51
|
Wei G, Zhang S, Yu S, Lu W. Intravital Microscopy Reveals Endothelial Transcytosis Contributing to Significant Tumor Accumulation of Albumin Nanoparticles. Pharmaceutics 2023; 15:519. [PMID: 36839841 PMCID: PMC9960641 DOI: 10.3390/pharmaceutics15020519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The principle of enhanced permeability and retention (EPR) effect has been used to design anti-cancer nanomedicines over decades. However, it is being challenged due to the poor clinical outcome of nanoparticles and controversial physiological foundation. Herein, we use a near-infrared-II (1000-1700 nm, NIR-II) fluorescence probe BPBBT to investigate the pathway for the entry of human serum albumin-bound nanoparticles (BPBBT-HSA NPs) into tumor compared with BPBBT micelles with phospholipid-poly (ethylene glycol) of the similar particle size about 110 nm. The plasma elimination half-life of BPBBT micelles was 2.8-fold of that of BPBBT-HSA NPs. However, the area under the BPBBT concentration in tumor-time curve to 48 h post-injection (AUCtumor0→48h) of BPBBT-HSA NPs was 7.2-fold of that of BPBBT micelles. The intravital NIR-II fluorescence microscopy revealed that BPBBT-HSA NPs but not BPBBT micelles were transported from the tumor vasculature into tumor parenchyma with high efficiency, and endocytosed by the tumor cells within 3 h post-injection in vivo. This effect was blocked by cross-linking BPBBT-HSA NPs to denature HSA, resulting in the AUCtumor0→48h decreased to 22% of that of BPBBT-HSA NPs. Our results demonstrated that the active process of endothelial transcytosis is the dominant pathway for albumin-bound nanoparticles' entry into tumor.
Collapse
Affiliation(s)
| | | | | | - Wei Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy & Minhang Hospital, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
52
|
Liquid antisolvent crystallization of pharmaceutical compounds: current status and future perspectives. Drug Deliv Transl Res 2023; 13:400-418. [PMID: 35953765 DOI: 10.1007/s13346-022-01219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2022] [Indexed: 12/30/2022]
Abstract
The present work reviews the liquid antisolvent crystallization (LASC) to prepare the nanoparticle of pharmaceutical compounds to enhance their solubility, dissolution rate, and bioavailability. The application of ultrasound and additives is discussed to prepare the particles with narrow size distribution. The use of ionic liquid as an alternative to conventional organic solvent is presented. Herbal compounds, also known for low aqueous solubility and limited clinical application, have been crystalized by LASC and discussed here. The particle characteristics such as particle size and particle size distribution are interpreted in terms of supersaturation, nucleation, and growth phenomena. To overcome the disadvantage of batch crystallization, the scientific literature on continuous flow reactors is also reviewed. LASC in a microfluidic device is emerging as a promising technique. The different design of the microfluidic device and their application in LASC are discussed. The combination of the LASC technique with traditional techniques such as high-pressure homogenization and spray drying is presented. A comparison of product characteristics prepared by LASC and the supercritical CO2 antisolvent method is discussed to show that LASC is an attractive and inexpensive alternative for nanoparticle preparation. One of the major strengths of this paper is a discussion on less-explored applications of LASC in pharmaceutical research to attract the attention of future researchers.
Collapse
|
53
|
Wang Y, Chen X, Xu X, Du M, Wu C. Reducing disulfide bonds as a robust strategy to facilitate the self-assembly of cod protein fabricating potential active ingredients-nanocarrier. Colloids Surf B Biointerfaces 2023; 222:113080. [PMID: 36542952 DOI: 10.1016/j.colsurfb.2022.113080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
In this study, a novel method was developed to encapsulate hydrophobic compounds by self-assembly of cod protein (CP) triggered by breaking disulfide bonds. Curcumin (Cur), a representative lipid-soluble polyphenol, was selected as a model to evaluate the potential of CP nanoparticles as novel and accessible nanocarriers. Results showed that the protein structure gradually unfolded with increasing dithiothreitol (DTT) concentration, indicating that S-S cleavage was conducive to forming a looser structure. The resultant unfolded CP exposed more hydrophobic sites, facilitating its interaction with hydrophobic compounds. The encapsulation efficiency (EE) of formed CP-Cur nanoparticles was relatively high, reaching 99.09%, 98.8%, and 89.77% when the mass ratios of CP to Cur were 20:1, 10:1, and 5:1 (w/v), respectively. The hydrophobic interaction, weak van der Waals, and hydrogen bond were the forces contributing to the formation of CP-Cur nanoparticles, whereas the hydrophobic interaction played a crucial role. The CP-Cur complex exhibited increased stability and a homogeneous-stable structural phase. Thus, this research not only proposed a novel and simple encapsulation method of hydrophobic bioactive compounds but also provided a theoretical reference for the application of reductants in food or pharmacy system.
Collapse
Affiliation(s)
- Yuying Wang
- National Engineering Research Center of Seafood, Dalian 116034, China; College of Food Science, Dalian Polytechnic University, Dalian 116034, China; College of Food Science, Jilin University, Changchun 130015, China
| | - Xufei Chen
- National Engineering Research Center of Seafood, Dalian 116034, China; College of Food Science, Dalian Polytechnic University, Dalian 116034, China
| | - Xianbing Xu
- National Engineering Research Center of Seafood, Dalian 116034, China; College of Food Science, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- National Engineering Research Center of Seafood, Dalian 116034, China; College of Food Science, Dalian Polytechnic University, Dalian 116034, China
| | - Chao Wu
- National Engineering Research Center of Seafood, Dalian 116034, China; College of Food Science, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
54
|
Li X, Li W, Li K, Chen X, Wang C, Qiao M, Hong W. Albumin-coated pH-responsive dimeric prodrug-based nano-assemblies with high biofilm eradication capacity. Biomater Sci 2023; 11:1031-1041. [PMID: 36545821 DOI: 10.1039/d2bm01520j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pseudomonas aeruginosa (PA) biofilms cause many persistent chronic infections in humans, especially in cystic fibrosis (CF) patients. The biofilms form a strong barrier which may inhibit antimicrobial agents from penetrating the biofilms and killing PA bacteria that reside deep within the biofilms. Concomitant therapies based on tobramycin (TOB) and azithromycin (AZM) have demonstrated beneficial effects in CF patients with chronic PA infections. However, the co-delivery of TOB and AZM has rarely been reported. In this study, we constructed a self-assembled pH-sensitive nano-assembly (DPNA) based on a dimeric prodrug (AZM-Cit-TOB) by simply inserting citraconic amide bonds between AZM and TOB. Moreover, the cationic surface of DPNA was further modified with anionic albumin (HSA) via electrostatic interactions to form an electrostatic complex (termed HSA@DPNA) for better biocompatibility. Upon arrival at the infected tissues, the citraconic amide bonds would be cleaved at acidic pH, resulting in the release of TOB and AZM for bacteria killing and biofilm eradication. As expected, HSA@DPNA showed comparable antibacterial abilities against the P. aeruginosa strain PAO1 in both planktonic and biofilm modes of growth compared to the TOB/AZM mixture in vitro. Moreover, HSA@DPNA exhibited excellent therapeutic efficacy on mice with PAO1-induced lung infection compared to the TOB/AZM mixture, and no detectable toxicity to mammalian cells/animals was observed during the therapeutic process. In summary, our study provides a promising method for the co-delivery of AZM and TOB in concomitant therapies against PAO1-related infection.
Collapse
Affiliation(s)
- Xueling Li
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.
| | - Wenting Li
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.
| | - Keke Li
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.
| | - Xiangjun Chen
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.
| | - Changrong Wang
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.
| | - Mingxi Qiao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China.
| | - Wei Hong
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.
| |
Collapse
|
55
|
Thalhammer-Thurner GC, Debbage P. Albumin-based nanoparticles: small, uniform and reproducible. NANOSCALE ADVANCES 2023; 5:503-512. [PMID: 36756267 PMCID: PMC9846714 DOI: 10.1039/d2na00413e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/17/2022] [Indexed: 06/18/2023]
Abstract
Nanomedicine carries the hope of precisely identifying and healing lesion sites in vivo. However, the reproducible synthesis of monodisperse protein nanoparticles smaller than 50 nm in diameter and up-scalable to industrial production still poses challenges to researchers. In this report, we describe nanoparticles, so called Absicles, based on an albumin matrix and prepared by a procedure developed by the authors. These Absicles are monodisperse with tunable diameters ranging from 15 nm to 70 nm respectively. They exhibit long term stability against decomposition and aggregation, exceeding many months. The synthesis of Absicles shows exceptionally high reproducibility concerning size, and is simple and cost-effective for up-scaling. Absicles, bearing appropriate targeting groups, bind with high specificity to colon carcinoma tissue ex vivo; they present an attractive platform for further development towards drug delivery applications.
Collapse
Affiliation(s)
- Gudrun C Thalhammer-Thurner
- Division of Histology and Embryology, Department of Anatomy, Medical University Innsbruck Müllerstrasse 59 6020 Innsbruck Austria
- Department of Radiology, Medical University of Innsbruck Anichstrasse 35 6020 Innsbruck Austria
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck Müllerstraße 44 6020 Innsbruck Austria
| | - Paul Debbage
- Division of Histology and Embryology, Department of Anatomy, Medical University Innsbruck Müllerstrasse 59 6020 Innsbruck Austria
| |
Collapse
|
56
|
Kamali M, Webster TJ, Amani A, Hadjighassem MR, Malekpour MR, Tirgar F, Khosravani M, Adabi M. Effect of folate-targeted Erlotinib loaded human serum albumin nanoparticles on tumor size and survival rate in a rat model of glioblastoma. Life Sci 2023; 313:121248. [PMID: 36526047 DOI: 10.1016/j.lfs.2022.121248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
The aim of this study was to prepare folate-targeted Erlotinib loaded human serum albumin nanoparticles (FA-ERL-HSA NPs) and investigate in vitro cytotoxic and apoptotic effects using cell lines (U87MG and C6 cells) and an in vivo rat bearing C6 glioma model. The mean size of the FA-ERL-HSA NPs prepared using a desolvation method was 135 nm. In vitro MTT assays demonstrated that FA-ERL-HSA NPs had an IC50 value of 52.18 μg/mL and 17.53 μg/mL compared to free ERL which had an IC50 value of 119.8 μg/mL and 103.2 μg/mL for U87MG and C6 cells for 72 h, respectively. Flow cytometry results showed the apoptosis rate with FA-ERL-HSA NPs (100 μg/mL, 72 h) was higher compared to free ERL for both U87MG and C6 cells. Experiments using a rat glioblastoma model via TUNEL assay indicated that the apoptosis index of FA-ERL-HSA NPs was 48 % compared to 21 % for free ERL and the tumor size effectively decreased after a daily injection of 220 μg (2.5 mg/kg) from 87.45 mm3 (19th day) to 1.28 mm3 (60th day). The median survival rate of the rats increased after treatment to >100 days which was greater than controls.
Collapse
Affiliation(s)
- Morteza Kamali
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University, Tijian, China; UFPI - Universidade Federal do Piauí, Brazil; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Amir Amani
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahmoud Reza Hadjighassem
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Malekpour
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tirgar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Khosravani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
57
|
Prasanthan P, Kishore N. HSA nanoparticles in drug recognition: mechanistic insights with naproxen, diclofenac and methimazole. J Biomol Struct Dyn 2022; 40:11057-11069. [PMID: 34296662 DOI: 10.1080/07391102.2021.1953605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Protein-based nanoparticles offer a suitable targeted delivery platform to drugs in terms of biocompatibility, biodegradability and abundance in nature. Physicochemical understanding of drug encapsulation by protein nanoparticles and their impact on protein aggregation is essential. In this work, we have examined quantitative aspects of encapsulation of non-steroidal anti-inflammatory drugs naproxen and diclofenac sodium, and anti-thyroid drug methimazole in nanoparticles of human serum albumin (HSA NPs) by using ultrasensitive calorimetry. Thermodynamic signatures accompanying the interactions revealed that the partitioning of all these drugs in HSA NPs is primarily driven via contributions from desolvation of highly hydrated nanoparticles surface. Furthermore, the effect of these nanoparticles on fibrillation of HSA has also been studied. HSA NPs are determined to be ineffective towards inhibition of fibrillation under employed conditions. However, the extent of inhibition by HSA NPs varies depending upon the structural characteristics of the drugs. Such studies help to gain mechanistic aspects on drug loading into protein-based nanoparticles and are expected to provide useful insights into improving existing nano-drug carriers and their efficiency in preventing protein fibrillation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pooja Prasanthan
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
58
|
Akdogan Y, Cigdem Sozer S, Akyol C, Basol M, Karakoyun C, Cakan-Akdogan G. Synthesis of albumin nanoparticles in a water-miscible ionic liquid system, and their applications for chlorambucil delivery to cancer cells. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
59
|
Toosi Moghadam F, Mamashli F, Khoobi M, Ghasemi A, Pirhaghi M, Delavari B, Mahmoudi Aznaveh H, Nikkhah M, Saboury AA. A dual responsive robust human serum albumin-based nanocarrier for doxorubicin. Biotechnol Appl Biochem 2022; 69:2496-2506. [PMID: 34894353 DOI: 10.1002/bab.2299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/30/2021] [Indexed: 12/27/2022]
Abstract
Targeted drug therapy against cancer has been introduced as a smart strategy to combat the unwanted side effects due to systemic administration of chemotherapeutics. A human serum albumin (HSA)-based nanocarrier was fabricated with the aim to target reductive media and acidic pH of the tumor tissues. α-Lipoic acid (LA) was applied to increase the number of disulfide bonds in the nanocarrier to target higher glutathione concentrations present in tumor tissues and polyethylene glycol was used to target the acidic pH of tumors. UV illumination, ethanol desolvation, oxygen bubbling, and a mixture of redox buffers were employed to prepare doxorubicin-loaded HSA-LA nanoparticles. The nanocarrier was supposed to release the loaded doxorubicin in reductive and acidic pH media. Fourier-transform infrared spectroscopy and energy dispersive X-ray analysis indicated successful attachment of LA to HSA. The prepared nanoplatform presented improved doxorubicin loading efficiency and content and successfully released the loaded doxorubicin in the expected conditions. Protein corona study indicated that positively charged plasma proteins with molecular weights of nearly 80 kDa are absorbed to the surface of the nanoparticles. Furthermore, it showed desirable UV and storage stability, which implied its robustness and improved shelf life if applied in nanomedicine.
Collapse
Affiliation(s)
- Fatemeh Toosi Moghadam
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Fatemeh Mamashli
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mehdi Khoobi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Biomaterials Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Atiyeh Ghasemi
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mitra Pirhaghi
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Behdad Delavari
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hooman Mahmoudi Aznaveh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Akbar Saboury
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
60
|
Hornok V, Amin KWK, Kovács AN, Juhász Á, Katona G, Balogh GT, Csapó E. Increased blood-brain barrier permeability of neuroprotective drug by colloidal serum albumin carriers. Colloids Surf B Biointerfaces 2022; 220:112935. [DOI: 10.1016/j.colsurfb.2022.112935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Accepted: 10/13/2022] [Indexed: 11/27/2022]
|
61
|
Chapla R, Huynh KT, Schutt CE. Microbubble–Nanoparticle Complexes for Ultrasound-Enhanced Cargo Delivery. Pharmaceutics 2022; 14:pharmaceutics14112396. [PMID: 36365214 PMCID: PMC9698658 DOI: 10.3390/pharmaceutics14112396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022] Open
Abstract
Targeted delivery of therapeutics to specific tissues is critically important for reducing systemic toxicity and optimizing therapeutic efficacy, especially in the case of cytotoxic drugs. Many strategies currently exist for targeting systemically administered drugs, and ultrasound-controlled targeting is a rapidly advancing strategy for externally-stimulated drug delivery. In this non-invasive method, ultrasound waves penetrate through tissue and stimulate gas-filled microbubbles, resulting in bubble rupture and biophysical effects that power delivery of attached cargo to surrounding cells. Drug delivery capabilities from ultrasound-sensitive microbubbles are greatly expanded when nanocarrier particles are attached to the bubble surface, and cargo loading is determined by the physicochemical properties of the nanoparticles. This review serves to highlight and discuss current microbubble–nanoparticle complex component materials and designs for ultrasound-mediated drug delivery. Nanocarriers that have been complexed with microbubbles for drug delivery include lipid-based, polymeric, lipid–polymer hybrid, protein, and inorganic nanoparticles. Several schemes exist for linking nanoparticles to microbubbles for efficient nanoparticle delivery, including biotin–avidin bridging, electrostatic bonding, and covalent linkages. When compared to unstimulated delivery, ultrasound-mediated cargo delivery enables enhanced cell uptake and accumulation of cargo in target organs and can result in improved therapeutic outcomes. These ultrasound-responsive delivery complexes can also be designed to facilitate other methods of targeting, including bioactive targeting ligands and responsivity to light or magnetic fields, and multi-level targeting can enhance therapeutic efficacy. Microbubble–nanoparticle complexes present a versatile platform for controlled drug delivery via ultrasound, allowing for enhanced tissue penetration and minimally invasive therapy. Future perspectives for application of this platform are also discussed in this review.
Collapse
Affiliation(s)
- Rachel Chapla
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
| | - Katherine T. Huynh
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Carolyn E. Schutt
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
62
|
Jongkhumkrong J, Thaveesangsakulthai I, Sukbangnop W, Kulsing C, Sooksimuang T, Aonbangkhen C, Sahasithiwat S, Sriprasart T, Palaga T, Chantaravisoot N, Tomapatanaget B. Helicene-Hydrazide Encapsulated Ethyl Cellulose as a Potential Fluorescence Sensor for Highly Specific Detection of Nonanal in Aqueous Solutions and a Proof-of-Concept Clinical Study in Lung Fluid. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49495-49507. [PMID: 36301188 DOI: 10.1021/acsami.2c11064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Over the past years, lung cancer has been one of the vital cancer-related mortalities worldwide and has inevitably exhibited the highest death rate with the subsequent need for facile and convenient diagnosis approaches to identify the severity of cancer. Previous research has reported long-chain aldehyde compounds such as hexanal, heptanal, octanal, and nonanal as potential biomarkers of lung cancer. Herein, the helicene dye-encapsulated ethyl cellulose (EC@dye-NH) nanosensors have been applied for the potentially sensitive and specific detection of long-chain aldehydes in aqueous media. The sensors contain the intrinsic hydrazide group of dye-NH, which is capable of reacting an aldehyde group via imine formation and the EC backbone. This offers the synergistic forces of hydrophobic interactions with alkyl long-chain aldehydes, which could induce self-assembly encapsulation of EC@dye-NH nanosensors and strong fluorescence responses. The addition of long-chain aldehyde would induce the complete micellar-like nanoparticle formation within 15 min in acetate buffer pH 5.0. The limit of detection (LOD) values of EC@dye-NH nanosensors toward heptanal, octanal, and nonanal were 40, 100, and 10 μM, respectively, without interference from the lung fluid matrices and short-chain aldehydes. For practical applicability, this sensing platform was developed for quantification of the long-chain aldehydes in lung fluid samples with 98-101% recoveries. This EC@dye-NH nanosensor was applied to quantify nonanal contents in lung fluid samples. The results of this method based on EC@dye-NH nanosensors were then validated using standard gas chromatography-mass spectrometry (GC-MS), which gave results consistent with the proposed method. With intracellular imaging application, the EC@dye-NH nanosensors demonstrated excellent intracellular uptake and strong green fluorescence emission upon introducing the nonanal into the lung cancer cells (A549). Thus, the developed nanosensing approach served as the potential fluorescent probes in medical and biological fields, especially for lung cancer disease diagnosis based on highly selective and sensitive detection of long-chain aldehydes.
Collapse
Affiliation(s)
- Jinnawat Jongkhumkrong
- Supramolecular Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | | | - Wannee Sukbangnop
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani12120, Thailand
| | - Chadin Kulsing
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Thanasat Sooksimuang
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani12120, Thailand
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Somboon Sahasithiwat
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani12120, Thailand
| | - Thitiwat Sriprasart
- Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok10330, Thailand
| | - Tanapat Palaga
- Center of Excellence in Materials and Bio-interfaces, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Naphat Chantaravisoot
- Department of Biochemistry, Chulalongkorn University Faculty of Medicine, Bangkok10330, Thailand
| | - Boosayarat Tomapatanaget
- Supramolecular Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| |
Collapse
|
63
|
Rashidi M, Bijari S, Khazaei AH, Shojaei-Ghahrizjani F, Rezakhani L. The role of milk-derived exosomes in the treatment of diseases. Front Genet 2022; 13:1009338. [PMID: 36338966 PMCID: PMC9634108 DOI: 10.3389/fgene.2022.1009338] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Exosomes (EXOs) are natural nanoparticles of endosome origin that are secreted by a variety of cells in the body. Exosomes have been found in bio-fluids such as urine, saliva, amniotic fluid, and ascites, among others. Milk is the only commercially available biological liquid containing EXOs. Proof that exosomes are essential for cell-to-cell communication is increasingly being reported. Studies have shown that they migrate from the cell of origin to various bioactive substances, including membrane receptors, proteins, mRNAs, microRNAs, and organelles, or they can stimulate target cells directly through interactions with receptors. Because of the presence of specific proteins, lipids, and RNAs, exosomes act in physiological and pathological conditions in vivo. Other salient features of EXOs include their long half-life in the body, no tumorigenesis, low immune response, good biocompatibility, ability to target cells through their surface biomarkers, and capacity to carry macromolecules. EXOs have been introduced to the scientific community as important, efficient, and attractive nanoparticles. They can be extracted from different sources and have the same characteristics as their parents. EXOs present in milk can be separated by size exclusion chromatography, density gradient centrifugation, or (ultra) centrifugation; however, the complex composition of milk that includes casein micelles and milk fat globules makes it necessary to take additional issues into consideration when employing the mentioned techniques with milk. As a rich source of EXOs, milk has unique properties that, in addition to its role as a carrier, promotes its use in treating diseases such as digestive problems, skin ulcers, and cancer, Moreover, EXOs derived from camel milk are reported to reduce the risk of oxidative stress and cancer. Milk-derived exosomes (MDEs) from yak milk improves gastrointestinal tract (GIT) development under hypoxic conditions. Furthermore, yak-MDEs have been suggested to be the best treatment for intestinal epithelial cells (IEC-6 cell line). Because of their availability as well as the non-invasiveness and cost-effectiveness of their preparation, isolates from mammals milk can be excellent resources for studies related to EXOs. These features also make it possible to exploit MDEs in clinical trials. The current study aimed to investigate the therapeutic applications of EXOs isolated from various milk sources.
Collapse
Affiliation(s)
- Mehdi Rashidi
- Department of Medical Nanotechnology, Islamic Azad University of Pharmaceutical Sciences (IAUPS), Tehran, Iran
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Salar Bijari
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Hossein Khazaei
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- *Correspondence: Leila Rezakhani, ,
| |
Collapse
|
64
|
Katona G, Sipos B, Csóka I. Risk-Assessment-Based Optimization Favours the Development of Albumin Nanoparticles with Proper Characteristics Prior to Drug Loading. Pharmaceutics 2022; 14:pharmaceutics14102036. [PMID: 36297472 PMCID: PMC9611155 DOI: 10.3390/pharmaceutics14102036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/06/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Albumin nanocarrier research and development is a challenging area in the field of personalized medicine and in providing advanced therapeutic solutions. Albumin as a biocompatible, nonimmunogenic, and non-toxic protein carrier that can be exploited to conjugate drugs with poor bioavailability to improve on this feature. With many different perspectives and desired target profiles, a systematic structural approach must be used in nanoparticle development. The extended Research and Development (R&D) Quality by Design thinking and methodology proved to be useful in case of specific nanoparticle development processes before. However, the coacervation method is the most frequently applied preparation method for HSA nanoparticles; there is a lack of existing research work which has directly determined the influence of process parameters, control strategy, or design space. With a quality-management-driven strategy, a knowledge space was developed for these versatile nanoparticles and an initial risk assessment was conducted on the quality-affecting factors regarding the coacervation method, followed by an optimization process via Plackett–Burman and Box–Behnken experimental design. As a result of screening the effect of process variables on the fabrication of HSA nanoparticles, an optimized colloidal drug delivery system was engineered with desired nanoparticulate properties.
Collapse
|
65
|
Ghosh P, Bag S, Roy P, Chakraborty I, Dasgupta S. Permeation of flavonoid loaded human serum albumin nanoparticles across model membrane bilayers. Int J Biol Macromol 2022; 222:385-394. [PMID: 36155787 DOI: 10.1016/j.ijbiomac.2022.09.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022]
Abstract
The rapid growth in the applications of nanoparticles (NPs) in biomedical and pharmaceutical fields requires an understanding of the interactions with the lipid bilayer membrane for further in vivo studies. Zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), negatively charged 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS) and positively charged 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) have been used to prepare model lipid membranes and the ability of flavonoid loaded nanoparticles to cross the membranes investigated. The lipid vesicles have been prepared by a freeze-thaw method followed by an extrusion technique and characterised by dynamic light scattering (DLS) and high-resolution transmission electron microscopy (HRTEM). The synthesized model lipid membranes exhibited a bilayer spherical type of morphology with an average diameter of less than 150 nm. A calcein leakage assay and fluorescence anisotropy measurement indicated that the membranes are permeable to the flavonoid (fisetin/morin/epicatechin) loaded human serum albumin nanoparticles. This implies that drug/compound encapsulated nanoparticles are able to effectively cross the lipid bilayer thus permitting the design and development of new compounds that may be encapsulated for safe and potential use in biomedical applications.
Collapse
Affiliation(s)
- Pooja Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sudipta Bag
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Pritam Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ishita Chakraborty
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
66
|
Fatima S, Ali M, Quadri SN, Beg S, Samim M, Parvez S, Abdin MZ, Mishra P, Ahmad FJ. Crafting ɣ-L-Glutamyl-l-Cysteine layered Human Serum Albumin-nanoconstructs for brain targeted delivery of ropinirole to attenuate cerebral ischemia/reperfusion injury via "3A approach". Biomaterials 2022; 289:121805. [PMID: 36162213 DOI: 10.1016/j.biomaterials.2022.121805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/23/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022]
Abstract
Treatment of Ischemic Stroke is inordinately challenging due to its complex aetiology and constraints in shuttling therapeutics across blood-brain barrier. Ropinirole hydrochloride (Rp), a propitious neuroprotectant with anti-oxidant, anti-inflammatory, and anti-apoptotic properties (3A) is repurposed for remedying ischemic stroke and reperfusion (I/R) injury. The drug's low bioavailability in brain however, limits its therapeutic efficacy. The current research work has reported sub-100 nm gamma-L-Glutamyl-L-Cysteine coated Human Serum Albumin nanoparticles encapsulating Rp (C-Rp-NPs) for active targeting in ischemic brain to encourage in situ activity and reduce unwanted toxicities. Confocal microscopy and brain distribution studies confirmed the enhanced targeting potentiality of optimized C-Rp-NPs. The pharmacokinetics elucidated that C-Rp-NPs could extend Rp retention in systemic circulation and escalate bioavailability compared with free Rp solution (Rp-S). Additionally, therapeutic assessment in transient middle cerebral occlusion (tMCAO) model suggested that C-Rp-NPs attenuated the progression of I/R injury with boosted therapeutic index at 1000 times less concentration compared to Rp-S via reinstating neurological and behavioral deficits, while reducing ischemic neuronal damage. Moreover, C-Rp-NPs blocked mitochondrial permeability transition pore (mtPTP), disrupted apoptotic mechanisms, curbed oxidative stress and neuroinflammation, and elevated dopamine levels post tMCAO. Thus, our work throws light on fabrication of rationally designed C-Rp-NPs with enormous clinical potential.
Collapse
Affiliation(s)
- Saman Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India
| | - Mubashshir Ali
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, 110062, India
| | - Syed Naved Quadri
- Centre for Transgenic Plant Development (CTPD), Department of Biotechnology, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, 110062, India
| | - Sarwar Beg
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| | - M Samim
- Department of Chemistry, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, 110062, India
| | - Malik Zainul Abdin
- Centre for Transgenic Plant Development (CTPD), Department of Biotechnology, School of Chemical and Life Sciences (SCLS), Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
67
|
Cakan-Akdogan G, Ersoz E, Sozer SC, Gelinci E. An in vivo zebrafish model reveals circulating tumor cell targeting capacity of serum albumin nanoparticles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
68
|
Naqvi S, Khanadeev VA, Khlebtsov BN, Khlebtsov NG, Deore MS, Packirisamy G. Albumin-Based Nanocarriers for the Simultaneous Delivery of Antioxidant Gene and Phytochemical to Combat Oxidative Stress. Front Cell Dev Biol 2022; 10:846175. [PMID: 36035986 PMCID: PMC9412823 DOI: 10.3389/fcell.2022.846175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Human serum albumin (HSA) nanoparticles are promising biocompatible, nontoxic, and non-immunogenic platforms for biomedical applications such as bioimaging and drug and gene delivery. The development of nonviral gene delivery vectors is a great challenge for efficient and safe gene therapy. Sulforaphane (SF) can stimulate the expression of antioxidant genes via activation of a nuclear transcription factor, the erythroid-2 related factor 2 (Nrf-2). Here, we use polyethyleneimine (PEI)-stabilized HSA nanoparticles to stimulate endogenous antioxidant defense mechanisms in lung epithelial cells L-132 through the combinatorial effect of SF drug and antioxidant superoxide dismutase 1 gene (pSOD1 plasmid) delivered by HSA-PEI-SF-pSOD1 nanocomposites (NCs). The developed NCs demonstrated high biocompatibility (L-132 viability, >95%, MTT assay) and high antioxidant activity because of efficient entry of the SOD1 gene and SF-loaded NCs at a very low (3 μg) dose in L-132 cells. A high transfection efficiency of L-132 cells (∼66%, fluorescent microscopy) was obtained with the GFP-tagged transgene SOD1-GFP. We speculate that the antioxidant activity of HSA-PEI-SF-pSOD1 NCs in L-132 cells is due to the initial release of SF followed by subsequent SOD1 gene expression after three to four days of incubation. Hence, the developed HSA-based NCs can be efficient biocompatible nanocarriers for safe and effective drug and gene delivery applications to treat diseases with high oxidative stress due to combinatorial SF and SOD1 gene mechanisms.
Collapse
Affiliation(s)
- Saba Naqvi
- Department of Regulatory Toxicology/Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
- Nanobiotechnology Laboratory, Department of Biosciences and Bioengineering, Joint Faculty in Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India
- *Correspondence: Saba Naqvi, ; Nikolai G. Khlebtsov, ; Gopinath Packirisamy, ,
| | - Vitaly A. Khanadeev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
- Saratov State Agrarian University, Saratov, Russia
| | - Boris N. Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Nikolai G. Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
- Saratov State University, Saratov, Russia
- *Correspondence: Saba Naqvi, ; Nikolai G. Khlebtsov, ; Gopinath Packirisamy, ,
| | - Monika S Deore
- Department of Regulatory Toxicology/Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Department of Biosciences and Bioengineering, Joint Faculty in Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
- *Correspondence: Saba Naqvi, ; Nikolai G. Khlebtsov, ; Gopinath Packirisamy, ,
| |
Collapse
|
69
|
Lan M, Kong Z, Liu F, Zou T, Li L, Cai T, Tian H, Cai Y. Activating caspase-8/Bid/ROS signaling to promote apoptosis of breast cancer cells by folate-modified albumin baicalin-loaded nanoparticles. NANOTECHNOLOGY 2022; 33:435101. [PMID: 34330116 DOI: 10.1088/1361-6528/ac197b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Abnormal apoptosis can lead to uncontrolled cell growth, aberrant homeostasis or the accumulation of mutations. Therapeutic agents that re-establish the normal functions of apoptotic signaling pathways offer an attractive strategy for the treatment of breast cancer. Baicalin (BA) is one of the natural compounds with anti-proliferation and pro-apoptosis activities against numerous tumor cells. However, low bioavailability restricts the clinical application of BA. In order to improve its therapeutic efficacy and study the mechanism of actions, active targeting delivery systems were developed for targeting tumor environment and selective cell killing effects. It emphasized on the construction of folate-conjugated albumin nanoparticles loaded with baicalin (FA-BSANPs/BA) and mechanisms of which on the promotion of breast cancer apoptosis. The physicochemical properties and structural characteristics of FA-BSANPs/BA were investigated. Cell experiments were carried out to study the targeted anti-breast cancer effects of FA-BSANPs/BA and its mechanism. The results showed that FA-BSANPs/BA was successfully constructed with stable structural characteristics and sustained release effects. Cellular uptake and MTT showed that it increased targeted uptake efficiency and cytotoxicity. Flow cytometry and western blot confirmed that it promoted apoptosis by increasing the expression of caspase-8 and ROS, and decreasing the level of Bid. It is suggested that the pro-apoptotic mechanism of FA-BSANPs/BA is related to regulation of key proteins in extrinsic apoptotic pathway. In conclusion, FA-BSANPs/BA is a good delivery carrier and significantly inhibits the breast cancer growth compared with free BA. The mechanism of FA-BSANPs/BA promoting apoptosis of breast cancer may be due to its action on the caspase-8/Bid/ROS pathway.
Collapse
Affiliation(s)
- Meng Lan
- College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Zhaodi Kong
- College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Fengjie Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Tengteng Zou
- College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Lihong Li
- College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Tiange Cai
- College of Life Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Huaqin Tian
- Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, People's Republic of China
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
- Guangdong Key Lab of Traditional Chinese Medicine Information Technology, Jinan University, Guangzhou, 510632, People's Republic of China
| |
Collapse
|
70
|
Sinai Kunde S, Wairkar S. Folic acid anchored urchin-like raloxifene nanoparticles for receptor targeting in breast cancer: Synthesis, optimisation and in vitro biological evaluation. Int J Pharm 2022; 623:121926. [PMID: 35716974 DOI: 10.1016/j.ijpharm.2022.121926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 10/18/2022]
Abstract
In this study, raloxifene hydrochloride (RLX) was loaded into bovine serum albumin nanoparticles (RLX-BSA-NPs) and further surface modified with folic acid (FA-RLX-BSA-NPs) for targeted breast cancer therapy. In statistical optimization of RLX-BSA-NPs, albumin and crosslinker concentration significantly affected particle size and entrapment efficiency of RLX-BSA-NPs. Structural characterizations confirmed that the formation of FA-RLX-BSA-NPs and SEM microphotographs resembled the urchin-like spiky feature. A sustained in vitro release pattern was observed till 120 h from FA-RLX-BSA-NPs in phosphate buffer. The MTT assay revealed maximum cell inhibition by FA-RLX-BSA-NPs against MCF-7 cells and MDA MB-231 cells at lower IC50 values (0.5 µg/ml and 0.7 µg/ml) compared to RLX and RLX-BSA-NPs. The cell cycle analysis revealed that FA-RLX-BSA-NPs induced apoptosis of MCF-7 cells in the sub-G1 phase via folate receptor-α mediated endocytic uptake. Hence, the raloxifene nanoparticles stance as a potential nanocarrier for targeted therapy in breast cancer.
Collapse
Affiliation(s)
- Shalvi Sinai Kunde
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|
71
|
Physicochemical Study of Albumin Nanoparticles with Chlorambucil. Processes (Basel) 2022. [DOI: 10.3390/pr10061170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Currently, nanotechnology is considered a promising strategy to enhance drug solubility and other physicochemical properties. Albumin is a biopolymer that can be used in drug delivery systems due to its biodegradability and biocompatibility. The aim of this study was to prepare and characterize albumin nanoparticles with chlorambucil as a controlled drug delivery system. Different concentrations of chlorambucil were incubated with bovine serum albumin (BSA) in order to prepare nanoparticles using the desolvation method. As a result, nanoparticles in sizes ranging from 199.6 to 382.6 nm exhibiting high encapsulation efficiency of chlorambucil were obtained. A spectroscopic study revealed concentration-dependent changes in secondary structure of the albumin chain and in the hydrophobicity of chlorambucil. Based on the results obtained, it was concluded that the investigated structures may be used in the development of a drug delivery system.
Collapse
|
72
|
Mehta S, Suresh A, Nayak Y, Narayan R, Nayak UY. Hybrid nanostructures: Versatile systems for biomedical applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
73
|
El Tokhy SS, Elgizawy SA, Osman MA, Goda AE, Unsworth LD. Tailoring dexamethasone loaded albumin nanoparticles: A full factorial design with enhanced anti-inflammatory activity In vivo. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
74
|
Giannelli M, Guerrini A, Ballestri M, Aluigi A, Zamboni R, Sotgiu G, Posati T. Bioactive Keratin and Fibroin Nanoparticles: An Overview of Their Preparation Strategies. NANOMATERIALS 2022; 12:nano12091406. [PMID: 35564115 PMCID: PMC9104131 DOI: 10.3390/nano12091406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/13/2022]
Abstract
In recent years, several studies have focused their attention on the preparation of biocompatible and biodegradable nanocarriers of potential interest in the biomedical field, ranging from drug delivery systems to imaging and diagnosis. In this regard, natural biomolecules—such as proteins—represent an attractive alternative to synthetic polymers or inorganic materials, thanks to their numerous advantages, such as biocompatibility, biodegradability, and low immunogenicity. Among the most interesting proteins, keratin extracted from wool and feathers, as well as fibroin extracted from Bombyx mori cocoons, possess all of the abovementioned features required for biomedical applications. In the present review, we therefore aim to give an overview of the most important and efficient methodologies for obtaining drug-loaded keratin and fibroin nanoparticles, and of their potential for biomedical applications.
Collapse
|
75
|
Cho H, Jeon SI, Ahn CH, Shim MK, Kim K. Emerging Albumin-Binding Anticancer Drugs for Tumor-Targeted Drug Delivery: Current Understandings and Clinical Translation. Pharmaceutics 2022; 14:728. [PMID: 35456562 PMCID: PMC9028280 DOI: 10.3390/pharmaceutics14040728] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Albumin has shown remarkable promise as a natural drug carrier by improving pharmacokinetic (PK) profiles of anticancer drugs for tumor-targeted delivery. The exogenous or endogenous albumin enhances the circulatory half-lives of anticancer drugs and passively target the tumors by the enhanced permeability and retention (EPR) effect. Thus, the albumin-based drug delivery leads to a potent antitumor efficacy in various preclinical models, and several candidates have been evaluated clinically. The most successful example is Abraxane, an exogenous human serum albumin (HSA)-bound paclitaxel formulation approved by the FDA and used to treat locally advanced or metastatic tumors. However, additional clinical translation of exogenous albumin formulations has not been approved to date because of their unexpectedly low delivery efficiency, which can increase the risk of systemic toxicity. To overcome these limitations, several prodrugs binding endogenous albumin covalently have been investigated owing to distinct advantages for a safe and more effective drug delivery. In this review, we give account of the different albumin-based drug delivery systems, from laboratory investigations to clinical applications, and their potential challenges, and the outlook for clinical translation is discussed. In addition, recent advances and progress of albumin-binding drugs to move more closely to the clinical settings are outlined.
Collapse
Affiliation(s)
- Hanhee Cho
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Seong Ik Jeon
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Cheol-Hee Ahn
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Man Kyu Shim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Kwangmeyung Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| |
Collapse
|
76
|
Papagiannopoulos A, Selianitis D, Chroni A, Allwang J, Li Y, Papadakis CM. Preparation of trypsin-based nanoparticles, colloidal properties and ability to bind bioactive compounds. Int J Biol Macromol 2022; 208:678-687. [PMID: 35341884 DOI: 10.1016/j.ijbiomac.2022.03.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/02/2022] [Accepted: 03/13/2022] [Indexed: 11/30/2022]
Abstract
Nanoparticles (NPs) based on the proteolytic enzyme trypsin (TRY) were prepared by a biocompatible methodology. TRY co-assembled with the anionic polysaccharide chondroitin sulfate (CS) in complexes with well-defined distributions of radii in the range of 100-200 nm by electrostatic complexation at acidic conditions. At pH 7 the complexes were unstable and lost their monomodal size distribution which is potentially related to TRY's weak positive net surface charge and a large negative charge patch that forms at neutral pH. Thermal treatment at conditions which were not expected to interfere with TRY's proteolytic activity was used to stabilize the complexes into NPs that resisted disintegration at pH 7 taking advantage of the ability of the TRY globules to thermally aggregate. The secondary conformation of TRY within the NPs was found fairly unperturbed even after thermal treatment which is crucial for its physiological function. The CS-TRY NPs could bind and encapsulate the bioactive substances curcumin (CUR) and β-carotene (β-C) owing to TRY's hydrophobic domains. The CS-TRY NPs may be considered as a platform for the immobilized active enzyme and multifunctional NPs for hydrophobic bioactive compounds.
Collapse
Affiliation(s)
- Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Angeliki Chroni
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Johannes Allwang
- Soft Matter Physics Group, Physics Department, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Yanan Li
- Soft Matter Physics Group, Physics Department, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Christine M Papadakis
- Soft Matter Physics Group, Physics Department, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
77
|
Ghosh P, Bag S, Parveen S, Subramani E, Chaudhury K, Dasgupta S. Nanoencapsulation as a Promising Platform for the Delivery of the Morin-Cu(II) Complex: Antibacterial and Anticancer Potential. ACS OMEGA 2022; 7:7931-7944. [PMID: 35284762 PMCID: PMC8908519 DOI: 10.1021/acsomega.1c06956] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Nanoencapsulation has emerged as a promising approach for the effective delivery of poorly aqueous soluble compounds. The current study focuses on the preparation of human serum albumin (HSA)-based nanoparticles (NPs) and poly lactic-co-glycolic acid (PLGA)-based nanoparticles for effective delivery of the morin-Cu(II) complex. The NPs were analyzed based on different parameters such as particle size, surface charge, morphology, encapsulation efficiency, and in vitro release properties. The average particle sizes were found to be 214 ± 6 nm for Mor-Cu-HSA-NPs and 185 ± 7.5 nm for Mor-Cu-PLGA-NPs. The release of the morin-Cu(II) complex from both the NPs (Mor-Cu-HSA-NPs and Mor-Cu-PLGA-NPs) followed a biphasic behavior, which comprises an early burst release followed by a sustained and controlled release. The resulting NPs also exhibit free radical scavenging activity confirmed by a standard antioxidant assay. The antibacterial activities of the NPs were investigated using a disk diffusion technique, and it was observed that both the NPs showed better antibacterial activity than morin and the morin-Cu(II) complex. The anticancer activities of the prepared NPs were examined on MDA-MB-468 breast cancer cell lines using a cytotoxicity assay, and the mode of cell death was visualized using fluorescence microscopy. Our results revealed that NPs kill the cancer cells with greater efficiency than free morin and the morin-Cu(II) complex. Thus, both HSA-based NPs and PLGA-based NPs can act as promising delivery systems for the morin-Cu(II) complex and can be utilized for further biomedical applications.
Collapse
Affiliation(s)
- Pooja Ghosh
- Department
of Chemistry, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| | - Sudipta Bag
- Department
of Chemistry, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| | - Sultana Parveen
- Department
of Chemistry, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| | - Elavarasan Subramani
- School
of Medical Science and Technology, Indian
Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Koel Chaudhury
- School
of Medical Science and Technology, Indian
Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department
of Chemistry, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| |
Collapse
|
78
|
Habibi N, Mauser A, Ko Y, Lahann J. Protein Nanoparticles: Uniting the Power of Proteins with Engineering Design Approaches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104012. [PMID: 35077010 PMCID: PMC8922121 DOI: 10.1002/advs.202104012] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/12/2021] [Indexed: 05/16/2023]
Abstract
Protein nanoparticles, PNPs, have played a long-standing role in food and industrial applications. More recently, their potential in nanomedicine has been more widely pursued. This review summarizes recent trends related to the preparation, application, and chemical construction of nanoparticles that use proteins as major building blocks. A particular focus has been given to emerging trends related to applications in nanomedicine, an area of research where PNPs are poised for major breakthroughs as drug delivery carriers, particle-based therapeutics or for non-viral gene therapy.
Collapse
Affiliation(s)
- Nahal Habibi
- Biointerfaces InstituteDepartment of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Ava Mauser
- Biointerfaces InstituteDepartment of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Yeongun Ko
- Biointerfaces InstituteDepartment of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Joerg Lahann
- Biointerfaces InstituteDepartments of Chemical EngineeringMaterial Science and EngineeringBiomedical Engineeringand Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
79
|
Curcumin-Loaded Human Serum Albumin Nanoparticles Prevent Parkinson’s Disease-like Symptoms in C. elegans. NANOMATERIALS 2022; 12:nano12050758. [PMID: 35269246 PMCID: PMC8924894 DOI: 10.3390/nano12050758] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 11/17/2022]
Abstract
Parkinson’s disease is one of the most common degenerative disorders and is characterized by observable motor dysfunction and the loss of dopaminergic neurons. In this study, we fabricated curcumin nanoparticles using human serum albumin as a nanocarrier. Encapsulating curcumin is beneficial to improving its aqueous solubility and bioavailability. The curcumin-loaded HSA nanoparticles were acquired in the particle size and at the zeta potential of 200 nm and −10 mV, respectively. The curcumin-loaded human serum albumin nanoparticles ameliorated Parkinson’s disease features in the C. elegans model, including body movement, basal slowing response, and the degeneration of dopaminergic neurons. These results suggest that curcumin nanoparticles have potential as a medicinal nanomaterial for preventing the progression of Parkinson’s disease.
Collapse
|
80
|
Sozer SC, Akdogan Y. Characterization of Water Solubility and Binding of Spin Labeled Drugs in the Presence of Albumin Nanoparticles and Proteins by Electron Paramagnetic Resonance Spectroscopy. ChemistrySelect 2022. [DOI: 10.1002/slct.202103890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sumeyra C. Sozer
- Materials Science and Engineering Department Izmir Institute of Technology Urla Izmir Turkey
| | - Yasar Akdogan
- Materials Science and Engineering Department Izmir Institute of Technology Urla Izmir Turkey
| |
Collapse
|
81
|
Maeda T, Kanamori R, Choi YJ, Taki M, Noda T, Sawada K, Takahashi K. Bio-Interface on Freestanding Nanosheet of Microelectromechanical System Optical Interferometric Immunosensor for Label-Free Attomolar Prostate Cancer Marker Detection. SENSORS 2022; 22:s22041356. [PMID: 35214266 PMCID: PMC8963056 DOI: 10.3390/s22041356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 11/24/2022]
Abstract
Various biosensors that are based on microfabrication technology have been developed as point-of-care testing devices for disease screening. The Fabry–Pérot interferometric (FPI) surface-stress sensor was developed to improve detection sensitivity by performing label-free biomarker detection as a nanomechanical deflection of a freestanding membrane to adsorb the molecules. However, chemically functionalizing the freestanding nanosheet with excellent stress sensitivity for selective molecular detection may cause the surface chemical reaction to deteriorate the nanosheet quality. In this study, we developed a minimally invasive chemical functionalization technique to create a biosolid interface on the freestanding nanosheet of a microelectromechanical system optical interferometric surface-stress immunosensor. For receptor immobilization, glutaraldehyde cross-linking on the surface of the amino-functionalized parylene membrane reduced the shape variation of the freestanding nanosheet to 1/5–1/10 of the previous study and achieved a yield of 95%. In addition, the FPI surface-stress sensor demonstrated molecular selectivity and concentration dependence for prostate-specific antigen with a dynamic range of concentrations from 100 ag/mL to 1 µg/mL. In addition, the minimum limit of detection of the proposed sensor was 2,000,000 times lower than that of the conventional nanomechanical cantilevers.
Collapse
Affiliation(s)
- Tomoya Maeda
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan; (T.M.); (R.K.); (Y.-J.C.); (M.T.); (T.N.); (K.S.)
| | - Ryoto Kanamori
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan; (T.M.); (R.K.); (Y.-J.C.); (M.T.); (T.N.); (K.S.)
| | - Yong-Joon Choi
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan; (T.M.); (R.K.); (Y.-J.C.); (M.T.); (T.N.); (K.S.)
| | - Miki Taki
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan; (T.M.); (R.K.); (Y.-J.C.); (M.T.); (T.N.); (K.S.)
| | - Toshihiko Noda
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan; (T.M.); (R.K.); (Y.-J.C.); (M.T.); (T.N.); (K.S.)
- Electronics Inspired-Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | - Kazuaki Sawada
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan; (T.M.); (R.K.); (Y.-J.C.); (M.T.); (T.N.); (K.S.)
- Electronics Inspired-Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | - Kazuhiro Takahashi
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan; (T.M.); (R.K.); (Y.-J.C.); (M.T.); (T.N.); (K.S.)
- Correspondence: ; Tel.: +81-532-44-6740
| |
Collapse
|
82
|
Vaezi Z, Asadzadeh Aghdaei H, Sedghi M, Mahdavian R, Molakarimi M, Hashemi N, Naderi-Manesh H. Hemoglobin bio-adhesive nanoparticles as a colon-specific delivery system for sustained release of 5-aminosalicylic acid in the effective treatment of inflammatory bowel disease. Int J Pharm 2022; 616:121531. [PMID: 35121044 DOI: 10.1016/j.ijpharm.2022.121531] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
A colonic drug delivery system was developed to specifically deliver 5-aminosalicylic acid (5-ASA) to the inflamed site by conjugating with hemoglobin nanoparticles (HbNPs). The 5-ASA-HbNPs (eight 5-ASA molecules per Hb molecule) with the size of 220 nm and zeta potential of -14.6 mV is a tailored nanoparticle able to pass through the mucus layer. The 5-ASA-HbNPs do not undergo chemical and enzymatic hydrolysis in the simulated gastrointestinal fluids over 6 h. Significantly higher cellular uptakes and prolonged release was seen for the 5-ASA-HbNPs in Caco-2 cells, compared to free 5-ASA over 72 h. In addition, 5-ASA-HbNPs revealed similar therapeutic effectiveness with free 5-ASA against tumor necrosis factor and showed less inhibitory concentration (IC50) for myeloperoxidase enzyme activity. In vivo imaging of mouse demonstrated the localization of drug in the descending colon after oral administration and about 15% of the administered dose was recovered as 5-ASA from urine in 6 h. The use of these nanoparticles with the mucus adhesion properties and permeability to intestinal epithelial cells can be a good candidate with potential application in the colonic drug delivery field.
Collapse
Affiliation(s)
- Zahra Vaezi
- Department of Bioactive Compounds, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, 14115-154 Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O.BOX: 1985717411, Tehran, Iran.
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O.BOX: 1985717411, Tehran, Iran.
| | - Mosslim Sedghi
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154 Tehran, Iran
| | - Reza Mahdavian
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154 Tehran, Iran
| | - Maryam Molakarimi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, 14115-154 Tehran, Iran
| | - Naimeh Hashemi
- Ludwig Boltzmann Institute for Traumatology, Research Centre in coopoeration with AUVA, DonaueschingenstraBe 13, 1200 Vienna, Austria
| | - Hossein Naderi-Manesh
- Department of Bioactive Compounds, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, 14115-154 Tehran, Iran; Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154 Tehran, Iran.
| |
Collapse
|
83
|
Applications of Phyto-Nanotechnology for the Treatment of Neurodegenerative Disorders. MATERIALS 2022; 15:ma15030804. [PMID: 35160749 PMCID: PMC8837051 DOI: 10.3390/ma15030804] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
The strategies involved in the development of therapeutics for neurodegenerative disorders are very complex and challenging due to the existence of the blood-brain barrier (BBB), a closely spaced network of blood vessels and endothelial cells that functions to prevent the entry of unwanted substances in the brain. The emergence and advancement of nanotechnology shows favourable prospects to overcome this phenomenon. Engineered nanoparticles conjugated with drug moieties and imaging agents that have dimensions between 1 and 100 nm could potentially be used to ensure enhanced efficacy, cellular uptake, specific transport, and delivery of specific molecules to the brain, owing to their modified physico-chemical features. The conjugates of nanoparticles and medicinal plants, or their components known as nano phytomedicine, have been gaining significance lately in the development of novel neuro-therapeutics owing to their natural abundance, promising targeted delivery to the brain, and lesser potential to show adverse effects. In the present review, the promising application, and recent trends of combined nanotechnology and phytomedicine for the treatment of neurological disorders (ND) as compared to conventional therapies, have been addressed. Nanotechnology-based efforts performed in bioinformatics for early diagnosis as well as futuristic precision medicine in ND have also been discussed in the context of computational approach.
Collapse
|
84
|
Khramtsov P, Bochkova M, Timganova V, Kiselkov D, Zamorina S, Rayev M. Albumin Nanoparticles Loaded with Hemin as Peroxidase Mimics for Immunoassay**. ChemistrySelect 2022. [DOI: 10.1002/slct.202103892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pavel Khramtsov
- Lab of Ecological immunology Institute of Ecology and Genetics of Microorganisms UB RAS 614081 13 Golev str. Perm Russia
- Department of Biology Perm State University 614068 15 Bukirev str. Perm Russia
| | - Maria Bochkova
- Lab of Ecological immunology Institute of Ecology and Genetics of Microorganisms UB RAS 614081 13 Golev str. Perm Russia
- Department of Biology Perm State University 614068 15 Bukirev str. Perm Russia
| | - Valeria Timganova
- Lab of Ecological immunology Institute of Ecology and Genetics of Microorganisms UB RAS 614081 13 Golev str. Perm Russia
| | - Dmitriy Kiselkov
- Lab of Structural Chemical Modification of Polymers Institute of Technical Chemistry UB RAS 614013 3 Academician Korolev str. Perm Russia
| | - Svetlana Zamorina
- Lab of Ecological immunology Institute of Ecology and Genetics of Microorganisms UB RAS 614081 13 Golev str. Perm Russia
- Department of Biology Perm State University 614068 15 Bukirev str. Perm Russia
| | - Mikhail Rayev
- Lab of Ecological immunology Institute of Ecology and Genetics of Microorganisms UB RAS 614081 13 Golev str. Perm Russia
- Department of Biology Perm State University 614068 15 Bukirev str. Perm Russia
| |
Collapse
|
85
|
Miao Y, Yang T, Yang S, Yang M, Mao C. Protein nanoparticles directed cancer imaging and therapy. NANO CONVERGENCE 2022; 9:2. [PMID: 34997888 PMCID: PMC8742799 DOI: 10.1186/s40580-021-00293-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
Cancer has been a serious threat to human health. Among drug delivery carriers, protein nanoparticles are unique because of their mild and environmentally friendly preparation methods. They also inherit desired characteristics from natural proteins, such as biocompatibility and biodegradability. Therefore, they have solved some problems inherent to inorganic nanocarriers such as poor biocompatibility. Also, the surface groups and cavity of protein nanoparticles allow for easy surface modification and drug loading. Besides, protein nanoparticles can be combined with inorganic nanoparticles or contrast agents to form multifunctional theranostic platforms. This review introduces representative protein nanoparticles applicable in cancer theranostics, including virus-like particles, albumin nanoparticles, silk protein nanoparticles, and ferritin nanoparticles. It also describes the common methods for preparing them. It then critically analyzes the use of a variety of protein nanoparticles in improved cancer imaging and therapy.
Collapse
Affiliation(s)
- Yao Miao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Shuxu Yang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, Zhejiang, China.
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019-5251, USA.
| |
Collapse
|
86
|
Liu F, Lan M, Ren B, Li L, Zou T, Kong Z, Fan D, Cai T, Cai Y. Baicalin-loaded folic acid-modified albumin nanoparticles (FA-BSANPs/BA) induce autophagy in MCF-7 cells via ROS-mediated p38 MAPK and Akt/mTOR pathway. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-021-00110-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Breast cancer is the most frequently occurring cancer among women. Baicalin has been shown to inhibit breast cancer proliferation, but poor aqueous solubility and unknown mechanism of action limit its application. This study aimed to investigate the antiproliferative effects of baicalin-loaded folic acid-modified albumin nanoparticles (FA-BSANPs/BA) in breast cancer MCF-7 cells and its relationship with autophagy and ROS-mediated p38 MAPK and Akt/mTOR signaling pathways. Cell viability was detected by MTT assay. Flow cytometry and fluorescence microscopy were used to detect cell cycle, apoptosis and autophagy. Western blot was used to detect protein expression.
Results
Compared with the control and free baicalin groups, FA-BSANPs/BA inhibited viability of MCF-7 cells and increased cells in S phase, apoptotic bodies, pro-apoptotic proteins, autophagy markers and autophagosomes. These effects could be reversed when combined with the autophagy inhibitor 3-methyladenine. FA-BSANPs/BA increased the levels of phosphorylated p38 MAPK, inhibited the levels of phosphorylated Akt and mTOR, and increased the level of ROS in MCF-7 cells. The effects of FA-BSANPs/BA could be reversed or enhanced using inhibitors of Akt, mTOR, p38 MAPK and ROS scavengers.
Conclusions
Encapsulation in folate albumin nanoparticles improved the antiproliferative activity of baicalin. FA-BSANPs/BA induced autophagy and apoptosis via ROS-mediated p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells.
Collapse
|
87
|
Zhang Y, Yang Y, Liang H, Zeng P, Fu W, Yu J, Chen L, Chai D, Wen Y, Chen A. Synthesis, characterization, and anti-hepatocellular carcinoma effect of glycyrrhizin-coupled bovine serum albumin-loaded luteolin nanoparticles. Pharmacogn Mag 2022. [DOI: 10.4103/pm.pm_34_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
88
|
Barth C, Spreen H, Mulac D, Keuter L, Behrens M, Humpf HU, Langer K. Spacer length and serum protein adsorption affect active targeting of trastuzumab-modified nanoparticles. BIOMATERIALS AND BIOSYSTEMS 2021; 5:100032. [PMID: 36825111 PMCID: PMC9934468 DOI: 10.1016/j.bbiosy.2021.100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/15/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
Receptor-mediated active targeting of nanocarriers is a widely investigated approach to specifically address cancerous cells and tissues in the human body. The idea is to use these formulations as drug carriers with enhanced specificity and therefore reduced systemic side effects. Until today a big obstacle to reach this goal remains the adsorption of serum proteins to the nanocarrier's surface after contact with biological fluids. In this context different nanoparticle characteristics could be beneficial for effective active targeting after formation of a protein corona which need to be identified. In this study trastuzumab was used as an active targeting ligand which was covalently attached to human serum albumin nanoparticles. For coupling reaction different molecular weight spacers were used and resulting physicochemical nanoparticle characteristics were evaluated. The in vitro cell association of the different nanoparticle formulations was tested in cell culture experiments with or without fetal bovine serum. For specific receptor-mediated cell interaction SK-BR-3 breast cancer cells with human epidermal growth factor receptor 2 (HER2) overexpression were used. MCF-7 breast cancer cells with normal HER2 expression served as control. Furthermore, serum protein adsorption on respective nanoparticles was characterized. The qualitative and quantitative composition of the protein corona was analyzed by SDS-PAGE and LC-MS/MS and the influence of protein adsorption on active targeting capability was determined.
Collapse
Affiliation(s)
- Christina Barth
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr. 48, 48149 Muenster, Germany
| | - Hendrik Spreen
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr. 48, 48149 Muenster, Germany
| | - Dennis Mulac
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr. 48, 48149 Muenster, Germany
| | - Lucas Keuter
- Institute of Food Chemistry, University of Muenster, Corrensstr. 45, 48149 Muenster, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, University of Muenster, Corrensstr. 45, 48149 Muenster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Muenster, Corrensstr. 45, 48149 Muenster, Germany
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstr. 48, 48149 Muenster, Germany,To whom correspondence should be addressed.
| |
Collapse
|
89
|
Xanthan-based polysaccharide/protein nanoparticles: Preparation, characterization, encapsulation and stabilization of curcumin. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
90
|
Sharma S, Parveen R, Chatterji BP. Toxicology of Nanoparticles in Drug Delivery. CURRENT PATHOBIOLOGY REPORTS 2021; 9:133-144. [PMID: 34840918 PMCID: PMC8611175 DOI: 10.1007/s40139-021-00227-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Nanoparticles have revolutionized biomedicine especially in the field of drug delivery due to their intriguing properties such as systemic stability, level of solubility, and target site specificity. It can, however, be both beneficial and damaging depending on the properties in different environments, thus highlighting the importance of nanotoxicology studies before use in humans. Different types of nanoparticles have been used in drug delivery, and this review summarizes the recent toxicity studies of these nanoparticles. The toxicological evaluation of three widely used nanoparticles in drug delivery that are metal, lipid, and protein nanoparticles has been discussed in detail. Studies have recorded several toxic effects of various nanoparticles such as metal-based nanoparticles have been linked to increased oxidative stress and have the potential to infiltrate the cell nucleus and protein-based nanoparticles have been observed to have hepatotoxicity and nephrotoxicity as their adverse effects. Considering the increasing application of nanoparticles in drug delivery and the growing concerns of regulatory authorities regarding the toxicity of nanocarriers in living organisms, it requires urgent attention to identify the gap in toxicity studies. The review highlights the gap in toxicity studies and potential focus areas to overcome the existing challenges.
Collapse
Affiliation(s)
- Swati Sharma
- St. Xavier's College, Mumbai, Maharashtra 400001 India
| | - Roza Parveen
- School of Engineering, Ajeenkya DY Patil University, Pune, Maharashtra 412105 India
| | | |
Collapse
|
91
|
Isoniazid-Loaded Albumin Nanoparticles: Taguchi Optimization Method. Polymers (Basel) 2021; 13:polym13213808. [PMID: 34771365 PMCID: PMC8588201 DOI: 10.3390/polym13213808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
Tuberculosis is one of the dangerous infectious diseases, killing over a million people worldwide each year. The search for new dosage forms for the treatment of drug-resistant tuberculosis is an actual task. Biocompatible polymer nanoparticles, in particular bovine serum albumin (BSA), are promising drug carriers. Nanoparticle (NP) parameters such as diameter, polydispersity, bioactive substance loading, and NP yield are very important when it comes to drug transport through the bloodstream. The most well-known and widely used first-line anti-tuberculosis drug, isoniazid (INH), is being used as a drug. BSA-INH NPs were obtained by an ethanol desolvation of an aqueous protein solution in the drug presence. The peculiarity of the method is that natural components, namely urea and cysteine, are used for the stabilization of BSA-INH NPs after desolvation. The characteristics of the obtained BSA-INH NPs are significantly affected by the concentration of protein, isoniazid, urea, and cysteine in the solution. The aim of the present study is to investigate the concentration effect of the system reacting components on the parameters of the NPs that are obtained. We have chosen the concentrations of four reacting components, i.e., BSA, isoniazid, urea, and cysteine, as controlling factors and applied the Taguchi method to analyze which concentration of each component has an important effect on BSA-INH NPs characteristics.
Collapse
|
92
|
Hornok V. Serum Albumin Nanoparticles: Problems and Prospects. Polymers (Basel) 2021; 13:3759. [PMID: 34771316 PMCID: PMC8586933 DOI: 10.3390/polym13213759] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
The present paper aims to summarize the results regarding serum albumin-based nanoparticles (NPs) for drug delivery purposes. In particular, it focuses on the relationship between their preparation techniques and synthesis parameters, as well as their successful clinical application. In spite of the huge amount of consumed material and immaterial sources and promising possibilities, products made from different types of albumin NPs, with the exception of a few, still have not been invented. In the present paper, promising applications of serum albumin nanoparticles (SANPs) for different biomedical purposes, such as carriers, delivery systems and contrast agents, are also discussed. The most frequent utilization of the NPs for certain diseases, i.e., cancer therapy, and future prospects are also detailed in this study.
Collapse
Affiliation(s)
- Viktória Hornok
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Square 1, H-6720 Szeged, Hungary; ; Tel.: +36-62-544211
- MTA Premium Post Doctoral Research Program, Rerrich B. Square 1, H-6720 Szeged, Hungary
| |
Collapse
|
93
|
Chen J, Jansman MMT, Liu X, Hosta-Rigau L. Synthesis of Nanoparticles Fully Made of Hemoglobin with Antioxidant Properties: A Step toward the Creation of Successful Oxygen Carriers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11561-11572. [PMID: 34555900 DOI: 10.1021/acs.langmuir.1c01855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transfusion of donor red blood cells (RBCs) is a crucial and widely employed clinical procedure. However, important constraints of blood transfusions include the limited availability of blood, the need for typing and cross-matching due to the RBC membrane antigens, the limited storage lifetime, or the risk for disease transmission. Hence, a lot of effort has been devoted to develop RBC substitutes, which are free from the limitations of donor blood. Despite the potential, the creation of hemoglobin (Hb)-based oxygen carriers is still facing important challenges. To allow for proper tissue oxygenation, it is essential to develop carriers with high Hb loading since Hb comprises about 96% of the RBCs' dry weight. In this work, nanoparticles (NPs) fully made of Hb are prepared by the desolvation precipitation method. Several parameters are screened (i.e., Hb concentration, desolvation ratio, time, and sonication intensity) to finally obtain Hb-NPs with a diameter of ∼568 nm and a polydispersity index (PDI) of 0.2. A polydopamine (PDA) coating is adsorbed to prevent the disintegration of the resulting Hb/PDA-NPs. Due to the antioxidant character of PDA, the Hb/PDA-NPs are able to deplete two harmful reactive oxygen species, namely, the superoxide radical anion and hydrogen peroxide. Such antioxidant protection also translates into minimizing the oxidation of the entrapped Hb to nonfunctional methemoglobin (metHb). This is a crucial aspect since metHb conversion also results in inflammatory reactions and dysregulated vascular tone. Finally, yet importantly, the reported Hb/PDA-NPs are also both hemo- and biocompatible and preserve the reversible oxygen-binding and releasing properties of Hb.
Collapse
Affiliation(s)
- Jiantao Chen
- Department of Health Technology, Centre for Nanomedicine and Theranostics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Michelle Maria Theresia Jansman
- Department of Health Technology, Centre for Nanomedicine and Theranostics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Xiaoli Liu
- Department of Health Technology, Centre for Nanomedicine and Theranostics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Leticia Hosta-Rigau
- Department of Health Technology, Centre for Nanomedicine and Theranostics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
94
|
Lomis N, Westfall S, Shum-Tim D, Prakash S. Synthesis and characterization of peptide conjugated human serum albumin nanoparticles for targeted cardiac uptake and drug delivery. PLoS One 2021; 16:e0254305. [PMID: 34591850 PMCID: PMC8483410 DOI: 10.1371/journal.pone.0254305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Congestive heart failure, a prominent cardiovascular disease results primarily from myocardial infarction or ischemia. Milrinone (MRN), a widely used clinical drug for heart failure, improves myocardial contractility and cardiac function through its inotropic and vasodilatory effects. However, lacking target specificity, it exhibits low bioavailability and lower body retention time. Therefore, in this study, angiotensin II (AT1) peptide conjugated human serum albumin nanoparticles (AT1-HSA-MRN-NPs) have been synthesized for targeted delivery of MRN to the myocardium, overexpressing AT1 receptors under heart failure. The NPs were surface functionalized through a covalent conjugation reaction between HSA and AT1. Nanoparticle size was 215.2±4.7 nm and zeta potential -28.8±2.7 mV and cumulative release of MRN was ~72% over 24 hrs. The intracellular uptake of nanoparticles and cell viability was studied in H9c2 cells treated with AT1-MRN-HSA-NPs vs the control non-targeted drug, MRN Lactate under normal, hypoxic and hypertrophic conditions. The uptake of AT1-HSA-MRN-NPs in H9c2 cells was significantly higher as compared to non-targeted nanoparticles, and the viability of H9c2 cells treated with AT1-MRN-HSA-NPs vs MRN Lactate was 73.4±1.4% vs 44.9±1.4%, respectively. Therefore, AT1-HSA-MRN-NPs are safe for in vivo use and exhibit superior targeting and drug delivery characteristics for treatment of heart failure.
Collapse
Affiliation(s)
- Nikita Lomis
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Montreal, QC, Canada
- Division of Experimental Medicine, Montréal, QC, Canada
| | - Susan Westfall
- Meakins Christie Laboratories, Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Dominique Shum-Tim
- Division of Cardiac Surgery and Surgical Research, Royal Victoria Hospital, Montréal, QC, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Montreal, QC, Canada
- Division of Experimental Medicine, Montréal, QC, Canada
- * E-mail:
| |
Collapse
|
95
|
Preparation and evaluation of folate-modified albumin baicalin-loaded nanoparticles for the targeted treatment of breast cancer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
96
|
Wilks LR, Joshi G, Grisham MR, Gill HS. Tyrosine-Based Cross-Linking of Peptide Antigens to Generate Nanoclusters with Enhanced Immunogenicity: Demonstration Using the Conserved M2e Peptide of Influenza A. ACS Infect Dis 2021; 7:2723-2735. [PMID: 34432416 DOI: 10.1021/acsinfecdis.1c00219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A method of creating nanoclusters (NCs) from soluble peptide molecules is described utilizing an approach based on a tyrosine-tyrosine cross-linking reaction. A reactive tag comprising histidine and tyrosine residues was introduced at the termini of the peptide molecules. The cross-linking reaction led to the creation of dityrosine bonds within the tag, which allowed for the generation of peptide NCs. We show that it is essential for the reactive tag to be present at both the "N" and "C" termini of the peptide for cluster formation to occur. Additionally, the cross-linking reaction was systematically characterized to show the importance of reaction conditions on final cluster diameter, allowing us to generate NCs of various sizes. To demonstrate the immunogenic potential of the peptide clusters, we chose to study the conserved influenza peptide, M2e, as the antigen. M2e NCs were formulated using the cross-linking reaction. We show the ability of the clusters to generate protective immunity in a dose, size, and frequency dependent manner against a lethal influenza A challenge in BALB/c mice. Taken together, the data presented suggest this new cluster formation technique can generate highly immunogenic peptide NCs in a simple and controllable manner.
Collapse
Affiliation(s)
- Logan R. Wilks
- Department of Chemical Engineering, Texas Tech University, 8th Street and Canton Avenue, Mail Stop 3121, Lubbock, Texas 79409-3121, United States
| | - Gaurav Joshi
- Department of Chemical Engineering, Texas Tech University, 8th Street and Canton Avenue, Mail Stop 3121, Lubbock, Texas 79409-3121, United States
| | - Megan R. Grisham
- Department of Chemical Engineering, Texas Tech University, 8th Street and Canton Avenue, Mail Stop 3121, Lubbock, Texas 79409-3121, United States
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, 8th Street and Canton Avenue, Mail Stop 3121, Lubbock, Texas 79409-3121, United States
| |
Collapse
|
97
|
Colby AH, Liu R, Doyle RP, Merting A, Zhang H, Savage N, Chu NQ, Hollister BA, McCulloch W, Burdette JE, Pearce CJ, Liu K, Oberlies NH, Colson YL, Grinstaff MW. Pilot-scale production of expansile nanoparticles: Practical methods for clinical scale-up. J Control Release 2021; 337:144-154. [PMID: 34280414 PMCID: PMC8489532 DOI: 10.1016/j.jconrel.2021.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/26/2022]
Abstract
One of the foremost challenges in translating nanoparticle technologies to the clinic is the requirement to produce materials on a large-scale. Scaling nanoparticle production methods is often non-trivial, and the success of these endeavors is frequently governed by whether or not an intermediate level of production, i.e., "pilot-scale" production, can be achieved. Pilot-scale production at the one-liter scale serves as a proof-of-concept that large-scale production will be possible. Here, we describe the pilot-scale production of the expansile nanoparticle (eNP) technology including verification of activity and efficacy following scaleup. We describe the challenges of sonication-based emulsification procedures and how these were overcome by use of a Microfluidizer technology. We also describe the problem-solving process that led to pre-polymerization of the nanoparticle polymer-a fundamental change from the lab-scale and previously published methods. Furthermore, we demonstrate good control over particle diameter, polydispersity and drug loading and the ability to sterilize the particles via filtration using this method. To facilitate long-term storage of these larger quantities of particles, we investigated six lyoprotectants and determined that sucrose is the most compatible with the current system. Lastly, we demonstrate that these changes to the manufacturing method do not adversely affect the swelling functionality of the particles, their highly specific localization to tumors, their non-toxicity in vivo or their efficacy in treating established intraperitoneal mesothelioma xenografts.
Collapse
Affiliation(s)
- Aaron H Colby
- Boston University, Department of Biomedical Engineering, Boston, MA, United States of America; Ionic Pharmaceuticals, LLC, Brookline, MA, United States of America.
| | - Rong Liu
- Massachusetts General Hospital, Boston, MA, United States of America
| | - Robert P Doyle
- PCI Synthesis, Newburyport, MA, United States of America
| | - Alyssa Merting
- Augusta University, Augusta, GA, United States of America
| | - Heng Zhang
- Boston University, Department of Chemistry, Boston, MA, United States of America
| | - Natasha Savage
- Augusta University, Augusta, GA, United States of America
| | - Ngoc-Quynh Chu
- Massachusetts General Hospital, Boston, MA, United States of America
| | | | | | - Joanna E Burdette
- University of Illinois at Chicago, College of Pharmacy, Chicago, IL, United States of America
| | - Cedric J Pearce
- Mycosynthetix, Inc., Hillsborough, NC, United States of America
| | - Kebin Liu
- Augusta University, Augusta, GA, United States of America
| | - Nicholas H Oberlies
- University of North Carolina at Greensboro, Department of Chemistry and Biochemistry, Greensboro, NC, United States of America
| | - Yolonda L Colson
- Massachusetts General Hospital, Boston, MA, United States of America
| | - Mark W Grinstaff
- Boston University, Department of Biomedical Engineering, Boston, MA, United States of America; Ionic Pharmaceuticals, LLC, Brookline, MA, United States of America; Boston University, Department of Chemistry, Boston, MA, United States of America
| |
Collapse
|
98
|
Gómez-Guillén MC, Montero MP. Enhancement of oral bioavailability of natural compounds and probiotics by mucoadhesive tailored biopolymer-based nanoparticles: A review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106772] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
99
|
Caputo T, Cusano AM, Ruvo M, Aliberti A, Cusano A. Human Serum Albumin Nanoparticles as a Carrier for On-Demand Sorafenib Delivery. Curr Pharm Biotechnol 2021; 23:1214-1225. [PMID: 34445947 DOI: 10.2174/1389201022666210826152311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/04/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Drug delivery systems based on Human Serum Albumin (HSA) have been widely investigated due to their capability to interact with several molecules together with their nontoxicity, non-immunogenicity and biocompatibility. Sorafenib (SOR) is a kinase inhibitor used as the first-line treatment in hepatic cancer. However, because of its several intrinsic drawbacks (low solubility and bioavailability), there is a growing need for discovering new carriers able to overcome the current limitations. OBJECTIVE To study HSA particles loaded with SOR as a thermal responsive drug delivery system. METHOD A detailed spectroscopy analysis of the HSA and SOR interaction in solution was carried out in order to characterize the temperature dependence of the complex. Based on this study, the synthesis of HSA particles loaded with SOR was optimized. Particles were characterized by Dynamic Light Scattering, Atomic Force Microscopy and by spectrofluorometer. Encapsulation efficiency and in vitro drug release were quantified by RP-HPLC. RESULTS HSA particles were monodispersed in size (≈ 200 nm); encapsulation efficiency ranged from 25% to 58%. Drug release studies that were performed at 37 °C and 50 °C showed that HS5 particles achieved a drug release of 0.430 µM in 72 hours at 50 °C in PBS buffer, accomplishing a 4.6-fold overall SOR release enhancement following a temperature increase from 37 °C to 50 °C. CONCLUSION The system herein presented has the potential to exert a therapeutic action (in the nM range) triggering a sustained temperature-controllable release of relevant drugs.
Collapse
Affiliation(s)
- Tania Caputo
- CeRICT scrl Regional Center Information Communication Technology, Benevento. Italy
| | - Angela Maria Cusano
- CeRICT scrl Regional Center Information Communication Technology, Benevento. Italy
| | - Menotti Ruvo
- Institute of Biostructure and Bioimaging, National Research Council, I-80134, Napoli. Italy
| | - Anna Aliberti
- Optoelectronics Group, Department of Engineering, University of Sannio, I-82100, Benevento. Italy
| | - Andrea Cusano
- CeRICT scrl Regional Center Information Communication Technology, Benevento. Italy
| |
Collapse
|
100
|
Ari F, Erkisa M, Pekel G, Erturk E, Buyukkoroglu G, Ulukaya E. Anticancer Potential of Albumin Bound Wnt/β‐Catenin Pathway Inhibitor Niclosamide in Breast Cancer Cells. ChemistrySelect 2021. [DOI: 10.1002/slct.202100819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ferda Ari
- Department of Biology Faculty of Arts and Sciences Bursa Uludag University 16059 Bursa Turkey
| | - Merve Erkisa
- Department of Biology Faculty of Arts and Sciences Bursa Uludag University 16059 Bursa Turkey
- Moleculer Cancer Research Center (ISUMKAM) Istinye University 34010 Istanbul Turkey
| | - Gonca Pekel
- Department of Biology Faculty of Arts and Sciences Bursa Uludag University 16059 Bursa Turkey
| | - Elif Erturk
- Vocational School of Health Services Bursa Uludag University 16059 Bursa Turkey
| | - Gulay Buyukkoroglu
- Department of Pharmaceutical Biotechnology Faculty of Pharmacy Anadolu University 26470 Eskisehir Turkey
| | - Engin Ulukaya
- Department of Clinical Biochemistry Faculty of Medicine Istinye University 34010 Istanbul Turkey
| |
Collapse
|