51
|
Rorick AM, Mei W, Liette NL, Phiel C, El-Hodiri HM, Yang J. PP2A:B56ε is required for eye induction and eye field separation. Dev Biol 2007; 302:477-93. [PMID: 17074314 DOI: 10.1016/j.ydbio.2006.10.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 09/29/2006] [Accepted: 10/05/2006] [Indexed: 12/18/2022]
Abstract
Eye induction and eye field separation are the earliest events during vertebrate eye development. Both of these processes occur much earlier than the formation of optic vesicles. The insulin-like growth factor (IGF) pathway appears to be essential for eye induction, yet it remains unclear how IGF downstream pathways are involved in eye induction. As a consequence of eye induction, a single eye anlage is specified in the anterior neural plate. Subsequently, this single eye anlage is divided into two symmetric eye fields in response to Sonic Hedgehog (Shh) secreted from the prechordal mesoderm. Here, we report that B56epsilon regulatory subunit of protein phosphatase 2A (PP2A) is involved in Xenopus eye induction and subsequent eye field separation. We provide evidence that B56epsilon is required for the IGF/PI3K/Akt pathway and that interfering with the PI3K/Akt pathway inhibits eye induction. In addition, we show that B56epsilon regulates the Hedgehog (Hh) pathway during eye field separation. Thus, B56epsilon is involved in multiple signaling pathways and plays critical roles during early development.
Collapse
Affiliation(s)
- Anna M Rorick
- Columbus Children's Research Institute, Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | | | | | | | | | | |
Collapse
|
52
|
Sölter M, Locker M, Boy S, Taelman V, Bellefroid EJ, Perron M, Pieler T. Characterization and function of the bHLH-O protein XHes2: insight into the mechanisms controlling retinal cell fate decision. Development 2007; 133:4097-108. [PMID: 17008450 DOI: 10.1242/dev.02567] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurons and glial cells differentiate from common multipotent precursors in the vertebrate retina. We have identified a novel member of the hairy/Enhancer of split [E(spl)] gene family in Xenopus, XHes2, as a regulator to bias retinal precursor cells towards a glial fate. XHes2 expression is predominantly restricted to sensory organ territories, including the retina. Using in vivo lipofection in the optic vesicle, we found that XHes2 overexpression dramatically increases gliogenesis at the expense of neurogenesis. This increase in glial cells correlates with a delayed cell cycle withdrawal of some retinal progenitors. In addition, birthdating experiments suggest that XHes2 deviates some early born cell types towards a glial fate that would normally have given rise to neurons. Conversely, a significant inhibition of glial differentiation is observed upon XHes2 loss of function. The gliogenic activity of XHes2 relies on its ability to inhibit neuronal differentiation by at least two distinct mechanisms: it not only negatively regulates XNgnr1 and NeuroD transcription, but it also physically interacts with a subset of proneural bHLH proteins.
Collapse
Affiliation(s)
- Marion Sölter
- DFG-Center of Molecular Physiology of the Brain, Department of Developmental Biochemistry, University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| | | | | | | | | | | | | |
Collapse
|
53
|
Cartry J, Nichane M, Ribes V, Colas A, Riou JF, Pieler T, Dollé P, Bellefroid EJ, Umbhauer M. Retinoic acid signalling is required for specification of pronephric cell fate. Dev Biol 2006; 299:35-51. [PMID: 16979153 DOI: 10.1016/j.ydbio.2006.06.047] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 06/20/2006] [Accepted: 06/27/2006] [Indexed: 10/24/2022]
Abstract
The mechanisms by which a subset of mesodermal cells are committed to a nephrogenic fate are largely unknown. In this study, we have investigated the role of retinoic acid (RA) signalling in this process using Xenopus laevis as a model system and Raldh2 knockout mice. Pronephros formation in Xenopus embryo is severely impaired when RA signalling is inhibited either through expression of a dominant-negative RA receptor, or by expressing the RA-catabolizing enzyme XCyp26 or through treatment with chemical inhibitors. Conversely, ectopic RA signalling expands the size of the pronephros. Using a transplantation assay that inhibits RA signalling specifically in pronephric precursors, we demonstrate that this signalling is required within this cell population. Timed antagonist treatments show that RA signalling is required during gastrulation for expression of Xlim-1 and XPax-8 in pronephric precursors. Moreover, experiments conducted with a protein synthesis inhibitor indicate that RA may directly regulate Xlim-1. Raldh2 knockout mouse embryos fail to initiate the expression of early kidney-specific genes, suggesting that implication of RA signalling in the early steps of kidney formation is evolutionary conserved in vertebrates.
Collapse
Affiliation(s)
- Jérôme Cartry
- Laboratoire de Biologie du Développement, équipe Signalisation et Morphogenèse, UMR CNRS 7622, Université Paris VI, 9 quai Saint-Bernard, 75005 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Schlosser G. Induction and specification of cranial placodes. Dev Biol 2006; 294:303-51. [PMID: 16677629 DOI: 10.1016/j.ydbio.2006.03.009] [Citation(s) in RCA: 282] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 12/17/2022]
Abstract
Cranial placodes are specialized regions of the ectoderm, which give rise to various sensory ganglia and contribute to the pituitary gland and sensory organs of the vertebrate head. They include the adenohypophyseal, olfactory, lens, trigeminal, and profundal placodes, a series of epibranchial placodes, an otic placode, and a series of lateral line placodes. After a long period of neglect, recent years have seen a resurgence of interest in placode induction and specification. There is increasing evidence that all placodes despite their different developmental fates originate from a common panplacodal primordium around the neural plate. This common primordium is defined by the expression of transcription factors of the Six1/2, Six4/5, and Eya families, which later continue to be expressed in all placodes and appear to promote generic placodal properties such as proliferation, the capacity for morphogenetic movements, and neuronal differentiation. A large number of other transcription factors are expressed in subdomains of the panplacodal primordium and appear to contribute to the specification of particular subsets of placodes. This review first provides a brief overview of different cranial placodes and then synthesizes evidence for the common origin of all placodes from a panplacodal primordium. The role of various transcription factors for the development of the different placodes is addressed next, and it is discussed how individual placodes may be specified and compartmentalized within the panplacodal primordium. Finally, tissues and signals involved in placode induction are summarized with a special focus on induction of the panplacodal primordium itself (generic placode induction) and its relation to neural induction and neural crest induction. Integrating current data, new models of generic placode induction and of combinatorial placode specification are presented.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Brain Research Institute, AG Roth, University of Bremen, FB2, 28334 Bremen, Germany.
| |
Collapse
|
55
|
Schlosser G. Development and evolution of lateral line placodes in amphibians I. Development. ZOOLOGY 2006; 105:119-46. [PMID: 16351862 DOI: 10.1078/0944-2006-00058] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2002] [Accepted: 05/30/2002] [Indexed: 11/18/2022]
Abstract
Lateral line placodes are specialized regions of the ectoderm that give rise to the receptor organs of the lateral line system as well as to the sensory neurons innervating them. The development of lateral line placodes has been studied in amphibians since the early 1900s. This paper reviews these older studies and tries to integrate them with more recent findings. Lateral line placodes are probably induced in a multistep process from a panplacodal area surrounding the neural plate. The time schedule of these inductive processes has begun to be unravelled, but little is known yet about their molecular basis. Subsequent pattern formation, morphogenesis and differentiation of lateral line placodes proceeds in most respects relatively autonomously: Onset and polarity of migration of lateral line primordia, the type, spacing, size and number of receptor organs formed, as well as the patterned differentiation of different cell types occur normally even in ectopic locations. Only the pathways for migration of lateral line primordia depend on external cues. Thus, lateral line placodes act as integrated and relatively context-insensitive developmental modules.
Collapse
|
56
|
Kumasaka M, Sato S, Yajima I, Goding CR, Yamamoto H. Regulation of melanoblast and retinal pigment epithelium development by Xenopus laevis Mitf. Dev Dyn 2006; 234:523-34. [PMID: 16028277 DOI: 10.1002/dvdy.20505] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mitf is a central regulator of pigment cell development that is essential for the normal development of the melanocyte and retinal pigment epithelium (RPE) lineages. To understand better the role of Mitf, we have used the Xenopus laevis experimental system to allow a rapid examination of the role of Mitf in vivo. Here, we report the function of XlMitfalpha-M on melanophore development and melanization compared with that of Slug that is expressed in neural crest cells. Overexpression of XlMitfalpha-M led to an increase in melanophores that was partly contributed by an increase in Slug-positive cells, indicating that XlMitfalpha-M is a key regulator of melanocyte/melanophore development and melanization. Moreover, overexpression of a dominant-negative form of XlMitfalpha led to a decrease in the number of melanophores and induced abnormal melanoblast migration. We also observed an induction of ectopic RPE and extended RPE by overexpression of XlMitfalpha-M and possible interactions between XlMitfalpha and several eye-related genes essential for normal eye development.
Collapse
Affiliation(s)
- Mayuko Kumasaka
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | | | | | | | | |
Collapse
|
57
|
Sánchez-Calderón H, Martín-Partido G, Hidalgo-Sánchez M. Pax2 expression patterns in the developing chick inner ear. Gene Expr Patterns 2005; 5:763-73. [PMID: 15979948 DOI: 10.1016/j.modgep.2005.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 04/05/2005] [Accepted: 04/05/2005] [Indexed: 11/15/2022]
Abstract
The fate specification of the developing vertebrate inner ear could be determined by complex regulatory genetic pathways involving the Pax2/5/8 genes. Pax2 expression has been reported in the otic placode and vesicle of all vertebrates that have been studied. Loss-of-function experiments suggest that the Pax2 gene plays a key role in the development of the cochlear duct and acoustic ganglion. Despite all these data, the role of Pax2 gene in the specification of the otic epithelium is still only poorly defined. In the present work, we report a detailed study of the spatial and temporal Pax2 expression patterns during the development of the chick inner ear. In the period analysed, Pax2 is expressed only in some presumptive sensory patches, but not all, even though all sensory patches show the scattered Pax2 expression pattern later on. We also show that Pax2 is also expressed in several non-sensory structures.
Collapse
|
58
|
Schlosser G. Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:347-99. [PMID: 16003766 DOI: 10.1002/jez.b.21055] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ectodermal placodes comprise the adenohypophyseal, olfactory, lens, profundal, trigeminal, otic, lateral line, and epibranchial placodes. The first part of this review presents a brief overview of placode development. Placodes give rise to a variety of cell types and contribute to many sensory organs and ganglia of the vertebrate head. While different placodes differ with respect to location and derivative cell types, all appear to originate from a common panplacodal primordium, induced at the anterior neural plate border by a combination of mesodermal and neural signals and defined by the expression of Six1, Six4, and Eya genes. Evidence from mouse and zebrafish mutants suggests that these genes promote generic placodal properties such as cell proliferation, cell shape changes, and specification of neurons. The common developmental origin of placodes suggests that all placodes may have evolved in several steps from a common precursor. The second part of this review summarizes our current knowledge of placode evolution. Although placodes (like neural crest cells) have been proposed to be evolutionary novelties of vertebrates, recent studies in ascidians and amphioxus have proposed that some placodes originated earlier in the chordate lineage. However, while the origin of several cellular and molecular components of placodes (e.g., regionalized expression domains of transcription factors and some neuronal or neurosecretory cell types) clearly predates the origin of vertebrates, there is presently little evidence that these components are integrated into placodes in protochordates. A scenario is presented according to which all placodes evolved from an adenohypophyseal-olfactory protoplacode, which may have originated in the vertebrate ancestor from the anlage of a rostral neurosecretory organ (surviving as Hatschek's pit in present-day amphioxus).
Collapse
|
59
|
Casarosa S, Leone P, Cannata S, Santini F, Pinchera A, Barsacchi G, Andreazzoli M. Genetic analysis of metamorphic and premetamorphic Xenopus ciliary marginal zone. Dev Dyn 2005; 233:646-51. [PMID: 15844194 DOI: 10.1002/dvdy.20369] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A major event affecting the eye during amphibian metamorphosis is an asymmetrical growth of the ventrotemporal portion of the retina compared with its dorsonasal counterpart. This event is due to an increased proliferation of the precursors of the ventral ciliary marginal zone (CMZ). Here, we analyze the expression patterns of several key homeobox genes implicated in eye development (Xrx1, Xvax2, Xsix3, Xpax6, Xchx10, Xotx2) to understand whether they are active at the time in which the metamorphic changes of the retina occur. We also analyze their expression patterns in the ventral and dorsal CMZ and compare them with bromodeoxyuridine incorporation in the CMZ. Our results suggest that the metamorphic CMZ maintains the functional subdivisions described during embryonic development. Moreover, we find that genes involved in proliferation and cell type determination of the embryonic retina are actively transcribed in the proliferating CMZ, thus indicating a potential regulatory role for these genes in the metamorphic retina.
Collapse
Affiliation(s)
- S Casarosa
- Laboratorio di Biologia Cellulare e dello Sviluppo, Dipartimento di Fisiologia e Biochimica, Università di Pisa, Ghezzano-Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
60
|
Ward HH, Wang J, Phillips C. Analysis of multiple Invs transcripts in mouse and MDCK cells. Genomics 2005; 84:991-1001. [PMID: 15533716 DOI: 10.1016/j.ygeno.2004.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 07/19/2004] [Accepted: 08/03/2004] [Indexed: 01/05/2023]
Abstract
Infantile nephronophthisis is associated with cystic kidneys, situs inversus, and INVS mutations. The function of the INVS product, inversin, is unknown but evidence suggests there are multiple inversin isoforms with differing molecular weights, cellular localization patterns, and binding partners. We used Northern blots, RT-PCR, and sequence analysis to identify alternative INVS transcripts. Northern blots probed with Invs cDNA detected four bands in normal mouse kidney. RT-PCR of mouse kidney RNA revealed Invs transcripts with skipping of exon 5, 11, or 13. We sequenced canine (MDCK-II cells) INVS and determined that the corresponding full-length protein shares identity with mouse (74%) and human (84%) inversin. Canine INVS produces a transcript that skips exon 12. Exon skips cause loss of inversin protein motifs, including ankyrin repeats, IQ domains, destruction boxes, and nuclear localization signals. Identification of INVS splice variants will help us determine which inversin protein motifs contribute to left-right asymmetry and kidney development.
Collapse
Affiliation(s)
- Heather H Ward
- Department of Pathology, Indiana University School of Medicine, 950 West Walnut, RII 202, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
61
|
Hidalgo-Sánchez M, Millet S, Bloch-Gallego E, Alvarado-Mallart RM. Specification of the meso-isthmo-cerebellar region: the Otx2/Gbx2 boundary. ACTA ACUST UNITED AC 2005; 49:134-49. [PMID: 16111544 DOI: 10.1016/j.brainresrev.2005.01.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 01/11/2005] [Accepted: 01/14/2005] [Indexed: 10/25/2022]
Abstract
The midbrain/hindbrain (MH) territory containing the mesencephalic and isthmocerebellar primordial is characterized by the expression of several families of regulatory genes including transcription factors (Otx, Gbx, En, and Pax) and signaling molecules (Fgf and Wnt). At earlier stages of avian neural tube, those genes present a dynamic expression pattern and only at HH18-20 onwards, when the mesencephalic/metencephalic constriction is coincident with the Otx2/Gbx2 boundary, their expression domains become more defined. This review summarizes experimental data concerning the genetic mechanisms involved in the specification of the midbrain/hindbrain territory emphasizing the chick/quail chimeric experiments leading to the discovery of a secondary isthmic organizer. Otx2 and Gbx2 co-regulation could determine the precise location of the MH boundary and involved in the inductive events characteristic of the isthmic organizer center.
Collapse
Affiliation(s)
- Matías Hidalgo-Sánchez
- INSERM U106,Hôpital de la Salpétrière, Pavillon Enfants et Adolescents, 75651 Paris CEDEX 13, France.
| | | | | | | |
Collapse
|
62
|
Abstract
Sensory placodes are unique domains of thickened ectoderm in the vertebrate head that form important parts of the cranial sensory nervous system, contributing to sense organs and cranial ganglia. They generate many different cell types, ranging from simple lens fibers to neurons and sensory cells. Although progress has been made to identify cell interactions and signaling pathways that induce placodes at precise positions along the neural tube, little is known about how their precursors are specified. Here, we review the evidence that placodes arise from a unique territory, the pre-placodal region, distinct from other ectodermal derivatives. We summarize the cellular and molecular mechanisms that confer pre-placode character and differentiate placode precursors from future neural and neural crest cells. We then examine the events that subdivide the pre-placodal region into individual placodes with distinct identity. Finally, we discuss the hypothesis that pre-placodal cells have acquired a state of "placode bias" that is necessary for their progression to mature placodes and how such bias may be established molecularly.
Collapse
Affiliation(s)
- Andrew P Bailey
- Department of Craniofacial Development Dental Institute at Guy's, King's College and St. Thomas' Hospitals, Guy's Campus London SE1 9RT, United Kingdom
| | | |
Collapse
|
63
|
Abstract
Large-scale gene duplications occurred early in the vertebrate lineage after the split with protochordates. Thus, protochordate hormones and their receptors, transcription factors, and signaling pathways may be the foundation for the endocrine system in vertebrates. A number of hormones have been identified including cionin, a likely ancestor of cholecytokinin (CCK) and gastrin. Both insulin and insulin-like growth hormone (IGF) have been identified in separate cDNAs in a tunicate, whereas only a single insulin-like peptide was found in amphioxus. In tunicates, nine distinct forms of gonadotropin-releasing hormone (GnRH) are shown to induce gamete release, even though a pituitary gland and sex steroids are lacking. In both tunicates and amphioxus, there is evidence of some components of a thyroid system, but the lack of a sequenced genome for amphioxus has slowed progress in the structural identification of its hormones. Immunocytochemistry has been used to tentatively identify a number of hormones in protochordates, but structural and functional studies are needed. For receptors, protochordates have many vertebrate homologs of nuclear receptors, such as the thyroid, retinoic acid, and retinoid X receptors. Also, tunicates have cell surface receptors including the G-protein-coupled type, such as β-adrenergic, putative endocannabinoid, cionin (CCK-like), and two GnRH receptors. Several tyrosine kinase receptors include two epidermal growth factor (EGF) receptors (tunicates) and an insulin/IGF receptor (amphioxus). Interestingly, neither steroid receptors nor a full complement of enzymes for synthesis of sex steroids are encoded in the Ciona genome. Tunicates appear to have some but not all of the necessary molecules to develop a vertebrate-like pituitary or complete thyroid system.
Collapse
|
64
|
Glavic A, Maris Honoré S, Gloria Feijóo C, Bastidas F, Allende ML, Mayor R. Role of BMP signaling and the homeoprotein iroquois in the specification of the cranial placodal field. Dev Biol 2004; 272:89-103. [PMID: 15242793 DOI: 10.1016/j.ydbio.2004.04.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 03/30/2004] [Accepted: 04/19/2004] [Indexed: 01/24/2023]
Abstract
Different types of placodes originate at the anterior border of the neural plate but it is still an unresolved question whether individual placodes arise as distinct ectodermal specializations in situ or whether all or a subset of the placodes originate from a common preplacodal field. We have analyzed the expression and function of the homeoprotein Iro1 in Xenopus and zebrafish embryos, and we have compared its expression with several preplacodal and placodal markers. Our results indicate that the iro1 genes are expressed in the preplacodal region, being one of the earliest markers for this area. We show that an interaction between the neural plate and the epidermis is able to induce the expression of several preplacodal markers, including Xiro1, by a similar mechanism to that previously shown for neural crest induction. In addition, we analyzed the role of BMP in the specification of the preplacodal field by studying the expression of the preplacodal markers Six1, Xiro1, and several specific placodal markers. We experimentally modified the level of BMP activity by three different methods. First, we implanted beads soaked with noggin in early neurula stage Xenopus embryos; second, we injected the mRNA that encodes a dominant negative of the BMP receptor into Xenopus and zebrafish embryos; and third, we grafted cells expressing chordin into zebrafish embryos. The results obtained using all three methods show that a reduction in the level of BMP activity leads to an expansion of the preplacodal and placodal region similar to what has been described for neural crest regions. By using conditional constructs of Xiro1, we performed gain and loss of function experiments. We show that Xiro1 play an important role in the specification of both the preplacodal field as well as individual placodes. We have also used inducible dominant negative and activator constructs of Notch signaling components to analyze the role of these factors on placodal development. Our results indicate that the a precise level of BMP activity is required to induce the neural plate border, including placodes and neural crest cells, that in this border the iro1 gene is activated, and that this activation is required for the specification of the placodes.
Collapse
Affiliation(s)
- Alvaro Glavic
- Millennium Nucleus in Developmental Biology, Laboratory of Developmental Biology, Facultad de Ciencias, Universidad de Chile, Santiago
| | | | | | | | | | | |
Collapse
|
65
|
Satow R, Chan TC, Asashima M. The role of Xenopus frizzled-8 in pronephric development. Biochem Biophys Res Commun 2004; 321:487-94. [PMID: 15358202 DOI: 10.1016/j.bbrc.2004.06.166] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Indexed: 11/20/2022]
Abstract
Vertebrates use two or three forms of kidney successively during development and the nephric duct is essential for this succession of kidney induction. While transcripts of many Wnt ligands and Wnt receptor Frizzled genes have been localized in developing kidney, the relationship between Wnt signaling and nephric duct development remains unknown. This study investigated the role of Xenopus frizzled-8 (Xfz8) in pronephros development. Translational inhibition of Xfz8 caused a significant reduction in the staining of a duct-specific antibody, but did not affect the expression of early pronephric maker genes in the duct region. Defects in pronephric tubule branching were also observed following inhibition of Xfz8. Histological analysis revealed that the Xfz8-inhibited cells failed to form a normal epithelium structure. These results suggest that Xfz8 is involved in the process of normal epithelium formation in the developing pronephric duct and tubules after specification.
Collapse
Affiliation(s)
- Reiko Satow
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | | | | |
Collapse
|
66
|
Schlosser G, Ahrens K. Molecular anatomy of placode development in Xenopus laevis. Dev Biol 2004; 271:439-66. [PMID: 15223346 DOI: 10.1016/j.ydbio.2004.04.013] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 04/15/2004] [Accepted: 04/16/2004] [Indexed: 11/18/2022]
Abstract
We analyzed the spatiotemporal pattern of expression of 15 transcription factors (Six1, Six4, Eya1, Sox3, Sox2, Pax6, Pax3, Pax2, Pax8, Dlx3, Msx1, FoxI1c, Tbx2, Tbx3, Xiro1) during placode development in Xenopus laevis from neural plate to late tail bud stages. Out of all genes investigated, only the expression of Eya1, Six1, and Six4 is maintained in all types of placode (except the lens) throughout embryonic development, suggesting that they may promote generic placodal properties and that their crescent-shaped expression domain surrounding the neural plate defines a panplacodal primordium from which all types of placode originate. Double-labeling procedures were employed to reveal the precise position of this panplacodal primordium relative to neural plate, neural crest, and other placodal markers. Already at neural plate stages, the panplacodal primordium is subdivided into several subregions defined by particular combinations of transcription factors allowing us to identify the approximate regions of origin of various types of placode. Whereas some types of placode were already prefigured by molecularly distinct areas at neural plate stages, the epibranchial, otic, and lateral line placodes arise from a common posterior placodal area (characterized by Pax8 and Pax2 expression) and acquire differential molecular signatures only after neural tube closure. Our findings argue for a multistep mechanism of placode induction, support a combinatorial model of placode specification, and suggest that different placodes evolved from a common placodal primordium by successive recruitment of new inducers and target genes.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Brain Research Institute, University of Bremen, 28334 Bremen, Germany.
| | | |
Collapse
|
67
|
Yoshida Y, Kim S, Chiba K, Kawai S, Tachikawa H, Takahashi N. Calcineurin inhibitors block dorsal-side signaling that affect late-stage development of the heart, kidney, liver, gut and somitic tissue during Xenopus embryogenesis. Dev Growth Differ 2004; 46:139-52. [PMID: 15066193 DOI: 10.1111/j.1440-169x.2004.00733.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Calcineurin, a calcium/calmodulin-dependent serine/threonine protein phosphatase, is a key constituent of signaling pathways involved in antigen-dependent T-cell activation and development of the mammalian heart. In addition, calcineurin constitutes a part of the Wnt/calcium-signaling pathway that regulates early stages of dorsoventral axis formation in Xenopus embryos. Although some of the Wnt family members are involved in organ formation at relatively late stages of Xenopus development, the involvement of calcineurin in the development of those organs remains unclear. In the present study, we demonstrate that calcineurin inhibitors (cyclosporine A, FK506, and FK520), but not non-calcineurin inhibitors (rapamycin and GPI1046) that bind the same intracellular receptor as that for FK506, induce edema and gut coiling disruption and exhibit teratogenesis in the kidney, heart, gut, liver, and somitic tissue during Xenopus development. The same effects were observed by injecting the calcineurin inhibitors into the dorsal side, but not ventral side, of blastomeres at the 4-cell stage, although the inhibitors did not affect dorsoventral axis formation. These results suggest that calcineurin is involved in dorsal-side signaling that leads to the formation of the heart, kidney, liver, gut and somitic tissue during Xenopus embryogenesis.
Collapse
Affiliation(s)
- Yoko Yoshida
- Department of Bioengineering, United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | | | | | | | | | | |
Collapse
|
68
|
Yang J, Wu J, Tan C, Klein PS. PP2A:B56epsilon is required for Wnt/beta-catenin signaling during embryonic development. Development 2003; 130:5569-78. [PMID: 14522869 DOI: 10.1242/dev.00762] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The Wnt/beta-catenin pathway plays important roles during embryonic development and growth control. The B56 regulatory subunit of protein phosphatase 2A (PP2A) has been implicated as a regulator of this pathway. However, this has not been investigated by loss-of-function analyses. Here we report loss-of-function analysis of PP2A:B56epsilon during early Xenopus embryogenesis. We provide direct evidence that PP2A:B56epsilon is required for Wnt/beta-catenin signaling upstream of Dishevelled and downstream of the Wnt ligand. We show that maternal PP2A:B56epsilon function is required for dorsal development, and PP2A:B56epsilon function is required later for the expression of the Wnt target gene engrailed, for subsequent midbrain-hindbrain boundary formation, and for closure of the neural tube. These data demonstrate a positive role for PP2A:B56epsilon in the Wnt pathway.
Collapse
Affiliation(s)
- Jing Yang
- Department of Medicine (Hematology-Oncology) Institute, University of Pennsylvania School of Medicine, 364 Clinical Research Building, 415 Curie Blvd, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
69
|
Koebernick K, Hollemann T, Pieler T. A restrictive role for Hedgehog signalling during otic specification in Xenopus. Dev Biol 2003; 260:325-38. [PMID: 12921735 DOI: 10.1016/s0012-1606(03)00242-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vertebrate inner ear development is initiated by the specification of the otic placode, an ectodermal structure induced by signals from neighboring tissue. Although several signaling molecules have been identified as candidate otic inducers, many details of the process of inner ear induction remain elusive. Here, we report that otic induction is responsive to the level of Hedgehog (Hh) signaling activity in Xenopus, making use of both gain- and loss-of-function approaches. Ectopic activation of Hedgehog signaling resulted in the development of ectopic vesicular structures expressing the otic marker genes XPax-2, Xdll-3, and Xwnt-3A, thus revealing otic identity. Induction of ectopic otic vesicles was also achieved by misexpression of two different inhibitors of Hh signaling: the putative Hh antagonist mHIP and XPtc1deltaLoop2, a dominant-negative form of the Hh receptor Patched. In addition, misexpression of XPtc1deltaLoop2 as well as treatment of Xenopus embryos with the specific Hh signaling antagonist cyclopamine resulted in the formation of enlarged otic vesicles. In summary, our observations suggest that a defined level of Hh signaling provides a restrictive environment for otic fate in Xenopus embryos.
Collapse
Affiliation(s)
- Katja Koebernick
- Institute of Biochemistry and Molecular Cell Biology, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
70
|
Chai C, Liu YW, Chan WK. Ff1b is required for the development of steroidogenic component of the zebrafish interrenal organ. Dev Biol 2003; 260:226-44. [PMID: 12885566 DOI: 10.1016/s0012-1606(03)00219-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The zebrafish ftz-f1 gene, ff1b, is activated in two cell clusters lateral to the midline in the trunk during late embryogenesis. These cell clusters coalesce to form a discrete organ at around 30 hpf, which then begins to acquire a steroidogenic identity as evidenced by the expression of the steroidogenic enzyme genes, cyp11a and 3beta-hsd. The migration of the cell clusters to the midline is impaired in zebrafish midline signaling mutants. Knockdown of Ff1b activity by antisense ff1b morpholino oligonucleotide (ff1bMO) leads to phenotypes that are consistent with impaired osmoregulation. Injection of ff1bMO was also shown to downregulate the expression of cyp11a and 3beta-hsd. Histological comparison of wild-type and ff1b morphants at various embryonic and juvenile stages revealed the absence of interrenal tissue development in ff1b morphants. The morphological defects of ff1b morphants could be mimicked by treatment with aminoglutethimide, an inhibitor of de novo steroid synthesis. Based on these data, we propose that ff1b is required for the development of the steroidogenic tissue of the interrenal organ.
Collapse
Affiliation(s)
- Chou Chai
- Institute of Molecular Agrobiology, 1 Research Link, 117604, Singapore
| | | | | |
Collapse
|
71
|
Roël G, van den Broek O, Spieker N, Peterson-Maduro J, Destrée O. Tcf-1 expression during Xenopus development. Gene Expr Patterns 2003; 3:123-6. [PMID: 12711535 DOI: 10.1016/s1567-133x(03)00039-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the cloning and expression of Xenopus Tcf-1. The amino acid sequence of Tcf-1 of Xenopus laevis and Xenopus tropicalis is closely related to that of chicken, mouse and man. Thus, the family of Tcf/Lef proteins in the amphibian Xenopus comprises four members as in higher vertebrates. RT-PCR analysis revealed that Tcf-1 RNA encoding a beta-catenin binding isoform is maternally present as well as throughout early development. Different transcripts are expressed by alternative splicing. In cleavage and blastula stage embryos, Tcf-1 RNA is present at high levels in the animal hemisphere. During gastrulation Tcf-1 is differentially expressed with high levels in the animal cap and most of the marginal zone except for a narrow domain around the blastopore. At neurula stages expression is predominant in the neural plate. At tailbud stages expression is localized in specific areas of the brain, in the eyes, the otic vesicle, branchial arches and head mesenchyme, somites, tailbud, pronephros and pronephric duct.
Collapse
Affiliation(s)
- Giulietta Roël
- Netherlands Institute for Developmental Biology (NIOB), Hubrecht Laboratory, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
72
|
Mu H, Ohta K, Kuriyama S, Shimada N, Tanihara H, Yasuda K, Tanaka H. Equarin, a novel soluble molecule expressed with polarity at chick embryonic lens equator, is involved in eye formation. Mech Dev 2003; 120:143-55. [PMID: 12559487 DOI: 10.1016/s0925-4773(02)00423-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The lens plays an important role in eye development. To investigate the molecular mechanisms involved, we used signal sequence trap screens with a chicken lens cDNA library and identified a novel secreted molecule, equarin. Equarin encodes consensus repeat domains conserved in human SRPX and mouse Urb. In the embryonic eye, equarin transcript is detected exclusively in the lens, and persists in the lens equatorial region in a high-dorsal-to-low-ventral gradient. In vitro analysis of equarin protein indicated that after translation, it is modified, cleaved, and secreted to extracellular locations. Microinjection of equarin mRNA into Xenopus embryos induced abnormal eye development. These data suggest that equarin is involved in eye formation.
Collapse
Affiliation(s)
- Hong Mu
- Division of Developmental Neurobiology, Kumamoto University Graduate School of Medical Sciences, Honjo 2-2-1, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | |
Collapse
|
73
|
Affiliation(s)
- Stephen T Brown
- Gonda Department of Cell and Molecular Biology, House Ear Institute, 2100 West Third Street, Los Angeles, California 90057, USA
| | | | | |
Collapse
|
74
|
Khokha MK, Chung C, Bustamante EL, Gaw LWK, Trott KA, Yeh J, Lim N, Lin JCY, Taverner N, Amaya E, Papalopulu N, Smith JC, Zorn AM, Harland RM, Grammer TC. Techniques and probes for the study of Xenopus tropicalis development. Dev Dyn 2002; 225:499-510. [PMID: 12454926 DOI: 10.1002/dvdy.10184] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The frog Xenopus laevis has provided significant insights into developmental and cellular processes. However, X. laevis has an allotetraploid genome precluding its use in forward genetic analysis. Genetic analysis may be applicable to Xenopus (Silurana) tropicalis, which has a diploid genome and a shorter generation time. Here, we show that many tools for the study of X. laevis development can be applied to X. tropicalis. By using the developmental staging system of Nieuwkoop and Faber, we find that X. tropicalis embryos develop at similar rates to X. laevis, although they tolerate a narrower range of temperatures. We also show that many of the analytical reagents available for X. laevis can be effectively transferred to X. tropicalis. The X. laevis protocol for whole-mount in situ hybridization to mRNA transcripts can be successfully applied to X. tropicalis without alteration. Additionally, X. laevis probes often work in X. tropicalis--alleviating the immediate need to clone the X. tropicalis orthologs before initiating developmental studies. Antibodies that react against X. laevis proteins can effectively detect the X. tropicalis protein by using established immunohistochemistry procedures. Antisense morpholino oligonucleotides (MOs) offer a new alternative to study loss of gene activity during development. We show that MOs function in X. tropicalis. Finally, X. tropicalis offers the possibility for forward genetics and genomic analysis.
Collapse
Affiliation(s)
- Mustafa K Khokha
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Saulnier DME, Ghanbari H, Brändli AW. Essential function of Wnt-4 for tubulogenesis in the Xenopus pronephric kidney. Dev Biol 2002; 248:13-28. [PMID: 12142017 DOI: 10.1006/dbio.2002.0712] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the vertebrate embryo, development of the excretory system is characterized by the successive formation of three distinct kidneys: the pronephros, mesonephros, and metanephros. While tubulogenesis in the metanephric kidney is critically dependent on the signaling molecule Wnt-4, it is unknown whether Wnt signaling is equally required for the formation of renal epithelia in the other embryonic kidney forms. We therefore investigated the expression of Wnt genes during the pronephric kidney development in Xenopus. Wnt4 was found to be associated with developing pronephric tubules, but was absent from the pronephric duct. Onset of pronephric Wnt-4 expression coincided with mesenchyme-to-epithelium transformation. To investigate Wnt-4 gene function, we performed gain- and loss-of-function experiments. Misexpression of Wnt4 in the intermediate and lateral mesoderm caused abnormal morphogenesis of the pronephric tubules, but was not sufficient to initiate ectopic tubule formation. We used a morpholino antisense oligonucleotide-based gene knockdown strategy to disrupt Wnt-4 gene function. Xenopus embryos injected with antisense Wnt-4 morpholinos developed normally, but marker gene and morphological analysis revealed a complete absence of pronephric tubules. Pronephric duct development was largely unaffected, indicating that ductogenesis may occur normally in the absence of pronephric tubules. Our results show that, as in the metanephric kidney, Wnt-4 is critically required for tubulogenesis in the pronephric kidney, indicating that a common, evolutionary conserved gene regulatory network may control tubulogenesis in different vertebrate excretory organs.
Collapse
Affiliation(s)
- Didier M E Saulnier
- Department of Applied Biosciences, Swiss Federal Institute of Technology (ETHZ), CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
76
|
Gerber WV, Vokes SA, Zearfoss NR, Krieg PA. A role for the RNA-binding protein, hermes, in the regulation of heart development. Dev Biol 2002; 247:116-26. [PMID: 12074556 DOI: 10.1006/dbio.2002.0678] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNA-binding proteins are known to play an important role in a number of aspects of development, although in most cases the precise mechanism of action remains unknown. We have previously described the isolation of an RNA-binding protein, hermes, that is expressed at very high levels in the differentiating myocardium. Here, we report experiments aimed at elucidating the functional role of hermes in development. Utilizing the Xenopus oocyte, we show that hermes is localized primarily to the cytoplasm, can associate in a multiprotein complex, and is able to bind to mature RNA transcripts in vivo. Overexpression of hermes in the developing embryo dramatically and specifically inhibits heart development. In particular, transcripts encoding the myocardial differentiation markers, cardiac troponin I and cardiac alpha-actin, are absent, and overall morphological development of the heart is eliminated. Examination of markers of precardiac tissue showed that expression of GATA-4 is normal, while the levels of Nkx2-5 mRNA are strongly reduced. Overall, these studies suggest that hermes plays a role in the regulation of mature transcripts required for myocardial differentiation. To our knowledge, this is the first evidence for an RNA-binding protein playing a direct role in regulation of vertebrate heart development.
Collapse
Affiliation(s)
- Wendy V Gerber
- Department of Cell Biology and Anatomy, University of Arizona Health Sciences Center, Tucson 85724, USA
| | | | | | | |
Collapse
|
77
|
Glavic A, Gómez-Skarmeta JL, Mayor R. The homeoprotein Xiro1 is required for midbrain-hindbrain boundary formation. Development 2002; 129:1609-21. [PMID: 11923198 DOI: 10.1242/dev.129.7.1609] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The isthmic organizer, which patterns the anterior hindbrain and midbrain, is one of the most studied secondary organizers. In recent years, new insights have been reported on the molecular nature of its morphogenetic activity. Studies in chick, mouse and zebrafish have converged to show that mutually repressive interactions between the homeoproteins encoded by Otx and Gbx genes position this organizer in the neural primordia.
We present evidence that equivalent, in addition to novel, interactions between these and other genes operate in Xenopus embryos to position the isthmic organizer. We made use of fusion proteins in which we combined Otx2 or Gbx2 homeodomains with the E1A activation domain or the EnR repressor element which were then injected into embryos. Our results show that Otx2 and Gbx2 are likely to be transcriptional repressors, and that these two proteins repress each other transcription. Our experiments show that the interaction between these two proteins is required for the positioning of the isthmic organizer genes Fgf8, Pax2 and En2. In this study we also developed a novel in vitro assay for the study of the formation of this organizer. We show that conjugating animal caps previously injected with Otx2 and Gbx2 mRNAs recreate the interactions required for the induction of the isthmic organizer. We have used this assay to determine which cells produce and which cells receive the Fgf signal.
Finally, we have added a novel genetic element to this process, Xiro1, which encode another homeoprotein. We show that the Xiro1 expression domain overlaps with territories expressing Otx2, Gbx2 and Fgf8. By expressing wild-type or dominant negative forms of Xiro1, we show that this gene activates the expression of Gbx2 in the hindbrain. In addition, Xiro1 is required in the Otx2 territory to allow cells within this region to respond to the signals produced by adjacent Gbx2 cells. Moreover, Xiro1 is absolutely required for Fgf8 expression at the isthmic organizer. We discuss a model where Xiro1 plays different roles in regulating the genetic cascade of interactions between Otx2 and Gbx2 that are necessary for the specification of the isthmic organizer.
Collapse
Affiliation(s)
- Alvaro Glavic
- Millennium Nucleus in Developmental Biology, Laboratory of Developmental Biology, Faculty of Science, University of Chile, Casilla 653, Santiago, Chile
| | | | | |
Collapse
|
78
|
Tsuda H, Sasai N, Matsuo-Takasaki M, Sakuragi M, Murakami Y, Sasai Y. Dorsalization of the neural tube by Xenopus tiarin, a novel patterning factor secreted by the flanking nonneural head ectoderm. Neuron 2002; 33:515-28. [PMID: 11856527 DOI: 10.1016/s0896-6273(02)00590-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have isolated a novel secreted dorsalizing factor of the neural tube, Xenopus Tiarin, which belongs to the olfactomedin-related family. Tiarin expression starts at the late gastrula stage in the nonneural ectoderm adjacent to the anterior neural plate. Overexpression of Tiarin in the embryo causes expansion of dorsal neural markers and suppression of ventral markers. In the eye-forming field, Tiarin overexpression induces the retinal markers and represses optic stalk markers. Tiarin directly dorsalizes neural tissues in the absence of mesodermal tissues and antagonizes the ventralizing activity of Sonic hedghog (Shh). Unlike BMP4, another dorsalizing factor, Tiarin does not display antineuralizing activity on the ectoderm or mesoderm-ventralizing activity. These findings show that Tiarin is a novel patterning signal candidate acting in the specification of the dorsal neural tube.
Collapse
Affiliation(s)
- Hiroshi Tsuda
- Department of Medical Embryology and Neurobiology, Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
79
|
Müllegger J, Lepperdinger G. Degradation of hyaluronan by a Hyal2-type hyaluronidase affects pattern formation of vitelline vessels during embryogenesis of Xenopus laevis. Mech Dev 2002; 111:25-35. [PMID: 11804776 DOI: 10.1016/s0925-4773(01)00593-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A Hyal2-type hyaluronidase of Xenopus laevis (Xhyal2) was characterized by molecular cloning, biochemical analysis and ectopic overexpression in embryos. When expressed in Xenopus oocytes, Xhyal2 exists as a soluble protein in the extracellular space and in intercellular compartments as well as being attached to the cell surface through a glycosyl-phosphatidyl-inositol anchor. This enzyme specifically degrades hyaluronan not only at acidic pH values but more slowly also under physiological conditions. Xhyal2 is differentially expressed during embryogenesis. Particularly striking is the high level of expression in the developing brain, the head mesenchyme and the pronephros. Elevated levels of mRNA were also found in endothelial cells which will later form vascular structures. Ectopic overexpression of Xhyal2 in frog embryos causes loss of hyaluronan in the cellular environment. This causes severe defects in the assembly of the highly structured plexus of the vitelline vessels from prevascular endothelial cells. Our data support the notion that the level of Xhyal2 expression determines the organization of the extracellular environment so that cells can merge and/or migrate within an originally impenetrable matrix.
Collapse
Affiliation(s)
- Johannes Müllegger
- Department of Biochemistry, Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstr. 11, A-5020, Salzburg, Austria.
| | | |
Collapse
|
80
|
Tour E, Pillemer G, Gruenbaum Y, Fainsod A. Otx2 can activate the isthmic organizer genetic network in the Xenopus embryo. Mech Dev 2002; 110:3-13. [PMID: 11744364 DOI: 10.1016/s0925-4773(01)00591-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Development and differentiation of the vertebrate caudal midbrain and anterior hindbrain are dependent on the isthmic organizer signals at the midbrain/hindbrain boundary (MHB). The future MHB forms at the boundary between the Otx2 and Gbx2 expression domains. Recent studies in mice and chick suggested that the apposition of Otx2- and Gbx2-expressing cells is instrumental for the positioning and early induction of the MHB genetic cascade. We show that Otx2 and Gbx2 perform different roles in this process. We find that ectopically expressed Otx2 on its own can induce a substantial part of the MHB genetic network, namely En2, Wnt1, Pax-2, Fgf8 and Gbx2, in a concentration-dependent manner. This induction does not require protein synthesis and ends during neurulation. In contrast, Gbx2 is a negative regulator of Otx2 and the MHB genes. Based on the temporal patterns of expression of the genes involved, we propose that Otx2 might be the early inducer of the isthmic organizer genetic network while Gbx2 restricts Otx2 expression along the anterior-posterior axis and establishes an Otx2 gradient.
Collapse
Affiliation(s)
- Ella Tour
- Department of Cellular Biochemistry and Human Genetics, Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
81
|
Abstract
Neurogenesis in Xenopus neural ectoderm involves multiple gene families, including basic helix-loop-helix transcription factors, which initiate and control primary neurogenesis. Equally important, though less well understood, are the downstream effectors of the activity of these transcription factors. We have investigated the role of a candidate downstream effector, Noelin-1, during Xenopus development. Noelin-1 is a secreted glycoprotein that likely forms large multiunit complexes. In avians, overexpression of Noelin-1 causes prolonged and excessive neural crest migration. Our studies in Xenopus reveal that this gene, while highly conserved in sequence, has a divergent function in primary neurogenesis. Xenopus Noelin-1 is expressed mainly by postmitotic neurogenic tissues in the developing central and peripheral nervous systems, first appearing after neural tube closure. Its expression is upregulated in ectopic locations upon overexpression of the neurogenic genes X-ngnr-1 and XNeuroD. Noelin-1 expression in animal caps induces expression of neural markers XBrn-3d and XNeuroD, and co-expression of secreted Noelin-1 with noggin amplifies noggin-induced expression of XBrn-3d and XNeuroD. Furthermore, in animal caps neuralized by expression of noggin, co-expression of Noelin-1 causes expression of neuronal differentiation markers several stages before neurogenesis normally occurs in this tissue. Finally, only secreted forms of the protein can activate sensory marker expression, while all forms of the protein can induce early neurogenesis. This suggests that the cellular localization of Noelin-1 may be important to its function. Thus, Noelin-1 represents a novel secreted factor involved in neurogenesis.
Collapse
Affiliation(s)
- T A Moreno
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
82
|
Shinga J, Itoh M, Shiokawa K, Taira S, Taira M. Early patterning of the prospective midbrain-hindbrain boundary by the HES-related gene XHR1 in Xenopus embryos. Mech Dev 2001; 109:225-39. [PMID: 11731236 DOI: 10.1016/s0925-4773(01)00528-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The molecular mechanisms that govern early patterning of anterior neuroectoderm (ANE) for the prospective brain region in vertebrates are largely unknown. Screening a cDNA library of Xenopus ANE led to the isolation of a Hairy and Enhancer of split- (HES)-related transcriptional repressor gene, Xenopus HES-related 1 (XHR1). XHR1 is specifically expressed in the midbrain-hindbrain boundary (MHB) region at the tailbud stage. The localized expression of XHR1 was detected as early as the early gastrula stage in the presumptive MHB region, an area just anterior to the involuting dorsal mesoderm that is demarcated by the expression of the gene Xbra. Expression of XHR1 was detected much earlier than that of other known MHB genes, XPax-2 and En-2, and also before the formation of the expression boundary between Xotx2 and Xgbx-2, suggesting that the early patterning of the presumptive MHB is independent of Xotx2 and Xgbx-2. Instead, the location of XHR1 expression appears to be determined in relation to the Xbra expression domain, since reduced or ectopic expression of Xbra altered the XHR1 expression domain according to the location of Xbra expression. In functional assays using mRNA injection, overexpression of dominant-negative forms of XHR1 in the MHB region led to marked reduction of XPax-2 and En-2 expression, and this phenotype was rescued by coexpression of wild-type XHR1. Furthermore, ectopically expressed wild-type XHR1 near the MHB region enhanced En-2 expression only in the MHB region but not in the region outside the MHB. These data suggest that XHR1 is required, but not sufficient by itself, to initiate MHB marker gene expression. Based on these data, we propose that XHR1 demarcates the prospective MHB region in the neuroectoderm in Xenopus early gastrulae.
Collapse
Affiliation(s)
- J Shinga
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-0033, Tokyo, Japan
| | | | | | | | | |
Collapse
|
83
|
Abstract
The organizer has traditionally been considered the major source of somite-inducing signals. We show here that signaling from the neural plate specifies somite tissue and regulates somite size in the Xenopus gastrula. Ectopic undifferentiated neural tissue induces massive somite expansion at the expense of intermediate and lateral plate mesoderm. Although the early expanded somite expresses muscle-specific markers, only a portion terminally differentiates, suggesting that myotome development requires additional signals. Explant assays demonstrate that neural tissue induces somite-specific marker expression even in the absence of the organizer. Finally, we demonstrate that neural tissue is required for proper somite development because elimination of neural precursors results in pronounced somite reduction. Thus, an important reciprocal interaction exists between somite and neural tissue that is mutually reinforcing and critical for normal embryonic patterning.
Collapse
Affiliation(s)
- F V Mariani
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
84
|
Pozzoli O, Bosetti A, Croci L, Consalez GG, Vetter ML. Xebf3 is a regulator of neuronal differentiation during primary neurogenesis in Xenopus. Dev Biol 2001; 233:495-512. [PMID: 11336510 DOI: 10.1006/dbio.2001.0230] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During primary neurogenesis in Xenopus, a cascade of helix--loop--helix (HLH) transcription factors regulates neuronal determination and differentiation. While XNeuroD functions at a late step in this cascade to regulate neuronal differentiation, the factors that carry out terminal differentiation are still unknown. We have isolated a new Xenopus member of the Ebf/Olf-1 family of HLH transcription factors, Xebf3, and provide evidence that, during primary neurogenesis, it regulates neuronal differentiation downstream of XNeuroD. In developing Xenopus embryos, Xebf3 is turned on in the three stripes of primary neurons at stage 15.5, after XNeuroD. In vitro, XEBF3 binds the EBF/OLF-1 binding site and functions as a transcriptional activator. When overexpressed, Xebf3 is able to induce ectopic neurons at neural plate stages and directly convert ectodermal cells into neurons in animal cap explants. Expression of Xebf3 can be activated by XNeuroD both in whole embryos and in animal caps, indicating that this new HLH factor might be regulated by XNeuroD. Furthermore, in animal caps, XNeuroD can activate Xebf3 in the absence of protein synthesis, suggesting that, in vitro, this regulation is direct. Similar to XNeuroD, but unlike Xebf2/Xcoe2, Xebf3 expression and function are insensitive to Delta/Notch-mediated lateral inhibition. In summary, we conclude that Xebf3 functions downstream of XNeuroD and is a regulator of neuronal differentiation in Xenopus.
Collapse
Affiliation(s)
- O Pozzoli
- Department of Neuroscience, San Raffaele Scientific Institute (HSR), Milan, Italy
| | | | | | | | | |
Collapse
|
85
|
Abstract
Cranial placodes are focal regions of thickened ectoderm in the head of vertebrate embryos that give rise to a wide variety of cell types, including elements of the paired sense organs and neurons in cranial sensory ganglia. They are essential for the formation of much of the cranial sensory nervous system. Although relatively neglected today, interest in placodes has recently been reawakened with the isolation of molecular markers for different stages in their development. This has enabled a more finely tuned approach to the understanding of placode induction and development and in some cases has resulted in the isolation of inducing molecules for particular placodes. Both morphological and molecular data support the existence of a preplacodal domain within the cranial neural plate border region. Nonetheless, multiple tissues and molecules (where known) are involved in placode induction, and each individual placode is induced at different times by a different combination of these tissues, consistent with their diverse fates. Spatiotemporal changes in competence are also important in placode induction. Here, we have tried to provide a comprehensive review that synthesises the highlights of a century of classical experimental research, together with more modern evidence for the tissues and molecules involved in the induction of each placode.
Collapse
Affiliation(s)
- C V Baker
- Division of Biology 139-74, California Institute of Technology, Pasadena, California, 91125, USA.
| | | |
Collapse
|
86
|
Ghanbari H, Seo HC, Fjose A, Brändli AW. Molecular cloning and embryonic expression of Xenopus Six homeobox genes. Mech Dev 2001; 101:271-7. [PMID: 11231090 DOI: 10.1016/s0925-4773(00)00572-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Six genes are vertebrate homologues of the homeobox-containing gene sine oculis, which plays an essential role in controlling Drosophila compound eye development. Here we report the identification and expression patterns of all three subfamilies of Xenopus Six genes. Two Six2 subfamily genes (Six1, Six2) showed very similar expression patterns in cranial ganglia, otic placodes and the eyes. Non-neural expression of Six1 and Six2 was observed with mesodermal head mesenchyme, somites and their derivatives, the muscle anlagen of the embryonic trunk. In addition, Six2 expression was also found with mesenchyme associated with the developing stomach and pronephros. Expression of Six3 subfamily genes (Six3.1, Six3.2, Six6.1, and Six6.2) was restricted to the developing head, where expression was especially observed in derivatives of the forebrain (eyes, optic stalks, the hypothalamus and pituitary gland). Interestingly, expression of all Six3 subfamily members but Six6.2 was also found with the pineal gland primordium and the tegmentum. Expression of Six4 subfamily genes (Six4.1, Six4.2) was present in the developing visceral arches, placodal derivatives (otic vesicle, olfactory system), head mesenchyme and the eye. The observed dynamic expression patterns are largely conserved between lower and higher vertebrates and imply important roles of Six family genes not only in eye formation and myogenesis, but also in the development of the gut, the kidney and of placode-derived structures.
Collapse
Affiliation(s)
- H Ghanbari
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093, Zürich, Switzerland
| | | | | | | |
Collapse
|
87
|
Liu Y, Lupo G, Marchitiello A, Gestri G, He RQ, Banfi S, Barsacchi G. Expression of the Xvax2 gene demarcates presumptive ventral telencephalon and specific visual structures in Xenopus laevis. Mech Dev 2001; 100:115-8. [PMID: 11118895 DOI: 10.1016/s0925-4773(00)00505-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
vax2 is a recently isolated homeobox gene, that plays an important role in controlling the dorso-ventral patterning of the retina. In this paper we present a thorough description of the Xvax2 expression pattern all along Xenopus embryogenesis, and compare this pattern in detail to that shown by Xvax1b and Xpax2, two genes also involved in ventral eye development. At early neurula stages, while Xpax2 starts to be expressed within the eye field, both Xvax2 and Xvax1b are exclusively activated in the presumptive ventral telencephalon. Since midneurula stages, Xvax2 and Xvax1b are also transcribed in the medial aspect of the eye field. At tailbud and tadpole stages, Xvax2, Xvax1b and Xpax2 expression overlaps in the optic stalk and nerve and in the optic disk, while Xvax2 and Xvax1b also display specific activation domains in the ventral retina as well as in the ventral telencephalon and diencephalon. Finally, during metamorphosis a high level of both Xvax2 and Xvax1b transcription is maintained in the optic chiasm. In addition, Xvax1b is transcribed in the ventral hypothalamus and in the hypophysis, whereas a strong Xvax2 expression is retained in the ventral portion of the mature retina.
Collapse
Affiliation(s)
- Y Liu
- Laboratory of Visual Information Processing, Institute of Biophysics, The Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
88
|
Abstract
The mechanisms that regulate cell fate within the pronephros are poorly understood but are important for the subsequent development of the urogenital system and show many similarities to nephrogenesis in the definitive kidney. Dynamic expression of Notch-1, Serrate-1, and Delta-1 in the developing Xenopus pronephros suggests a role for this pathway in cell fate segregation. Misactivation of Notch signaling using conditionally active forms of either Notch-1 or RBP-J/Su(H) proteins prevented normal duct formation and the proper expression of genetic markers of duct cell differentiation. Inhibition of endogenous Notch signaling elicited the opposite effect. Taken together with the mRNA expression patterns, these data suggest that endogenous Notch signaling functions to inhibit duct differentiation in the dorsoanterior region of the anlage where cells are normally fated to form tubules. In addition, elevated Notch signaling in the pronephric anlage both perturbed the characteristic pattern of the differentiated tubule network and increased the expression of early markers of pronephric precursor cells, Pax-2 and Wilms' tumor suppressor gene (Wt-1). We propose that Notch signaling plays a previously unrecognized role in the early selection of duct and tubule cell fates as well as functioning subsequently to control tubule cell patterning and development.
Collapse
Affiliation(s)
- K A McLaughlin
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
89
|
Bouchard M, Pfeffer P, Busslinger M. Functional equivalence of the transcription factors Pax2 and Pax5 in mouse development. Development 2000; 127:3703-13. [PMID: 10934015 DOI: 10.1242/dev.127.17.3703] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pax2 and Pax5 arose by gene duplication at the onset of vertebrate evolution and have since diverged in their developmental expression patterns. They are expressed in different organs of the mouse embryo except for their coexpression at the midbrain-hindbrain boundary (MHB), which functions as an organizing center to control midbrain and cerebellum development. During MHB development, Pax2 expression is initiated prior to Pax5 transcription, and Pax2(−/−) embryos fail to generate the posterior midbrain and cerebellum, whereas Pax5(−/−) mice exhibit only minor patterning defects in the same brain regions. To investigate whether these contrasting phenotypes are caused by differences in the temporal expression or biochemical activity of these two transcription factors, we have generated a knock-in (ki) mouse, which expresses a Pax5 minigene under the control of the Pax2 locus. Midbrain and cerebellum development was entirely rescued in Pax2(5ki/5ki) embryos. Pax5 could furthermore completely substitute for the Pax2 function during morphogenesis of the inner ear and genital tracts, despite the fact that the Pax5 transcript of the Pax2(5ki)allele was expressed only at a fivefold lower level than the wild-type Pax2 mRNA. As a consequence, the Pax2(5ki)allele was able to rescue most but not all Pax2 mutant defects in the developing eye and kidney, both of which are known to be highly sensitive to Pax2 protein dosage. Together these data demonstrate that the transcription factors Pax2 and Pax5 have maintained equivalent biochemical functions since their divergence early in vertebrate evolution.
Collapse
Affiliation(s)
- M Bouchard
- Research Institute of Molecular Pathology, Dr Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | |
Collapse
|
90
|
Heller N, Brändli AW. Xenopus Pax-2/5/8 orthologues: novel insights into Pax gene evolution and identification of Pax-8 as the earliest marker for otic and pronephric cell lineages. DEVELOPMENTAL GENETICS 2000; 24:208-19. [PMID: 10322629 DOI: 10.1002/(sici)1520-6408(1999)24:3/4<208::aid-dvg4>3.0.co;2-j] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pax genes are a family of transcription factors playing fundamental roles during organogenesis. We have recently demonstrated the expression of Pax-2 during Xenopus embryogenesis [Heller N, Brändli AW (1997): Mech Dev 69: 83-104]. Here we report the cloning and characterization of Xenopus Pax-5 and Pax-8, two orthologues of the Pax-2/5/8 gene family. Molecular phylogenetic analysis indicates that the amphibian Pax-2/5/8 genes are close relatives of their mammalian counterparts and that all vertebrate Pax-2/5/8 genes are derived from a single ancestral gene. Xenopus Pax-2/5/8 genes are expressed in spatially and temporally overlapping patterns during development of at least seven distinct tissues. Most strikingly, Xenopus Pax-8 was identified as the earliest marker of the prospective otic placode and of the intermediate mesoderm, indicating that Pax-8 may play a central role in auditory and excretory system development. Comparison of the expression patterns of fish, amphibian, and mammalian Pax-2/5/8 genes revealed that the tissue specificity of Pax-2/5/8 gene family expression is overall evolutionarily conserved. The expression domains of individual orthologues can however vary in a species-specific manner. For example, the thyroid glands of mammals express Pax-8, while in Xenopus Pax-2 is expressed instead. Our findings indicate that differential silencing of Pax-2/5/8 gene expression may have occurred after the different classes of vertebrates began to evolve separately.
Collapse
Affiliation(s)
- N Heller
- Institute of Cell Biology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | | |
Collapse
|
91
|
Carroll TJ, Wallingford JB, Vize PD. Dynamic patterns of gene expression in the developing pronephros of Xenopus laevis. DEVELOPMENTAL GENETICS 2000; 24:199-207. [PMID: 10322628 DOI: 10.1002/(sici)1520-6408(1999)24:3/4<199::aid-dvg3>3.0.co;2-d] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Data from gene ablation studies in mice have indicated critical roles for Lim-1, Wnt4, WT-1, and Pax-2 in the coordination and execution of kidney patterning and differentiation. However, the precise roles of these molecules, their ordering within a genetic hierarchy, and the manner in which they contribute to establishing the fates of cells of each of the components of the nephron have yet to be elucidated in any system. In this report, the temporal and spatial expression patterns of these genes within the Xenopus pronephric system were examined in detail by single- and double-probe in situ hybridization. We describe restrictions of these gene expression patterns within the pronephros which indicate a model for the partitioning of the common pronephric anlage into its three component parts--the tubules, the glomus, and the duct.
Collapse
Affiliation(s)
- T J Carroll
- Department of Zoology, University of Texas, Austin 78712, USA
| | | | | |
Collapse
|
92
|
Majumdar A, Lun K, Brand M, Drummond IA. Zebrafish no isthmus reveals a role for pax2.1 in tubule differentiation and patterning events in the pronephric primordia. Development 2000; 127:2089-98. [PMID: 10769233 DOI: 10.1242/dev.127.10.2089] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pax genes are important developmental regulators and function at multiple stages of vertebrate kidney organogenesis. In this report, we have used the zebrafish pax2.1 mutant no isthmus to investigate the role for pax2.1 in development of the pronephros. We demonstrate a requirement for pax2.1 in multiple aspects of pronephric development including tubule and duct epithelial differentiation and cloaca morphogenesis. Morphological analysis demonstrates that noi(−)larvae specifically lack pronephric tubules while glomerular cell differentiation is unaffected. In addition, pax2.1 expression in the lateral cells of the pronephric primordium is required to restrict the domains of Wilms' tumor suppressor (wt1) and vascular endothelial growth factor (VEGF) gene expression to medial podocyte progenitors. Ectopic podocyte-specific marker expression in pronephric duct cells correlates with loss of expression of the pronephric tubule and duct-specific markers mAb 3G8 and a Na(+)/K(+) ATPase (α)1 subunit. The results suggest that the failure in pronephric tubule differentiation in noi arises from a patterning defect during differentiation of the pronephric primordium and that mutually inhibitory regulatory interactions play an important role in defining the boundary between glomerular and tubule progenitors in the forming nephron.
Collapse
Affiliation(s)
- A Majumdar
- Renal Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
93
|
Bernier G, Panitz F, Zhou X, Hollemann T, Gruss P, Pieler T. Expanded retina territory by midbrain transformation upon overexpression of Six6 (Optx2) in Xenopus embryos. Mech Dev 2000; 93:59-69. [PMID: 10781940 DOI: 10.1016/s0925-4773(00)00271-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During vertebrate eye development, the expression of the homeobox gene Six6 is restricted to the neural retina and is initiated later than Rx and Pax6 in the presumptive retina field. We show here that overexpression of mouse Six6 in Xenopus embryos can induce transformation of competent tissue of the anterior neural plate into retinal tissue. In Six6 injected embryos, the molecular identity of the presumptive midbrain and rostral hindbrain regions was lost, as shown by the absence of XEn-2 and Xpax2 expression, being replaced by the ectopic expression of the retinal markers Xpax6 and Xrx. When allowed to grow further, Six6 injected embryos developed ectopic eye-like structures in the rostral brain and showed a transformation of the midbrain into retina. Similar results were obtained upon overexpression of Six3 or Xsix3, revealing a possible redundance of Six3 and Six6 activities. Taken together, results obtained suggest that during normal retina development, the relatively late expressed Six6 gene becomes part of a network of retinal homeobox genes that are linked together by positive feedback loops. Furthermore, our results demonstrate that the primitive neural ectoderm of the future midbrain and rostral hindbrain is competent to form retinal tissue.
Collapse
Affiliation(s)
- G Bernier
- Department of Molecular Cell Biology, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
94
|
Abstract
Development of an organ is directed by cell and tissue interactions and these also occur during the formation of functional kidney. During vertebrate development inductive signalling between mesenchyme and epithelium controls the organogenesis of all three kinds of kidneys: pronephros, mesonephros and metanephros. In higher animals the metanephros differentiates into the permanent kidney and in this review we will mainly concentrate on its development. Molecular interactions currently known to function during nephrogenesis have primarily been based on the use of knockout techniques. These studies have highlighted the role for transcription factors, signalling molecules, growth factors and their receptors and also for extracellular matrix components in kidney development. Finally in this review we will represent our own model for kidney development according to the knowledge of the genes involved in the development of the functional excretory organ, kidney.
Collapse
Affiliation(s)
- S Kuure
- Department of Biochemistry and Biocenter Oulu, Faculties of Science and Medicine, University of Oulu, FIN-90570, Oulu, Finland
| | | | | |
Collapse
|
95
|
Helbling PM, Saulnier DM, Brändli AW. The receptor tyrosine kinase EphB4 and ephrin-B ligands restrict angiogenic growth of embryonic veins in Xenopus laevis. Development 2000; 127:269-78. [PMID: 10603345 DOI: 10.1242/dev.127.2.269] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cues and signaling systems that guide the formation of embryonic blood vessels in tissues and organs are poorly understood. Members of the Eph family of receptor tyrosine kinases and their cell membrane-anchored ligands, the ephrins, have been assigned important roles in the control of cell migration during embryogenesis, particularly in axon guidance and neural crest migration. Here we investigated the role of EphB receptors and their ligands during embryonic blood vessel development in Xenopus laevis. In a survey of tadpole-stage Xenopus embryos for EphB receptor expression, we detected expression of EphB4 receptors in the posterior cardinal veins and their derivatives, the intersomitic veins. Vascular expression of other EphB receptors, including EphB1, EphB2 or EphB3, could however not be observed, suggesting that EphB4 is the principal EphB receptor of the early embryonic vasculature of Xenopus. Furthermore, we found that ephrin-B ligands are expressed complementary to EphB4 in the somites adjacent to the migratory pathways taken by intersomitic veins during angiogenic growth. We performed RNA injection experiments to study the function of EphB4 and its ligands in intersomitic vein development. Disruption of EphB4 signaling by dominant negative EphB4 receptors or misexpression of ephrin-B ligands in Xenopus embryos resulted in intersomitic veins growing abnormally into the adjacent somitic tissue. Our findings demonstrate that EphB4 and B-class ephrins act as regulators of angiogenesis possibly by mediating repulsive guidance cues to migrating endothelial cells.
Collapse
Affiliation(s)
- P M Helbling
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
96
|
Perron M, Opdecamp K, Butler K, Harris WA, Bellefroid EJ. X-ngnr-1 and Xath3 promote ectopic expression of sensory neuron markers in the neurula ectoderm and have distinct inducing properties in the retina. Proc Natl Acad Sci U S A 1999; 96:14996-5001. [PMID: 10611326 PMCID: PMC24761 DOI: 10.1073/pnas.96.26.14996] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Xath3 encodes a Xenopus neuronal-specific basic helix-loop-helix transcription factor related to the Drosophila proneural factor atonal. We show here that Xath3 acts downstream of X-ngnr-1 during neuronal differentiation in the neural plate and retina and that its expression and activity are modulated by Notch signaling. X-ngnr-1 activates Xath3 and NeuroD by different mechanisms, and the latter two genes crossactivate each other. In the ectoderm, X-ngnr-1 and Xath3 have similar activities, inducing ectopic sensory neurons. Among the sensory-specific markers tested, only those that label cranial neurons were found to be ectopically activated. By contrast, in the retina, X-ngnr-1 and Xath3 overexpression promote the development of overlapping but distinct subtypes of retinal neurons. Together, these data suggest that X-ngnr-1 and Xath3 regulate successive stages of early neuronal differentiation and that, in addition to their general proneural properties, they may contribute, in a context-dependent manner, to some aspect of neuronal identity.
Collapse
Affiliation(s)
- M Perron
- Department of Anatomy, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | | | | | | | | |
Collapse
|
97
|
Helbling PM, Saulnier DM, Robinson V, Christiansen JH, Wilkinson DG, Brändli AW. Comparative analysis of embryonic gene expression defines potential interaction sites for Xenopus EphB4 receptors with ephrin-B ligands. Dev Dyn 1999; 216:361-73. [PMID: 10633856 DOI: 10.1002/(sici)1097-0177(199912)216:4/5<361::aid-dvdy5>3.0.co;2-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Eph family of receptor tyrosine kinases and their ligands, the ephrins, act as signaling molecules regulating the migratory behavior of neurons and neural crest cells, and are implicated in tissue patterning, blood vessel formation, and tumorigenesis. On the basis of structural similarities and overlapping binding specificities, Eph receptors as well as their ligands can be divided into A and B subfamilies with orthologues found in all vertebrates. We describe here the isolation of cDNAs encoding Xenopus EphB4 receptors and show that embryonic expression is prominently associated with the developing vasculature, newly forming somites, the visceral arches, and non-neuronal tissues of the embryonic head. In a screen to identify potential ligands for EphB4 in Xenopus embryos, we isolated cDNAs for the Xenopus ephrin-B2 and -B3, which demonstrates that the Xenopus genome harbors genes encoding orthologues to all three currently known mammalian ephrin-B genes. We next performed in situ hybridizations to identify tissues and organs where EphB4 receptors may encounter ephrin-B ligands during embryonic development. Our analysis revealed distinct, but overlapping patterns of ephrin-B gene expression. Interestingly, each ephrin-B ligand displayed expression domains either adjacent to or within EphB4-expressing tissues. These findings indicate that EphB4 receptors may interact in vivo with multiple B-class ephrins. The expression patterns also suggest that EphB4 receptors and their ligands may be involved in visceral arch formation, somitogenesis, and blood vessel development.
Collapse
Affiliation(s)
- P M Helbling
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
98
|
Holland LZ, Schubert M, Kozmik Z, Holland ND. AmphiPax3/7, an amphioxus paired box gene: insights into chordate myogenesis, neurogenesis, and the possible evolutionary precursor of definitive vertebrate neural crest. Evol Dev 1999; 1:153-65. [PMID: 11324100 DOI: 10.1046/j.1525-142x.1999.99019.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Amphioxus probably has only a single gene (AmphiPax3/7) in the Pax3/7 subfamily. Like its vertebrate homologs (Pax3 and Pax7), amphioxus AmphiPax3/7 is probably involved in specifying the axial musculature and muscularized notochord. During nervous system development, AmphiPax3/7 is first expressed in bilateral anteroposterior stripes along the edges of the neural plate. This early neural expression may be comparable to the transcription of Pax3 and Pax7 in some of the anterior neural crest cells of vertebrates. Previous studies by others and ourselves have demonstrated that several genes homologous to genetic markers for vertebrate neural crest are expressed along the neural plate-epidermis boundary in embryos of tunicates and amphioxus. Taken together, the early neural expression patterns of AmphiPax3/7 and other neural crest markers of amphioxus and tunicates suggest that cell populations that eventually gave rise to definitive vertebrate neural crest may have been present in ancestral invertebrate chordates. During later neurogenesis in amphioxus, AmphiPax3/7, like its vertebrate homologs, is expressed dorsally and dorsolaterally in the neural tube and may be involved in dorsoventral patterning. However, unlike its vertebrate homologs, AmphiPax3/7 is expressed only at the anterior end of the central nervous system instead of along much of the neuraxis; this amphioxus pattern may represent the loss of a primitive chordate character.
Collapse
Affiliation(s)
- L Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0202, USA.
| | | | | | | |
Collapse
|
99
|
Abstract
Pax genes encode a family of highly conserved DNA-binding transcription factors. These proteins play key roles in regulating a number of vertebrate and invertebrate developmental processes. Mutations in Pax-6 result in eye defects in flies, mice, and humans, and ectopic expression of this gene can trigger the development of ectopic compound eyes in flies. Likewise, mutation of other Pax genes in vertebrates results in the failure of specific differentiation programs-Pax-1 causes skeletal defects; Pax-2, kidney defects; Pax-3 or Pax-7, neural crest defects; Pax-4, pancreatic beta-cell defects; Pax-5, B-cell defects; Pax-8, thyroid defects; and Pax-9, tooth defects. Although this class of genes is obviously required for the normal differentiation of a number of distinct organ systems, they have not previously been demonstrated to be capable of directing the embryonic development of organs in vertebrates. In this report, it is demonstrated that Pax-8 plays such a role in the establishment of the Xenopus embryonic kidney, the pronephros. However, in order to efficiently direct cells to form pronephric kidneys, XPax-8 requires cofactors, one of which may be the homeobox transcription factor Xlim-1. These two genes are initially expressed in overlapping domains in late gastrulae, and cells expressing both genes will go on to form the kidney. Ectopic expression of either gene alone has a moderate effect on pronephric patterning, while coexpression of XPax-8 plus Xlim-1 results in the development of embryonic kidneys of up to five times normal complexity and also leads to the development of ectopic pronephric tubules. This effect was synergistic rather than additive. XPax-2 can also synergize with Xlim-1, but the expression profile of this gene indicates that it normally functions later in pronephric development than does XPax-8. Together these data indicate that the interaction between XPax-8 and Xlim-1 is a key early step in the establishment of the pronephric primordium.
Collapse
Affiliation(s)
- T J Carroll
- Cell and Developmental Biology, University of Texas, Austin, Texas, 78712, USA
| | | |
Collapse
|
100
|
Barbieri AM, Lupo G, Bulfone A, Andreazzoli M, Mariani M, Fougerousse F, Consalez GG, Borsani G, Beckmann JS, Barsacchi G, Ballabio A, Banfi S. A homeobox gene, vax2, controls the patterning of the eye dorsoventral axis. Proc Natl Acad Sci U S A 1999; 96:10729-34. [PMID: 10485894 PMCID: PMC17951 DOI: 10.1073/pnas.96.19.10729] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have identified a transcription factor specifically expressed in the developing vertebrate eye. We named this gene vax2 because of the high degree of sequence similarity to the recently described vax1. Both in the human and mouse genomes, vax2 is localized in the vicinity of the emx1 gene. This mapping assignment, together with the previously reported colocalization of Vax1 and Emx2 in mouse, indicates that the vax and the emx genes may be organized in clusters. vax2 has a remarkable expression domain confined to the ventral portion of the prospective neural retina in mouse, human, and Xenopus. The overexpression of either the frog Xvax2 or the human VAX2 in Xenopus embryos leads to an aberrant eye phenotype and, in particular, determines a ventralizing effect on the developing eye. The expression domain of the transcription factor Xpax2, normally confined to the ventral developing retina, extends to the dorsal region of the retina after overexpression of vax2. On the other hand, the expression of Xvent2, a molecular marker of the dorsal retina, is strongly reduced. Furthermore, vax2 overexpression induces a striking expansion of the optic stalk, a structure deriving from the ventralmost region of the eye vesicle. Altogether, these data indicate that vax2 plays a crucial role in eye development and, in particular, in the specification of the ventral optic vesicle.
Collapse
Affiliation(s)
- A M Barbieri
- Telethon Institute of Genetics and Medicine, San Raffaele Biomedical Science Park, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|