51
|
Duan D, Zhang H, Yue X, Fan Y, Xue Y, Shao J, Ding G, Chen D, Li S, Cheng H, Zhang X, Zou W, Liu J, Zhao J, Wang L, Zhao B, Wang Z, Xu S, Wen Q, Liu J, Duan S, Kang L. Sensory Glia Detect Repulsive Odorants and Drive Olfactory Adaptation. Neuron 2020; 108:707-721.e8. [PMID: 32970991 DOI: 10.1016/j.neuron.2020.08.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/25/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022]
Abstract
Glia are typically considered as supporting cells for neural development and synaptic transmission. Here, we report an active role of a glia in olfactory transduction. As a polymodal sensory neuron in C. elegans, the ASH neuron is previously known to detect multiple aversive odorants. We reveal that the AMsh glia, a sheath for multiple sensory neurons including ASH, cell-autonomously respond to aversive odorants via G-protein-coupled receptors (GPCRs) distinct from those in ASH. Upon activation, the AMsh glia suppress aversive odorant-triggered avoidance and promote olfactory adaptation by inhibiting the ASH neuron via GABA signaling. Thus, we propose a novel two-receptor model where the glia and sensory neuron jointly mediate adaptive olfaction. Our study reveals a non-canonical function of glial cells in olfactory transduction, which may provide new insights into the glia-like supporting cells in mammalian sensory procession.
Collapse
Affiliation(s)
- Duo Duan
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China; Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Hu Zhang
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Xiaomin Yue
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Yuedan Fan
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Yadan Xue
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Jiajie Shao
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Gang Ding
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Du Chen
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Shitian Li
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Hankui Cheng
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Xiaoyan Zhang
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Wenjuan Zou
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Jia Liu
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Jian Zhao
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Linmei Wang
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Bingzhen Zhao
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhiping Wang
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Suhong Xu
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Quan Wen
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jie Liu
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Shumin Duan
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China; Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China.
| | - Lijun Kang
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
52
|
Ensaka N, Sakamoto K. α-Pinene odor exposure enhances heat stress tolerance through Daf-16 in Caenorhabditis elegans. Biochem Biophys Res Commun 2020; 528:726-731. [PMID: 32517869 DOI: 10.1016/j.bbrc.2020.05.134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/18/2020] [Indexed: 11/27/2022]
Abstract
Aromatherapy has been widely used as complementary and alternative medicine to reduce pain and induce sleep. However, the scientific evidence regarding the biological effects of odor is scarce and the underlying molecular mechanisms have not been clarified. We treated worms with contactless S-(-)- and R-(+)-α-pinene and analyzed heat stress tolerance. Odor stimulation induced motility recovery after incubation at 35 °C for 4 h. This increase in heat stress tolerance was not present in odr-3 mutants and daf-16 mutants. S-(-)- and R-(+)-α-pinene expanded health span and increased fat accumulation. Moreover, S-(-)- and R-(+)-α-pinene modulated the expression of 84 and 54 genes, respectively. These results show that α-pinene odor stimulation is related to stress tolerance, lipid metabolism, and health span via some specific signaling pathways. This study may provide a potential target for antiaging and disease prevention.
Collapse
Affiliation(s)
- Naoko Ensaka
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kazuichi Sakamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
53
|
Lorenzo R, Onizuka M, Defrance M, Laurent P. Combining single-cell RNA-sequencing with a molecular atlas unveils new markers for Caenorhabditis elegans neuron classes. Nucleic Acids Res 2020; 48:7119-7134. [PMID: 32542321 PMCID: PMC7367206 DOI: 10.1093/nar/gkaa486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) of the Caenorhabditis elegans nervous system offers the unique opportunity to obtain a partial expression profile for each neuron within a known connectome. Building on recent scRNA-seq data and on a molecular atlas describing the expression pattern of ∼800 genes at the single cell resolution, we designed an iterative clustering analysis aiming to match each cell-cluster to the ∼100 anatomically defined neuron classes of C. elegans. This heuristic approach successfully assigned 97 of the 118 neuron classes to a cluster. Sixty two clusters were assigned to a single neuron class and 15 clusters grouped neuron classes sharing close molecular signatures. Pseudotime analysis revealed a maturation process occurring in some neurons (e.g. PDA) during the L2 stage. Based on the molecular profiles of all identified neurons, we predicted cell fate regulators and experimentally validated unc-86 for the normal differentiation of RMG neurons. Furthermore, we observed that different classes of genes functionally diversify sensory neurons, interneurons and motorneurons. Finally, we designed 15 new neuron class-specific promoters validated in vivo. Amongst them, 10 represent the only specific promoter reported to this day, expanding the list of neurons amenable to genetic manipulations.
Collapse
Affiliation(s)
- Ramiro Lorenzo
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CICPBA-UNCPBA, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro (FCV-UNCPBA), Tandil, Argentina
| | - Michiho Onizuka
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Matthieu Defrance
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Patrick Laurent
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
54
|
Choi MK, Liu H, Wu T, Yang W, Zhang Y. NMDAR-mediated modulation of gap junction circuit regulates olfactory learning in C. elegans. Nat Commun 2020; 11:3467. [PMID: 32651378 PMCID: PMC7351742 DOI: 10.1038/s41467-020-17218-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Modulation of gap junction-mediated electrical synapses is a common form of neural plasticity. However, the behavioral consequence of the modulation and the underlying molecular cellular mechanisms are not understood. Here, using a C. elegans circuit of interneurons that are connected by gap junctions, we show that modulation of the gap junctions facilitates olfactory learning. Learning experience weakens the gap junctions and induces a repulsive sensory response to the training odorants, which together decouple the responses of the interneurons to the training odorants to generate learned olfactory behavior. The weakening of the gap junctions results from downregulation of the abundance of a gap junction molecule, which is regulated by cell-autonomous function of the worm homologs of a NMDAR subunit and CaMKII. Thus, our findings identify the function of a gap junction modulation in an in vivo model of learning and a conserved regulatory pathway underlying the modulation.
Collapse
Affiliation(s)
- Myung-Kyu Choi
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.,Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
| | - He Liu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.,Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
| | - Taihong Wu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.,Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
| | - Wenxing Yang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.,Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA. .,Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
55
|
Mehle EA, Sojka SE, K C M, Zel RM, Reese SJ, Ferkey DM. The C. elegans TRPV channel proteins OSM-9 and OCR-2 contribute to aversive chemical sensitivity. MICROPUBLICATION BIOLOGY 2020; 2020. [PMID: 32666046 PMCID: PMC7352062 DOI: 10.17912/micropub.biology.000277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Emily A Mehle
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Savannah E Sojka
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Medha K C
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Rosy M Zel
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Sebastian J Reese
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260
| |
Collapse
|
56
|
Wheeler NJ, Heimark ZW, Airs PM, Mann A, Bartholomay LC, Zamanian M. Genetic and functional diversification of chemosensory pathway receptors in mosquito-borne filarial nematodes. PLoS Biol 2020; 18:e3000723. [PMID: 32511224 PMCID: PMC7302863 DOI: 10.1371/journal.pbio.3000723] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 06/18/2020] [Accepted: 05/20/2020] [Indexed: 12/25/2022] Open
Abstract
Lymphatic filariasis (LF) afflicts over 60 million people worldwide and leads to severe pathological outcomes in chronic cases. The nematode parasites (Nematoda: Filarioidea) that cause LF require both arthropod (mosquito) intermediate hosts and mammalian definitive hosts for their propagation. The invasion and migration of filarial worms through host tissues are complex and critical to survival, yet little is known about the receptors and signaling pathways that mediate directed migration in these medically important species. In order to better understand the role of chemosensory signaling in filarial worm taxis, we employ comparative genomics, transcriptomics, reverse genetics, and chemical approaches to identify putative chemosensory receptor proteins and perturb chemotaxis phenotypes in filarial worms. We find that chemoreceptor family size is correlated with the presence of environmental (extrahost) stages in nematode life cycles, and that filarial worms contain compact and highly diverged chemoreceptor complements and lineage-specific ion channels that are predicted to operate downstream of chemoreceptor activation. In Brugia malayi, an etiological agent of LF, chemoreceptor expression patterns correspond to distinct parasite migration events across the life cycle. To interrogate the role of chemosensation in the migration of larval worms, arthropod and mammalian infectious stage Brugia parasites were incubated in nicotinamide, an agonist of the nematode transient receptor potential (TRP) channel OSM-9. Exposure of microfilariae to nicotinamide alters intramosquito migration, and exposure of L3s reduces chemotaxis toward host-associated cues in vitro. Nicotinamide also potently modulates thermosensory responses in L3s, suggesting a polymodal sensory role for Brugia osm-9. Reverse genetic studies implicate both Brugia osm-9 and the cyclic nucleotide-gated (CNG) channel subunit tax-4 in larval chemotaxis toward host serum, and these ion channel subunits partially rescue sensory defects in Caenorhabditis elegans osm-9 and tax-4 knock-out strains. Together, these data reveal genetic and functional diversification of chemosensory signaling proteins in filarial worms and encourage a more thorough investigation of clade- and parasite-specific facets of nematode sensory receptor biology.
Collapse
Affiliation(s)
- Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zachary W. Heimark
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paul M. Airs
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alexis Mann
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lyric C. Bartholomay
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
57
|
Nkambeu B, Salem JB, Beaudry F. Capsaicin and Its Analogues Impede Nocifensive Response of Caenorhabditis elegans to Noxious Heat. Neurochem Res 2020; 45:1851-1859. [PMID: 32418082 DOI: 10.1007/s11064-020-03049-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 01/09/2023]
Abstract
Capsaicin is the most abundant pungent molecule identified in red chili peppers, and it is widely used for food flavoring, in pepper spray for self-defense devices and recently in ointments for the relief of neuropathic pain. Capsaicin and several other related vanilloid compounds are secondary plant metabolites. Capsaicin is a selective agonist of the transient receptor potential channel, vanilloid subfamily member 1 (TRPV1). After exposition to vanilloid solution, Caenorhabditis elegans wild type (N2) and mutants were placed on petri dishes divided in quadrants for heat stimulation. Thermal avoidance index was used to phenotype each tested C. elegans experimental groups. The data revealed for the first-time that capsaicin can impede nocifensive response of C. elegans to noxious heat (32-35 °C) following a sustained exposition. The effect was reversed 6 h post capsaicin exposition. Additionally, we identified the capsaicin target, the C. elegans transient receptor potential channel OCR-2 and not OSM-9. Further experiments also undoubtedly revealed anti-nociceptive effect for capsaicin analogues, including olvanil, gingerol, shogaol and curcumin.
Collapse
Affiliation(s)
- Bruno Nkambeu
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
| | - Jennifer Ben Salem
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
| |
Collapse
|
58
|
Johnson CK, Fernandez-Abascal J, Wang Y, Wang L, Bianchi L. The Na +-K +-ATPase is needed in glia of touch receptors for responses to touch in C. elegans. J Neurophysiol 2020; 123:2064-2074. [PMID: 32292107 PMCID: PMC7444924 DOI: 10.1152/jn.00636.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/15/2020] [Accepted: 04/10/2020] [Indexed: 01/04/2023] Open
Abstract
Four of the five types of mammalian mechanosensors are composed of nerve endings and accessory cells. In Caenorhabditis elegans we showed that glia support the function of nose touch neurons via the activity of glial Na+ and K+ channels. We show here that a third regulator of Na+ and K+, the Na+-K+-ATPase, is needed in glia of nose touch neurons for touch. Importantly, we show that two Na+-K+-ATPase genes are needed for the function rather than structural integrity and that their ion transport activity is crucial for touch. Finally, when glial Na+-K+-ATPase genes are knocked out, touch can be restored by activation of a third Na+-K+-ATPase. Taken together, these data show the requirement in glia of touch neurons of the function of the Na+-K+-ATPase. These data underscore the importance of the homeostasis of Na+ and K+, most likely in the space surrounding touch neurons, in touch sensation, a function that might be conserved across species.NEW & NOTEWORTHY Increasing evidence supports that accessory cells in mechanosensors regulate neuronal output; however, the glial molecular mechanisms that control this regulation are not fully understood. We show here in Caenorhabditis elegans that specific glial Na+-K+-ATPase genes are needed for nose touch-avoidance behavior. Our data support the requirement of these Na+-K+-ATPases for homeostasis of Na+ and K+ in nose touch receptors. Our data add to our understanding of glial regulation of mechanosensors.
Collapse
Affiliation(s)
- Christina K Johnson
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Jesus Fernandez-Abascal
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Ying Wang
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Lei Wang
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Laura Bianchi
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
59
|
Takeishi A, Takagaki N, Kuhara A. Temperature signaling underlying thermotaxis and cold tolerance in Caenorhabditis elegans. J Neurogenet 2020; 34:351-362. [DOI: 10.1080/01677063.2020.1734001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Asuka Takeishi
- Neural Circuit of Multisensory Integration RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research (CPR), RIKEN Center for Brain Science (CBS), Wako, Japan
| | - Natsune Takagaki
- Graduate School of Natural Science, Konan University, Kobe, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe, Japan
| | - Atsushi Kuhara
- Graduate School of Natural Science, Konan University, Kobe, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe, Japan
- Faculty of Science and Engineering, Konan University, Kobe, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
60
|
It takes more than two to tango: mechanosignaling of the endothelial surface. Pflugers Arch 2020; 472:419-433. [PMID: 32239285 PMCID: PMC7165135 DOI: 10.1007/s00424-020-02369-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
The endothelial surface is a highly flexible signaling hub which is able to sense the hemodynamic forces of the streaming blood. The subsequent mechanosignaling is basically mediated by specific structures, like the endothelial glycocalyx building the top surface layer of endothelial cells as well as mechanosensitive ion channels within the endothelial plasma membrane. The mechanical properties of the endothelial cell surface are characterized by the dynamics of cytoskeletal proteins and play a key role in the process of signal transmission from the outside (lumen of the blood vessel) to the interior of the cell. Thus, the cell mechanics directly interact with the function of mechanosensitive structures and ion channels. To precisely maintain the vascular tone, a coordinated functional interdependency between endothelial cells and vascular smooth muscle cells is necessary. This is given by the fact that mechanosensitive ion channels are expressed in both cell types and that signals are transmitted via autocrine/paracrine mechanisms from layer to layer. Thus, the outer layer of the endothelial cells can be seen as important functional mechanosensitive and reactive cellular compartment. This review aims to describe the known mechanosensitive structures of the vessel building a bridge between the important role of physiological mechanosignaling and the proper vascular function. Since mutations and dysfunction of mechanosensitive proteins are linked to vascular pathologies such as hypertension, they play a potent role in the field of channelopathies and mechanomedicine.
Collapse
|
61
|
Matthews BJ, Vosshall LB. How to turn an organism into a model organism in 10 'easy' steps. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb218198. [PMID: 32034051 DOI: 10.1242/jeb.218198] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Many of the major biological discoveries of the 20th century were made using just six species: Escherichia coli bacteria, Saccharomyces cerevisiae and Schizosaccharomyces pombe yeast, Caenorhabditis elegans nematodes, Drosophila melanogaster flies and Mus musculus mice. Our molecular understanding of the cell division cycle, embryonic development, biological clocks and metabolism were all obtained through genetic analysis using these species. Yet the 'big 6' did not start out as genetic model organisms (hereafter 'model organisms'), so how did they mature into such powerful systems? First, these model organisms are abundant human commensals: they are the bacteria in our gut, the yeast in our beer and bread, the nematodes in our compost pile, the flies in our kitchen and the mice in our walls. Because of this, they are cheaply, easily and rapidly bred in the laboratory and in addition were amenable to genetic analysis. How and why should we add additional species to this roster? We argue that specialist species will reveal new secrets in important areas of biology and that with modern technological innovations like next-generation sequencing and CRISPR-Cas9 genome editing, the time is ripe to move beyond the big 6. In this review, we chart a 10-step path to this goal, using our own experience with the Aedes aegypti mosquito, which we built into a model organism for neurobiology in one decade. Insights into the biology of this deadly disease vector require that we work with the mosquito itself rather than modeling its biology in another species.
Collapse
Affiliation(s)
- Benjamin J Matthews
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA.,Howard Hughes Medical Institute, New York, NY 10065, USA.,Kavli Neural Systems Institute, New York, NY 10065, USA
| |
Collapse
|
62
|
The NALCN Channel Regulator UNC-80 Functions in a Subset of Interneurons To Regulate Caenorhabditis elegans Reversal Behavior. G3-GENES GENOMES GENETICS 2020; 10:199-210. [PMID: 31690562 PMCID: PMC6945035 DOI: 10.1534/g3.119.400692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
NALCN (Na+leak channel, non-selective) is a conserved, voltage-insensitive cation channel that regulates resting membrane potential and neuronal excitability. UNC79 and UNC80 are key regulators of the channel function. However, the behavioral effects of the channel complex are not entirely clear and the neurons in which the channel functions remain to be identified. In a forward genetic screen for C. elegans mutants with defective avoidance response to the plant hormone methyl salicylate (MeSa), we isolated multiple loss-of-function mutations in unc-80 and unc-79. C. elegans NALCN mutants exhibited similarly defective MeSa avoidance. Interestingly, NALCN, unc-80 and unc-79 mutants all showed wild type-like responses to other attractive or repelling odorants, suggesting that NALCN does not broadly affect odor detection or related forward and reversal behaviors. To understand in which neurons the channel functions, we determined the identities of a subset of unc-80-expressing neurons. We found that unc-79 and unc-80 are expressed and function in overlapping neurons, which verified previous assumptions. Neuron-specific transgene rescue and knockdown experiments suggest that the command interneurons AVA and AVE and the anterior guidepost neuron AVG can play a sufficient role in mediating unc-80 regulation of the MeSa avoidance. Though primarily based on genetic analyses, our results further imply that MeSa might activate NALCN by direct or indirect actions. Altogether, we provide an initial look into the key neurons in which the NALCN channel complex functions and identify a novel function of the channel in regulating C. elegans reversal behavior through command interneurons.
Collapse
|
63
|
Vásquez V. Using C. elegans to Study the Effects of Toxins in Sensory Ion Channels In Vivo. Methods Mol Biol 2020; 2068:225-238. [PMID: 31576531 DOI: 10.1007/978-1-4939-9845-6_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Caenorhabditis elegans is a powerful animal model in which transgenesis, behavior, and physiology can be merged to study in vivo the effect of natural and synthetic agonists in sensory ion channels. Worms have polymodal sensory neurons (like the ASH pair) that couple ion channel activation with a robust and easily scorable aversive-like behavior. We expressed the transient receptor potential vanilloid 1 (TRPV1) channel from rat (r) in worms' ASH neurons and determined its sensitivity to the tarantula double-knot toxin (DkTx) and the active component of chili peppers (capsaicin). This chapter describes protocols for generating and maintaining transgenic rTRPV1 worms to determine dose-dependent behavior. The goal is to provide an efficient tool to characterize the function of sensory channels (wild type and mutants) in vivo.
Collapse
Affiliation(s)
- Valeria Vásquez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
64
|
Sabry Z, Ho A, Ireland D, Rabeler C, Cochet-Escartin O, Collins EMS. Pharmacological or genetic targeting of Transient Receptor Potential (TRP) channels can disrupt the planarian escape response. PLoS One 2019; 14:e0226104. [PMID: 31805147 PMCID: PMC6894859 DOI: 10.1371/journal.pone.0226104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022] Open
Abstract
In response to noxious stimuli, planarians cease their typical ciliary gliding and exhibit an oscillatory type of locomotion called scrunching. We have previously characterized the biomechanics of scrunching and shown that it is induced by specific stimuli, such as amputation, noxious heat, and extreme pH. Because these specific inducers are known to activate Transient Receptor Potential (TRP) channels in other systems, we hypothesized that TRP channels control scrunching. We found that chemicals known to activate TRPA1 (allyl isothiocyanate (AITC) and hydrogen peroxide) and TRPV (capsaicin and anandamide) in other systems induce scrunching in the planarian species Dugesia japonica and, except for anandamide, in Schmidtea mediterranea. To confirm that these responses were specific to either TRPA1 or TRPV, respectively, we tried to block scrunching using selective TRPA1 or TRPV antagonists and RNA interference (RNAi) mediated knockdown. Unexpectedly, co-treatment with a mammalian TRPA1 antagonist, HC-030031, enhanced AITC-induced scrunching by decreasing the latency time, suggesting an agonistic relationship in planarians. We further confirmed that TRPA1 in both planarian species is necessary for AITC-induced scrunching using RNAi. Conversely, while co-treatment of a mammalian TRPV antagonist, SB-366791, also enhanced capsaicin-induced reactions in D. japonica, combined knockdown of two previously identified D. japonica TRPV genes (DjTRPVa and DjTRPVb) did not inhibit capsaicin-induced scrunching. RNAi of DjTRPVa/DjTRPVb attenuated scrunching induced by the endocannabinoid and TRPV agonist, anandamide. Overall, our results show that although scrunching induction can involve different initial pathways for sensing stimuli, this behavior's signature dynamical features are independent of the inducer, implying that scrunching is a stereotypical planarian escape behavior in response to various noxious stimuli that converge on a single downstream pathway. Understanding which aspects of nociception are conserved or not across different organisms can provide insight into the underlying regulatory mechanisms to better understand pain sensation.
Collapse
Affiliation(s)
- Ziad Sabry
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Alicia Ho
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Christina Rabeler
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Olivier Cochet-Escartin
- Department of Physics, University of California San Diego, La Jolla, California, United States of America
| | - Eva-Maria S. Collins
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- Department of Physics, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
65
|
Nucleus pulposus primary cilia alter their length in response to changes in extracellular osmolarity but do not control TonEBP-mediated osmoregulation. Sci Rep 2019; 9:15469. [PMID: 31664118 PMCID: PMC6820757 DOI: 10.1038/s41598-019-51939-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 10/07/2019] [Indexed: 11/08/2022] Open
Abstract
The nucleus pulposus (NP) cells adapt to their physiologically hyperosmotic microenvironment through Tonicity-responsive enhancer binding protein (TonEBP/nuclear factor of activated T-cell5 [NFAT5])-mediated osmoregulation. Primary cilia in different organs serve diverse roles including osmosensing, but its contribution to NP cell osmoadaptive response is unknown. A high percentage of cultured primary NP cells possessed primary cilia that changed length in response to osmotic stimuli. Stable silencing of Intraflagellar Transport 88 (Ift88) or Kinesin Family Member 3 A (Kif3a) to inhibit the formation of primary cilia did not affect hyperosmotic upregulation of TonEBP. While ShKif3a blocked hyperosmotic increase of TonEBP-Transactivation Domain (TAD) activity, overall the knockdown of either gene did not alter the hyperosmotic status of proximal promoter activities and transcription of key TonEBP targets. On the other hand, a small decrease in TonEBP level under hypoosmotic condition was attenuated by Ift88 or Kif3a knockdown. Noteworthy, none of the TonEBP target genes were responsive to hypoosmotic stimulus in control and Ift88 or Kif3a knockdown cells, suggesting the primary role of TonEBP in the hyperosmotic adaptation of NP cells. Similarly, in Kif3a null mouse embryonic fibroblasts (MEFs), the overall TonEBP-dependent hyperosmotic responses were preserved. Unlike NP cells, TonEBP targets were responsive to hypoosmolarity in wild-type MEFs, and these responses remained intact in Kif3a null MEFs. Together, these results suggest that primary cilia are dispensable for TonEBP-dependent osmoadaptive response.
Collapse
|
66
|
Li M, Zhang CS, Zong Y, Feng JW, Ma T, Hu M, Lin Z, Li X, Xie C, Wu Y, Jiang D, Li Y, Zhang C, Tian X, Wang W, Yang Y, Chen J, Cui J, Wu YQ, Chen X, Liu QF, Wu J, Lin SY, Ye Z, Liu Y, Piao HL, Yu L, Zhou Z, Xie XS, Hardie DG, Lin SC. Transient Receptor Potential V Channels Are Essential for Glucose Sensing by Aldolase and AMPK. Cell Metab 2019; 30:508-524.e12. [PMID: 31204282 PMCID: PMC6720459 DOI: 10.1016/j.cmet.2019.05.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/03/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
Fructose-1,6-bisphosphate (FBP) aldolase links sensing of declining glucose availability to AMPK activation via the lysosomal pathway. However, how aldolase transmits lack of occupancy by FBP to AMPK activation remains unclear. Here, we show that FBP-unoccupied aldolase interacts with and inhibits endoplasmic reticulum (ER)-localized transient receptor potential channel subfamily V, inhibiting calcium release in low glucose. The decrease of calcium at contact sites between ER and lysosome renders the inhibited TRPV accessible to bind the lysosomal v-ATPase that then recruits AXIN:LKB1 to activate AMPK independently of AMP. Genetic depletion of TRPVs blocks glucose starvation-induced AMPK activation in cells and liver of mice, and in nematodes, indicative of physical requirement of TRPVs. Pharmacological inhibition of TRPVs activates AMPK and elevates NAD+ levels in aged muscles, rejuvenating the animals' running capacity. Our study elucidates that TRPVs relay the FBP-free status of aldolase to the reconfiguration of v-ATPase, leading to AMPK activation in low glucose.
Collapse
Affiliation(s)
- Mengqi Li
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Yue Zong
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Jin-Wei Feng
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Teng Ma
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Meiqin Hu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871 Beijing, China
| | - Zhizhong Lin
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Xiaotong Li
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Changchuan Xie
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Yaying Wu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Dong Jiang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Ying Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Wen Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China
| | - Yanyan Yang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Jie Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Jiwen Cui
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Yu-Qing Wu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Xin Chen
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Qing-Feng Liu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Jianfeng Wu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Shu-Yong Lin
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Zhiyun Ye
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871 Beijing, China
| | - Xiao-Song Xie
- McDermott Center of Human Growth and Development MC8591, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - D Grahame Hardie
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China.
| |
Collapse
|
67
|
DiTirro D, Philbrook A, Rubino K, Sengupta P. The Caenorhabditis elegans Tubby homolog dynamically modulates olfactory cilia membrane morphogenesis and phospholipid composition. eLife 2019; 8:48789. [PMID: 31259686 PMCID: PMC6624019 DOI: 10.7554/elife.48789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
Plasticity in sensory signaling is partly mediated via regulated trafficking of signaling molecules to and from primary cilia. Tubby-related proteins regulate ciliary protein transport; however, their roles in remodeling cilia properties are not fully understood. We find that the C. elegans TUB-1 Tubby homolog regulates membrane morphogenesis and signaling protein transport in specialized sensory cilia. In particular, TUB-1 is essential for sensory signaling-dependent reshaping of olfactory cilia morphology. We show that compromised sensory signaling alters cilia membrane phosphoinositide composition via TUB-1-dependent trafficking of a PIP5 kinase. TUB-1 regulates localization of this lipid kinase at the cilia base in part via localization of the AP-2 adaptor complex subunit DPY-23. Our results describe new functions for Tubby proteins in the dynamic regulation of cilia membrane lipid composition, morphology, and signaling protein content, and suggest that this conserved family of proteins plays a critical role in mediating cilia structural and functional plasticity.
Collapse
Affiliation(s)
- Danielle DiTirro
- Department of Biology, Brandeis University, Waltham, United States
| | - Alison Philbrook
- Department of Biology, Brandeis University, Waltham, United States
| | - Kendrick Rubino
- Department of Biology, Brandeis University, Waltham, United States
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, United States
| |
Collapse
|
68
|
Yamazaki SJ, Ohara K, Ito K, Kokubun N, Kitanishi T, Takaichi D, Yamada Y, Ikejiri Y, Hiramatsu F, Fujita K, Tanimoto Y, Yamazoe-Umemoto A, Hashimoto K, Sato K, Yoda K, Takahashi A, Ishikawa Y, Kamikouchi A, Hiryu S, Maekawa T, Kimura KD. STEFTR: A Hybrid Versatile Method for State Estimation and Feature Extraction From the Trajectory of Animal Behavior. Front Neurosci 2019; 13:626. [PMID: 31316332 PMCID: PMC6611002 DOI: 10.3389/fnins.2019.00626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/31/2019] [Indexed: 12/19/2022] Open
Abstract
Animal behavior is the final and integrated output of brain activity. Thus, recording and analyzing behavior is critical to understand the underlying brain function. While recording animal behavior has become easier than ever with the development of compact and inexpensive devices, detailed behavioral data analysis requires sufficient prior knowledge and/or high content data such as video images of animal postures, which makes it difficult for most of the animal behavioral data to be efficiently analyzed. Here, we report a versatile method using a hybrid supervised/unsupervised machine learning approach for behavioral state estimation and feature extraction (STEFTR) only from low-content animal trajectory data. To demonstrate the effectiveness of the proposed method, we analyzed trajectory data of worms, fruit flies, rats, and bats in the laboratories, and penguins and flying seabirds in the wild, which were recorded with various methods and span a wide range of spatiotemporal scales-from mm to 1,000 km in space and from sub-seconds to days in time. We successfully estimated several states during behavior and comprehensively extracted characteristic features from a behavioral state and/or a specific experimental condition. Physiological and genetic experiments in worms revealed that the extracted behavioral features reflected specific neural or gene activities. Thus, our method provides a versatile and unbiased way to extract behavioral features from simple trajectory data to understand brain function.
Collapse
Affiliation(s)
- Shuhei J. Yamazaki
- Graduate School of Science, Osaka University, Toyonaka, Japan
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan
| | - Kazuya Ohara
- Graduate School of Information Science and Technology, Osaka University, Suita, Japan
| | - Kentaro Ito
- Department of Polar Science, The Graduate University for Advanced Studies, Tachikawa, Japan
| | - Nobuo Kokubun
- Department of Polar Science, The Graduate University for Advanced Studies, Tachikawa, Japan
- National Institute of Polar Research, Tachikawa, Japan
| | - Takuma Kitanishi
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
- Center for Brain Science, Osaka City University Graduate School of Medicine, Osaka, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | | | - Yasufumi Yamada
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Yosuke Ikejiri
- Graduate School of Science, Osaka University, Toyonaka, Japan
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan
| | - Fumie Hiramatsu
- Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Kosuke Fujita
- Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Yuki Tanimoto
- Graduate School of Science, Osaka University, Toyonaka, Japan
| | | | - Koichi Hashimoto
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Katsufumi Sato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Ken Yoda
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| | - Akinori Takahashi
- Department of Polar Science, The Graduate University for Advanced Studies, Tachikawa, Japan
- National Institute of Polar Research, Tachikawa, Japan
| | - Yuki Ishikawa
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | | | - Shizuko Hiryu
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Takuya Maekawa
- Graduate School of Information Science and Technology, Osaka University, Suita, Japan
| | - Koutarou D. Kimura
- Graduate School of Science, Osaka University, Toyonaka, Japan
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
69
|
Cannabinoids Stimulate the TRP Channel-Dependent Release of Both Serotonin and Dopamine to Modulate Behavior in C. elegans. J Neurosci 2019; 39:4142-4152. [PMID: 30886012 DOI: 10.1523/jneurosci.2371-18.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 02/04/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023] Open
Abstract
Cannabis sativa alters sensory perception and exhibits potential medicinal benefits. In mammals, cannabinoids activate two canonical receptors, CB1/CB2, as well additional receptors/ion channels whose overall contributions to cannabinoid signaling have yet to be fully assessed. In Caenorhabditis elegans, the endogenous cannabinoid receptor agonist, 2-arachidonoylglycerol (2-AG) activates a CB1 ortholog, NPR-19, to modulate behavior (Oakes et al., 2017). In addition, 2-AG stimulates the NPR-19 independent release of both serotonin (5-HT) and dopamine (DA) from subsets of monoaminergic neurons to modulate locomotory behaviors through a complex monoaminergic signaling pathway involving multiple serotonin and dopamine receptors. 2-AG also inhibits locomotion in remodeled monoamine receptor mutant animals designed to measure the acute release of either 5-HT or DA, confirming the direct effects of 2-AG on monoamine release. 2-AG-dependent locomotory inhibition requires the expression of transient receptor potential vanilloid 1 (TRPV1) and TRPN-like channels in the serotonergic or dopaminergic neurons, respectively, and the acute pharmacological inhibition of the TRPV1-like channel abolishes both 2-AG-dependent 5-HT release and locomotory inhibition, suggesting the 2-AG may activate the channel directly. This study highlights the advantages of identifying and assessing both CB1/CB2-dependent and independent cannabinoid signaling pathways in a genetically tractable, mammalian predictive model, where cannabinoid signaling at the molecular/neuronal levels can be correlated directly with changes in behavior.SIGNIFICANCE STATEMENT This study is focused on assessing CB1/CB2-independent cannabinoid signaling in a genetically tractable, whole-animal model where cannabinoid signaling at the molecular/neuronal levels can be correlated with behavioral change. Caenorhabditis elegans contains a cannabinoid signaling system mediated by a canonical cannabinoid receptor, NPR-19, with orthology to human CB1/CB2 (Oakes et al., 2017). The present study has characterized an NPR-19-independent signaling pathway that involves the cannabinoid-dependent release of both serotonin and dopamine and the expression of distinct TRP-like channels on the monoaminergic neurons. Our work should be of interest to those studying the complexities of CB1/CB2-independent cannabinoid signaling, the role of TRP channels in the modulation of monoaminergic signaling, and the cannabinoid-dependent modulation of behavior.
Collapse
|
70
|
Harris G, Wu T, Linfield G, Choi MK, Liu H, Zhang Y. Molecular and cellular modulators for multisensory integration in C. elegans. PLoS Genet 2019; 15:e1007706. [PMID: 30849079 PMCID: PMC6426271 DOI: 10.1371/journal.pgen.1007706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/20/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
In the natural environment, animals often encounter multiple sensory cues that are simultaneously present. The nervous system integrates the relevant sensory information to generate behavioral responses that have adaptive values. However, the neuronal basis and the modulators that regulate integrated behavioral response to multiple sensory cues are not well defined. Here, we address this question using a behavioral decision in C. elegans when the animal is presented with an attractive food source together with a repulsive odorant. We identify specific sensory neurons, interneurons and neuromodulators that orchestrate the decision-making process, suggesting that various states and contexts may modulate the multisensory integration. Among these modulators, we characterize a new function of a conserved TGF-β pathway that regulates the integrated decision by inhibiting the signaling from a set of central neurons. Interestingly, we find that a common set of modulators, including the TGF-β pathway, regulate the integrated response to the pairing of different foods and repellents. Together, our results provide mechanistic insights into the modulatory signals regulating multisensory integration. The present study characterizes the modulation of a behavioral decision in C. elegans when the worm is presented with a food lawn that is paired with a repulsive smell. We show that multiple specific sensory neurons and interneurons play roles in making the decision. We also identify several modulatory molecules that are essential for the integrated decision when the animal faces a choice between the cues of opposing valence. We further show that many of these factors, which often represent different states and contexts, are common for behavioral decisions that integrate sensory information from different types of foods and repellents. Overall, our results reveal the molecular and cellular basis for integration of simultaneously present attractive and repulsive cues to fine-tune decision-making.
Collapse
Affiliation(s)
- Gareth Harris
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
- * E-mail: (GH); (YZ)
| | - Taihong Wu
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
| | - Gaia Linfield
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
| | - Myung-Kyu Choi
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
| | - He Liu
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Sciences, Harvard University, Cambridge, MA, United States of America
- * E-mail: (GH); (YZ)
| |
Collapse
|
71
|
Worthy SE, Rojas GL, Taylor CJ, Glater EE. Identification of Odor Blend Used by Caenorhabditis elegans for Pathogen Recognition. Chem Senses 2019; 43:169-180. [PMID: 29373666 PMCID: PMC6018680 DOI: 10.1093/chemse/bjy001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Animals have evolved specialized pathways to detect appropriate food sources and avoid harmful ones. Caenorhabditis elegans can distinguish among the odors of various species of bacteria, its major food source, but little is known about what specific chemical cue or combination of chemical cues C. elegans uses to detect and recognize different microbes. Here, we examine the strong innate attraction of C. elegans for the odor of the pathogenic bacterium, Serratia marcescens. This initial attraction likely facilitates ingestion and infection of the C. elegans host. Using solid-phase microextraction and gas chromatography coupled with mass spectrometry, we identify 5 volatile odors released by S. marcescens and identify those that are attractive to C. elegans. We use genetic methods to show that the amphid chemosensory neuron, AWCON, senses both S. marcescens-released 2-butanone and acetone and drives attraction to S. marcescens. In C. elegans, pairing a single odorant with food deprivation results in a reduced attractive response for that specific odor. We find that pairing the natural odor of S. marcescens with food deprivation results in a reduced attraction for the natural odor of S. marcescens and a similar reduced attraction for the synthetic blend of acetone and 2-butanone. This result indicates that only 2 odorants represent the more complex odor bouquet of S. marcescens. Although bacterial-released volatiles have long been known to be attractive to C. elegans, this study defines for the first time specific volatile cues that represent a particular bacterium to C. elegans.
Collapse
Affiliation(s)
| | - German L Rojas
- Department of Neuroscience, Pomona College, Claremont, CA, USA
| | | | | |
Collapse
|
72
|
Wan X, Zhou Y, Chan CM, Yang H, Yeung C, Chow KL. SRD-1 in AWA neurons is the receptor for female volatile sex pheromones in C. elegans males. EMBO Rep 2019; 20:embr.201846288. [PMID: 30792215 DOI: 10.15252/embr.201846288] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 12/29/2018] [Accepted: 01/22/2019] [Indexed: 01/23/2023] Open
Abstract
Pheromones are critical cues for attracting mating partners for successful reproduction. Sexually mature Caenorhabditis remanei virgin females and self-sperm-depleted Caenorhabditis elegans hermaphrodites produce volatile sex pheromones to attract adult males of both species from afar. The chemoresponsive receptor in males has remained unknown. Here, we show that the male chemotactic behavior requires amphid sensory neurons (AWA neurons) and the G-protein-coupled receptor SRD-1. SRD-1 expression in AWA neurons is sexually dimorphic, with the levels being high in males but undetectable in hermaphrodites. Notably, srd-1 mutant males lack the chemotactic response and pheromone-induced excitation of AWA neurons, both of which can be restored in males and hermaphrodites by AWA-specific srd-1 expression, and ectopic expression of srd-1 in AWB neurons in srd-1 mutants results in a repulsive behavioral response in both sexes. Furthermore, we show that the C-terminal region of SRD-1 confers species-specific differences in the ability to perceive sex pheromones between C. elegans and C. remanei These findings offer an excellent model for dissecting how a single G-protein-coupled receptor expressed in a dimorphic neural system contributes to sex-specific behaviors in animals.
Collapse
Affiliation(s)
- Xuan Wan
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Yuan Zhou
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Chung Man Chan
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Hainan Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Christine Yeung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - King L Chow
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong .,Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong.,Interdisciplinary Programs Office, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| |
Collapse
|
73
|
Low IIC, Williams CR, Chong MK, McLachlan IG, Wierbowski BM, Kolotuev I, Heiman MG. Morphogenesis of neurons and glia within an epithelium. Development 2019; 146:dev171124. [PMID: 30683663 PMCID: PMC6398450 DOI: 10.1242/dev.171124] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
To sense the outside world, some neurons protrude across epithelia, the cellular barriers that line every surface of our bodies. To study the morphogenesis of such neurons, we examined the C. elegans amphid, in which dendrites protrude through a glial channel at the nose. During development, amphid dendrites extend by attaching to the nose via DYF-7, a type of protein typically found in epithelial apical ECM. Here, we show that amphid neurons and glia exhibit epithelial properties, including tight junctions and apical-basal polarity, and develop in a manner resembling other epithelia. We find that DYF-7 is a fibril-forming apical ECM component that promotes formation of the tube-shaped glial channel, reminiscent of roles for apical ECM in other narrow epithelial tubes. We also identify a requirement for FRM-2, a homolog of EPBL15/moe/Yurt that promotes epithelial integrity in other systems. Finally, we show that other environmentally exposed neurons share a requirement for DYF-7. Together, our results suggest that these neurons and glia can be viewed as part of an epithelium continuous with the skin, and are shaped by mechanisms shared with other epithelia.
Collapse
Affiliation(s)
- Isabel I C Low
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Claire R Williams
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Megan K Chong
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Ian G McLachlan
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Bradley M Wierbowski
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Irina Kolotuev
- Université de Rennes 1, Plateforme microscopie électronique, 35043 Rennes, France
| | - Maxwell G Heiman
- Department of Genetics, Blavatnik Institute, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
74
|
Nkambeu B, Salem JB, Leonelli S, Marashi FA, Beaudry F. EGL-3 and EGL-21 are required to trigger nocifensive response of Caenorhabditis elegans to noxious heat. Neuropeptides 2019; 73:41-48. [PMID: 30454862 DOI: 10.1016/j.npep.2018.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023]
Abstract
Caenorhabditis elegans (C. elegans) is a widely used model organism to examine nocifensive response to noxious stimuli, including heat avoidance. Recently, comprehensive analysis of the genome sequence revealed several pro-neuropeptide genes, encoding a series of bioactive neuropeptides. C. elegans neuropeptides are involved in the modulation of essentially all behaviors including locomotion, mechanosensation, thermosensation and chemosensation. The maturation of pro-neuropeptide to neuropeptide is performed by ortholog pro-protein convertases and carboxypeptidase E (e.g. EGL-3 and EGL-21). We hypothesized that C. elegans egl-3 or egl-21 mutants will have a significant decrease in mature neuropeptides and they will display an impaired heat avoidance behavior. Our data has shown that thermal avoidance behavior of egl-3 and egl-21 mutants was significantly hampered compared to WT(N2) C. elegans. Moreover, flp-18, flp-21 and npr-1 mutant C. elegans displayed a similar phenotype. EGL-3 pro-protein convertase and EGL-21 carboxypeptidase E are essential enzymes for the maturation of pro-neuropeptides to active neuropeptides in C. elegans. Quantitative mass spectrometry analyses with egl-3 and egl-21 mutant C. elegans homogenates demonstrated that proteolysis of ProFLP-18 and ProFLP-21 are severely impeded, leading to a lack of mature bioactive neuropeptides. Not only FLP-21 but also FLP-18 related mature neuropeptides, both are ligands of NPR-1 and are needed to trigger nocifensive response of C. elegans to noxious heat.
Collapse
Affiliation(s)
- Bruno Nkambeu
- Département de Biomédecine Vétérinaire, Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Montréal, QC J2S 2M2, Canada
| | - Jennifer Ben Salem
- Département de Biomédecine Vétérinaire, Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Montréal, QC J2S 2M2, Canada
| | - Sophie Leonelli
- Département de Biomédecine Vétérinaire, Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Montréal, QC J2S 2M2, Canada
| | - Fatemeh Amin Marashi
- Département de Biomédecine Vétérinaire, Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Montréal, QC J2S 2M2, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Montréal, QC J2S 2M2, Canada.
| |
Collapse
|
75
|
Aldrin-Kirk P, Björklund T. Practical Considerations for the Use of DREADD and Other Chemogenetic Receptors to Regulate Neuronal Activity in the Mammalian Brain. Methods Mol Biol 2019; 1937:59-87. [PMID: 30706390 DOI: 10.1007/978-1-4939-9065-8_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chemogenetics is the process of genetically expressing a macromolecule receptor capable of modulating the activity of the cell in response to selective chemical ligand. This chapter will cover the chemogenetic technologies that are available to date, focusing on the commonly available engineered or otherwise modified ligand-gated ion channels and G-protein-coupled receptors in the context of neuromodulation. First, we will give a brief overview of each chemogenetic approach as well as in vitro/in vivo applications, then we will list their strengths and weaknesses. Finally, we will provide tips for ligand application in each case.Each technology has specific limitations that make them more or less suitable for different applications in neuroscience although we will focus mainly on the most commonly used and versatile family named designer receptors exclusively activated by designer drugs or DREADDs. We here describe the most common cases where these can be implemented and provide tips on how and where these technologies can be applied in the field of neuroscience.
Collapse
Affiliation(s)
- Patrick Aldrin-Kirk
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Tomas Björklund
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.
| |
Collapse
|
76
|
Bryant AS, Hallem EA. Terror in the dirt: Sensory determinants of host seeking in soil-transmitted mammalian-parasitic nematodes. Int J Parasitol Drugs Drug Resist 2018; 8:496-510. [PMID: 30396862 PMCID: PMC6287541 DOI: 10.1016/j.ijpddr.2018.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
Infection with gastrointestinal parasitic nematodes is a major cause of chronic morbidity and economic burden around the world, particularly in low-resource settings. Some parasitic nematode species, including the human-parasitic threadworm Strongyloides stercoralis and human-parasitic hookworms in the genera Ancylostoma and Necator, feature a soil-dwelling infective larval stage that seeks out hosts for infection using a variety of host-emitted sensory cues. Here, we review our current understanding of the behavioral responses of soil-dwelling infective larvae to host-emitted sensory cues, and the molecular and cellular mechanisms that mediate these responses. We also discuss the development of methods for transgenesis and CRISPR/Cas9-mediated targeted mutagenesis in Strongyloides stercoralis and the closely related rat parasite Strongyloides ratti. These methods have established S. stercoralis and S. ratti as genetic model systems for gastrointestinal parasitic nematodes and are enabling more detailed investigations into the neural mechanisms that underlie the sensory-driven behaviors of this medically and economically important class of parasites.
Collapse
Affiliation(s)
- Astra S Bryant
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
77
|
Abstract
Many neurotoxins inflict pain by targeting receptors expressed on nociceptors, such as the polymodal cationic channel TRPV1. The tarantula double-knot toxin (DkTx) is a peptide with an atypical bivalent structure, providing it with the unique capability to lock TRPV1 in its open state and evoke an irreversible channel activation. Here, we describe a distinct gating mechanism of DkTx-evoked TRPV1 activation. Interestingly, DkTx evokes significantly smaller TRPV1 macroscopic currents than capsaicin, with a significantly lower unitary conductance. Accordingly, while capsaicin evokes aversive behaviors in TRPV1-transgenic Caenorhabditis elegans, DkTx fails to evoke such response at physiological concentrations. To determine the structural feature(s) responsible for this phenomenon, we engineered and evaluated a series of mutated toxins and TRPV1 channels. We found that elongating the DkTx linker, which connects its two knots, increases channel conductance compared with currents elicited by the native toxin. Importantly, deletion of the TRPV1 pore turret, a stretch of amino acids protruding out of the channel's outer pore region, is sufficient to produce both full conductance and aversive behaviors in response to DkTx. Interestingly, this deletion decreases the capsaicin-evoked channel activation. Taken together with structure modeling analysis, our results demonstrate that the TRPV1 pore turret restricts DkTx-mediated pore opening, probably through steric hindrance, limiting the current size and mitigating the evoked downstream physiological response. Overall, our findings reveal that DkTx and capsaicin elicit distinct TRPV1 gating mechanisms and subsequent pain responses. Our results also indicate that the TRPV1 pore turret regulates the mechanisms of channel gating and permeation.
Collapse
|
78
|
Guo M, Ge M, Berberoglu MA, Zhou J, Ma L, Yang J, Dong Q, Feng Y, Wu Z, Dong Z. Dissecting Molecular and Circuit Mechanisms for Inhibition and Delayed Response of ASI Neurons during Nociceptive Stimulus. Cell Rep 2018; 25:1885-1897.e9. [PMID: 30428355 DOI: 10.1016/j.celrep.2018.10.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/05/2018] [Accepted: 10/17/2018] [Indexed: 10/27/2022] Open
Abstract
The mechanisms by which off-response neurons stay quiescent during stimulation are largely unknown. Here, we dissect underlying molecular and circuit mechanisms for the inhibition of off-response ASI neurons during nociceptive Cu2+ stimulation. ASIs are inhibited in parallel by sensory neurons ASER, ADFs, and ASHs. ASER activates RIC interneurons that release octopamine (OA) to inhibit ASIs through SER-3 and SER-6 receptors. ADFs release 5-HT that acts on the SER-1 receptor to activate RICs and subsequently inhibit ASIs. Furthermore, it is an inherent property of ASIs that only a delayed on response is evoked by Cu2+ stimulation even when all inhibitory neurons are silenced. Ectopic expression of the ion channel OCR-2, which functions synergistically with OSM-9, in the cilia of ASIs can induce an immediate on response of ASIs upon Cu2+ stimulation. Our findings elucidate the molecular and circuit mechanisms regulating fundamental properties of ASIs, including their inhibition and delayed response.
Collapse
Affiliation(s)
- Min Guo
- Bio-Medical Center, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Minghai Ge
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Michael A Berberoglu
- Bio-Medical Center, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jie Zhou
- Bio-Medical Center, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Long Ma
- Bio-Medical Center, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Juan Yang
- Bio-Medical Center, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qiyan Dong
- Bio-Medical Center, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yanni Feng
- Bio-Medical Center, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhengxing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhiqiang Dong
- Bio-Medical Center, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
79
|
Moriuchi M, Nakano Y, Tsurekawa Y, Piruzyan M, Matsuyama S, Nohara H, Suico MA, Shuto T, Kai H. Taurine Inhibits TRPV-Dependent Activity to Overcome Oxidative Stress in Caenorhabditis elegans. Biol Pharm Bull 2018; 41:1672-1677. [DOI: 10.1248/bpb.b18-00370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masataka Moriuchi
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University
- Program for Leading Graduate School of “HIGO (Health Life Science: Interdisciplinary and Global Oriented) Program,” Kumamoto University
| | - Yoshio Nakano
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University
- Program for Leading Graduate School of “HIGO (Health Life Science: Interdisciplinary and Global Oriented) Program,” Kumamoto University
| | - Yu Tsurekawa
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University
- Program for Leading Graduate School of “HIGO (Health Life Science: Interdisciplinary and Global Oriented) Program,” Kumamoto University
| | - Mariam Piruzyan
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University
- Program for Leading Graduate School of “HIGO (Health Life Science: Interdisciplinary and Global Oriented) Program,” Kumamoto University
| | - Shingo Matsuyama
- Laboratory of Applied Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Sciences
| | - Hirofumi Nohara
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University
- Program for Leading Graduate School of “HIGO (Health Life Science: Interdisciplinary and Global Oriented) Program,” Kumamoto University
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
80
|
Li N, van der Kooy D. Mutations in the guanylate cyclase gcy-28 neuronally dissociate naïve attraction and memory retrieval. Eur J Neurosci 2018; 48:3367-3378. [PMID: 30362188 DOI: 10.1111/ejn.14221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/26/2018] [Accepted: 10/10/2018] [Indexed: 11/28/2022]
Abstract
The molecules and mechanisms that are involved in the acquisition, storage, and retrieval of memories in many organisms are unclear. To investigate these processes, we use the nematode worm Caenorhabditis elegans, which is attracted naïvely to the odorant benzaldehyde but learns to avoid it after paired exposure with starvation. Mutations in the receptor-like guanylate cyclase GCY-28 have previously been thought to result in a behavioral switch in the primary chemosensory neuron AWCON , from an attractive state to an aversive (already-learned) state. Here, we offer a different interpretation and show that GCY-28 functions in distinct neurons to modulate two independent processes: naïve attraction to AWCON -sensed odors in the AWCON neuron, and associative learning of benzaldehyde and starvation in the AIA interneurons. Consequently, mutants that lack gcy-28 do not approach AWCON -sensed odors and cannot associate benzaldehyde with starvation. We further show that this learning deficit lies in memory retrieval, not in its acquisition or storage, and that GCY-28 is required in AIA for sensory integration only when both AWC neurons (ON and OFF) are activated by chemical stimuli. Our results reveal a novel role of GCY-28 in the retrieval of associative memories and may have wide implications for the neural machineries of learning and memory in general.
Collapse
Affiliation(s)
- Naijin Li
- The Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Derek van der Kooy
- The Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
81
|
Nematodes avoid and are killed by Bacillus mycoides-produced styrene. J Invertebr Pathol 2018; 159:129-136. [PMID: 30268676 DOI: 10.1016/j.jip.2018.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 01/20/2023]
Abstract
Root-knot nematodes are obligate parasites that feed on plant roots and cause serious crop losses worldwide. Bacillus species (Bacilliaceae) can produce nematicidal metabolites and have shown good potential for biological control of nematodes. In this study, Bacillus mycoides strain R2 isolated from rhizosphere soil of tomato plants exhibited high nematicidal activity against the free-living nematode Caenorhabditis elegans and the root-knot nematode Meloidogyne incognita. In a pot experiment, control efficiency of B. mycoides R2 on M. incognita was as high as 90.94%. The nematicidal compound was isolated and identified as styrene. The median lethal concentration of styrene against M. incognita was 4.55 μg/ml (m/v). The volatile styrene caused avoidance and killed nematodes primarily by the olfactory neuron and G protein signal pathway. C. elegans detected styrene with the AWB neuron; the signal was then transmitted to the downstream G protein coupled receptors CHE-3, DOP-3, and STR-2. Then signal activated G protein GPA-3 and GPA-7. The signal was then transmitted to ion channels (CNGs channel and TRPV channel), causing calcium ion internal flow and a stress response towards the increased concentration of intracellular calcium. Styrene should be registered as a nematode repellent and biocontrol agent for protection of crops against root-knot nematode attack.
Collapse
|
82
|
Shao J, Zhang X, Cheng H, Yue X, Zou W, Kang L. Serotonergic neuron ADF modulates avoidance behaviors by inhibiting sensory neurons in C. elegans. Pflugers Arch 2018; 471:357-363. [PMID: 30206705 DOI: 10.1007/s00424-018-2202-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
Abstract
Serotonin plays an essential role in both the invertebrate and vertebrate nervous systems. ADF, an amphid neuron with dual ciliated sensory endings, is considered to be the only serotonergic sensory neuron in the hermaphroditic Caenorhabditis elegans. This neuron is known to be involved in a range of behaviors including pharyngeal pumping, dauer formation, sensory transduction, and memory. However, whether ADF neuron is directly activated by environmental cues and how it processes these information remains unknown. In this study, we found that ADF neuron responds reliably to noxious stimuli such as repulsive odors, copper, sodium dodecyl sulfonate (SDS), and mechanical perturbation. This response is mediated by cell-autonomous and non-cell autonomous mechanisms. Furthermore, we show that ADF can modulate avoidance behaviors by inhibiting ASH, an amphid neuron with single ciliated ending. This work greatly furthers our understanding of 5-HT's contributions to sensory information perception, processing, and the resulting behavioral responses.
Collapse
Affiliation(s)
- Jiajie Shao
- Institute of Neuroscience and Department of Neurosurgery of the First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Neurobiology, Zhejiang University School of Medicine, 866 Yu Hang Tang Rd., Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Xiaoyan Zhang
- Institute of Neuroscience and Department of Neurosurgery of the First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Neurobiology, Zhejiang University School of Medicine, 866 Yu Hang Tang Rd., Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Hankui Cheng
- Institute of Neuroscience and Department of Neurosurgery of the First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Neurobiology, Zhejiang University School of Medicine, 866 Yu Hang Tang Rd., Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Xiaomin Yue
- Institute of Neuroscience and Department of Neurosurgery of the First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Neurobiology, Zhejiang University School of Medicine, 866 Yu Hang Tang Rd., Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Wenjuan Zou
- Institute of Neuroscience and Department of Neurosurgery of the First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Neurobiology, Zhejiang University School of Medicine, 866 Yu Hang Tang Rd., Hangzhou, 310058, Zhejiang, People's Republic of China.
| | - Lijun Kang
- Institute of Neuroscience and Department of Neurosurgery of the First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Department of Neurobiology, Zhejiang University School of Medicine, 866 Yu Hang Tang Rd., Hangzhou, 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
83
|
Endoribonuclease ENDU-2 regulates multiple traits including cold tolerance via cell autonomous and nonautonomous controls in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2018; 115:8823-8828. [PMID: 30104389 DOI: 10.1073/pnas.1808634115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Environmental temperature acclimation is essential to animal survival, yet thermoregulation mechanisms remain poorly understood. We demonstrate cold tolerance in Caenorhabditis elegans as regulated by paired ADL chemosensory neurons via Ca2+-dependent endoribonuclease (EndoU) ENDU-2. Loss of ENDU-2 function results in life span, brood size, and synaptic remodeling abnormalities in addition to enhanced cold tolerance. Enzymatic ENDU-2 defects localized in the ADL and certain muscle cells led to increased cold tolerance in endu-2 mutants. Ca2+ imaging revealed ADL neurons were responsive to temperature stimuli through transient receptor potential (TRP) channels, concluding that ADL function requires ENDU-2 action in both cell-autonomous and cell-nonautonomous mechanisms. ENDU-2 is involved in caspase expression, which is central to cold tolerance and synaptic remodeling in dorsal nerve cord. We therefore conclude that ENDU-2 regulates cell type-dependent, cell-autonomous, and cell-nonautonomous cold tolerance.
Collapse
|
84
|
Liu Z, Kariya MJ, Chute CD, Pribadi AK, Leinwand SG, Tong A, Curran KP, Bose N, Schroeder FC, Srinivasan J, Chalasani SH. Predator-secreted sulfolipids induce defensive responses in C. elegans. Nat Commun 2018; 9:1128. [PMID: 29555902 PMCID: PMC5859177 DOI: 10.1038/s41467-018-03333-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 02/02/2018] [Indexed: 01/03/2023] Open
Abstract
Animals respond to predators by altering their behavior and physiological states, but the underlying signaling mechanisms are poorly understood. Using the interactions between Caenorhabditis elegans and its predator, Pristionchus pacificus, we show that neuronal perception by C. elegans of a predator-specific molecular signature induces instantaneous escape behavior and a prolonged reduction in oviposition. Chemical analysis revealed this predator-specific signature to consist of a class of sulfolipids, produced by a biochemical pathway required for developing predacious behavior and specifically induced by starvation. These sulfolipids are detected by four pairs of C. elegans amphid sensory neurons that act redundantly and recruit cyclic nucleotide-gated (CNG) or transient receptor potential (TRP) channels to drive both escape and reduced oviposition. Functional homology of the delineated signaling pathways and abolishment of predator-evoked C. elegans responses by the anti-anxiety drug sertraline suggests a likely conserved or convergent strategy for managing predator threats.
Collapse
Affiliation(s)
- Zheng Liu
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Maro J Kariya
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Christopher D Chute
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01605, USA
| | - Amy K Pribadi
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Sarah G Leinwand
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Ada Tong
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Kevin P Curran
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Neelanjan Bose
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01605, USA
| | - Sreekanth H Chalasani
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
85
|
Regulation of Glutamate Signaling in the Sensorimotor Circuit by CASY-1A/Calsyntenin in Caenorhabditis elegans. Genetics 2018; 208:1553-1564. [PMID: 29475851 PMCID: PMC5887148 DOI: 10.1534/genetics.118.300834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 02/21/2018] [Indexed: 12/02/2022] Open
Abstract
Locomotion is one of the most prominent behaviors in the nematode Caenorhabditis elegans. Neuronal circuits that ultimately produce coordinated dorso-ventral sinusoidal bends mediate this behavior. Synchronized locomotion requires an intricate balance between excitation and inhibition at the neuromuscular junctions (NMJ), the complex cellular and molecular mechanisms of which are not fully understood. Here, we describe the role of a cell adhesion molecule CASY-1, which functions to maintain this balance at the NMJ. In this study, we dissect out mechanisms by which the longer CASY-1A isoform could be affecting the excitatory cholinergic signaling at the NMJ by modulating the activity of sensory neurons. Mutants in casy-1 appear to have hyperactive sensory neurons, resulting in accelerated locomotion and motor circuit activity. These sensory neurons mediate increased motor activity via enhanced glutamate release. Using genetic, pharmacological, and optogenetic manipulations, we establish that CASY-1A is required to monitor the activity of these neurons. Our study illustrates a novel neuromodulatory role of CASY-1-mediated signaling in regulating the excitation-inhibition balance of the motor circuit.
Collapse
|
86
|
Cho Y, Oakland DN, Lee SA, Schafer WR, Lu H. On-chip functional neuroimaging with mechanical stimulation in Caenorhabditis elegans larvae for studying development and neural circuits. LAB ON A CHIP 2018; 18:601-609. [PMID: 29340386 PMCID: PMC5885276 DOI: 10.1039/c7lc01201b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Mechanosensation is fundamentally important for the abilities of an organism to experience touch, hear sounds, and maintain balance. Caenorhabditis elegans is a powerful system for studying mechanosensation as this worm is well suited for in vivo functional imaging of neurons. Many years of research using labor-intensive methods have generated a wealth of knowledge about mechanosensation in C. elegans, and the recent microfluidic-based platforms continue to push the boundary for this field. However, developmental aspects of sensory biology, including mechanosensation, are still not fully understood. One current bottleneck is the difficulty in assaying larvae because they are much smaller than adult worms. Microfluidic devices with features small enough for larvae, especially actuators for the delivery of mechanical stimulation, are difficult to design and fabricate. Here, we present a series of automatic microfluidic platforms that allow for in vivo functional imaging of C. elegans responding to controlled mechanical stimulation at different developmental stages. Using a novel fabrication method, we designed highly deformable pneumatically actuated on-chip structures that can deliver mechanical stimulation to larval worms. The PDMS actuator allows for quantitatively controlled mechanical stimulation of both gentle and harsh touch neurons, by simply changing the actuation pressure, which makes this device easily translatable to other labs. We validated the design and utility of our systems with studies of the functional role of mechanosensory neurons in developing worms; we showed that gentle and harsh touch neurons function similarly in early larvae as they do in the adult stage, which would not have been possible previously. Finally, we investigated the effect of a sleep-like state on neuronal responses by imaging C. elegans in the lethargus state.
Collapse
Affiliation(s)
- Yongmin Cho
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, USA.
| | - David N Oakland
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, USA.
| | - Sol Ah Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, USA.
| | - William R Schafer
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, USA.
| |
Collapse
|
87
|
Serotonin Disinhibits a Caenorhabditis elegans Sensory Neuron by Suppressing Ca 2+-Dependent Negative Feedback. J Neurosci 2018; 38:2069-2080. [PMID: 29358363 DOI: 10.1523/jneurosci.1908-17.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/04/2018] [Accepted: 01/12/2018] [Indexed: 11/21/2022] Open
Abstract
Neuromodulators, such as serotonin (5-HT), alter neuronal excitability and synaptic strengths, and define different behavioral states. Neuromodulator-dependent changes in neuronal activity patterns are frequently measured using calcium reporters because calcium imaging can easily be performed on intact functioning nervous systems. With only 302 neurons, the nematode Caenorhabditis elegans provides a relatively simple, yet powerful, system to understand neuromodulation at the level of individual neurons. C. elegans hermaphrodites are repelled by 1-octanol, and the initiation of these aversive responses is potentiated by 5-HT. 5-HT acts on the ASH polymodal nociceptors that sense the 1-octanol stimulus. Surprisingly, 5-HT suppresses ASH Ca2+ transients while simultaneously potentiating 1-octanol-dependent ASH depolarization. Here we further explore this seemingly inverse relationship. Our results show the following (1) 5-HT acts downstream of depolarization, through Gαq-mediated signaling and calcineurin, to inhibit L-type voltage-gated Ca2+ channels; (2) the 1-octanol-evoked Ca2+ transients in ASHs inhibit depolarization; and (3) the Ca2+-activated K+ channel, SLO-1, acts downstream of 5-HT and is a critical regulator of ASH response dynamics. These findings define a Ca2+-dependent inhibitory feedback loop that can be modulated by 5-HT to increase neuronal excitability and regulate behavior, and highlight the possibility that neuromodulator-induced changes in the amplitudes of Ca2+ transients do not necessarily predict corresponding changes in depolarization.SIGNIFICANCE STATEMENT Neuromodulators, such as 5-HT, modify behavior by regulating excitability and synaptic efficiency in neurons. Neuromodulation is often studied using Ca2+ imaging, whereby neuromodulator-dependent changes in neuronal activity levels can be detected in intact, functioning circuits. Here we show that 5-HT reduces the amplitude of depolarization-dependent Ca2+ transients in a C. elegans nociceptive neuron, through Gαq signaling and calcineurin but that Ca2+ itself inhibits depolarization, likely through Ca2+-activated K+ channels. The net effect of 5-HT, therefore, is to increase neuronal excitability through disinhibition. These results establish a novel 5-HT signal transduction pathway, and demonstrate that neuromodulators can change Ca2+ signals and depolarization amplitudes in opposite directions, simultaneously, within a single neuron.
Collapse
|
88
|
Sheng Y, Tang L, Kang L, Xiao R. Membrane ion Channels and Receptors in Animal lifespan Modulation. J Cell Physiol 2017; 232:2946-2956. [PMID: 28121014 PMCID: PMC7008462 DOI: 10.1002/jcp.25824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/01/2023]
Abstract
Acting in the interfaces between environment and membrane compartments, membrane ion channels, and receptors transduce various physical and chemical cues into downstream signaling events. Not surprisingly, these membrane proteins play essential roles in a wide range of cellular processes such as sensory perception, synaptic transmission, cellular growth and development, fate determination, and apoptosis. However, except insulin and insulin-like growth factor receptors, the functions of membrane receptors in animal lifespan modulation have not been well appreciated. On the other hand, although ion channels are popular therapeutic targets for many age-related diseases, their potential roles in aging itself are largely neglected. In this review, we will discuss our current understanding of the conserved functions and mechanisms of membrane ion channels and receptors in the modulation of lifespan across multiple species including Caenorhabditis elegans, Drosophila, mouse, and human.
Collapse
Affiliation(s)
- Yi Sheng
- Division of Biology of Aging, Department of Aging and Geriatric Research, Institute on Aging, College of Medicine, University of Florida, Gainesville, Florida
| | - Lanlan Tang
- Division of Biology of Aging, Department of Aging and Geriatric Research, Institute on Aging, College of Medicine, University of Florida, Gainesville, Florida
| | - Lijun Kang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Xiao
- Division of Biology of Aging, Department of Aging and Geriatric Research, Institute on Aging, College of Medicine, University of Florida, Gainesville, Florida
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida
- Center for Smell and Taste, University of Florida, Gainesville, Florida
- Genetics Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
89
|
Caires R, Sierra-Valdez FJ, Millet JR, Herwig JD, Roan E, Vásquez V, Cordero-Morales JF. Omega-3 Fatty Acids Modulate TRPV4 Function through Plasma Membrane Remodeling. Cell Rep 2017; 21:246-258. [DOI: 10.1016/j.celrep.2017.09.029] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/18/2017] [Accepted: 09/07/2017] [Indexed: 12/26/2022] Open
|
90
|
Tran A, Tang A, O'Loughlin CT, Balistreri A, Chang E, Coto Villa D, Li J, Varshney A, Jimenez V, Pyle J, Tsujimoto B, Wellbrook C, Vargas C, Duong A, Ali N, Matthews SY, Levinson S, Woldemariam S, Khuri S, Bremer M, Eggers DK, L'Etoile N, Miller Conrad LC, VanHoven MK. C. elegans avoids toxin-producing Streptomyces using a seven transmembrane domain chemosensory receptor. eLife 2017; 6. [PMID: 28873053 PMCID: PMC5584987 DOI: 10.7554/elife.23770] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 08/21/2017] [Indexed: 11/13/2022] Open
Abstract
Predators and prey co-evolve, each maximizing their own fitness, but the effects of predator–prey interactions on cellular and molecular machinery are poorly understood. Here, we study this process using the predator Caenorhabditis elegans and the bacterial prey Streptomyces, which have evolved a powerful defense: the production of nematicides. We demonstrate that upon exposure to Streptomyces at their head or tail, nematodes display an escape response that is mediated by bacterially produced cues. Avoidance requires a predicted G-protein-coupled receptor, SRB-6, which is expressed in five types of amphid and phasmid chemosensory neurons. We establish that species of Streptomyces secrete dodecanoic acid, which is sensed by SRB-6. This behavioral adaptation represents an important strategy for the nematode, which utilizes specialized sensory organs and a chemoreceptor that is tuned to recognize the bacteria. These findings provide a window into the molecules and organs used in the coevolutionary arms race between predator and potential prey.
Collapse
Affiliation(s)
- Alan Tran
- Department of Biological Sciences, San Jose State University, California, United States
| | - Angelina Tang
- Department of Biological Sciences, San Jose State University, California, United States
| | - Colleen T O'Loughlin
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, United States
| | - Anthony Balistreri
- Department of Chemistry, San Jose State University, California, United States
| | - Eric Chang
- Department of Biological Sciences, San Jose State University, California, United States
| | - Doris Coto Villa
- Department of Biological Sciences, San Jose State University, California, United States
| | - Joy Li
- Department of Biological Sciences, San Jose State University, California, United States
| | - Aruna Varshney
- Department of Biological Sciences, San Jose State University, California, United States
| | - Vanessa Jimenez
- Department of Biological Sciences, San Jose State University, California, United States
| | - Jacqueline Pyle
- Department of Biological Sciences, San Jose State University, California, United States
| | - Bryan Tsujimoto
- Department of Biological Sciences, San Jose State University, California, United States
| | - Christopher Wellbrook
- Department of Biological Sciences, San Jose State University, California, United States
| | - Christopher Vargas
- Department of Biological Sciences, San Jose State University, California, United States
| | - Alex Duong
- Department of Biological Sciences, San Jose State University, California, United States
| | - Nebat Ali
- Department of Biological Sciences, San Jose State University, California, United States
| | - Sarah Y Matthews
- Department of Chemistry, San Jose State University, California, United States
| | - Samantha Levinson
- Department of Chemistry, San Jose State University, California, United States
| | - Sarah Woldemariam
- Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, United States
| | - Sami Khuri
- Department of Computer Science, San Jose State University, California, United States
| | - Martina Bremer
- Department of Mathematics and Statistics, San Jose State University, California, United States
| | - Daryl K Eggers
- Department of Chemistry, San Jose State University, California, United States
| | - Noelle L'Etoile
- Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, United States
| | | | - Miri K VanHoven
- Department of Biological Sciences, San Jose State University, California, United States
| |
Collapse
|
91
|
Aprison EZ, Ruvinsky I. Counteracting Ascarosides Act through Distinct Neurons to Determine the Sexual Identity of C. elegans Pheromones. Curr Biol 2017; 27:2589-2599.e3. [DOI: 10.1016/j.cub.2017.07.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/26/2017] [Accepted: 07/13/2017] [Indexed: 01/12/2023]
|
92
|
Chai CM, Cronin CJ, Sternberg PW. Automated Analysis of a Nematode Population-based Chemosensory Preference Assay. J Vis Exp 2017. [PMID: 28745641 PMCID: PMC5612354 DOI: 10.3791/55963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The nematode, Caenorhabditis elegans' compact nervous system of only 302 neurons underlies a diverse repertoire of behaviors. To facilitate the dissection of the neural circuits underlying these behaviors, the development of robust and reproducible behavioral assays is necessary. Previous C. elegans behavioral studies have used variations of a "drop test", a "chemotaxis assay", and a "retention assay" to investigate the response of C. elegans to soluble compounds. The method described in this article seeks to combine the complementary strengths of the three aforementioned assays. Briefly, a small circle in the middle of each assay plate is divided into four quadrants with the control and experimental solutions alternately placed. After the addition of the worms, the assay plates are loaded into a behavior chamber where microscope cameras record the worms' encounters with the treated regions. Automated video analysis is then performed and a preference index (PI) value for each video is generated. The video acquisition and automated analysis features of this method minimizes the experimenter's involvement and any associated errors. Furthermore, minute amounts of the experimental compound are used per assay and the behavior chamber's multi-camera setup increases experimental throughput. This method is particularly useful for conducting behavioral screens of genetic mutants and novel chemical compounds. However, this method is not appropriate for studying stimulus gradient navigation due to the close proximity of the control and experimental solution regions. It should also not be used when only a small population of worms is available. While suitable for assaying responses only to soluble compounds in its current form, this method can be easily modified to accommodate multimodal sensory interaction and optogenetic studies. This method can also be adapted to assay the chemosensory responses of other nematode species.
Collapse
Affiliation(s)
- Cynthia M Chai
- Division of Biology and Bioengineering, California Institute of Technology; Howard Hughes Medical Institute, California Institute of Technology;
| | - Christopher J Cronin
- Division of Biology and Bioengineering, California Institute of Technology; Howard Hughes Medical Institute, California Institute of Technology
| | - Paul W Sternberg
- Division of Biology and Bioengineering, California Institute of Technology; Howard Hughes Medical Institute, California Institute of Technology
| |
Collapse
|
93
|
Igual Gil C, Jarius M, von Kries JP, Rohlfing AK. Neuronal Chemosensation and Osmotic Stress Response Converge in the Regulation of aqp-8 in C. elegans. Front Physiol 2017. [PMID: 28649202 PMCID: PMC5465262 DOI: 10.3389/fphys.2017.00380] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aquaporins occupy an essential role in sustaining the salt/water balance in various cells types and tissues. Here, we present new insights into aqp-8 expression and regulation in Caenorhabditis elegans. We show, that upon exposure to osmotic stress, aqp-8 exhibits a distinct expression pattern within the excretory cell compared to other C. elegans aquaporins expressed. This expression is correlated to the osmolarity of the surrounding medium and can be activated physiologically by osmotic stress or genetically in mutants with constitutively active osmotic stress response. In addition, we found aqp-8 expression to be constitutively active in the TRPV channel mutant osm-9(ok1677). In a genome-wide RNAi screen we identified additional regulators of aqp-8. Many of these regulators are connected to chemosensation by the amphid neurons, e.g., odr-10 and gpa-6, and act as suppressors of aqp-8 expression. We postulate from our results, that aqp-8 plays an important role in sustaining the salt/water balance during a secondary response to hyper-osmotic stress. Upon its activation aqp-8 promotes vesicle docking to the lumen of the excretory cell and thereby enhances the ability to secrete water and transport osmotic active substances or waste products caused by protein damage. In summary, aqp-8 expression and function is tightly regulated by a network consisting of the osmotic stress response, neuronal chemosensation as well as the response to protein damage. These new insights in maintaining the salt/water balance in C. elegans will help to reveal the complex homeostasis network preserved throughout species.
Collapse
Affiliation(s)
- Carla Igual Gil
- Zoophysiology, Institute for Biochemistry and Biology, University PotsdamPotsdam, Germany
| | - Mirko Jarius
- Zoophysiology, Institute for Biochemistry and Biology, University PotsdamPotsdam, Germany
| | - Jens P von Kries
- Leibniz-Institut für Molekulare Pharmakologie (FMP)Berlin, Germany
| | - Anne-Katrin Rohlfing
- Zoophysiology, Institute for Biochemistry and Biology, University PotsdamPotsdam, Germany
| |
Collapse
|
94
|
Scholz N, Monk KR, Kittel RJ, Langenhan T. Adhesion GPCRs as a Putative Class of Metabotropic Mechanosensors. Handb Exp Pharmacol 2017; 234:221-247. [PMID: 27832490 DOI: 10.1007/978-3-319-41523-9_10] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Adhesion GPCRs as mechanosensors. Different aGPCR homologs and their cognate ligands have been described in settings, which suggest that they function in a mechanosensory capacity. For details, see text G protein-coupled receptors (GPCRs) constitute the most versatile superfamily of biosensors. This group of receptors is formed by hundreds of GPCRs, each of which is tuned to the perception of a specific set of stimuli a cell may encounter emanating from the outside world or from internal sources. Most GPCRs are receptive for chemical compounds such as peptides, proteins, lipids, nucleotides, sugars, and other organic compounds, and this capacity is utilized in several sensory organs to initiate visual, olfactory, gustatory, or endocrine signals. In contrast, GPCRs have only anecdotally been implicated in the perception of mechanical stimuli. Recent studies, however, show that the family of adhesion GPCRs (aGPCRs), which represents a large panel of over 30 homologs within the GPCR superfamily, displays molecular design and expression patterns that are compatible with receptivity toward mechanical cues (Fig. 1). Here, we review physiological and molecular principles of established mechanosensors, discuss their relevance for current research of the mechanosensory function of aGPCRs, and survey the current state of knowledge on aGPCRs as mechanosensing molecules.
Collapse
Affiliation(s)
- Nicole Scholz
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Röntgenring 9, Würzburg, 97070, Germany.
| | - Kelly R Monk
- Department of Developmental Biology, Hope Center for Neurologic Disorders, Washington University School of Medicine, St. Louis, 63110, MO, USA
| | - Robert J Kittel
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Röntgenring 9, Würzburg, 97070, Germany
| | - Tobias Langenhan
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Röntgenring 9, Würzburg, 97070, Germany.
| |
Collapse
|
95
|
Ghosh DD, Nitabach MN, Zhang Y, Harris G. Multisensory integration in C. elegans. Curr Opin Neurobiol 2017; 43:110-118. [PMID: 28273525 PMCID: PMC5501174 DOI: 10.1016/j.conb.2017.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 12/19/2022]
Abstract
Multisensory integration is a neural process by which signals from two or more distinct sensory channels are simultaneously processed to form a more coherent representation of the environment. Multisensory integration, especially when combined with a survey of internal states, provides selective advantages for animals navigating complex environments. Despite appreciation of the importance of multisensory integration in behavior, the underlying molecular and cellular mechanisms remain poorly understood. Recent work looking at how Caenorhabditis elegans makes multisensory decisions has yielded mechanistic insights into how a relatively simple and well-defined nervous system employs circuit motifs of defined features, synaptic signals and extrasynaptic neurotransmission, as well as neuromodulators in processing and integrating multiple sensory inputs to generate flexible and adaptive behavioral outputs.
Collapse
Affiliation(s)
- D Dipon Ghosh
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, United States
| | - Michael N Nitabach
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, United States; Department of Genetics, Yale University, New Haven, CT, United States; Kavli Institute for Neuroscience, Yale University, New Haven, CT, United States.
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, United States.
| | - Gareth Harris
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA, United States
| |
Collapse
|
96
|
Polymodal Responses in C. elegans Phasmid Neurons Rely on Multiple Intracellular and Intercellular Signaling Pathways. Sci Rep 2017; 7:42295. [PMID: 28195191 PMCID: PMC5307315 DOI: 10.1038/srep42295] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/09/2017] [Indexed: 12/03/2022] Open
Abstract
Animals utilize specialized sensory neurons enabling the detection of a wide range of environmental stimuli from the presence of toxic chemicals to that of touch. However, how these neurons discriminate between different kinds of stimuli remains poorly understood. By combining in vivo calcium imaging and molecular genetic manipulation, here we investigate the response patterns and the underlying mechanisms of the C. elegans phasmid neurons PHA/PHB to a variety of sensory stimuli. Our observations demonstrate that PHA/PHB neurons are polymodal sensory neurons which sense harmful chemicals, hyperosmotic solutions and mechanical stimulation. A repulsive concentration of IAA induces calcium elevations in PHA/PHB and both OSM-9 and TAX-4 are essential for IAA-sensing in PHA/PHB. Nevertheless, the PHA/PHB neurons are inhibited by copper and post-synaptically activated by copper removal. Neuropeptide is likely involved in copper removal-induced calcium elevations in PHA/PHB. Furthermore, mechanical stimulation activates PHA/PHB in an OSM-9-dependent manner. Our work demonstrates how PHA/PHB neurons respond to multiple environmental stimuli and lays a foundation for the further understanding of the mechanisms of polymodal signaling, such as nociception, in more complex organisms.
Collapse
|
97
|
Burrell BD. Comparative biology of pain: What invertebrates can tell us about how nociception works. J Neurophysiol 2017; 117:1461-1473. [PMID: 28053241 DOI: 10.1152/jn.00600.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 12/30/2022] Open
Abstract
The inability to adequately treat chronic pain is a worldwide health care crisis. Pain has both an emotional and a sensory component, and this latter component, nociception, refers specifically to the detection of damaging or potentially damaging stimuli. Nociception represents a critical interaction between an animal and its environment and exhibits considerable evolutionary conservation across species. Using comparative approaches to understand the basic biology of nociception could promote the development of novel therapeutic strategies to treat pain, and studies of nociception in invertebrates can provide especially useful insights toward this goal. Both vertebrates and invertebrates exhibit segregated sensory pathways for nociceptive and nonnociceptive information, injury-induced sensitization to nociceptive and nonnociceptive stimuli, and even similar antinociceptive modulatory processes. In a number of invertebrate species, the central nervous system is understood in considerable detail, and it is often possible to record from and/or manipulate single identifiable neurons through either molecular genetic or physiological approaches. Invertebrates also provide an opportunity to study nociception in an ethologically relevant context that can provide novel insights into the nature of how injury-inducing stimuli produce persistent changes in behavior. Despite these advantages, invertebrates have been underutilized in nociception research. In this review, findings from invertebrate nociception studies are summarized, and proposals for how research using invertebrates can address questions about the fundamental mechanisms of nociception are presented.
Collapse
Affiliation(s)
- Brian D Burrell
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
98
|
Leung K, Mohammadi A, Ryu WS, Nemenman I. Stereotypical Escape Behavior in Caenorhabditis elegans Allows Quantification of Effective Heat Stimulus Level. PLoS Comput Biol 2016; 12:e1005262. [PMID: 28027302 PMCID: PMC5189946 DOI: 10.1371/journal.pcbi.1005262] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022] Open
Abstract
A goal of many sensorimotor studies is to quantify the stimulus-behavioral response relation for specific organisms and specific sensory stimuli. This is especially important to do in the context of painful stimuli since most animals in these studies cannot easily communicate to us their perceived levels of such noxious stimuli. Thus progress on studies of nociception and pain-like responses in animal models depends crucially on our ability to quantitatively and objectively infer the sensed levels of these stimuli from animal behaviors. Here we develop a quantitative model to infer the perceived level of heat stimulus from the stereotyped escape response of individual nematodes Caenorhabditis elegans stimulated by an IR laser. The model provides a method for quantification of analgesic-like effects of chemical stimuli or genetic mutations in C. elegans. We test ibuprofen-treated worms and a TRPV (transient receptor potential) mutant, and we show that the perception of heat stimuli for the ibuprofen treated worms is lower than the wild-type. At the same time, our model shows that the mutant changes the worm’s behavior beyond affecting the thermal sensory system. Finally, we determine the stimulus level that best distinguishes the analgesic-like effects and the minimum number of worms that allow for a statistically significant identification of these effects. A doctor assesses pain by asking her patient to “rate your pain on the scale of 1 to 10.” She may then prescribe some drugs and later ask the question again to see if they worked. New drugs are often developed using animal models, but we cannot ask an animal, especially a small invertebrate animal, to rate, similarly, the strength of its perceived noxious stimulus. In this paper, we successfully develop computational tools that read the “body language” of a roundworm C. elegans to estimate the strength of the heat stimulus that it experiences. Unlike previous attempts that have focused on ad hoc selected components of the overall behavior, our approach is based on quantifying the complete time series of the escape behavior, which we show to be captured by a behavioral “template” that scales in response to the stimulus strength. The existence of this template allows us to solve one of the hard questions in pain research: disambiguating analgesic-like effects of drugs or genetic perturbations from their other effects on animal behavior.
Collapse
Affiliation(s)
- Kawai Leung
- Department of Physics, Emory University, Atlanta, Georgia, United States of America
| | - Aylia Mohammadi
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - William S. Ryu
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (WSR); (IN)
| | - Ilya Nemenman
- Department of Physics, Emory University, Atlanta, Georgia, United States of America
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (WSR); (IN)
| |
Collapse
|
99
|
Nicotinamide is an endogenous agonist for a C. elegans TRPV OSM-9 and OCR-4 channel. Nat Commun 2016; 7:13135. [PMID: 27731314 PMCID: PMC5064019 DOI: 10.1038/ncomms13135] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 09/07/2016] [Indexed: 12/30/2022] Open
Abstract
TRPV ion channels are directly activated by sensory stimuli and participate in thermo-, mechano- and chemo-sensation. They are also hypothesized to respond to endogenous agonists that would modulate sensory responses. Here, we show that the nicotinamide (NAM) form of vitamin B3 is an agonist of a Caenorhabditis elegans TRPV channel. Using heterologous expression in Xenopus oocytes, we demonstrate that NAM is a soluble agonist for a channel consisting of the well-studied OSM-9 TRPV subunit and relatively uncharacterized OCR-4 TRPV subunit as well as the orthologous Drosophila Nan-Iav TRPV channel, and we examine stoichiometry of subunit assembly. Finally, we show that behaviours mediated by these C. elegans and Drosophila channels are responsive to NAM, suggesting conservation of activity of this soluble endogenous metabolite on TRPV activity. Our results in combination with the role of NAM in NAD+ metabolism suggest an intriguing link between metabolic regulation and TRPV channel activity. TRPV are cation channels activated by physical and chemical stimuli. Here the authors show that nicotinamide is a soluble, endogenous agonist for orthologous TRPV channels from C. elegans and Drosophila, unveiling a metabolic-based regulation for TRPV channel activity.
Collapse
|
100
|
Fels B, Nielsen N, Schwab A. Role of TRPC1 channels in pressure-mediated activation of murine pancreatic stellate cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:657-670. [PMID: 27670661 DOI: 10.1007/s00249-016-1176-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022]
Abstract
The tumor environment contributes importantly to tumor cell behavior and cancer progression. Aside from biochemical constituents, physical factors of the environment also influence the tumor. Growing evidence suggests that mechanics [e.g., tumor (stroma) elasticity, tissue pressure] are critical players of cancer progression. Underlying mechanobiological mechanisms involve among others the regulation of focal adhesion molecules, cytoskeletal modifications, and mechanosensitive (MS) ion channels of cancer- and tumor-associated cells. After reviewing the current concepts of cancer mechanobiology, we will focus on the canonical transient receptor potential 1 (TRPC1) channel and its role in mechano-signaling in tumor-associated pancreatic stellate cells (PSCs). PSCs are key players of pancreatic fibrosis, especially in cases of pancreatic ductal adenocarcinoma (PDAC). PDAC is characterized by the formation of a dense fibrotic stroma (desmoplasia), primarily formed by activated PSCs. Desmoplasia contributes to high pancreatic tissue pressure, which in turn activates PSCs, thereby perpetuating matrix deposition. Here, we investigated the role of the putatively mechanosensitive TRPC1 channels in murine PSCs exposed to elevated ambient pressure. Pressurization leads to inhibition of mRNA expression of MS ion channels. Migration of PSCs representing a readout of their activation is enhanced in pressurized PSCs. Knockout of TRPC1 leads to an attenuated phenotype. While TRPC1-mediated calcium influx is increased in wild-type PSCs after pressure incubation, loss of TRPC1 abolishes this effect. Our findings provide mechanistic insight how pressure, an important factor of the PDAC environment, contributes to PSC activation. TRPC1-mediated activation could be a potential target to disrupt the positive feedback of PSC activation and PDAC progression.
Collapse
Affiliation(s)
- Benedikt Fels
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Munster, Germany
| | - Nikolaj Nielsen
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Munster, Germany. .,Novo Nordisk A/S, Smørmosevej 10-12, 2880, Bagsværd, Denmark.
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Munster, Germany
| |
Collapse
|