understand the underlying mechanism, we studied hepatic regulation of VLDL-TG production by (forkhead box O6) FoxO6, a forkhead transcription factor that integrates insulin signaling to hepatic metabolism. We showed that transgenic mice expressing a constitutively active FoxO6 allele developed hypertriglyceridemia, culminating in elevated VLDL-TG levels and impaired postprandial TG clearance. This effect resulted in part from increased hepatic VLDL-TG production. We recapitulated these findings in cultured HepG2 cells and human primary hepatocytes, demonstrating that FoxO6 promoted hepatic VLDL-TG secretion. This action correlated with the ability of FoxO6 to stimulate hepatic production of microsomal triglyceride transfer protein (MTP), a molecular chaperone that catalyzes the rate-limiting step in VLDL-TG assembly and secretion. FoxO6 was shown to bind to the MTP promoter and stimulate MTP promoter activity in HepG2 cells. This effect was inhibited by insulin, consistent with the ability of insulin to promote FoxO6 phosphorylation and disable FoxO6 DNA-binding activity. Mutations of the FoxO6 target site within the MTP promoter abrogated FoxO6-mediated induction of MTP promoter activity. Hepatic FoxO6 expression became deregulated in insulin-resistant mice with obesity and type 2 diabetes. FoxO6 inhibition in insulin-resistant liver suppressed hepatic MTP expression and curbed VLDL-TG overproduction, contributing to the amelioration of hypertriglyceridemia in obese and diabetic db/db mice. These results characterize FoxO6 as an important signaling molecule upstream of MTP for regulating hepatic VLDL-TG production.
Collapse
Affiliation(s)
- Dae Hyun Kim
- Division of Immunogenetics (D.H.K., T.Z., S.L., V.C.-N., J.Y., A.P., Y.F., H.H.D.) and Division of Genetics (R.U., E.G.), Department of Pediatrics, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Peng J, Huan Y, Jiang Q, Sun SJ, Jia CM, Shen ZF. Effects and Potential Mechanisms of Pioglitazone on Lipid Metabolism in Obese Diabetic KKAy Mice. PPAR Res 2014; 2014:538183. [PMID: 24799887 PMCID: PMC3988943 DOI: 10.1155/2014/538183] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/20/2014] [Accepted: 02/20/2014] [Indexed: 01/27/2023] Open
Abstract
This study aimed to analyze the effects and potential mechanisms of pioglitazone on triglyceride and cholesterol metabolism in obese diabetic KKAy mice. Pioglitazone was orally administered to KKAy mice over 30 days. Compared to C57BL/6J mice, KKAy mice developed obvious insulin resistance, hepatic steatosis, and hyperlipidemia. Pioglitazone treatment resulted in deteriorated microvesicular steatosis and elevated hepatic triglyceride levels, though plasma triglyceride and free fatty acid levels were reduced by the treatment, compared to nontreated KKAy mice. Plasma alanine aminotransferase activities were also significantly increased. Additionally, pioglitazone increased plasma concentrations of total cholesterol, HDL-cholesterol, and LDL-cholesterol but decreased hepatic cholesterol. Gene expression profiling revealed that pioglitazone stimulated hepatic peroxisome proliferator-activated receptor gamma hyperactivity, and induced the upregulation of adipocyte-specific and lipogenesis-related genes but downregulated of genes involved in triglyceride lipolysis and fatty acid β -oxidation. Pioglitazone also regulated the genes expression of hepatic cholesterol uptake and excretion, such as low density lipoprotein receptor (LDL-R) and scavenger receptor type-BI (SR-BI). These results suggested that pioglitazone could induce excessive hepatic triglyceride accumulation, thus aggravating liver steatosis and lesions in KKAy mice. Furthermore, pioglitazone may suppress the clearance of serum cholesterol from the liver predominantly through inhibition of LDL-R and SR-BI expression, thus increasing the plasma cholesterol.
Collapse
Affiliation(s)
- Jun Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Huan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qian Jiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Su-juan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chun-ming Jia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhu-fang Shen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
60
|
Lee KW, Cho JG, Kim CM, Kang AY, Kim M, Ahn BY, Chung SS, Lim KH, Baek KH, Sung JH, Park KS, Park SG. Herpesvirus-associated ubiquitin-specific protease (HAUSP) modulates peroxisome proliferator-activated receptor γ (PPARγ) stability through its deubiquitinating activity. J Biol Chem 2013; 288:32886-96. [PMID: 24072712 DOI: 10.1074/jbc.m113.496331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peroxisome proliferator-activated receptor γ (PPARγ) is a central regulator of adipogenesis and modulates glucose and lipid metabolism. In this study, herpesvirus-associated ubiquitin-specific protease (HAUSP) was isolated as a binding partner of PPARγ. Both endogenous and exogenous PPARγ associated with HAUSP in co-immunoprecipitation analysis. HAUSP, but not the catalytically inactive HAUSP C223S mutant, increased the stability of both endogenous and exogenous PPARγ through its deubiquitinating activity. Site-directed mutagenesis experiments showed that the Lys(462) residue of PPARγ is critical for ubiquitination. HBX 41,108, a specific inhibitor of HAUSP, abolished the increase in PPARγ stability induced by HAUSP. In addition, knockdown of endogenous HAUSP using siRNA decreased PPARγ protein levels. HAUSP enhanced the transcriptional activity of both exogenous and endogenous PPARγ in luciferase activity assays. Quantitative RT-PCR analysis showed that HAUSP increased the transcript levels of PPARγ target genes in HepG2 cells, resulting in the enhanced uptake of glucose and fatty acids, and vice versa, upon siRNA knockdown of HAUSP. In vivo analysis using adenoviruses confirmed that HAUSP, but not the HAUSP C223S mutant, decreased blood glucose and triglyceride levels, which are associated with the increased expression of endogenous PPARγ and lipid accumulation in the liver. Our results demonstrate that the stability and activity of PPARγ are modulated by the deubiquitinating activity of HAUSP, which may be a target for the development of anti-diabetic drugs.
Collapse
Affiliation(s)
- Kyeong Won Lee
- From the Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Chongnogu, Seoul 110-744
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Xiao G, Zhang T, Yu S, Lee S, Calabuig-Navarro V, Yamauchi J, Ringquist S, Dong HH. ATF4 protein deficiency protects against high fructose-induced hypertriglyceridemia in mice. J Biol Chem 2013; 288:25350-25361. [PMID: 23888053 DOI: 10.1074/jbc.m113.470526] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hypertriglyceridemia is the most common lipid disorder in obesity and type 2 diabetes. It results from increased production and/or decreased clearance of triglyceride-rich lipoproteins. To better understand the pathophysiology of hypertriglyceridemia, we studied hepatic regulation of triglyceride metabolism by the activating transcription factor 4 (ATF4), a member of the basic leucine zipper-containing protein subfamily. We determined the effect of ATF4 on hepatic lipid metabolism in Atf4(-/-) mice fed regular chow or provided with free access to fructose drinking water. ATF4 depletion preferentially attenuated hepatic lipogenesis without affecting hepatic triglyceride production and fatty acid oxidation. This effect prevented excessive fat accumulation in the liver of Atf4(-/-) mice, when compared with wild-type littermates. To gain insight into the underlying mechanism, we showed that ATF4 depletion resulted in a significant reduction in hepatic expression of peroxisome proliferator-activated receptor-γ, a nuclear receptor that acts to promote lipogenesis in the liver. This effect was accompanied by a significant reduction in hepatic expression of sterol regulatory element-binding protein 1c (SREBP-1c), acetyl-CoA carboxylase, and fatty-acid synthase, three key functions in the lipogenic pathway in Atf4(-/-) mice. Of particular significance, we found that Atf4(-/-) mice, as opposed to wild-type littermates, were protected against the development of steatosis and hypertriglyceridemia in response to high fructose feeding. These data demonstrate that ATF4 plays a critical role in regulating hepatic lipid metabolism in response to nutritional cues.
Collapse
Affiliation(s)
- Guozhi Xiao
- From the Department of Biochemistry, Rush University Medical Center, Chicago, Illinois 60612,; the College of Life Sciences, Nankai University, Tianjin 300071, China, and.
| | - Ting Zhang
- the Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, and
| | - Shibing Yu
- the Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Sojin Lee
- the Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, and
| | - Virtu Calabuig-Navarro
- the Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, and
| | - Jun Yamauchi
- the Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, and
| | - Steven Ringquist
- the Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, and
| | - H Henry Dong
- the Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, and.
| |
Collapse
|
62
|
Prince E, Lazare FB, Treem WR, Xu J, Iqbal J, Pan X, Josekutty J, Walsh M, Anderson V, Hussain MM, Schwarz SM. Ω-3 fatty acids prevent hepatic steatosis, independent of PPAR-α activity, in a murine model of parenteral nutrition-associated liver disease. JPEN J Parenter Enteral Nutr 2013; 38:608-16. [PMID: 23757305 DOI: 10.1177/0148607113491436] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/30/2013] [Indexed: 12/21/2022]
Abstract
OBJECTIVES ω-3 Fatty acids (FAs), natural ligands for the peroxisome proliferator-activated receptor-α (PPAR-α), attenuate parenteral nutrition-associated liver disease (PNALD). However, the mechanisms underlying the protective role of ω-3 FAs are still unknown. The aim of this study was to determine the effects of ω-3 FAs on hepatic triglyceride (TG) accumulation in a murine model of PNALD and to investigate the role of PPAR-α and microsomal triglyceride transfer protein (MTP) in this experimental setting. METHODS 129S1/SvImJ wild-type or 129S4/SvJaePparatm/Gonz/J PPAR-α knockout mice were fed chow and water (controls); oral, fat-free PN solution only (PN-O); PN-O plus intraperitoneal (IP) ω-6 FA-predominant supplements (PN-ω-6); or PN-O plus IP ω-3 FA (PN-ω-3). Control and PN-O groups received sham IP injections of 0.9% NaCl. Hepatic histology, TG and cholesterol, MTP activity, and PPAR-α messenger RNA were assessed after 19 days. RESULTS In all experimental groups, PN feeding increased hepatic TG and MTP activity compared with controls. Both PN-O and PN-ω-6 groups accumulated significantly greater amounts of TG when compared with PN-ω-3 mice. Studies in PPAR-α null animals showed that PN feeding increases hepatic TG as in wild-type mice. PPAR-α null mice in the PN-O and PN-ω-6 groups demonstrated variable degrees of hepatic steatosis, whereas no evidence of hepatic fat accumulation was found after 19 days of oral PN plus IP ω-3 FAs. CONCLUSIONS PN induces TG accumulation (steatosis) in wild-type and PPAR-α null mice. In PN-fed wild-type and PPAR-α null mice given IP ω-3 FAs, reduced hepatic TG accumulation and absent steatosis are found. Prevention of steatosis by ω-3 FAs results from PPAR-α-independent pathways.
Collapse
Affiliation(s)
- Esther Prince
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Farrah B Lazare
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, State University of New York Downstate Medical Center, Brooklyn, New York Department of Pediatrics, Winthrop University Medical Center, Mineola, New York
| | - William R Treem
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, State University of New York Downstate Medical Center, Brooklyn, New York Johnson & Johnson Pharmaceutical Research and Development, LLC, Titusville, New Jersey
| | - Jiliu Xu
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Jahangir Iqbal
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Xiaoyue Pan
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Joby Josekutty
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Meghan Walsh
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Virginia Anderson
- Department of Pathology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - M Mahmood Hussain
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Steven M Schwarz
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, State University of New York Downstate Medical Center, Brooklyn, New York
| |
Collapse
|
63
|
Gunness P, Mueller D, Shevchenko V, Heinzle E, Ingelman-Sundberg M, Noor F. 3D organotypic cultures of human HepaRG cells: a tool for in vitro toxicity studies. Toxicol Sci 2013; 133:67-78. [PMID: 23377618 DOI: 10.1093/toxsci/kft021] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Drug-induced human hepatotoxicity is difficult to predict using the current in vitro systems. In this study, long-term 3D organotypic cultures of the human hepatoma HepaRG cell line were prepared using a high-throughput hanging drop method. The organotypic cultures were maintained for 3 weeks and assessed for (1) liver specific functions, including phase I enzyme and transporter activities, (2) expression of liver-specific proteins, and (3) responses to three drugs (acetaminophen, troglitazone, and rosiglitazone). Our results show that the organotypic cultures maintain high liver-specific functionality during 3 weeks of culture. The immunohistochemistry analyses illustrate that the organotypic cultures express liver-specific markers such as albumin, CYP3A4, CYP2E1, and MRP-2 throughout the cultivation period. Accordingly, the production rates of albumin and glucose, as well as CYP2E1 activity, were significantly higher in the 3D versus the 2D cultures. Toxicity studies show that the organotypic cultures are more sensitive to acetaminophen- and rosiglitazone-induced toxicity but less sensitive to troglitazone-induced toxicity than the 2D cultures. Furthermore, the EC50 value (2.7mM) for acetaminophen on the 3D cultures was similar to in vivo toxicity. In summary, the results from our study suggest that the 3D organotypic HepaRG culture is a promising in vitro tool for more accurate assessment of acute and also possibly for chronic drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Patrina Gunness
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
64
|
Her GM, Pai WY, Lai CY, Hsieh YW, Pang HW. Ubiquitous transcription factor YY1 promotes zebrafish liver steatosis and lipotoxicity by inhibiting CHOP-10 expression. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1037-51. [PMID: 23416188 DOI: 10.1016/j.bbalip.2013.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 02/06/2023]
Abstract
The ubiquitous transcription factor Yin Yang 1 (YY1) is known to have diverse and complex cellular functions. Although relevant literature has reported that YY1 expression can induce the down-regulation of C/EBP homologous protein 10 (CHOP-10) and then allow the transactivation of certain transcription factors required for lipogenesis, similar properties of YY1 are poorly understood in animal model systems. In this study, we demonstrate hepatic lipid accumulation in YY1 transgenic zebrafish (GY). Oil-red staining cells were predominantly increased in the livers of both GY larvae and adults, indicating that YY1 functionally promoted lipid accumulation in GY livers. Molecular analysis revealed that YY1 over-expression contributed to the accumulation of hepatic triglycerides (TGs) by inhibiting CHOP-10 expression in the juvenile GY and 3 other fish cell lines; the decreased CHOP-10 expression then induced the transactivation of C/EBP-α and PPAR-γ expression. CHOP-10 morpholino (MO)-injected and rosiglitazone-treated G-liver larvae showed liver steatosis by transactivating PPAR-γ. PPAR-γ MO-injected, and GW9662- and astaxanthin-treated GY larvae showed no liver steatosis by inhibiting PPAR-γ. Moreover, a fatty acid (FA) accumulation and a TG decrease were found in the liver of aged GY, leading to the induction of FA-oxidizing systems that increased hepatic oxidative stress and liver damage. This study is the first to examine YY1 as a potential stimulator for GY liver steatosis and lipotoxicity.
Collapse
Affiliation(s)
- Guor Mour Her
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.
| | | | | | | | | |
Collapse
|
65
|
Satoh H, Ide N, Kagawa Y, Maeda T. Hepatic steatosis with relation to increased expression of peroxisome proliferator-activated receptor-γ in insulin resistant mice. Biol Pharm Bull 2013; 36:616-23. [PMID: 23386130 DOI: 10.1248/bpb.b12-01000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have isolated insulin resistant mice (ddY-H mice) which are spontaneously induced even if fed with the standard chow pellets. Since marked accumulation of triglycerides (TG) in liver was observed, the present study investigated causes of hepatic TG accumulation in ddY-H mice fed with the standard chow pellets. In ddY-H mice, hepatic TG content increased from seven-weeks of age, and further marked accumulation of TG was observed at 20-weeks of age. Histologically, fat droplets appeared in pericentral parenchymal cells of the liver from nine-weeks of age, and the size and number of droplets were increased in hepatic lobules at 15-weeks of age, suggesting hepatic steatosis was spontaneously induced. Although secretion of TG from liver to blood in ddY-H mice was not increased, fat absorption from the digestive tract was significantly enhanced. The mRNA expressions of peroxisome proliferator-activated receptor γ (PPARγ) involved in fat accumulation and fatty acid translocase (CD36) involved in the transportation of fatty acid into the liver were markedly increased. However, gene expressions of factors involved in lipogenesis, β-oxidation of fatty acid and lipoprotein secretion were not changed. Pioglitazone (9 mg/kg), the PPARγ agonist, administered for six weeks deteriorated hepatic steatosis in ddY-H mice. Although pioglitazone did not affect gene expressions of PPARγ in the liver, CD36 and fat-specific protein 27 (fsp27), targets of PPARγ, were markedly elevated. These results suggest that, in the livers of ddY-H mice, hepatic steatosis is induced by increased incorporation of fatty acid into the liver via increased PPARγ expression.
Collapse
Affiliation(s)
- Hikaru Satoh
- Department of Clinical Pharmaceutics & Pharmacy Practice, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
| | | | | | | |
Collapse
|
66
|
Zhang F, Kong D, Lu Y, Zheng S. Peroxisome proliferator-activated receptor-γ as a therapeutic target for hepatic fibrosis: from bench to bedside. Cell Mol Life Sci 2013; 70:259-76. [PMID: 22699820 PMCID: PMC11113701 DOI: 10.1007/s00018-012-1046-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/18/2012] [Accepted: 05/29/2012] [Indexed: 02/07/2023]
Abstract
Hepatic fibrosis is a dynamic chronic liver disease occurring as a consequence of wound-healing responses to various hepatic injuries. This disorder is one of primary predictors for liver-associated morbidity and mortality worldwide. To date, no pharmacological agent has been approved for hepatic fibrosis or could be recommended for routine use in clinical context. Cellular and molecular understanding of hepatic fibrosis has revealed that peroxisome proliferator-activated receptor-γ (PPARγ), the functioning receptor for antidiabetic thiazolidinediones, plays a pivotal role in the pathobiology of hepatic stellate cells (HSCs), whose activation is the central event in the pathogenesis of hepatic fibrosis. Activation of PPARγ inhibits HSC collagen production and modulates HSC adipogenic phenotype at transcriptional and epigenetic levels. These molecular insights indicate PPARγ as a promising drug target for antifibrotic chemotherapy. Intensive animal studies have demonstrated that stimulation of PPARγ regulatory system through gene therapy approaches and PPARγ ligands has therapeutic promise for hepatic fibrosis induced by a variety of etiologies. At the same time, thiazolidinedione agents have been investigated for their clinical benefits primarily in patients with nonalcoholic steatohepatitis, a common metabolic liver disorder with high potential to progress to fibrosis and liver-related death. Although some studies have shown initial promise, none has established long-term efficacy in well-controlled randomized clinical trials. This comprehensive review covers the 10-year discoveries of the molecular basis for PPARγ regulation of HSC pathophysiology and then focuses on the animal investigations and clinical trials of various therapeutic modalities targeting PPARγ for hepatic fibrosis.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, 282 Hanzhong Road, Nanjing, 210029 Jiangsu China
| | - Desong Kong
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, 282 Hanzhong Road, Nanjing, 210029 Jiangsu China
| | - Yin Lu
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, 282 Hanzhong Road, Nanjing, 210029 Jiangsu China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046 China
- National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing, 210046 China
| | - Shizhong Zheng
- Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, 282 Hanzhong Road, Nanjing, 210029 Jiangsu China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046 China
- National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing, 210046 China
| |
Collapse
|
67
|
Effect of 2,4-thiazolidinedione on limousin cattle growth and on muscle and adipose tissue metabolism. PPAR Res 2012; 2012:891841. [PMID: 23304114 PMCID: PMC3523600 DOI: 10.1155/2012/891841] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/27/2012] [Indexed: 01/05/2023] Open
Abstract
The main adipogenic transcription factor PPARγ possesses high affinity to 2,4-TZD, a member of the Thiazolidinedione family of insulin-sensitizing compounds used as adipogenic agents. We evaluated 2,4-TZD's effect on bovine growth and PPAR tissue expression. Seventeen Limousin bulls (18 month-old; 350 kg body weight (BW)) were assigned into 2 treatments: control and 2,4-TZD (8 mg/70 kg BW) and were fed until bulls reached 500 kg BW. They were weighed and their blood was sampled. DNA, RNA, and protein were determined in liver; skeletal muscle; subcutaneous (SC), omental, perirenal adipose tissues (AT) to determine protein synthesis rate and cellular size. Expression of PPAR mRNA was measured in liver and muscle (PPARα, -δ, and -γ) and SC adipose tissue (γ) by real-time PCR. No significant differences were found (P > 0.1) in weight gain, days on feed, and carcass quality. Muscle synthesis was greater in controls (P < 0.05); cell size was larger with 2,4-TZD (P < 0.05). PPARα, -δ, and -γ expressions with 2,4-TZD in liver were lower (P < 0.01) than in muscle. No differences were found for PPARγ mRNA expression in SCAT. The results suggest the potential use of 2,4-TZD in beef cattle diets, because it improves AT differentiation, liver, and muscle fatty acid oxidation that, therefore, might improve energy efficiency.
Collapse
|
68
|
Gazit V, Huang J, Weymann A, Rudnick DA. Analysis of the role of hepatic PPARγ expression during mouse liver regeneration. Hepatology 2012; 56:1489-98. [PMID: 22707117 PMCID: PMC3465497 DOI: 10.1002/hep.25880] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
UNLABELLED Mice subjected to partial hepatectomy (PH) develop hypoglycemia, followed by increased systemic lipolysis and hepatic fat accumulation, prior to onset of hepatocellular proliferation. Strategies that disrupt these metabolic events inhibit regeneration. These observations suggest that alterations in metabolism in response to hepatic insufficiency promote liver regeneration. Hepatic expression of the peroxisome proliferator-activated receptor gamma (PPARγ) influences fat accumulation in the liver. Therefore, the studies reported here were undertaken to assess the effects of disruption of hepatic PPARγ expression on hepatic fat accumulation and hepatocellular proliferation during liver regeneration. The results showed that liver regeneration was not suppressed, but rather modestly augmented in liver-specific PPARγ null mice maintained on a normal diet. These animals also exhibited accelerated hepatic cyclin D1 expression. Because hepatic PPARγ expression is increased in experimental models of fatty liver disease in which liver regeneration is impaired, regeneration in liver-specific PPARγ null mice with chronic hepatic steatosis was also examined. In contrast to the results described above, disruption of hepatic PPARγ expression in mice with diet-induced hepatic steatosis resulted in significant suppression of hepatic regeneration. CONCLUSION The metabolic and hepatocellular proliferative responses to PH are modestly augmented in liver-specific PPARγ null mice, thus providing additional support for a metabolic model of liver regeneration. Furthermore, regeneration is significantly impaired in liver-specific PPARγ null mice in the setting of diet-induced chronic steatosis, suggesting that pharmacological strategies to augment hepatic PPARγ activity might improve regeneration of the fatty liver.
Collapse
Affiliation(s)
- Vered Gazit
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Jiansheng Huang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Alexander Weymann
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - David A. Rudnick
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
69
|
Kakuni M, Morita M, Matsuo K, Katoh Y, Nakajima M, Tateno C, Yokoi T. Chimeric mice with a humanized liver as an animal model of troglitazone-induced liver injury. Toxicol Lett 2012; 214:9-18. [DOI: 10.1016/j.toxlet.2012.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 11/16/2022]
|
70
|
Update on pparγ and nonalcoholic Fatty liver disease. PPAR Res 2012; 2012:912351. [PMID: 22966224 PMCID: PMC3431124 DOI: 10.1155/2012/912351] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/16/2012] [Indexed: 12/23/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common initial presentation of obesity and insulin resistance. Uninterrupted progression of hepatic lipid accumulation often leads to fatty liver disease and eventually cirrhosis. Insulin resistance is one of the characteristics of type 2 diabetes. Several types of treatment have been employed against type 2 diabetes some of which ameliorate NAFLD. The frequent line of treatment to improve insulin sensitivity is the use of thiazolidinediones (TZD) which activate the nuclear receptor, peroxisome proliferator activated receptor gamma (Pparγ). Although TZDs are proven to be very effective in promoting insulin sensitivity, its actions on Pparγ have been complicated, specifically on NAFLD. According to studies in different models, Pparγ manifests both beneficial and undesirable effects on NAFLD. This paper will focus on the current knowledge of Pparγ and its effect on NAFLD.
Collapse
|
71
|
Yang ZH, Miyahara H, Takeo J, Katayama M. Diet high in fat and sucrose induces rapid onset of obesity-related metabolic syndrome partly through rapid response of genes involved in lipogenesis, insulin signalling and inflammation in mice. Diabetol Metab Syndr 2012; 4:32. [PMID: 22762794 PMCID: PMC3407732 DOI: 10.1186/1758-5996-4-32] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 07/04/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Frequent consumption of a diet high in fat and sucrose contributes to lifestyle-related diseases. However, limited information is available regarding the short-term effects of such a diet on the onset of obesity-associated metabolic abnormalities. METHODS Male C57BL/6 J mice were divided into two groups and fed a standard chow diet (control group) or a high fat-high sucrose diet containing 21% fat and 34% sucrose (HF-HS diet group) for 2 or 4 weeks. RESULTS The HF-HS diet significantly induced body weight gain beginning at week 1 and similarly increased mesenteric white adipose tissue weight and plasma insulin levels at weeks 2 and 4. Plasma resistin levels were notably elevated after feeding with the HF-HS diet for 4 weeks. Measurement of hepatic triglycerides and Oil Red O staining clearly indicated increased hepatic lipid accumulation in response to the HF-HS diet as early as 2 weeks. Quantitative PCR analysis of liver and white adipose tissue indicated that, starting at week 2, the HF-HS diet upregulated mRNA expression from genes involved in lipid metabolism and inflammation and downregulated genes involved in insulin signalling. Although plasma cholesterol levels were also rapidly increased by the HF-HS diet, no differences were found between the control and HF-HS diet-fed animals in the expression of key genes involved in cholesterol biosynthesis. CONCLUSIONS Our study demonstrates that the rapid onset of hepatosteatosis, adipose tissue hypertrophy and hyperinsulinemia by ingestion of a diet high in fat and sucrose may possibly be due to the rapid response of lipogenic, insulin signalling and inflammatory genes.
Collapse
Affiliation(s)
- Zhi-Hong Yang
- Central Research Laboratory, Tokyo Innovation Center, Nippon Suisan Kaisha, Ltd., 32–3 Nanakuni 1 Chome Hachioji, Tokyo, 192-0991, Japan
| | - Hiroko Miyahara
- Central Research Laboratory, Tokyo Innovation Center, Nippon Suisan Kaisha, Ltd., 32–3 Nanakuni 1 Chome Hachioji, Tokyo, 192-0991, Japan
| | - Jiro Takeo
- Central Research Laboratory, Tokyo Innovation Center, Nippon Suisan Kaisha, Ltd., 32–3 Nanakuni 1 Chome Hachioji, Tokyo, 192-0991, Japan
| | - Masashi Katayama
- Central Research Laboratory, Tokyo Innovation Center, Nippon Suisan Kaisha, Ltd., 32–3 Nanakuni 1 Chome Hachioji, Tokyo, 192-0991, Japan
| |
Collapse
|
72
|
Intraperitoneal administration attenuates thiazolidinedione-induced hepatic steatosis in KKAy mice with increased hepatic peroxisome proliferator-activated receptor (PPAR)γ mRNA expression. Obes Res Clin Pract 2012; 6:e175-262. [DOI: 10.1016/j.orcp.2011.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 10/19/2011] [Accepted: 10/25/2011] [Indexed: 11/21/2022]
|
73
|
Matsusue K. A Novel Mechanism for Hepatic Lipid Accumulation: A Physiological Role for Hepatic PPARγ-fsp27 Signal. YAKUGAKU ZASSHI 2012; 132:823-9. [DOI: 10.1248/yakushi.132.823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
74
|
Regulation of hepatic mitochondrial metabolism in response to a high fat diet: a longitudinal study in rats. J Physiol Biochem 2012; 68:335-44. [DOI: 10.1007/s13105-012-0145-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 01/11/2012] [Indexed: 12/20/2022]
|
75
|
Abstract
In vertebrates, adipose tissue is the main storage site for lipids within specialized lipid-laden mature adipocytes. While many species have evolved cells capable of lipid storage, the adipocyte represents a unique specialized cell involved in fuel storage, endocrine, nervous and immune function. However, the adipocytes are not the only cell type in mammals that can accumulate lipid droplets. The ectopic accumulation of lipid in non-adipose tissues including the liver, skeletal muscle, bone, pancreas, and heart in combination with its excessive accumulation in adipose tissue contributes to metabolic disease. Determining the lipid processing components that are necessary and sufficiently for lipid accumulation in adipose and non-adipose tissues, in addition to endocrine function, will lead to a clearer definition of an adipocyte.
Collapse
|
76
|
Genome-wide profiling of liver X receptor, retinoid X receptor, and peroxisome proliferator-activated receptor α in mouse liver reveals extensive sharing of binding sites. Mol Cell Biol 2011; 32:852-67. [PMID: 22158963 DOI: 10.1128/mcb.06175-11] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The liver X receptors (LXRs) are nuclear receptors that form permissive heterodimers with retinoid X receptor (RXR) and are important regulators of lipid metabolism in the liver. We have recently shown that RXR agonist-induced hypertriglyceridemia and hepatic steatosis in mice are dependent on LXRs and correlate with an LXR-dependent hepatic induction of lipogenic genes. To further investigate the roles of RXR and LXR in the regulation of hepatic gene expression, we have mapped the ligand-regulated genome-wide binding of these factors in mouse liver. We find that the RXR agonist bexarotene primarily increases the genomic binding of RXR, whereas the LXR agonist T0901317 greatly increases both LXR and RXR binding. Functional annotation of putative direct LXR target genes revealed a significant association with classical LXR-regulated pathways as well as peroxisome proliferator-activated receptor (PPAR) signaling pathways, and subsequent chromatin immunoprecipitation-sequencing (ChIP-seq) mapping of PPARα binding demonstrated binding of PPARα to 71 to 88% of the identified LXR-RXR binding sites. The combination of sequence analysis of shared binding regions and sequential ChIP on selected sites indicate that LXR-RXR and PPARα-RXR bind to degenerate response elements in a mutually exclusive manner. Together, our findings suggest extensive and unexpected cross talk between hepatic LXR and PPARα at the level of binding to shared genomic sites.
Collapse
|
77
|
Upregulation of Scavenger Receptor BI by Hepatic Nuclear Factor 4α through a Peroxisome Proliferator-Activated Receptor γ-Dependent Mechanism in Liver. PPAR Res 2011; 2011:164925. [PMID: 22190905 PMCID: PMC3236442 DOI: 10.1155/2011/164925] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/20/2011] [Indexed: 01/09/2023] Open
Abstract
Hepatic nuclear factor 4α (HNF4α) modulates the transcriptional activation of numerous metabolic genes in liver. In this study, gene-array analysis revealed that HNF4α overexpression increased peroxisome proliferator-activated receptorγ (PPARγ) greatly in cultured rat primary hepatocytes. PPAR-response-element-driven reporter gene expression could be elevated by HNF4α. Bioinformatics analysis revealed a high-affinity HNF4α binding site in the human PPARγ2 promoter and in vitro experiments showed that this promoter could be transactivated by HNF4α. The presence of HNF4α on the promoter was then confirmed by ChIP assay. In vivo, hepatic overexpression of HNF4α decreased cholesterol levels both in plasma and liver and several hepatic genes related to cholesterol metabolism, including scavenger receptor BI (SR-BI), were upregulated. The upregulation of SR-BI by HNF4α could be inhibited by a PPARγ antagonist in vitro. In conclusion, HNF4α regulates cholesterol metabolism in rat by modulating the expression of SR-BI in the liver, in which the upregulation of PPARγ was involved.
Collapse
|
78
|
Hexarelin Signaling to PPARgamma in Metabolic Diseases. PPAR Res 2011; 2008:364784. [PMID: 18288286 PMCID: PMC2233980 DOI: 10.1155/2008/364784] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 11/27/2007] [Indexed: 12/23/2022] Open
Abstract
Investigating the metabolic functions of the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) has been extremely rewarding over the past years.
Uncovering the biologic roles of PPARγ and its mechanism of action has greatly advanced our understanding of the transcriptional control of lipid and glucose metabolism, and compounds such as thiazolidinediones which directly regulate PPARγ have proven to exhibit potent insulin-sensitizer effects in the treatment of diabetes. We review here recent advances on the emerging role of growth hormone releasing peptides in regulating PPARγ through interaction with scavenger receptor CD36 and ghrelin GHS-R1a receptor. With the impact that these peptides exert on the metabolic pathways involved in lipid metabolism and energy homeostasis, it is hoped that the development of novel approaches in the regulation of PPAR functions will bring additional therapeutic possibilities to face problems related to metabolic diseases.
Collapse
|
79
|
Chavez PRG, Lian F, Chung J, Liu C, Paiva SAR, Seitz HK, Wang X. Long-term ethanol consumption promotes hepatic tumorigenesis but impairs normal hepatocyte proliferation in rats. J Nutr 2011; 141:1049-55. [PMID: 21490289 PMCID: PMC3095139 DOI: 10.3945/jn.110.136531] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic and excessive alcohol consumption has been related to an increased risk of several cancers, including that of the liver; however, studies in animal models have yet to conclusively determine whether ethanol acts as a tumor promoter in hepatic tumorigenesis. We examined whether prolonged alcohol consumption could act as a hepatic tumor promoter after initiation by diethylnitrosamine (DEN) in a rat model. Male Sprague-Dawley rats were injected with 20 mg DEN/kg body weight 1 wk before introduction of either an ethanol liquid diet or an isoenergic control liquid diet. Hepatic pathological lesions, hepatocyte proliferation, apoptosis, PPARα and PPARγ, and plasma insulin-like growth factor 1 (IGF-1) levels were assessed after 6 and 10 mo. Mean body and liver weights, plasma IGF-1 concentration, hepatic expressions of proliferating cellular nuclear antigen and Ki-67, and cyclin D1 in ethanol-fed rats were all significantly lower after 10 mo of treatment compared with control rats. In addition, levels of hepatic PPARγ protein, not PPARα, were significantly higher in the ethanol-fed rats after prolonged treatment. Although ethanol feeding also resulted in significantly fewer altered hepatic foci, hepatocellular adenoma was detected in ethanol-fed rats at 10 mo, but not in control rats given the same dose of DEN. Together, these results indicate that chronic, excessive ethanol consumption impairs normal hepatocyte proliferation, which is associated with reduced IGF-1 levels, but promotes hepatic carcinogenesis.
Collapse
Affiliation(s)
- Pollyanna R. G. Chavez
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111
| | - Fuzhi Lian
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111
| | - Jayong Chung
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111,Department of Food and Nutrition, Kyung Hee University, Seoul 130-701, Korea
| | - Chun Liu
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111
| | - Sergio A. R. Paiva
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111,Department of Medicine, Botucatu School of Medicine, University of Sao Paulo State, Botucatu 18618-000, SP, Brazil
| | - Helmut K. Seitz
- Center of Alcohol Research, Liver Disease and Nutrition, Salem Medical Center, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Xiang‐Dong Wang
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
80
|
Morán-Salvador E, López-Parra M, García-Alonso V, Titos E, Martínez-Clemente M, González-Périz A, López-Vicario C, Barak Y, Arroyo V, Clària J. Role for PPARγ in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts. FASEB J 2011; 25:2538-50. [PMID: 21507897 DOI: 10.1096/fj.10-173716] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR) γ is a nuclear receptor central to glucose and lipid homeostasis. PPARγ role in nonalcoholic fatty liver disease is controversial because PPARγ overexpression is a general property of steatotic livers, but its activation by thiazolidinediones reduces hepatic steatosis. Here, we investigated hepatic PPARγ function by using Cre-loxP technology to generate hepatocyte (PPARγ(Δhep))- and macrophage (PPARγ(Δmac))-specific PPARγ-knockout mice. Targeted deletion of PPARγ in hepatocytes, and to a lesser extent in macrophages, protected mice against high-fat diet-induced hepatic steatosis. Down-regulated expression of genes involved in lipogenesis (SCD1, SREBP-1c, and ACC), lipid transport (CD36/FAT, L-FABP, and MTP), and β-oxidation (PPARα and ACO) was observed in PPARγ(Δhep) mice. Moreover, PPARγ(Δhep) mice showed improved glucose tolerance and reduced PEPCK expression without changes in Pcx, Fbp1, and G6Pc expression and CREB and JNK phosphorylation. In precision-cut liver slices (PCLSs) and hepatocytes, rosiglitazone either alone or in combination with oleic acid increased triglyceride accumulation, an effect that was blocked by the PPARγ antagonist biphenol A diglycidyl ether (BADGE). PCLSs and hepatocytes from PPARγ(Δhep) mice showed blunted responses to rosiglitazone and oleic acid, whereas the response to these compounds remained intact in PCLSs from PPARγ(Δmac) mice. Collectively, these findings establish PPARγ expression in hepatocytes as a prosteatotic factor in fatty liver disease.
Collapse
Affiliation(s)
- Eva Morán-Salvador
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, Esther Koplowitz Center–Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Begriche K, Massart J, Robin MA, Borgne-Sanchez A, Fromenty B. Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol 2011; 54:773-94. [PMID: 21145849 DOI: 10.1016/j.jhep.2010.11.006] [Citation(s) in RCA: 366] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/05/2010] [Accepted: 11/09/2010] [Indexed: 02/08/2023]
Abstract
Numerous investigations have shown that mitochondrial dysfunction is a major mechanism of drug-induced liver injury, which involves the parent drug or a reactive metabolite generated through cytochromes P450. Depending of their nature and their severity, the mitochondrial alterations are able to induce mild to fulminant hepatic cytolysis and steatosis (lipid accumulation), which can have different clinical and pathological features. Microvesicular steatosis, a potentially severe liver lesion usually associated with liver failure and profound hypoglycemia, is due to a major inhibition of mitochondrial fatty acid oxidation (FAO). Macrovacuolar steatosis, a relatively benign liver lesion in the short term, can be induced not only by a moderate reduction of mitochondrial FAO but also by an increased hepatic de novo lipid synthesis and a decreased secretion of VLDL-associated triglycerides. Moreover, recent investigations suggest that some drugs could favor lipid deposition in the liver through primary alterations of white adipose tissue (WAT) homeostasis. If the treatment is not interrupted, steatosis can evolve toward steatohepatitis, which is characterized not only by lipid accumulation but also by necroinflammation and fibrosis. Although the mechanisms involved in this aggravation are not fully characterized, it appears that overproduction of reactive oxygen species by the damaged mitochondria could play a salient role. Numerous factors could favor drug-induced mitochondrial and metabolic toxicity, such as the structure of the parent molecule, genetic predispositions (in particular those involving mitochondrial enzymes), alcohol intoxication, hepatitis virus C infection, and obesity. In obese and diabetic patients, some drugs may induce acute liver injury more frequently while others may worsen the pre-existent steatosis (or steatohepatitis).
Collapse
Affiliation(s)
- Karima Begriche
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | | | |
Collapse
|
82
|
Yonezawa T, Kurata R, Kimura M, Inoko H. Which CIDE are you on? Apoptosis and energy metabolism. MOLECULAR BIOSYSTEMS 2010; 7:91-100. [PMID: 20967381 DOI: 10.1039/c0mb00099j] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Around 1998, cell death-inducing DNA fragmentation factor-alpha (DFFA)-like effector (CIDE) proteins including CIDEA, CIDEB and CIDEC/fat specific protein 27 (Fsp27) were first identified by their sequence homology with the N-terminal domain of the DNA fragmentation factor (DFF). Indeed, in vitro analysis revealed that all three CIDE proteins are involved in apoptosis. However, recent gene-targeting studies have provided novel insights into the physiological function of CIDE proteins. Mice deficient in each CIDE protein exhibit lean phenotypes, a reduction of lipid droplet size in white adipose tissue and increased metabolic rate. Thus, all CIDE proteins play an important role in energy metabolism and lipid droplet formation. More recently, a glycoproteomics approach has shown that post-translational regulation of CIDE proteins via glycosylation modulates transforming growth factor (TGF)-beta 1-dependent apoptosis. Another recent study using mouse embryonic fibroblasts derived from CIDEA-deficient mice revealed that 5'AMP-activated protein kinase (AMPK) activity is regulated by CIDEA-mediated ubiquitin-dependent proteasomal degradation via a protein interaction with the AMPK beta subunit. Even after a decade of study, the physiological roles of CIDE proteins have still not been completely elucidated. This review aims to shed light on the novel functions of CIDE proteins and their physiological roles.
Collapse
Affiliation(s)
- Tomo Yonezawa
- Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Bohseidai, Ishehara, Kanagawa 259-1193, Japan.
| | | | | | | |
Collapse
|
83
|
Gene Expression Changes Induced by PPAR Gamma Agonists in Animal and Human Liver. PPAR Res 2010; 2010:325183. [PMID: 20981297 PMCID: PMC2963138 DOI: 10.1155/2010/325183] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 07/15/2010] [Indexed: 01/15/2023] Open
Abstract
Thiazolidinediones are a class of Peroxisome Proliferator Activated Receptor γ (PPARγ) agonists that reduce insulin resistance in type 2 diabetic patients. Although no detectable hepatic toxicity has been evidenced in animal studies during preclinical trials, these molecules have nevertheless induced hepatic adverse effects in some treated patients. The mechanism(s) of hepatotoxicity remains equivocal. Several studies have been conducted using PCR analysis and microarray technology to identify possible target genes and here we review the data obtained from various in vivo and in vitro experimental models. Although PPARγ is expressed at a much lower level in liver than in adipose tissue, PPARγ agonists exert various PPARγ-dependent effects in liver in addition to PPARγ-independent effects. Differences in effects are dependent on the choice of agonist and experimental conditions in rodent animal studies and in rodent and human liver cell cultures. These effects are much more pronounced in obese and diabetic liver. Moreover, our own recent studies have shown major interindividual variability in the response of primary human hepatocyte populations to troglitazone treatment, supporting the occurrence of hepatotoxicity in only some individuals.
Collapse
|
84
|
Davis RC, Castellani LW, Hosseini M, Ben-Zeev O, Mao HZ, Weinstein MM, Jung DY, Jun JY, Kim JK, Lusis AJ, Péterfy M. Early hepatic insulin resistance precedes the onset of diabetes in obese C57BLKS-db/db mice. Diabetes 2010; 59:1616-25. [PMID: 20393148 PMCID: PMC2889760 DOI: 10.2337/db09-0878] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To identify metabolic derangements contributing to diabetes susceptibility in the leptin receptor-deficient obese C57BLKS/J-db/db (BKS-db) mouse strain. RESEARCH DESIGN AND METHODS Young BKS-db mice were used to identify metabolic pathways contributing to the development of diabetes. Using the diabetes-resistant B6-db strain as a comparison, in vivo and in vitro approaches were applied to identify metabolic and molecular differences between the two strains. RESULTS Despite higher plasma insulin levels, BKS-db mice exhibit lower lipogenic gene expression, rate of lipogenesis, hepatic triglyceride and glycogen content, and impaired insulin suppression of gluconeogenic genes. Hepatic insulin receptor substrate (IRS)-1 and IRS-2 expression and insulin-stimulated Akt-phosphorylation are decreased in BKS-db primary hepatocytes. Hyperinsulinemic-euglycemic clamp studies indicate that in contrast to hepatic insulin resistance, skeletal muscle is more insulin sensitive in BKS-db than in B6-db mice. We also demonstrate that elevated plasma triglyceride levels in BKS-db mice are associated with reduced triglyceride clearance due to lower lipase activities. CONCLUSIONS Our study demonstrates the presence of metabolic derangements in BKS-db before the onset of beta-cell failure and identifies early hepatic insulin resistance as a component of the BKS-db phenotype. We propose that defects in hepatic insulin signaling contribute to the development of diabetes in the BKS-db mouse strain.
Collapse
Affiliation(s)
- Richard C. Davis
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | | | - Maryam Hosseini
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
- Lipid Research Laboratory, VA Greater Los Angeles Healthcare System, Los Angeles, California
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Osnat Ben-Zeev
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
- Lipid Research Laboratory, VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Hui Z. Mao
- Lipid Research Laboratory, VA Greater Los Angeles Healthcare System, Los Angeles, California
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Michael M. Weinstein
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Dae Young Jung
- Program in Molecular Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Cellular and Molecular Physiology, Pennsylvania State University School of Medicine, Hershey, Pennsylvania
| | - John Y. Jun
- Department of Cellular and Molecular Physiology, Pennsylvania State University School of Medicine, Hershey, Pennsylvania
| | - Jason K. Kim
- Program in Molecular Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Cellular and Molecular Physiology, Pennsylvania State University School of Medicine, Hershey, Pennsylvania
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Aldons J. Lusis
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Miklós Péterfy
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
- Lipid Research Laboratory, VA Greater Los Angeles Healthcare System, Los Angeles, California
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Corresponding author: Miklos Peterfy,
| |
Collapse
|
85
|
Flax oil-mediated activation of PPAR-γ correlates with reduction of hepatic lipid accumulation in obese spontaneously hypertensive/NDmcr-cp rats, a model of the metabolic syndrome. Br J Nutr 2010; 104:1313-21. [PMID: 20546645 DOI: 10.1017/s0007114510002187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Flax oil feeding has been proposed to have beneficial effects on the outcome of the metabolic syndrome due to the high n-3 fatty acid content of flax oil; however, the mechanisms of its action remain largely unknown. We investigated the effects of flax oil feeding on hyperlipidaemia, hyperglycaemia, hepatic steatosis and oxidative stress in the spontaneously hypertensive (SHR)/NDmcr-cp rats, a genetic model of the metabolic syndrome. Hepatic gene expression of PPAR-α, PPAR-γ and sterol-regulatory element-binding protein-1c was also assessed in order to investigate the possible underlying mechanisms. Obese and lean SHR/NDmcr-cp rats were fed high-fat diets enriched with either lard or flax oil for a period of 4 weeks. Obese rats exhibited higher body weight, liver weight and mesenteric fat-, epididymal fat- and renal fat-pad weights, and also TAG and cholesterol concentrations in serum and VLDL, LDL and HDL fractions, when compared with the lean rats (P < 0·001), irrespective of the diets. Concentrations of fasting serum insulin and urinary thiobarbituric acid reactive substances were lower in flax oil-fed obese (FO) rats compared with the lard-fed obese (LO) rats (P < 0·01). Flax oil feeding also revealed a significant reduction in hepatic TAG and cholesterol concentrations in obese rats compared with the LO rats (P < 0·05). In addition, FO rats exhibited significantly higher hepatic mRNA expression of PPAR-γ, which negatively correlated (r - 0·98, P < 0·05) with their hepatic lipid levels. These findings suggest that flax oil feeding may activate PPAR-γ-dependent pathways to alter the hepatic lipid metabolism and to increase insulin sensitivity in the obese SHR/NDmcr-cp rats.
Collapse
|
86
|
Identification of differentially expressed genes between hepatocytes of Landes geese (Anser anser) and Sichuan White geese (Anser cygnoides). Mol Biol Rep 2010; 37:4059-66. [DOI: 10.1007/s11033-010-0065-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
|
87
|
Ackerman Z, Oron-Herman M, Pappo O, Peleg E, Safadi R, Schmilovitz-Weiss H, Grozovski M. Hepatic effects of rosiglitazone in rats with the metabolic syndrome. Basic Clin Pharmacol Toxicol 2010; 107:663-8. [PMID: 20210788 DOI: 10.1111/j.1742-7843.2010.00553.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rats given fructose-enriched diet develop many characteristics of the human metabolic syndrome and non-alcoholic fatty liver disease. In this study, we characterized the hepatic effects of rosiglitazone in fructose-enriched diet rats. Rats were randomly divided into three groups. One group was maintained on standard rat chow diet for 6 weeks, whereas the other two groups were given fructose-enriched diet for 6 weeks. Four weeks after the initiation of fructose-enriched diet, one of the fructose-enriched diet groups was also given rosiglitazone (10 mg/kg/day) for an additional 2 weeks. Rosiglitazone administration to the fructose-enriched diet rats was associated with decreases in the following parameters: blood pressure (-17%), plasma triglycerides (-62%), hepatic total lipids (-19%), hepatic triglycerides (-61%), hepatic malondialdehyde (-88%), glutathione reductase activity (-84%). An increase in adiponectin plasma levels (+329%), hepatic phospholipids (+46%), hepatic alpha-tocopherol concentrations (+24%) and hepatic paraoxonase activity (+68%) was observed. Rosiglitazone caused a decrease in hepatic macrovesicular steatosis score but no change in hepatic fibrosis. Administration of rosiglitazone, to rats with the metabolic syndrome has limited hepatic favourable effects: it improves hepatic lipid metabolism, decreases macrovesicular steatosis and improves some of the hepatic oxidative-anti-oxidative milieu but has no effect on hepatic fibrosis.
Collapse
Affiliation(s)
- Zvi Ackerman
- Department of Medicine, Mount Scopus Campus, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | | | | | | | | | | | | |
Collapse
|
88
|
Nagano M, Ueno T, Fujii A, Hou DX, Fujii M. Anti-Hyperglycemic Effect of Kurozu Moromi Powder in Type II Diabetic Model KK-A y Mice. J JPN SOC FOOD SCI 2010. [DOI: 10.3136/nskkk.57.346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | - De-Xing Hou
- Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University
| | - Makoto Fujii
- Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University
| |
Collapse
|
89
|
Hue JJ, Lee KN, Jeong JH, Lee SH, Lee YH, Jeong SW, Nam SY, Yun YW, Lee BJ. Anti-obesity activity of diglyceride containing conjugated linoleic acid in C57BL/6J ob/ob mice. J Vet Sci 2009; 10:189-95. [PMID: 19687618 PMCID: PMC2801123 DOI: 10.4142/jvs.2009.10.3.189] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
This study was to investigate the anti-obesity effects of diglyceride (DG)-conjugated linoleic acid (CLA) containing 22% CLA as fatty acids in C57BL/6J ob/ob male mice. There were four experimental groups including vehicle control, DG, CLA, and DG-CLA. The test solutions of 750 mg/kg dose were orally administered to the mice everyday for 5 weeks. CLA treatments significantly decreased mean body weight in the obese mice throughout the experimental period compared to the control (p < 0.01). All test solutions significantly decreased the levels of triglyceride, glucose and free fatty acids in the serum compared with control (p < 0.05). The levels of total cholesterol were also significantly reduced in DG and DG-CLA groups compared with the control group (p < 0.05). CLA significantly decreased weights of renal and epididymal fats compared with the control (p < 0.05). DG and DG-CLA also significantly decreased the epididymal fat weights compared with the control (p < 0.05). A remarkable decrease in the number of lipid droplets and fat globules was observed in the livers of mice treated with DG, CLA, and DG-CLA compared to control. Treatments of DG and CLA actually increased the expression of peroxisome proliferator-activated receptor gamma. These results suggest that DG-CLA containing 22% CLA have a respectable anti-obesity effect by controlling serum lipids and fat metabolism.
Collapse
Affiliation(s)
- Jin-Joo Hue
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Hypoxia aggravates non-alcoholic steatohepatitis in mice lacking hepatocellular PTEN. Clin Sci (Lond) 2009; 118:401-10. [PMID: 19832698 DOI: 10.1042/cs20090313] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The metabolic disorders that predispose patients to NASH (non-alcoholic steatohepatitis) include insulin resistance and obesity. Repeated hypoxic events, such as occur in obstructive sleep apnoea syndrome, have been designated as a risk factor in the progression of liver disease in such patients, but the mechanism is unclear, in particular the role of hypoxia. Therefore we studied the influence of hypoxia on the development and progression of steatohepatitis in an experimental mouse model. Mice with a hepatocellular-specific deficiency in the Pten (phosphatase and tensin homologue deleted on chromosome 10) gene, a tumour suppressor, were exposed to a 10% O2 (hypoxic) or 21% O2 (control) atmosphere for 7 days. Haematocrit, AST (aspartate aminotransferase), glucose, triacylglycerols (triglycerides) and insulin tolerance were measured in blood. Histological lesions were quantified. Expression of genes involved in lipogenesis and mitochondrial beta-oxidation, as well as FOXO1 (forkhead box O1), hepcidin and CYP2E1 (cytochrome P450 2E1), were analysed by quantitative PCR. In the animals exposed to hypoxia, the haematocrit increased (60+/-3% compared with 50+/-2% in controls; P<0.01) and the ratio of liver weight/body weight increased (5.4+/-0.2% compared with 4.7+/-0.3% in the controls; P<0.01). Furthermore, in animals exposed to hypoxia, steatosis was more pronounced (P<0.01), and the NAS [NAFLD (non-alcoholic fatty liver disease) activity score] (8.3+/-2.4 compared with 2.3+/-10.7 in controls; P<0.01), serum AST, triacylglycerols and glucose were higher. Insulin sensitivity decreased in mice exposed to hypoxia relative to controls. The expression of the lipogenic genes SREBP-1c (sterol-regulatory-element-binding protein-1c), PPAR-gamma (peroxisome-proliferator-activated receptor-gamma), ACC1 (acetyl-CoA carboxylase 1) and ACC2 (acetyl-CoA carboxylase 2) increased significantly in mice exposed to hypoxia, whereas mitochondria beta-oxidation genes [PPAR-alpha (peroxisome-proliferator-activated receptor-alpha) and CPT-1 (carnitine palmitoyltransferase-1)] decreased significantly. In conclusion, the findings of the present study demonstrate that hypoxia alone aggravates and accelerates the progression of NASH by up-regulating the expression of lipogenic genes, by down-regulating genes involved in lipid metabolism and by decreasing insulin sensitivity.
Collapse
|
91
|
Fujimoto K, Kumagai K, Ito K, Arakawa S, Ando Y, Oda SI, Yamoto T, Manabe S. Sensitivity of liver injury in heterozygous Sod2 knockout mice treated with troglitazone or acetaminophen. Toxicol Pathol 2009; 37:193-200. [PMID: 19332662 DOI: 10.1177/0192623308329282] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recently, it was reported that the intraperitoneal administration of 30 mg/kg/day troglitazone to heterozygous superoxide dismutase 2 gene knockout (Sod2+/-) mice for twenty-eight days caused liver injury, manifested by increased serum ALT activity and hepatic necrosis. Therefore, we evaluated the reproducibility of troglitazone-induced liver injury in Sod2+/- mice, as well as their validity as an animal model with higher sensitivity to mitochondrial toxicity by single-dose treatment with acetaminophen in Sod2+/- mice. Although we conducted a repeated dose toxicity study in Sod2+/- mice treated orally with 300 mg/kg/day troglitazone for twenty-eight days, no hepatocellular necrosis was observed in our study. On the other hand, six hours and twenty-four hours after an administration of 300 mg/kg acetaminophen, plasma ALT activity was significantly increased in Sod2+/- mice, compared to wild-type mice. In particular, six hours after administration, hepatic centrilobular necrosis was observed only in Sod2+/- mice. These results suggest that Sod2+/- mice are valuable as an animal model with higher sensitivity to mitochondrial toxicity. On the other hand, it was suggested that the mitochondrial damage alone might not be the major cause of the troglitazone-induced idiosyncratic liver injury observed in humans.
Collapse
Affiliation(s)
- Kazunori Fujimoto
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co. Ltd., 717 Horikoshi, Fukuroi, Shizuoka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Chen W, Zhou XB, Liu HY, Xu C, Wang LL, Li S. P633H, a novel dual agonist at peroxisome proliferator-activated receptors alpha and gamma, with different anti-diabetic effects in db/db and KK-Ay mice. Br J Pharmacol 2009; 157:724-35. [PMID: 19422369 DOI: 10.1111/j.1476-5381.2009.00231.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Peroxisome proliferator-activated receptors (PPARs) are attractive targets for the treatment of type 2 diabetes and the metabolic syndrome. P633H (2-[4-(2-Fluoro-benzenesulphonyl)-piperazin-1-yl]-3-{4-[2-(5-methyl-2-phenyl-oxazol-4-yl)-ethoxy]-phenyl}-propionic acid), a novel PPARalpha/gamma dual agonist, was investigated for its very different effects on insulin resistance and dyslipidemia in db/db and KK-A(y) mice. EXPERIMENTAL APPROACH The action of P633H at PPARalpha/gamma was characterized by using transactivation assays. Functional activation of PPARalpha/gammain vitro was confirmed by pre-adipocyte differentiation and regulation of target gene expression. Anti-diabetic studies were performed in two different diabetic mice models in vivo. KEY RESULTS P633H activated both PPARalpha and PPAR gamma, (with EC(50) values of 0.012 micromol and 0.032 micromol respectively). Additionally, P633H promoted pre-adipocyte differentiation, up-regulated expression of adipose specific transport protein (aP2) mRNA (3T3-Ll cells) and acyl-CoA oxidase mRNA (LO2 cells). In db/db mice, P633H reduced serum glucose, insulin, triglycerides, non-esterified fatty acids and liver triglycerides. It also improved glucose intolerance without affecting food intake and body weight after 15 days of treatment. However in KK-A(y) mice, hyperglycaemia, dyslipidemia and impaired glucose tolerance were not relieved even after a 25 day treatment with P633H. Further studies with real-time PCR and electron microscopy revealed that P633H promoted progression of diabetes in KK-A(y) mice by increasing hepatic gluconeogenesis and exacerbating pancreatic pathology. CONCLUSION AND IMPLICATIONS Although P633H was a high-potency PPARalpha/gamma dual agonist, with good functional activity in vitro, it produced opposing anti-diabetic effects in db/db and KK-A(y) mice.
Collapse
Affiliation(s)
- Wei Chen
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | | | | | | | | | | |
Collapse
|
93
|
Rogers NH, Perfield JW, Strissel KJ, Obin MS, Greenberg AS. Reduced energy expenditure and increased inflammation are early events in the development of ovariectomy-induced obesity. Endocrinology 2009; 150:2161-8. [PMID: 19179442 PMCID: PMC2671894 DOI: 10.1210/en.2008-1405] [Citation(s) in RCA: 325] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Menopause, an age-related loss of ovarian hormone production, promotes increased adiposity and insulin resistance. However, the diet-independent mechanism by which loss of ovarian function promotes increased adipose tissue mass and associated metabolic pathologies remains unclear. To address this question, we monitored food intake and weight gain of ovariectomized (OVX) mice and sham OVX (SHM) mice for 12 wk. Although food intake was similar, OVX mice gained 25% more weight than SHM mice. Moreover, the OVX mice accumulated 4.7- and 4.4-fold more perigonadal and inguinal adipose tissue by weight, respectively, with 4.4-fold (perigonadal, P < 0.001) and 5.3-fold (inguinal, P < 0.01) larger adipocytes and no change in adipocyte cell number. OVX-induced adiposity was coincident with an 18% decrease in metabolic rate during the dark phase (P = 0.001) as well as an 11% decrease during the light phase (P = 0.03). In addition, ambulatory activity levels of OVX mice were decreased only during the dark phase (40%, P = 0.008). OVX mice displayed evidence of immune infiltration and inflammation in adipose tissue, because perigonadal and inguinal adipose depots from OVX mice had increased expression of TNFalpha, iNOS, CD11c, and other hallmarks of adipose tissue inflammation. In contrast, expression of the T cell marker CD3 (3.5-fold, P = 0.03) and Th1 cytokine interferon-gamma (IFNgamma) (2.6-fold, P = 0.02) were elevated in perigonadal but not sc fat. Finally, histology revealed OVX-specific liver hepatic steatosis, coincident with increased PPARgamma gene expression and downstream lipogenic gene expression. In summary, OVX in mice decreases energy expenditure, without altering energy intake, resulting in adipocyte hypertrophy, adipose tissue inflammation, and hepatic steatosis.
Collapse
Affiliation(s)
- Nicole H Rogers
- Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Obesity and Metabolism, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
94
|
PPAR and liver injury in HIV-infected patients. PPAR Res 2009; 2009:906167. [PMID: 19390649 PMCID: PMC2669659 DOI: 10.1155/2009/906167] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 01/31/2009] [Indexed: 01/14/2023] Open
Abstract
Due to the introduction of active HIV antiretroviral treatment, AIDS-related morbidity and mortality have markedly decreased and liver diseases are now a major cause of morbidity and mortality in HIV-infected patients. Chronic liver injury encompasses a wide spectrum of diseases due to HCV and HBV coinfection, drug-related toxicity, and NASH. HIV-infected patients who are receiving treatment present with a high prevalence of metabolic complications and lipodystrophy. Those patients are at high risk of nonalcoholic fatty liver disease, the liver feature of the metabolic syndrome. This review will focus on (1) the liver injuries in HIV-infected patients; (2) both the current experimental and human data regarding PPAR and liver diseases; (3) the interactions between HIV and PPAR; (4) the potential use of PPAR agonists for the management of HIV-related liver diseases.
Collapse
|
95
|
Poritsanos NJ, Wong D, Vrontakis ME, Mizuno TM. Regulation of hepatic PPARγ2 and lipogenic gene expression by melanocortin. Biochem Biophys Res Commun 2008; 376:384-8. [DOI: 10.1016/j.bbrc.2008.08.162] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 08/29/2008] [Indexed: 10/21/2022]
|
96
|
Julie NL, Julie IM, Kende AI, Wilson GL. Mitochondrial dysfunction and delayed hepatotoxicity: another lesson from troglitazone. Diabetologia 2008; 51:2108-16. [PMID: 18726085 DOI: 10.1007/s00125-008-1133-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 06/26/2008] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS Troglitazone was approved for treatment of type 2 diabetes mellitus, but by 2000 it had been removed from all world markets due to severe drug-induced liver injury. Even today, we still do not know how many patients sustained a long-term liver injury. No system is in place to acquire that knowledge. Regarding toxicity mechanisms, controversy persists as to which ones are class effects of thiazolidinediones (TZDs) and which are unique to troglitazone. This study aims to provide long-term outcome data and new insights on mechanisms of troglitazone-induced liver injury. METHODS This case series reports the liver injuries sustained by eleven type 2 diabetic patients treated with troglitazone between 1997 and 2000. Exhaustive review of medical records was performed for all patients. Long-term outcomes were available for all the non-fatal cases. A comprehensive literature review was also performed. RESULTS Long-term liver injury progressing to cirrhosis was identified in seven patients. All eleven cases had liver injury patterns consistent with troglitazone toxicity. Analysis of these cases and of the experimental troglitazone toxicity data points to mitochondrial toxicity as a central factor. The general clinical patterns of mitochondrial hepatotoxic events are reviewed, as are the implications for other members of the TZD family. CONCLUSIONS/INTERPRETATION This analysis enables the liver injury induced by troglitazone to be better understood. In future cases of delayed drug-induced liver injury that progresses after discontinuation, the possibility of mitochondrial toxicity should be considered. When appropriate, this can then be evaluated experimentally. Such proactive investigation may anticipate clinical risk before a large-scale therapeutic misadventure occurs. Drug-induced liver injury due to mitochondrial hepatotoxins may be less unpredictable than has previously been surmised.
Collapse
Affiliation(s)
- N L Julie
- Department of Pathology, Shady Grove Adventist Hospital, Rockville, MD, USA.
| | | | | | | |
Collapse
|
97
|
Li H, Xie Z, Lin J, Song H, Wang Q, Wang K, Su M, Qiu Y, Zhao T, Song K, Wang X, Zhou M, Liu P, Zhao G, Zhang Q, Jia W. Transcriptomic and Metabonomic Profiling of Obesity-Prone and Obesity-Resistant Rats under High Fat Diet. J Proteome Res 2008; 7:4775-83. [DOI: 10.1021/pr800352k] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Houkai Li
- School of Pharmacy and Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, PRC, State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PRC, National Engineering Center for Biochip at Shanghai, 201203, PRC, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PRC, and Department of Nutrition, University of North Carolina at Greensboro, North
| | - Zuoquan Xie
- School of Pharmacy and Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, PRC, State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PRC, National Engineering Center for Biochip at Shanghai, 201203, PRC, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PRC, and Department of Nutrition, University of North Carolina at Greensboro, North
| | - Jingchao Lin
- School of Pharmacy and Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, PRC, State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PRC, National Engineering Center for Biochip at Shanghai, 201203, PRC, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PRC, and Department of Nutrition, University of North Carolina at Greensboro, North
| | - Huaiguang Song
- School of Pharmacy and Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, PRC, State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PRC, National Engineering Center for Biochip at Shanghai, 201203, PRC, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PRC, and Department of Nutrition, University of North Carolina at Greensboro, North
| | - Qi Wang
- School of Pharmacy and Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, PRC, State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PRC, National Engineering Center for Biochip at Shanghai, 201203, PRC, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PRC, and Department of Nutrition, University of North Carolina at Greensboro, North
| | - Ke Wang
- School of Pharmacy and Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, PRC, State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PRC, National Engineering Center for Biochip at Shanghai, 201203, PRC, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PRC, and Department of Nutrition, University of North Carolina at Greensboro, North
| | - Mingming Su
- School of Pharmacy and Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, PRC, State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PRC, National Engineering Center for Biochip at Shanghai, 201203, PRC, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PRC, and Department of Nutrition, University of North Carolina at Greensboro, North
| | - Yunping Qiu
- School of Pharmacy and Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, PRC, State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PRC, National Engineering Center for Biochip at Shanghai, 201203, PRC, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PRC, and Department of Nutrition, University of North Carolina at Greensboro, North
| | - Tie Zhao
- School of Pharmacy and Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, PRC, State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PRC, National Engineering Center for Biochip at Shanghai, 201203, PRC, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PRC, and Department of Nutrition, University of North Carolina at Greensboro, North
| | - Kai Song
- School of Pharmacy and Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, PRC, State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PRC, National Engineering Center for Biochip at Shanghai, 201203, PRC, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PRC, and Department of Nutrition, University of North Carolina at Greensboro, North
| | - Xiaoyan Wang
- School of Pharmacy and Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, PRC, State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PRC, National Engineering Center for Biochip at Shanghai, 201203, PRC, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PRC, and Department of Nutrition, University of North Carolina at Greensboro, North
| | - Mingmei Zhou
- School of Pharmacy and Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, PRC, State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PRC, National Engineering Center for Biochip at Shanghai, 201203, PRC, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PRC, and Department of Nutrition, University of North Carolina at Greensboro, North
| | - Ping Liu
- School of Pharmacy and Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, PRC, State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PRC, National Engineering Center for Biochip at Shanghai, 201203, PRC, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PRC, and Department of Nutrition, University of North Carolina at Greensboro, North
| | - Guoping Zhao
- School of Pharmacy and Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, PRC, State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PRC, National Engineering Center for Biochip at Shanghai, 201203, PRC, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PRC, and Department of Nutrition, University of North Carolina at Greensboro, North
| | - Qinghua Zhang
- School of Pharmacy and Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, PRC, State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PRC, National Engineering Center for Biochip at Shanghai, 201203, PRC, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PRC, and Department of Nutrition, University of North Carolina at Greensboro, North
| | - Wei Jia
- School of Pharmacy and Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, PRC, State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PRC, National Engineering Center for Biochip at Shanghai, 201203, PRC, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PRC, and Department of Nutrition, University of North Carolina at Greensboro, North
| |
Collapse
|
98
|
Nakano S, Nagasawa T, Ijiro T, Inada Y, Tamura T, Maruyama K, Kuroda J, Yamazaki Y, Kusama H, Shibata N. Bezafibrate prevents hepatic stellate cell activation and fibrogenesis in a murine steatohepatitis model, and suppresses fibrogenic response induced by transforming growth factor-beta1 in a cultured stellate cell line. Hepatol Res 2008; 38:1026-39. [PMID: 18513333 DOI: 10.1111/j.1872-034x.2008.00363.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIM The aim of this study was to investigate the preventive actions of bezafibrate against non-alcoholic steatohepatitis (NASH), the activation of hepatic stellate cells (HSC), and fibrogenesis by using a model of NASH and an in vitro model. METHODS Male KK-A(y)/TaJcl (KK-A(y)) mice were fed a methionine and choline-deficient (MCD) diet or a MCD diet containing bezafibrate or pioglitazone for 7 weeks, after which biochemical parameters, pathological changes, and hepatic mRNA levels were assessed. An in vitro HSC model was designed by using a previously described RI-T cell line stimulated by transforming growth factor-beta1 (TGF-beta1). RESULTS MCD diet-fed KK-A(y) mice developed hepatic steatosis, oxidative stress, inflammation, and hepatic fibrosis. Bezafibrate markedly decreased the hepatic content of triglyceride accumulation of fatty droplets within hepatocytes, and increased the expression of hepatic fatty acid beta-oxidative genes in MCD diet-fed KK-A(y) mice. Bezafibrate markedly inhibited the increases in the plasma alanine aminotransferase level and hepatic content of thiobarbituric acid-reactive substances in this model. Moreover, it dramatically reduced hepatic inflammatory changes and fibrosis concomitantly with marked reductions in the mRNA levels for inflammatory cytokine, chemokine, and profibrogenic genes. Importantly, both bezafibrate and pioglitazone markedly reduced the mRNA levels of profibrogenic and fibrogenic genes in TGF-beta1-stimulated cells. CONCLUSION Bezafibrate improved hepatic steatosis and potently prevented inflammation, oxidative stress, HSC activation, and fibrogenesis in the liver. Moreover, this study was the first to demonstrate that bezafibrate directly inhibits hepatic fibrogenic response induced by TGF-beta1 in vitro. Hence bezafibrate may be a new therapeutic strategy against NASH and hepatic fibrosis.
Collapse
Affiliation(s)
- Shigeru Nakano
- Departments of Development Research, Kissei Pharmaceutical Co. Ltd, Nagano, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Baranowski M, Blachnio-Zabielska A, Zabielski P, Gorski J. Pioglitazone induces lipid accumulation in the rat heart despite concomitant reduction in plasma free fatty acid availability. Arch Biochem Biophys 2008; 477:86-91. [PMID: 18541139 DOI: 10.1016/j.abb.2008.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 05/19/2008] [Accepted: 05/21/2008] [Indexed: 10/22/2022]
Abstract
Thiazolidinediones are insulin-sensitizing drugs which have been proved to be effective in the treatment of type 2 diabetes. However, the action of thiazolidinediones on myocardial metabolism is only poorly recognized. Therefore, the aim of our study was to investigate the effects of two-week pioglitazone treatment (3 mg/kg/d) on lipid and carbohydrate metabolism in the heart of rats fed on a standard chow or on a high-fat diet (HFD) for three weeks. High-fat feeding increased myocardial protein expression of all peroxisome proliferator-activated receptor (PPAR) isoforms. The greatest response was, however, noted in the case of PPARgamma. Surprisingly, administration of pioglitazone induced accumulation of free fatty acids (FFA) and diacylglycerol in the heart in both groups, despite concomitant reduction in plasma FFA concentration. The content of triacylglycerol was increased only in the HFD group. Pioglitazone treatment also shifted myocardial substrate utilization towards greater contribution of glucose in both groups, as evidenced by decreased rate of palmitate oxidation and higher 2-deoxyglucose uptake and elevated glycogen content. This could induce a mismatch between the rate of myocardial fatty acid uptake and oxidation leading to increased intracellular availability of fatty acids for non-oxidative metabolic pathways like synthesis of acylglycerols. Our data suggests that thiazolidinediones improve cardiac insulin sensitivity by mechanisms other than reduction in intramyocardial lipid content.
Collapse
Affiliation(s)
- Marcin Baranowski
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2c, 15-230 Bialystok, Poland.
| | | | | | | |
Collapse
|
100
|
Matsusue K, Kusakabe T, Noguchi T, Takiguchi S, Suzuki T, Yamano S, Gonzalez FJ. Hepatic steatosis in leptin-deficient mice is promoted by the PPARgamma target gene Fsp27. Cell Metab 2008; 7:302-11. [PMID: 18396136 PMCID: PMC2587176 DOI: 10.1016/j.cmet.2008.03.003] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 12/18/2007] [Accepted: 03/05/2008] [Indexed: 12/11/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) is induced in leptin-deficient (ob/ob) mouse liver and is critical for the development of hepatic steatosis. The present study shows that fat-specific protein 27 (Fsp27) in ob/ob liver is a direct target gene of PPARgamma and can elevate hepatic triglyceride levels. FSP27 belongs to the CIDE family, composed of CIDE A, CIDE B, and FSP27/CIDE C, all of which contain a conserved CIDE-N domain. FSP27 was recently reported to be a lipid droplet-binding protein and to promote lipid accumulation in adipocytes. The Fsp27 gene was expressed at high levels in ob/ob liver and at markedly lower levels in ob/ob livers lacking PPARgamma. Forced expression of FSP27 by adenovirus in hepatocytes in vitro or in vivo led to increased triglyceride levels. Knockdown by adenovirus expressing FSP27 shRNA resulted in lower accumulation of hepatic triglycerides compared to control adenovirus-infected liver. Taken together, these results indicate that FSP27 is a direct mediator of PPARgamma-dependent hepatic steatosis.
Collapse
Affiliation(s)
- Kimihiko Matsusue
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|