51
|
Wang H, Marchal G, Ni Y. Multiparametric MRI biomarkers for measuring vascular disrupting effect on cancer. World J Radiol 2011; 3:1-16. [PMID: 21286490 PMCID: PMC3030722 DOI: 10.4329/wjr.v3.i1.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/13/2011] [Accepted: 01/20/2011] [Indexed: 02/06/2023] Open
Abstract
Solid malignancies have to develop their own blood supply for their aggressive growth and metastasis; a process known as tumor angiogenesis. Angiogenesis is largely involved in tumor survival, progression and spread, which are known to be significantly attributed to treatment failures. Over the past decades, efforts have been made to understand the difference between normal and tumor vessels. It has been demonstrated that tumor vasculature is structurally immature with chaotic and leaky phenotypes, which provides opportunities for developing novel anticancer strategies. Targeting tumor vasculature is not only a unique therapeutic intervention to starve neoplastic cells, but also enhances the efficacy of conventional cancer treatments. Vascular disrupting agents (VDAs) have been developed to disrupt the already existing neovasculature in actively growing tumors, cause catastrophic vascular shutdown within short time, and induce secondary tumor necrosis. VDAs are cytostatic; they can only inhibit tumor growth, but not eradicate the tumor. This novel drug mechanism has urged us to develop multiparametric imaging biomarkers to monitor early hemodynamic alterations, cellular dysfunctions and metabolic impairments before tumor dimensional changes can be detected. In this article, we review the characteristics of tumor vessels, tubulin-destabilizing mechanisms of VDAs, and in vivo effects of the VDAs that have been mostly studied in preclinical studies and clinical trials. We also compare the different tumor models adopted in the preclinical studies on VDAs. Multiparametric imaging biomarkers, mainly diffusion-weighted imaging and dynamic contrast-enhanced imaging from magnetic resonance imaging, are evaluated for their potential as morphological and functional imaging biomarkers for monitoring therapeutic effects of VDAs.
Collapse
|
52
|
Tripathi BK, Zelenka PS. Cdk5: A regulator of epithelial cell adhesion and migration. Cell Adh Migr 2010; 4:333-6. [PMID: 20190570 DOI: 10.4161/cam.4.3.11131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell adhesion is a fundamental property of epithelial cells required for anchoring, migration and survival. During cell migration, the formation and disruption of adhesion sites is stringently regulated by integration of multiple, sequential signals acting in distinct regions of the cell. Recent findings implicate cyclin dependent kinase 5 (Cdk5) in the signaling pathways that regulate cell adhesion and migration of a variety of cell types. Experiments with epithelial cell lines indicate that Cdk5 activity exerts its effects by limiting Src activity in regions where Rho activity is required for stress fiber contraction and by phosphorylating the talin head to stabilize nascent focal adhesions. Both pathways regulate cell migration by increasing adhesive strength.
Collapse
Affiliation(s)
- Brajendra K Tripathi
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
53
|
Zhou W, Li J, Wang X, Hu R. Stable knockdown of TPPP3 by RNA interference in Lewis lung carcinoma cell inhibits tumor growth and metastasis. Mol Cell Biochem 2010; 343:231-8. [PMID: 20571904 DOI: 10.1007/s11010-010-0518-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 06/05/2010] [Indexed: 10/19/2022]
Abstract
Tubulin polymerization promoting protein 3 (TPPP3), a member of the TPPP family, can induce tubulin polymerization and microtubule bundling. Previously, it has been shown that TPPP3 plays an important role in cell proliferation. Depletion of TPPP3 by microRNA-based RNA interference (RNAi) inhibits cell growth, arrests cell cycles, and causes mitotic abnormalities in HeLa cells. In the present study, we knocked down TPPP3 in Lewis lung carcinoma (LLC) cells with the same RNAi construct, and observed a retarded tumor cell growth in vitro. Furthermore, C57BL/6 mice that received subcutaneously injected LLC cells in which TPPP3 was knocked down showed a pronounced reduction in tumor progression. The migration/invasion activity of TPPP3-knockdown LLC cells was significantly suppressed in a transwell chamber migration assay. When these cells were injected into the tail veins of C57BL/6 mice, they exhibited milder lung metastasis compared with control tumor cells. Taken together, these findings suggested that the TPPP3 gene played an important role in tumorigenesis and metastasis, and it could potentially become a novel target for cancer therapy.
Collapse
Affiliation(s)
- Wenbai Zhou
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
54
|
Cai Y, Rossier O, Gauthier NC, Biais N, Fardin MA, Zhang X, Miller LW, Ladoux B, Cornish VW, Sheetz MP. Cytoskeletal coherence requires myosin-IIA contractility. J Cell Sci 2010; 123:413-23. [PMID: 20067993 DOI: 10.1242/jcs.058297] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Maintaining a physical connection across cytoplasm is crucial for many biological processes such as matrix force generation, cell motility, cell shape and tissue development. However, in the absence of stress fibers, the coherent structure that transmits force across the cytoplasm is not understood. We find that nonmuscle myosin-II (NMII) contraction of cytoplasmic actin filaments establishes a coherent cytoskeletal network irrespective of the nature of adhesive contacts. When NMII activity is inhibited during cell spreading by Rho kinase inhibition, blebbistatin, caldesmon overexpression or NMIIA RNAi, the symmetric traction forces are lost and cell spreading persists, causing cytoplasm fragmentation by membrane tension that results in 'C' or dendritic shapes. Moreover, local inactivation of NMII by chromophore-assisted laser inactivation causes local loss of coherence. Actin filament polymerization is also required for cytoplasmic coherence, but microtubules and intermediate filaments are dispensable. Loss of cytoplasmic coherence is accompanied by loss of circumferential actin bundles. We suggest that NMIIA creates a coherent actin network through the formation of circumferential actin bundles that mechanically link elements of the peripheral actin cytoskeleton where much of the force is generated during spreading.
Collapse
Affiliation(s)
- Yunfei Cai
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Chesarone MA, DuPage AG, Goode BL. Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat Rev Mol Cell Biol 2009; 11:62-74. [PMID: 19997130 DOI: 10.1038/nrm2816] [Citation(s) in RCA: 394] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Formins are highly conserved proteins that have essential roles in remodelling the actin and microtubule cytoskeletons to influence eukaryotic cell shape and behaviour. Recent work has identified numerous cellular factors that locally recruit, activate or inactivate formins to bridle and unleash their potent effects on actin nucleation and elongation. The effects of formins on microtubules have also begun to be described, which places formins in a prime position to coordinate actin and microtubule dynamics. The emerging complexity in the mechanisms governing formins mirrors the wide range of essential functions that they perform in cell motility, cell division and cell and tissue morphogenesis.
Collapse
Affiliation(s)
- Melissa A Chesarone
- Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
56
|
Abstract
Recent studies indicate that microtubules (MTs) may play an important role in spine development and dynamics. Several imaging studies have now documented the exploration of dendritic spines by dynamic MTs in an activity-dependent manner. Furthermore, it was found that alterations of MT dynamics by pharmacological and molecular approaches exert profound influence on the development and plasticity of spines associated with neuronal activity. It is reasonable to speculate that dynamic MTs may be responsible for targeted delivery of specific cargos to a selected number of spines and/or for interacting with the actin cytoskeleton to generate the structural changes of spines associated with synaptic modifications.
Collapse
Affiliation(s)
- Jiaping Gu
- Departments of Cell Biology and Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322
| | | |
Collapse
|
57
|
Dalyot-Herman N, Delgado-Lopez F, Gewirtz DA, Gupton JT, Schwartz EL. Interference with endothelial cell function by JG-03-14, an agent that binds to the colchicine site on microtubules. Biochem Pharmacol 2009; 78:1167-77. [PMID: 19576183 DOI: 10.1016/j.bcp.2009.06.093] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/18/2009] [Accepted: 06/23/2009] [Indexed: 11/15/2022]
Abstract
JG-03-14, a novel tetrasubstituted pyrrole with microtubule-depolymerizing and anti-proliferative activities, was tested for its effect on endothelial cell (EC) functions in vitro. JG-03-14 was a potent inhibitor of EC vessel-like tube formation on extracellular matrix (IC(50) of 40nM) and caused the involution of established vessels, potential anti-angiogenic and vascular-disrupting activities, respectively. These actions were not due to the inhibition of EC proliferation or to the induction of apoptosis by JG-03-14. While similar effects were observed with the microtubule-depolymerizing and vascular-disrupting drug combretastatin-A4 (CoA4), JG-03-14 had a more selective effect on tube formation, relative to its cytotoxic actions, than did CoA4. Potential molecular mechanisms for JG-03-14's anti-vascular actions were explored. In contrast to the taxanes, which also have anti-vascular actions, JG-03-14 did not disrupt focal adhesion formation or block VEGF-induced phosphorylation of focal adhesion kinase. It did, however, inhibit VEGF-induced phosphorylation of VE-cadherin and reduce the association of beta-catenin with VE-cadherin. It caused cell retraction, intercellular gaps, and abnormally elongated adherens junctions at low concentrations, and prominent, but reversible, plasma membrane blebbing at higher concentrations. These results suggest that JG-03-14 may affect vascular morphogenesis by disrupting the interaction of adjacent endothelial cells, possibly as a consequence of effects on VE-cadherin, beta-catenin, and/or actin. They also provide the first report of anti-vascular activity for this class of compounds.
Collapse
Affiliation(s)
- Nava Dalyot-Herman
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, 111 East 210th Street, Bronx, NY 10467, USA
| | | | | | | | | |
Collapse
|
58
|
Vallee RB, Seale GE, Tsai JW. Emerging roles for myosin II and cytoplasmic dynein in migrating neurons and growth cones. Trends Cell Biol 2009; 19:347-55. [PMID: 19524440 DOI: 10.1016/j.tcb.2009.03.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/25/2009] [Accepted: 03/31/2009] [Indexed: 11/18/2022]
Abstract
Motor proteins are involved in a wide range of cellular and subcellular movements. Recent studies have implicated two motor proteins in particular, myosin II and cytoplasmic dynein, in diverse aspects of cell migration. This review focuses on emerging roles for these proteins in the nervous system, with particular emphasis on migrating neurons and neuronal growth cones. The former cells exhibit unusual features of centrosome and nuclear movement, whereas growth cones offer an opportunity to evaluate motor protein function in a region of cytoplasm free of these organelles.
Collapse
Affiliation(s)
- Richard B Vallee
- Department of Pathology and Cell Biology, Program in Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | |
Collapse
|
59
|
Abstract
Microtubule-binding drugs (MBD) are widely used in cancer chemotherapy and also have clinically relevant antiangiogenic and vascular-disrupting properties. These antivascular actions are due in part to direct effects on endothelial cells, and all MBDs (both microtubule-stabilizing and microtubule-destabilizing) inhibit endothelial cell proliferation, migration, and tube formation in vitro, actions that are thought to correspond to therapeutic antiangiogenic actions. In addition, the microtubule-destabilizing agents cause prominent changes in endothelial cell morphology, an action associated with rapid vascular collapse in vivo. The effects on endothelial cells occur in vitro at low drug concentrations, which do not affect microtubule gross morphology, do not cause microtubule bundling or microtubule loss and do not induce cell cycle arrest, apoptosis, or cell death. Rather, it has been hypothesized that, at low concentrations, MBDs produce more subtle effects on microtubule dynamics, block critical cell signaling pathways, and prevent the microtubules from properly interacting with transient subcellular assemblies (focal adhesions and adherens junctions) whose subsequent stabilization and/or maturation are required for cell motility and cell-cell interactions. This review will focus on recent studies to define the molecular mechanisms for the antivascular actions of the MBDs, information that could be useful in the identification or design of agents whose actions more selectively target the tumor vasculature.
Collapse
Affiliation(s)
- Edward L Schwartz
- Department of Oncology, Albert Einstein College of Medicine, Bronx, New York 10467, USA.
| |
Collapse
|
60
|
Verma NK, Dourlat J, Davies AM, Long A, Liu WQ, Garbay C, Kelleher D, Volkov Y. STAT3-stathmin interactions control microtubule dynamics in migrating T-cells. J Biol Chem 2009; 284:12349-62. [PMID: 19251695 DOI: 10.1074/jbc.m807761200] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
T-cell migration is a complex highly coordinated process that involves cell adhesion to the high endothelial venules or to the extracellular matrix by surface receptor/ligand interactions, cytoskeletal rearrangements, and phosphorylation-dependent signaling cascades. The mechanism(s) that regulates T-cell migration is of considerable relevance for understanding the pathogenesis of various diseases, such as chronic inflammatory diseases and cancer metastasis. This study was designed to identify potential involvement of STAT3, a latent transcription factor, in mediating integrin-induced T-cell migration. Using our previously characterized in vitro model for lymphocyte migration, we demonstrate that STAT3 is activated and translocated to the nucleus during the process of active motility of Hut78 T-lymphoma cells triggered via LFA-1. Blocking STAT3 signaling by multiple approaches inhibited LFA-1-induced T-cell locomotion via destabilization of microtubules and post-translational modification of tubulin. Here, we show that STAT3 physically interacts with stathmin to regulate microtubule dynamics in migrating T-cells. These observations strongly indicate that STAT3 is critically important for T-cell migration and associated signaling events.
Collapse
Affiliation(s)
- Navin K Verma
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Krause S, Stendel C, Senderek J, Relvas JB, Suter U. Small Rho GTPases are key regulators of peripheral nerve biology in health and disease. J Peripher Nerv Syst 2009; 13:188-99. [PMID: 18844785 DOI: 10.1111/j.1529-8027.2008.00177.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A thorough knowledge of the cellular and molecular basis of the structure and function of peripheral nerves is of paramount importance not only for a better understanding of the fascinating biology of the peripheral nervous system but also for providing critical insights into the various diseases affecting peripheral nerves as the firm foundation of potential treatments. Genetic approaches in model organisms, in combination with research on hereditary forms of neuropathies, have contributed significantly to our progress in this field. In this review, we will focus on recent advances using these synergistic approaches that led to the identification of small Rho GTPases and their regulators as crucial functional players in proper development and function of myelinated peripheral nerves, with a particular emphasis on the cell biology of Schwann cells in health and disease.
Collapse
Affiliation(s)
- Sven Krause
- Institute of Cell Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
62
|
Shutova MS, Alexandrova AY, Vasiliev JM. Regulation of polarity in cells devoid of actin bundle system after treatment with inhibitors of myosin II activity. ACTA ACUST UNITED AC 2008; 65:734-46. [PMID: 18615701 DOI: 10.1002/cm.20295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Interplay of two cytoskeletal systems--microfilaments and microtubules is essential for directional cell movement. To better understand the role of those cytoskeletal systems in polarization of cells, rat fibroblasts were incubated with drugs inhibiting activity of myosin II: blebbistatin and Y-27632. Both drugs led to disappearance of actin-myosin bundles and mature focal cell-matrix adhesions but did not affect polarization and directional motility. The rate of motility even increased after inhibitor treatment. The characteristic feature of inhibitor-treated fibroblasts was collapse of the cytoplasm accompanied by bundling of microtubules that led to transformation of lamellae into long immobile tails. The only exception was the leading anterior lamella which was not transformed into the tail and supported directional movement of the cell. The tail at the cell rear determined the position of anterior lamella and direction of locomotion. Depolymerization of microtubules by colcemid stopped directional locomotion of inhibitor-treated cells. These data show that integrity of the microtubular system provides the basic mechanism of polarization and orientation which is only modified by interactions with actin-myosin system and cell-substrate adhesions. We suggest that the position of bundled tail microtubules and dispersed microtubules in leading lamella determine polarization in cells lacking stress fibers and focal adhesions. Thus, polarization is based on microtubule-dependent mechanisms both in non-contractile and contractile cells. These mechanisms could switch dependent on circumstances as fibroblasts may acquire non-contractile phenotype, not only after direct inhibition of myosin II but also in certain conditions of microenvironment.
Collapse
Affiliation(s)
- Maria S Shutova
- Institute of Carcinogenesis, Cancer Research Center, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | |
Collapse
|
63
|
Ishiguro K, Ando T, Watanabe O, Goto H. Specific reaction of alpha,beta-unsaturated carbonyl compounds such as 6-shogaol with sulfhydryl groups in tubulin leading to microtubule damage. FEBS Lett 2008; 582:3531-6. [PMID: 18805415 DOI: 10.1016/j.febslet.2008.09.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 09/10/2008] [Indexed: 12/20/2022]
Abstract
6-Shogaol and 6-gingerol are ginger components with similar chemical structures. However, while 6-shogaol damages microtubules, 6-gingerol does not. We have investigated the molecular mechanism of 6-shogaol-induced microtubule damage and found that the action of 6-shogaol results from the structure of alpha,beta-unsaturated carbonyl compounds. alpha,beta-Unsaturated carbonyl compounds such as 6-shogaol react with sulfhydryl groups of cysteine residues in tubulin, and impair tubulin polymerization. The reaction with sulfhydryl groups depends on the chain length of alpha,beta-unsaturated carbonyl compounds. In addition, alpha,beta-unsaturated carbonyl compounds are more reactive with sulfhydryl groups in tubulin than in 2-mercaptoethanol, dithiothreitol, glutathione and papain, a cysteine protease.
Collapse
Affiliation(s)
- Kazuhiro Ishiguro
- Molecular Biology and Pathogenesis of Gastroenterology, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| | | | | | | |
Collapse
|
64
|
Honoré S, Pagano A, Gauthier G, Bourgarel-Rey V, Verdier-Pinard P, Civiletti K, Kruczynski A, Braguer D. Antiangiogenic vinflunine affects EB1 localization and microtubule targeting to adhesion sites. Mol Cancer Ther 2008; 7:2080-9. [PMID: 18645018 DOI: 10.1158/1535-7163.mct-08-0156] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The motile behavior of endothelial cells is a crucial event for neoangiogenesis. We previously showed that noncytotoxic concentrations of vinflunine inhibit capillary-like tube formation on Matrigel and endothelial cell migration with a concomitant increase in interphase microtubule dynamic instability. In this article, we further investigated the effects of vinflunine on migration and cytoskeleton interaction dynamics in HMEC-1 endothelial cells. We confirmed that vinflunine, at low and noncytotoxic concentrations (0.01-1 nmol/L), inhibited endothelial cell random motility by 54%. This effect was associated with a decrease in the percentage of stable microtubules and in the mean duration of pauses for dynamic ones. Moreover, we found that vinflunine altered adhesion site targeting by microtubules and suppressed the microtubule (+) end pause that occurs at adhesion sites during cell migration (from 151 +/- 20 seconds in control cells to 38 +/- 7 seconds in vinflunine-treated cells, P < 0.001). This effect was associated with the inhibition of adhesion site dynamics and the formation of long-lived stress fibers. Importantly, we found that vinflunine altered EB1 localization at microtubule (+) ends. These results highlight a new mechanism of action of vinflunine, which act by disrupting the mutual control between microtubule and adhesion site dynamics and strengthen the role of +TIPs proteins such as EB1 as key regulators of endothelial cell motility.
Collapse
Affiliation(s)
- Stéphane Honoré
- Institut National de la Sante et de la Recherche Medicale UMR 911, Centre de Recherche en Oncologie Biologique et en Oncopharmacologie Aix-Marseille Université, Marseilles, France
| | | | | | | | | | | | | | | |
Collapse
|
65
|
|
66
|
Bijman MNA, van Berkel MPA, van Nieuw Amerongen GP, Boven E. Interference with actin dynamics is superior to disturbance of microtubule function in the inhibition of human ovarian cancer cell motility. Biochem Pharmacol 2008; 76:707-16. [PMID: 18644348 DOI: 10.1016/j.bcp.2008.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 06/11/2008] [Accepted: 06/17/2008] [Indexed: 12/28/2022]
Abstract
Cellular movement is mainly orchestrated by the actin and microtubule cytoskeleton in which Rho GTPases closely collaborate. We studied whether cytoskeleton-interfering agents at subtoxic and 50% growth-inhibiting concentrations affect motility of five unselected human ovarian cancer cell lines. Cisplatin and doxorubicin as control cytotoxic agents were not effective, the microtubule-targeting agents docetaxel, epothilone B and vinblastine only marginally inhibited cell motility, while the actin-targeting agent cytochalasin D was most potent in hampering both cell migration and invasion. Disturbance of microtubule dynamics by docetaxel did not importantly affect the cellular structures of beta-tubulin and F-actin. In contrast, hindrance of actin dynamics by cytochalasin D resulted in loss of lamellipodial extensions, induced thick layers of F-actin and disorder in cellular organization. In OVCAR-3 cells the activity of Rac1 was only slightly diminished by docetaxel, but clearly reduced by cytochalasin D. In conclusion, targeting the actin cytoskeleton might provide a means to prevent metastasis formation.
Collapse
Affiliation(s)
- Marcel N A Bijman
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
67
|
Valenzuela-Fernández A, Cabrero JR, Serrador JM, Sánchez-Madrid F. HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends Cell Biol 2008; 18:291-7. [PMID: 18472263 DOI: 10.1016/j.tcb.2008.04.003] [Citation(s) in RCA: 380] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 04/02/2008] [Accepted: 04/03/2008] [Indexed: 11/26/2022]
Abstract
Histone deacetylase 6 (HDAC6) is a cytoplasmic enzyme that regulates many important biological processes, including cell migration, immune synapse formation, viral infection, and the degradation of misfolded proteins. HDAC6 deacetylates tubulin, Hsp90 and cortactin, and forms complexes with other partner proteins. Although HDAC6 enzymatic activity seems to be required for the regulation of cell morphology, the role of HDAC6 in lymphocyte chemotaxis is independent of its tubulin deacetylase activity. The diverse functions of HDAC6 suggest that it is a potential therapeutic target for the treatment of a range of diseases. This review examines the biological actions of HDAC6, focusing on its deacetylase activity and its potential scaffold functions in the regulation of cell migration and other key biological processes in which the cytoskeleton plays an important role.
Collapse
Affiliation(s)
- Agustín Valenzuela-Fernández
- Departamento de Medicina Física y Farmacología, Facultad de Medicina and Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Tenerife, Spain
| | | | | | | |
Collapse
|
68
|
Cerecedo D, Cisneros B, Suárez-Sánchez R, Hernández-González E, Galván I. beta-Dystroglycan modulates the interplay between actin and microtubules in human-adhered platelets. Br J Haematol 2008; 141:517-28. [PMID: 18341635 DOI: 10.1111/j.1365-2141.2008.07048.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
To maintain the continuity of an injured blood vessel, platelets change shape, secrete granule contents, adhere, aggregate, and retract in a haemostatic plug. Ordered arrays of microtubules, microfilaments, and associated proteins are responsible for these platelet responses. In full-spread platelets, microfilament bundles in association with other cytoskeleton proteins are anchored in focal contacts. Recent studies in migrating cells suggest that co-ordination and direct physical interaction of microtubules and actin network modulate adhesion development. In platelets, we have proposed a feasible association between these two cytoskeletal systems, as well as the participation of the dystrophin-associated protein complex, as part of the focal adhesion complex. The present study analysed the participation of microtubules and actin during the platelet adhesion process. Confocal microscopy, fluorescence resonance transfer energy and immunoprecipitation assays were used to provide evidence of a cross-talk between these two cytoskeletal systems. Interestingly, beta-dystroglycan was found to act as an interplay protein between actin and microtubules and an additional communication between these two cytoskeleton networks was maintained through proteins of focal adhesion complex. Altogether our data are indicative of a dynamic co-participation of actin filaments and microtubules in modulating focal contacts to achieve platelet function.
Collapse
Affiliation(s)
- Doris Cerecedo
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional (IPN), México.
| | | | | | | | | |
Collapse
|
69
|
Barth AIM, Caro-Gonzalez HY, Nelson WJ. Role of adenomatous polyposis coli (APC) and microtubules in directional cell migration and neuronal polarization. Semin Cell Dev Biol 2008; 19:245-51. [PMID: 18387324 DOI: 10.1016/j.semcdb.2008.02.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 02/18/2008] [Indexed: 02/07/2023]
Abstract
In response to extracellular signals during embryonic development, cells undergo directional movements to specific sites and establish proper connections to other cells to form organs and tissues. Cell extension and migration in the direction of extracellular cues is mediated by the actin and microtubule cytoskeletons, and recent results have shed new light on how these pathways are activated by neurotrophins, Wnt or extracellular matrix. These signals lead to modifications of microtubule-associated proteins (MAPs) and point to glycogen synthase kinase (GSK) 3beta as a key regulator of microtubule function during directional migration. This review will summarize these results and then focus on the role of microtubule-binding protein adenomatous polyposis coli (APC) in neuronal polarization and directed migration, and on its regulation by GSK3beta.
Collapse
Affiliation(s)
- Angela I M Barth
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
70
|
Lazopoulos KA, Stamenović D. Durotaxis as an elastic stability phenomenon. J Biomech 2008; 41:1289-94. [DOI: 10.1016/j.jbiomech.2008.01.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 01/09/2008] [Accepted: 01/15/2008] [Indexed: 11/25/2022]
|
71
|
Gil-Henn H, Destaing O, Sims NA, Aoki K, Alles N, Neff L, Sanjay A, Bruzzaniti A, De Camilli P, Baron R, Schlessinger J. Defective microtubule-dependent podosome organization in osteoclasts leads to increased bone density in Pyk2(-/-) mice. ACTA ACUST UNITED AC 2007; 178:1053-64. [PMID: 17846174 PMCID: PMC2064627 DOI: 10.1083/jcb.200701148] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The protein tyrosine kinase Pyk2 is highly expressed in osteoclasts, where it is primarily localized in podosomes. Deletion of Pyk2 in mice leads to mild osteopetrosis due to impairment in osteoclast function. Pyk2-null osteoclasts were unable to transform podosome clusters into a podosome belt at the cell periphery; instead of a sealing zone only small actin rings were formed, resulting in impaired bone resorption. Furthermore, in Pyk2-null osteoclasts, Rho activity was enhanced while microtubule acetylation and stability were significantly reduced. Rescue experiments by ectopic expression of wild-type or a variety of Pyk2 mutants in osteoclasts from Pyk2−/− mice have shown that the FAT domain of Pyk2 is essential for podosome belt and sealing zone formation as well as for bone resorption. These experiments underscore an important role of Pyk2 in microtubule-dependent podosome organization, bone resorption, and other osteoclast functions.
Collapse
Affiliation(s)
- Hava Gil-Henn
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Murtagh J, Lu H, Schwartz EL. Taxotere-induced inhibition of human endothelial cell migration is a result of heat shock protein 90 degradation. Cancer Res 2007; 66:8192-9. [PMID: 16912198 DOI: 10.1158/0008-5472.can-06-0748] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In addition to effects on tumor cell proliferation and apoptosis, microtubule-binding agents are potent inhibitors of angiogenesis. The cancer chemotherapeutic drug Taxotere (docetaxel) inhibited vascular endothelial growth factor (VEGF)-induced human umbilical vein endothelial cell (HUVEC) migration in vitro at concentrations substantially lower than required to cause cell cycle arrest or apoptosis. Here, we show that Taxotere caused the ubiquitination and subsequent proteasomal degradation of heat shock protein 90 (Hsp90) in HUVEC. This prevented signaling from the focal adhesions and VEGF receptors and inhibited integrin activation. Taxotere prevented the VEGF-induced phosphorylation of focal adhesion kinase, Akt, and endothelial nitric oxide synthase (eNOS), all of which are Hsp90 client proteins. Taxotere completely blocked the VEGF-induced increase in eNOS activity, and the addition of a NO donor reversed the inhibitory effect of Taxotere on VEGF-induced migration. A similar reversal occurred with a proteasomal inhibitor of Hsp90 degradation. Furthermore, overexpression of Hsp90 rescued HUVEC from the inhibition of VEGF-induced migration by Taxotere. Previous studies have suggested that tubulin is also a client protein of Hsp90, and immunocytochemical analysis showed that Taxotere caused the dissociation of Hsp90 from tubulin. We suggest that uncomplexed Hsp90 is more susceptible to ubiquitination and subsequent proteasomal degradation than the bound form. Although inhibitors of Hsp90 are currently under clinical investigation as antitumor agents, this seems to be the first account of a drug that reduces Hsp90 function by enhancing its proteasomal degradation. Further, the loss of Hsp90 and the inactivation of Hsp90 client proteins are previously undescribed actions of Taxotere that may contribute to its antiangiogenic activity.
Collapse
Affiliation(s)
- Janice Murtagh
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | | | | |
Collapse
|
73
|
Lorenowicz MJ, Fernandez-Borja M, van Stalborch AMD, van Sterkenburg MAJA, Hiemstra PS, Hordijk PL. Microtubule dynamics and Rac-1 signaling independently regulate barrier function in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1321-31. [PMID: 17827248 DOI: 10.1152/ajplung.00443.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cadherin-mediated cell-cell adhesion controls the morphology and function of epithelial cells and is a critical component of the pathology of chronic inflammatory disorders. Dynamic interactions between cadherins and the actin cytoskeleton are required for stable cell-cell contact. Besides actin, microtubules also target intercellular, cadherin-based junctions and contribute to their formation and stability. Here, we studied the role of microtubules in conjunction with Rho-like GTPases in the regulation of lung epithelial barrier function using real-time monitoring of transepithelial electrical resistance. Unexpectedly, we found that disruption of microtubules promotes epithelial cell-cell adhesion. This increase in epithelial barrier function is accompanied by the accumulation of beta-catenin at cell-cell junctions, as detected by immunofluorescence. Moreover, we found that the increase in cell-cell contact, induced by microtubule depolymerization, requires signaling through a RhoA/Rho kinase pathway. The Rac-1 GTPase counteracts this pathway, because inhibition of Rac-1 signaling rapidly promotes epithelial barrier function, in a microtubule- and RhoA-independent fashion. Together, our data suggest that microtubule-RhoA-mediated signaling and Rac-1 control lung epithelial integrity through counteracting independent pathways.
Collapse
Affiliation(s)
- Magdalena J Lorenowicz
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, Univ. of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
74
|
Ichii T, Takeichi M. p120-catenin regulates microtubule dynamics and cell migration in a cadherin-independent manner. Genes Cells 2007; 12:827-39. [PMID: 17584295 DOI: 10.1111/j.1365-2443.2007.01095.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
p120-catenin (p120) has been shown to be essential for cadherin stability. Here, we show that p120 is capable of regulating microtubule (MT) dynamics in a cadherin-independent manner. When p120 was depleted in cadherin-deficient Neuro-2a (N2a) cells, MT stability was reduced, as assessed by the nocodazole sensitivity of MTs. On the contrary, over-expression of p120 caused MTs to become resistant to nocodazole. Time-lapse recording of GFP-tagged EB1, a protein which binds the growing plus-ends of MTs, introduced into these cells demonstrated that the plus ends underwent more frequent catastrophe in p120-depleted cells. In addition, p120 knockdown up-regulated the motility of isolated cells, whereas it down-regulated the directional migration of cells from wound edges; and these migratory behaviors of cells were mimicked by nocodazole-induced MT depolymerization. These results suggest that p120 has the ability to regulate MT dynamics and that this activity, in turn, affects cell motility independently of the cadherin adhesion system.
Collapse
Affiliation(s)
- Tetsuo Ichii
- Graduate School of Biostudies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | | |
Collapse
|
75
|
Panorchan P, Lee JSH, Daniels BR, Kole TP, Tseng Y, Wirtz D. Probing cellular mechanical responses to stimuli using ballistic intracellular nanorheology. Methods Cell Biol 2007; 83:115-40. [PMID: 17613307 DOI: 10.1016/s0091-679x(07)83006-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe a new method to measure the local and global micromechanical properties of the cytoplasm of single living cells in their physiological milieu and subjected to external stimuli. By tracking spontaneous, Brownian movements of individual nanoparticles of diameter>or=100 nm distributed within the cell with high spatial and temporal resolutions, the local viscoelastic properties of the intracellular milieu can be measured in different locations within the cell. The amplitude and the time-dependence of the mean-squared displacement of each nanoparticle directly reflect the elasticity and the viscosity of the cytoplasm in the vicinity of the nanoparticle. In our previous versions of particle tracking, we delivered nanoparticles via microinjection, which limited the number of cells amenable to measurement, rendering our technique incompatible with high-throughput experiments. Here we introduce ballistic injection to effectively deliver a large number of nanoparticles to a large number of cells simultaneously. When coupled with multiple particle tracking, this new method-ballistic intracellular nanorheology (BIN)-makes it now possible to probe the viscoelastic properties of cells in high-throughput experiments, which require large quantities of injected cells for seeding in various conditions. For instance, BIN allows us to probe an ensemble of cells embedded deeply inside a three-dimensional extracellular matrix or as a monolayer of cells subjected to shear flows.
Collapse
Affiliation(s)
- Porntula Panorchan
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | |
Collapse
|
76
|
Marx KA, Zhou T, Montrone A, McIntosh D, Braunhut SJ. A comparative study of the cytoskeleton binding drugs nocodazole and taxol with a mammalian cell quartz crystal microbalance biosensor: Different dynamic responses and energy dissipation effects. Anal Biochem 2007; 361:77-92. [PMID: 17161375 DOI: 10.1016/j.ab.2006.09.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 09/20/2006] [Accepted: 09/24/2006] [Indexed: 11/25/2022]
Abstract
The quartz crystal microbalance (QCM) was used to create piezoelectric whole-cell biosensors utilizing either living endothelial cells (ECs) or the metastatic human mammary cancer cell line MDA-MB-231 adhering to the gold QCM surface under in vitro growth conditions. We utilized the whole-cell QCM biosensors for the detection of the effects of varying concentrations of the microtubule binding drugs taxol and nocodazole by measuring changes in the QCM steady state frequency (Deltaf) and motional resistance (DeltaR), shift values. Using 0.11-50 microM nocodazole, we observed the Deltaf shift values of the biosensors, consisting of 20,000 ECs, to decrease significantly in magnitude (nearly 100%) to a limiting value, in a dose-dependent fashion, over a 5- to 6-h incubation period following drug addition. This effect is consistent with nocodazole's known disruption of intracellular microtubules. On the other hand, 10 microM taxol caused little alteration in Deltaf over the same time period, consistent with its microtubule hyperstabilization effect. When the EC QCM biosensor Deltaf shift values were normalized by the number of ECs found firmly attached to the QCM surface via trypsin removal and electronic counting, the dose curve was shifted to lower nocodazole concentrations, resulting in a more sensitive drug biosensor. The kinetics of the Deltaf decrease with increasing nocodazole concentrations measured by the EC QCM biosensor was found to be similar at all drug concentrations and was well fit by a single first-order exponential decay equation. For all nocodazole doses, t(0.5) was invariant, averaging t(0.5)=0.83+/-0.14 h. These data demonstrate that a single dynamic sensing system within the cell, the microtubules, is disrupted by the addition of nocodazole and this process is sensed by the cell QCM biosensor. This interpretation of the data was confirmed by a fluorescence light microscopy investigation of ECs undergoing treatment with increasing nocodazole doses using a fluorescent antibody to alpha-tubulin. These studies revealed a corresponding loss of the spread morphology of the cells, concomitant with a rearrangement of the extended native microtubules into increasingly large aggregates with the cells eventually lifting from the surface in significant numbers at 50 microM. At 6 microM nocodazole, partial reversibility of the EC QCM biosensor was demonstrated. These results indicate that the EC QCM biosensor can be used to detect and study EC cytoskeleton alterations and dynamics. We suggest the potential of this cellular biosensor for the real-time identification or screening of all classes of biologically active drugs or biological macromolecules that affect cellular attachment and cellular spreading, regardless of their molecular mechanism of action.
Collapse
Affiliation(s)
- Kenneth A Marx
- Center for Intelligent Biomaterials, Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA.
| | | | | | | | | |
Collapse
|
77
|
Russu WA. Thiazolidinedione anti-cancer activity: Is inhibition of microtubule assembly implicated? Med Hypotheses 2007; 68:343-6. [PMID: 16996226 DOI: 10.1016/j.mehy.2006.06.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 06/28/2006] [Accepted: 06/30/2006] [Indexed: 11/24/2022]
Abstract
An hypothesis is presented which seeks to explain the anti-cancer activity of thiazolidinediones (TZDs), a class of drugs currently used to treat type 2 diabetes mellitus. Empirical data from the scientific literature is used to support the hypothesis that TZDs are inhibitors of microtubule assembly. The similarities between the affects of TZDs on cellular processes and known inhibitors of tubulin polymerization are identified. Similarities between TZDs and currently used inhibitors of microtubule assembly, such as cell cycle arrest in G1 phase, anti-angiogenesis activity, and inhibition of cell motility, are striking. In addition to the similarities in biological function, certain molecular structure similarities are also identified. The possibility that TZDs inhibit the polymerization of actin is presented as an alternative interpretation of the available data. Finally suggestions for testing the hypothesis, by using commercially available tubulin polymerization assays and fluorescence based binding assays, as well as isothermal titration calorimetry, are given. Considering TZD position as third-line therapy for treatment of type 2 diabetes mellitus and the potential loss of market share to newly introduced inhalable insulin, a better understanding of TZD anti-cancer activity may lead to revival for this drug class in cancer treatment.
Collapse
Affiliation(s)
- Wade A Russu
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA.
| |
Collapse
|
78
|
Anastasiadis PZ. p120-ctn: A nexus for contextual signaling via Rho GTPases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:34-46. [PMID: 17028013 DOI: 10.1016/j.bbamcr.2006.08.040] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 08/24/2006] [Accepted: 08/27/2006] [Indexed: 01/11/2023]
Abstract
p120 catenin (p120) is the prototypic member of a subfamily of armadillo repeat domain proteins involved in intercellular adhesion. Recent evidence indicates that p120 associates with classical cadherins and regulates their stability. Ectopic p120 expression results in a variety of morphological effects, and promotes cell migration. There is now strong evidence that p120 acts, at least in part, through regulation of Rho GTPases. The data suggest that p120 may act as a signaling nexus, conveying messages from the cellular micro- and macro-environment to the cell's interior. By regulating Rho GTPases in a context-dependent manner p120 can exert profound effects on cellular responses from synaptic plasticity to vesicle trafficking, as well as regulate the motile vs. sessile, and possibly the proliferative vs. quiescent phenotype of epithelial cells. Here, we review the new evidence on the relationship of p120 to Rho GTPases, and discuss potential roles for the p120-Rho connection in normal and malignant cells.
Collapse
Affiliation(s)
- Panos Z Anastasiadis
- Department Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Rm. 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
79
|
Weinreb GE, Elston TC, Jacobson K. Causal mapping as a tool to mechanistically interpret phenomena in cell motility: application to cortical oscillations in spreading cells. ACTA ACUST UNITED AC 2006; 63:523-32. [PMID: 16800006 DOI: 10.1002/cm.20143] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Biological processes that occur at the cellular level and consist of large numbers of interacting elements are highly nonlinear and generally involve multiple time and spatial scales. The quantitative description of these complex systems is of great importance but presents large challenges. We outline a new systems biology approach, causal mapping (CMAP), which is a coarse-grained biological network tool that permits description of causal interactions between the elements of the network and overall system dynamics. On one hand, the CMAP is an intermediate between experiments and physical modeling, describing major requisite elements, their interactions and paths of causality propagation. On the other hand, the CMAP is an independent tool to explore the hierarchical organization of cell and the role of uncertainties in the system. It appears to be a promising easy-to-use technique for cell biologists to systematically probe verbally formulated qualitative hypotheses. We apply the CMAP to study the phenomenon of contractility oscillations in spreading cells in which microtubules have been depolymerized. The precise mechanism by which these oscillations are governed by a complex mechano-chemical system is not known but the data observed in experiments can be described by a CMAP. The CMAP suggests that the source of the oscillations results from the opposing effects of Rho activation leading to a decreased level of myosin light chain phosphatase and a cyclic calcium influx caused by increased membrane tension and leading to a periodically enhanced activation of myosin light chain kinase.
Collapse
Affiliation(s)
- Gabriel E Weinreb
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
80
|
Bijman MNA, van Nieuw Amerongen GP, Laurens N, van Hinsbergh VWM, Boven E. Microtubule-targeting agents inhibit angiogenesis at subtoxic concentrations, a process associated with inhibition of Rac1 and Cdc42 activity and changes in the endothelial cytoskeleton. Mol Cancer Ther 2006; 5:2348-57. [PMID: 16985069 DOI: 10.1158/1535-7163.mct-06-0242] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Conventional anticancer agents may display antiangiogenic effects, but the underlying mechanism is poorly understood. We determined the antiangiogenic properties of cisplatin, doxorubicin, and the microtubule-targeting agents docetaxel, epothilone B, and vinblastine at concentrations not affecting cell proliferation. We also assessed tubulin and actin morphology and the activity of two key molecules in cell motility, the small Rho GTPases Cdc42 and Rac1. The highest non-toxic concentration (HNTC) of each drug was defined as the concentration inhibiting a maximum of 10% human umbilical vein endothelial cell growth on a 1-hour drug exposure, being for cisplatin 10 micromol/L, doxorubicin 100 nmol/L, docetaxel 10 nmol/L, epothilone B 1 nmol/L, and vinblastine 10 nmol/L. Comparative endothelial cell functional assays using HNTCs for an exposure time of 1 hour indicated that endothelial cell migration in the wound assay, endothelial cell invasion in a transwell invasion system, and endothelial cell formation into tubelike structures on a layer of Matrigel were significantly inhibited by docetaxel, epothilone B, and vinblastine (P < 0.05), but not by cisplatin and doxorubicin. Docetaxel was slightly more efficient in the inhibition of endothelial cell motility than epothilone B and vinblastine. Fluorescence microscopy revealed that only the microtubule-targeting agents affected the integrity of the tubulin and F-actin cytoskeleton, which showed disturbed microtubule structures, less F-actin stress fiber formation, and appearance of nuclear F-actin rings. These observations were associated with early inhibition of Rac1 and Cdc42 activity. In conclusion, HNTCs of microtubule-targeting agents efficiently reduce endothelial cell motility by interference with microtubule dynamics preventing the activation of Rac1/Cdc42 and disorganizing the actin cytoskeleton.
Collapse
Affiliation(s)
- Marcel N A Bijman
- Department of Medical Oncology, Vrije Universiteit Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
81
|
Hippe A, Bylaite M, Chen M, von Mikecz A, Wolf R, Ruzicka T, Walz M. Expression and tissue distribution of mouse Hax1. Gene 2006; 379:116-26. [PMID: 16814492 DOI: 10.1016/j.gene.2006.04.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 04/20/2006] [Accepted: 04/28/2006] [Indexed: 10/24/2022]
Abstract
HAX1 is an ubiquitously expressed human gene. Though a number of cellular and viral proteins are known to interact with HAX1, its function is still not completely understood. On the basis of these identified interaction partners, HAX1 seems to play a role in apoptosis and the organization of the cytoskeleton. The cDNAs for human and mouse Hax1 share 86% identity and 80% identity at the protein level, suggesting a similar functional importance. To date, no conclusive data on the tissue specific expression of the murine Hax1 are available and only one interaction partner has been identified. Here, we show a detailed expression analysis for the murine ortholog by RT-PCR, Northern and Western blot. Furthermore, the distribution of Hax1 within different mouse tissues was studied by immunohistochemistry (IHC). In general, we found a good correlation between the results obtained from different detection techniques. Similar to its human counterpart, mouse Hax1 seems to be ubiquitously expressed. At the RNA level, we found the highest expression of Hax1 in liver, kidney and testis. In sharp contrast to the human HAX1 which is highly expressed in skeletal muscle, the mouse ortholog was detected only at very low levels. Using a specific antibody, we detected Hax1 in the majority of mouse tissues by IHC. Interestingly, the most prominent expression of Hax1 was found in epithelial, endothelial and muscle cells. Surprisingly, thymus, spleen and pancreas did not show detectable immunostaining. Furthermore, we have studied the subcellular localisation of Hax1 in a keratinocyte and a neuronal cell line by immunofluorescence. We found Hax1 to be localised mainly in the cytoplasm and detected a partial colocalisation with mitochondria. The results presented here summarize for the first time the expression of the murine Hax1 in different tissues and two cell lines. Further studies will elucidate the functional importance of this protein in individual cell types with respect to structural aspects, cell mobility and apoptosis.
Collapse
Affiliation(s)
- Andreas Hippe
- Department of Dermatology, Heinrich-Heine University, Moorenstrasse 5, D-40225 Duesseldorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
82
|
Tkachenko E, Elfenbein A, Tirziu D, Simons M. Syndecan-4 clustering induces cell migration in a PDZ-dependent manner. Circ Res 2006; 98:1398-404. [PMID: 16675718 DOI: 10.1161/01.res.0000225283.71490.5a] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell migration is a dynamic process involving formation of a leading edge in the direction of migration and adhesion points from which tension is generated to move the cell body forward. At the same time, disassembly of adhesion points occurs at the back of the cell, a region known as the trailing edge. Syndecan-4 (S4) is a transmembrane proteoglycan thought to be involved in the formation of focal adhesions. Recent studies have shown that its cytoplasmic domain can engage in signal transduction, making S4 a bona fide receptor. Here, we show that ligand clustering of cell surface S4 on endothelial cells initiates a signaling cascade that results in activation of Rac1, induction of cell polarization, and stimulation of cell migration that depends on S4 interaction with its PDZ-binding partner. Expression of an S4 mutant lacking its PDZ-binding region (S4-PDZ(-)) leads to decreased cell motility and a failure to form a trailing edge. On clustering S4, but not S4-PDZ(-), targets activated Rac1 to the leading edge of live cells. Cells lacking synectin, a PDZ domain containing protein that interacts with S4, fail to migrate in response to S4 clustering. Both S4-PDZ(-)-expressing and synectin(-/-) endothelial cells exhibit elevated basal levels of Rac1. Thus, our data suggest that S4 promotes endothelial cell migration in response to ligand binding by activating Rac1 and localizing it to the leading edge, and that these processes are dependent on its PDZ-binding domain interaction with synectin.
Collapse
Affiliation(s)
- Eugene Tkachenko
- Angiogenesis Research Center, Department of Medicine, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|
83
|
Leukert N, Vogl T, Strupat K, Reichelt R, Sorg C, Roth J. Calcium-dependent tetramer formation of S100A8 and S100A9 is essential for biological activity. J Mol Biol 2006; 359:961-72. [PMID: 16690079 DOI: 10.1016/j.jmb.2006.04.009] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 03/01/2006] [Accepted: 04/05/2006] [Indexed: 02/06/2023]
Abstract
S100 proteins comprise the largest family of calcium-binding proteins. Members of this family usually form homo- or heterodimers, which may associate to higher-order oligomers in a calcium-dependent manner. The heterodimers of S100A8 and S100A9 represent the major calcium-binding proteins in phagocytes. Both proteins regulate migration of these cells via modulation of tubulin polymerization. Calcium binding induces formation of (S100A8/S100A9)2 tetramers. The functional relevance of these higher-order oligomers of S100 proteins, however, is not yet clear. To investigate the importance of higher-order oligomerization for S100 proteins, we created a set of mutations within S100A9 (N69A, E78A, N69A+E78A) destroying the high-affinity C-terminal calcium-binding site (EF-hand II). Mutations in EF-hand II did not interfere with formation of the S100A8/S100A9 heterodimer as demonstrated by yeast two-hybrid experiments and pull-down assays. In contrast, mass spectrometric analysis and density gradient centrifugation revealed that calcium-induced association of (S100A8/S100A9)2 tetramers was strictly dependent on a functional EF-hand II in S100A9. Failure of tetramer formation was associated with a lack of functional activity of S100A8/S100A9 complexes in promoting the formation of microtubules. Thus, our data demonstrate that calcium-dependent formation of (S100A8/S100A9)2 tetramers is an essential prerequisite for biological function. This is the first report showing a functional relevance of calcium-induced higher-order oligomerization in the S100 family.
Collapse
Affiliation(s)
- Nadja Leukert
- Institute of Experimental Dermatology, University of Muenster, Roentgenstr. 21, 48149 Muenster, Germany
| | | | | | | | | | | |
Collapse
|
84
|
El Din El Homasany BS, Volkov Y, Takahashi M, Ono Y, Keryer G, Delouvée A, Looby E, Long A, Kelleher D. The scaffolding protein CG-NAP/AKAP450 is a critical integrating component of the LFA-1-induced signaling complex in migratory T cells. THE JOURNAL OF IMMUNOLOGY 2006; 175:7811-8. [PMID: 16339516 DOI: 10.4049/jimmunol.175.12.7811] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell migration represents a complex highly coordinated process involving participation of surface receptor/ligand interactions, cytoskeletal rearrangements, and phosphorylation-dependent signaling cascades. Members of the A-kinase anchoring protein (AKAP) family of giant scaffolding proteins can assemble and compartmentalize multiple signaling and structural molecules thereby providing a platform for their targeted positioning and efficient interactions. We characterize here the expression, intracellular distribution, and functional role of the scaffolding protein CG-NAP (centrosome and Golgi localized protein kinase N-associated protein)/AKAP450 in the process of active T cell motility induced via LFA-1 integrins. This protein is predominantly localized at the centrosome and Golgi complex. T cell locomotion triggered by LFA-1 ligation induces redistribution of CG-NAP/AKAP450 along microtubules in trailing cell extensions. Using an original in situ immunoprecipitation approach, we show that CG-NAP/AKAP450 is physically associated with LFA-1 in the multimolecular signaling complex also including tubulin and the protein kinase C beta and delta isoenzymes. CG-NAP/AKAP450 recruitment to this complex was specific for the T cells migrating on LFA-1 ligands, but not on the beta(1) integrin ligand fibronectin. Using the GFP-tagged C-terminal CG-NAP/AKAP450 construct, we demonstrate that expression of the intact CG-NAP/AKAP450 and its recruitment to the LFA-1-associated multimolecular complex is critically important for polarization and migration of T cells induced by this integrin.
Collapse
|
85
|
ten Klooster JP, Jaffer ZM, Chernoff J, Hordijk PL. Targeting and activation of Rac1 are mediated by the exchange factor beta-Pix. ACTA ACUST UNITED AC 2006; 172:759-69. [PMID: 16492808 PMCID: PMC2063707 DOI: 10.1083/jcb.200509096] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Rho guanosine triphosphatases (GTPases) are critical regulators of cytoskeletal dynamics and control complex functions such as cell adhesion, spreading, migration, and cell division. It is generally accepted that localized GTPase activation is required for the proper initiation of downstream signaling events, although the molecular mechanisms that control targeting of Rho GTPases are unknown. In this study, we show that the Rho GTPase Rac1, via a proline stretch in its COOH terminus, binds directly to the SH3 domain of the Cdc42/Rac activator β-Pix (p21-activated kinase [Pak]–interacting exchange factor). The interaction with β-Pix is nucleotide independent and is necessary and sufficient for Rac1 recruitment to membrane ruffles and to focal adhesions. In addition, the Rac1–β-Pix interaction is required for Rac1 activation by β-Pix as well as for Rac1-mediated spreading. Finally, using cells deficient for the β-Pix–binding kinase Pak1, we show that Pak1 regulates the Rac1–β-Pix interaction and controls cell spreading and adhesion-induced Rac1 activation. These data provide a model for the intracellular targeting and localized activation of Rac1 through its exchange factor β-Pix.
Collapse
Affiliation(s)
- Jean Paul ten Klooster
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, Netherlands
| | | | | | | |
Collapse
|
86
|
Thibault MM, Buschmann MD. Migration of bone marrow stromal cells in 3D: 4 Color methodology reveals spatially and temporally coordinated events. ACTA ACUST UNITED AC 2006; 63:725-40. [PMID: 17009327 DOI: 10.1002/cm.20160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cytoskeleton plays a central role in many cell processes including directed cell migration. Since most previous work has investigated cell migration in two dimensions (2D), new methods are required to study movement in three dimensions (3D) while preserving 3D structure of the cytoskeleton. Most previous studies have labeled two cytoskeletal networks simultaneously, impeding an appreciation of their complex and dynamic interconnections. Here we report the development of a 4 color method to simultaneously image vimentin, actin, tubulin and the nucleus for high-resolution confocal microscopy of bone-marrow stromal cells (BMSCs) migrating through a porous membrane. Several methods were tested for structural preservation and labeling intensity resulting in identification of an optimized simultaneous fixation and permeabilization method using glutaraldehyde, paraformaldehyde and Triton X-100 followed by a quadruple fluorescent labeling method. This procedure was then applied at a sequence of time points to migrating cells, allowing temporal progression of migration to be assessed by visualizing all three networks plus the nucleus, providing new insights into 3D directed cell migration including processes such as leading edge structure, cytoskeletal distribution and nucleokinesis. Colocalization of actin and microtubules with distinct spatial arrangements at the cellular leading edge during migration, together with microtubule axial polarization supports recent reports indicating the pivotal role of microtubules in directed cell migration. This study also provides a foundation for 3D migration studies versus 2D studies, providing precise and robust methods to attain new insights into the cellular mechanisms of motility.
Collapse
Affiliation(s)
- Marc M Thibault
- Department of Chemical Engineering and Institute of Biomedical Engineering, Ecole Polytechnique, Montreal, Quebec, Canada
| | | |
Collapse
|
87
|
Kholmanskikh SS, Koeller HB, Wynshaw-Boris A, Gomez T, Letourneau PC, Ross ME. Calcium-dependent interaction of Lis1 with IQGAP1 and Cdc42 promotes neuronal motility. Nat Neurosci 2005; 9:50-7. [PMID: 16369480 DOI: 10.1038/nn1619] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 11/22/2005] [Indexed: 11/09/2022]
Abstract
Lis1 gene defects impair neuronal migration, causing the severe human brain malformation lissencephaly. Although much is known about its interactions with microtubules, microtubule-binding proteins such as CLIP-170, and with the dynein motor complex, the response of Lis1 to neuronal motility signals has not been elucidated. Lis1 deficiency is associated with deregulation of the Rho-family GTPases Cdc42, Rac1 and RhoA, and ensuing actin cytoskeletal defects, but the link between Lis1 and Rho GTPases remains unclear. We report here that calcium influx enhances neuronal motility through Lis1-dependent regulation of Rho GTPases. Lis1 promotes Cdc42 activation through interaction with the calcium sensitive GTPase scaffolding protein IQGAP1, maintaining the perimembrane localization of IQGAP1 and CLIP170 and thereby tethering microtubule ends to the cortical actin cytoskeleton. Lis1 thus is a key component of neuronal motility signal transduction that regulates the cytoskeleton by complexing with IQGAP1, active Cdc42 and CLIP-170 upon calcium influx.
Collapse
Affiliation(s)
- Stanislav S Kholmanskikh
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
88
|
Birukova AA, Adyshev D, Gorshkov B, Bokoch GM, Birukov KG, Verin AD. GEF-H1 is involved in agonist-induced human pulmonary endothelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2005; 290:L540-8. [PMID: 16257999 DOI: 10.1152/ajplung.00259.2005] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Endothelial cell (EC) permeability is precisely controlled by cytoskeletal elements [actin filaments, microtubules (MT), intermediate filaments] and cell contact protein complexes (focal adhesions, adherens junctions, tight junctions). We have recently shown that the edemagenic agonist thrombin caused partial MT disassembly, which was linked to activation of small GTPase Rho, Rho-mediated actin remodeling, cell contraction, and dysfunction of lung EC barrier. GEF-H1 is an MT-associated Rho-specific guanosine nucleotide (GDP/GTP) exchange factor, which in MT-unbound state stimulates Rho activity. In this study we tested hypothesis that GEF-H1 may be a key molecule involved in Rho activation, myosin light chain phosphorylation, actin remodeling, and EC barrier dysfunction associated with partial MT disassembly. Our results show that depletion of GEF-H1 or expression of dominant negative GEF-H1 mutant significantly attenuated permeability increase, actin stress fiber formation, and increased MLC and MYPT1 phosphorylation induced by thrombin or MT-depolymerizing agent nocodazole. In contrast, expression of wild-type or activated GEF-H1 mutants dramatically enhanced thrombin and nocodazole effects on stress fiber formation and cell retraction. These results show a critical role for the GEF-H1 in the Rho activation caused by MT disassembly and suggest GEF-H1 as a key molecule involved in cross talk between MT and actin cytoskeleton in agonist-induced Rho-dependent EC barrier regulation.
Collapse
Affiliation(s)
- Anna A Birukova
- Sect. of Pulmonary and Critical Care, Dept. of Medicine, Biological Sciences Div., Univ. of Chicago, 929 E. 57th St., W410, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
89
|
Birukova AA, Birukov KG, Adyshev D, Usatyuk P, Natarajan V, Garcia JGN, Verin AD. Involvement of microtubules and Rho pathway in TGF-beta1-induced lung vascular barrier dysfunction. J Cell Physiol 2005; 204:934-47. [PMID: 15828024 DOI: 10.1002/jcp.20359] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transforming growth factor-beta1 (TGF-beta1) is a cytokine critically involved in acute lung injury and endothelial cell (EC) barrier dysfunction. We have studied TGF-beta1-mediated signaling pathways and examined a role of microtubule (MT) dynamics in TGF-beta1-induced actin cytoskeletal remodeling and EC barrier dysfunction. TGF-beta1 (0.1-50 ng/ml) induced dose-dependent decrease in transendothelial electrical resistance (TER) in bovine pulmonary ECs, which was linked to increased actin stress fiber formation, myosin light chain (MLC) phosphorylation, EC retraction, and gap formation. Inhibitor of TGF-beta1 receptor kinase RI (5 microM) abolished TGF-beta1-induced TER decline, whereas inhibitor of caspase-3 zVAD (10 microM) was without effect. TGF-beta1-induced EC barrier dysfunction was linked to partial dissolution of peripheral MT meshwork and decreased levels of stable (acetylated) MT pool, whereas MT stabilization by taxol (5 microM) attenuated TGF-beta1-induced barrier dysfunction and actin remodeling. TGF-beta1 induced sustained activation of small GTPase Rho and its effector Rho-kinase; phosphorylation of myosin binding subunit of myosin specific phosphatase; MLC phosphorylation; EC contraction; and gap formation, which was abolished by inhibition of Rho and Rho-kinase, and by MT stabilization with taxol. Finally, elevation of intracellular cAMP induced by forskolin (50 microM) attenuated TGF-beta1-induced barrier dysfunction, MLC phosphorylation, and protected the MT peripheral network. These results suggest a novel role for MT dynamics in the TGF-beta1-mediated Rho regulation, EC barrier dysfunction, and actin remodeling.
Collapse
Affiliation(s)
- Anna A Birukova
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
90
|
Fabian L, Forer A. Redundant mechanisms for anaphase chromosome movements: crane-fly spermatocyte spindles normally use actin filaments but also can function without them. PROTOPLASMA 2005; 225:169-84. [PMID: 16228898 DOI: 10.1007/s00709-005-0094-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 11/04/2004] [Indexed: 05/04/2023]
Abstract
Actin inhibitors block or slow anaphase chromosome movements in crane-fly spermatocytes, but stopping of movement is only temporary; we assumed that cells adapt to loss of actin by switching to mechanism(s) involving only microtubules. To test this, we produced actin-filament-free spindles: we added latrunculin B during prometaphase, 9-80 min before anaphase, after which chromosomes generally moved normally during anaphase. We confirmed the absence of actin filaments by staining with fluorescent phalloidin and by showing that cytochalasin D had no effect on chromosome movement. Thus, actin filaments are involved in normal anaphase movements, but in vivo, spindles nonetheless can function normally without them. We tested whether chromosome movements in actin-filament-free spindles arise via microtubules by challenging such spindles with anti-myosin drugs. Y-27632 and BDM (2,3-butanedione monoxime), inhibitors that affect myosin at different regulatory levels, blocked chromosome movement in normal spindles and in actin-filament-free spindles. We tested whether BDM has side effects on microtubule motors. BDM had no effect on ciliary and sperm motility or on ATPase activity of isolated ciliary axonemes, and thus it does not directly block dynein. Nor does it block kinesin, assayed by a microtubule sliding assay. BDM could conceivably indirectly affect these microtubule motors, though it is unlikely that it would have the same side effect on the motors as Y-27632. Since BDM and Y-27632 both affect chromosome movement in the same way, it would seem that both affect spindle myosin; this suggests that spindle myosin interacts with kinetochore microtubules, either directly or via an intermediate component.
Collapse
|
91
|
Abstract
Cell motility is an essential cellular process for a variety of biological events. The process of cell migration requires the integration and coordination of complex biochemical and biomechanical signals. The protrusion force at the leading edge of a cell is generated by the cytoskeleton, and this force generation is controlled by multiple signaling cascades. The formation of new adhesions at the front and the release of adhesions at the rear involve the outside-in and inside-out signaling mediated by integrins and other adhesion receptors. The traction force generated by the cell on the extracellular matrix (ECM) regulates cell-ECM adhesions, and the counter force exerted by ECM on the cell drives the migration. The polarity of cell migration can be amplified and maintained by the feedback loop between the cytoskeleton and cell-ECM adhesions. Cell migration in three-dimensional ECM has characteristics distinct from that on two-dimensional ECM. The migration of cells is initiated and modulated by external chemical and mechanical factors, such as chemoattractants and the mechanical forces acting on the cells and ECM, as well as the surface density, distribution, topography, and rigidity of the ECM.
Collapse
Affiliation(s)
- Song Li
- Department of Bioengineering and Center for Tissue Engineering, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
92
|
Valenzuela-Fernández A, Alvarez S, Gordon-Alonso M, Barrero M, Ursa A, Cabrero JR, Fernández G, Naranjo-Suárez S, Yáñez-Mo M, Serrador JM, Muñoz-Fernández MA, Sánchez-Madrid F. Histone deacetylase 6 regulates human immunodeficiency virus type 1 infection. Mol Biol Cell 2005; 16:5445-54. [PMID: 16148047 PMCID: PMC1266439 DOI: 10.1091/mbc.e05-04-0354] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Efficient human immunodeficiency virus (HIV)-1 infection depends on multiple interactions between the viral gp41/gp120 envelope (Env) proteins and cell surface receptors. However, cytoskeleton-associated proteins that modify membrane dynamics may also regulate the formation of the HIV-mediated fusion pore and hence viral infection. Because the effects of HDAC6-tubulin deacetylase on cortical alpha-tubulin regulate cell migration and immune synapse organization, we explored the possible role of HDAC6 in HIV-1-envelope-mediated cell fusion and infection. The binding of the gp120 protein to CD4+-permissive cells increased the level of acetylated alpha-tubulin in a CD4-dependent manner. Furthermore, overexpression of active HDAC6 inhibited the acetylation of alpha-tubulin, and remarkably, prevented HIV-1 envelope-dependent cell fusion and infection without affecting the expression and codistribution of HIV-1 receptors. In contrast, knockdown of HDAC6 expression or inhibition of its tubulin deacetylase activity strongly enhanced HIV-1 infection and syncytia formation. These results demonstrate that HDAC6 plays a significant role in regulating HIV-1 infection and Env-mediated syncytia formation.
Collapse
|
93
|
Gorovoy M, Niu J, Bernard O, Profirovic J, Minshall R, Neamu R, Voyno-Yasenetskaya T. LIM kinase 1 coordinates microtubule stability and actin polymerization in human endothelial cells. J Biol Chem 2005; 280:26533-42. [PMID: 15897190 PMCID: PMC1403832 DOI: 10.1074/jbc.m502921200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Microtubule (MT) destabilization promotes the formation of actin stress fibers and enhances the contractility of cells; however, the mechanism involved in the coordinated regulation of MTs and the actin cytoskeleton is poorly understood. LIM kinase 1 (LIMK1) regulates actin polymerization by phosphorylating the actin depolymerization factor, cofilin. Here we report that LIMK1 is also involved in the MT destabilization. In endothelial cells endogenous LIMK1 co-localizes with MTs and forms a complex with tubulin via the PDZ domain. MT destabilization induced by thrombin or nocodazole resulted in a decrease of LIMK1 colocalization with MTs. Overexpression of wild type LIMK1 resulted in MT destabilization, whereas the kinase-dead mutant of LIMK1 (KD) did not affect MT stability. Importantly, down-regulation of endogenous LIMK1 by small interference RNA resulted in abrogation of the thrombin-induced MTs destabilization and the inhibition of thrombin-induced actin polymerization. Expression of Rho kinase 2, which phosphorylates and activates LIMK1, dramatically decreases the interaction of LIMK1 with tubulin but increases its interaction with actin. Interestingly, expression of KD-LIMK1 or small interference RNA-LIMK1 prevents thrombin-induced microtubule destabilization and F-actin formation, suggesting that LIMK1 activity is required for thrombin-induced modulation of microtubule destabilization and actin polymerization. Our findings indicate that LIMK1 may coordinate microtubules and actin cytoskeleton.
Collapse
Affiliation(s)
- Matvey Gorovoy
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jiaxin Niu
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Ora Bernard
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute; Victoria, Australia
| | - Jasmina Profirovic
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Richard Minshall
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Radu Neamu
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Tatyana Voyno-Yasenetskaya
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL
- Correspondence should be addressed to: Tatyana Voyno-Yasenetskay, University of Illinois, Department of Pharmacology (MC 868), 835 S. Wolcott Ave, Chicago, IL 60612, Phone: (312) 996-9823, Fax: (312) 996-1225, E-mail:
| |
Collapse
|
94
|
Abstract
Rho GTPases control many cytoskeleton-dependent processes, but how they regulate spatially distinct features of cytoskeletal function within a single cell is poorly understood. Here, we studied active RhoA and Cdc42 in wounded Xenopus oocytes, which assemble and close a dynamic ring of actin filaments (F-actin) and myosin-2 around wound sites. RhoA and Cdc42 are rapidly activated around wound sites in a calcium-dependent manner and segregate into distinct, concentric zones around the wound, with active Cdc42 in the approximate middle of the F-actin array and active RhoA on the interior of the array. These zones form before F-actin accumulation, and then move in concert with the closing array. Microtubules and F-actin are required for normal zone organization and dynamics, as is crosstalk between RhoA and Cdc42. Each of the zones makes distinct contributions to the organization and function of the actomyosin wound array. We propose that similar rho activity zones control related processes such as cytokinesis.
Collapse
Affiliation(s)
- Hélène A Benink
- Department of Zoology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
95
|
Birukova AA, Birukov KG, Smurova K, Adyshev D, Kaibuchi K, Alieva I, Garcia JGN, Verin AD. Novel role of microtubules in thrombin-induced endothelial barrier dysfunction. FASEB J 2005; 18:1879-90. [PMID: 15576491 DOI: 10.1096/fj.04-2328com] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Disturbances in endothelial cell (EC) barrier regulation are critically dependent upon rearrangements of EC actin cytoskeleton. However, the role of microtubule (MT) network in the regulation of EC permeability is not well understood. We examined involvement of MT remodeling in thrombin-induced EC permeability and explored MT regulation by heterotrimeric G12/13 proteins and by small GTPase Rho. Thrombin induced phosphorylation of MT regulatory protein tau at Ser409 and Ser262 and peripheral MT disassembly, which was linked to increased EC permeability. MT stabilization by taxol attenuated thrombin-induced permeability, actin remodeling, and paracellular gap formation and diminished thrombin-induced activation of Rho and Rho-kinase. Expression of activated Galpha12/13 subunits involved in thrombin-mediated signaling or their effector p115RhoGEF involved in Rho activation caused MT disassembly, whereas p115RhoGEF-specific negative regulator RGS preserved MT from thrombin-induced disassembly. Consistent with these results, expression of activated RhoA and Rho-kinase induced MT disassembly. Conversely, thrombin-induced disassembly of peripheral MT network was attenuated by expression of dominant negative RhoA and Rho-kinase mutants or by pharmacological inhibition of Rho-kinase. Collectively, our data demonstrate for the first time a critical involvement of MT disassembly in thrombin-induced EC barrier dysfunction and indicate G-protein-dependent mechanisms of thrombin-induced MT alteration.
Collapse
Affiliation(s)
- Anna A Birukova
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, 5200 Eastern Ave., MFL Center Tower 660, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Teckchandani AM, Birukova AA, Tar K, Verin AD, Tsygankov AY. The multidomain protooncogenic protein c-Cbl binds to tubulin and stabilizes microtubules. Exp Cell Res 2005; 306:114-27. [PMID: 15878338 DOI: 10.1016/j.yexcr.2005.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 01/27/2005] [Accepted: 02/15/2005] [Indexed: 11/18/2022]
Abstract
The protooncogenic protein c-Cbl is known to regulate the actin cytoskeleton. In this study, we present results indicating that c-Cbl can also regulate the microtubular network. We have shown that c-Cbl binds to tubulin and microtubules through its tyrosine kinase binding (TKB) domain. However, the character of the interactions described in this report is novel, since the G306E mutation, which disrupts the ability of c-Cbl's TKB to bind to tyrosine-phosphorylated proteins, does not affect the observed interaction between c-Cbl and microtubules. Furthermore, overexpression of c-Cbl in human pulmonary artery endothelial cells and COS-7 cells leads to microtubule stabilization. We demonstrate that this effect of c-Cbl is mediated by TKB, and, like c-Cbl binding to microtubules, is independent of the ability of TKB to bind to tyrosine-phosphorylated proteins. Finally, we have shown that c-Cbl directly polymerizes microtubules in vitro, and that TKB is necessary and sufficient for this effect of c-Cbl. In this last phenomenon, as well as in the previous ones, the effect of TKB is not sensitive to the inactivating G306E mutation. Overall, the results presented in this report suggest a novel function for c-Cbl-microtubule binding and stabilization.
Collapse
Affiliation(s)
- Anjali M Teckchandani
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
97
|
Proux-Gillardeaux V, Gavard J, Irinopoulou T, Mège RM, Galli T. Tetanus neurotoxin-mediated cleavage of cellubrevin impairs epithelial cell migration and integrin-dependent cell adhesion. Proc Natl Acad Sci U S A 2005; 102:6362-7. [PMID: 15851685 PMCID: PMC1088364 DOI: 10.1073/pnas.0409613102] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A role for endocytosis and exocytosis in cell migration has been proposed but not yet demonstrated. Here, we show that cellubrevin (Cb), an early endosomal v-SNARE, mediates trafficking in the lamellipod of migrating epithelial cells and partially colocalizes with markers of focal contacts. Expression of tetanus neurotoxin, which selectively cleaves Cb, significantly reduced the speed of migrating epithelial cells. Furthermore, expression of tetanus neurotoxin enhanced the adhesion of epithelial cells to collagen, laminin, fibronectin, and E-cadherin; altered spreading on collagen; and impaired the recycling of beta1 integrins. These results suggest that Cb-dependent membrane trafficking participates in cell motility through the regulation of cell adhesion.
Collapse
Affiliation(s)
- Véronique Proux-Gillardeaux
- Membrane Traffic in Neuronal and Epithelial Morphogenesis, Institut National de la Santé et de la Recherche Médicale Avenir Team, Centre National de la Recherche Scientifique, Universités Paris 6 et 7, 75005 Paris, France
| | | | | | | | | |
Collapse
|
98
|
Martin SG, McDonald WH, Yates JR, Chang F. Tea4p Links Microtubule Plus Ends with the Formin For3p in the Establishment of Cell Polarity. Dev Cell 2005; 8:479-91. [PMID: 15809031 DOI: 10.1016/j.devcel.2005.02.008] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 12/31/2004] [Accepted: 02/15/2005] [Indexed: 10/25/2022]
Abstract
Microtubules regulate actin-based processes such as cell migration and cytokinesis, but molecular mechanisms are not understood. In the fission yeast Schizosaccharomyces pombe, microtubule plus ends regulate cell polarity in part by transporting the kelch repeat protein tea1p to cell ends. Here, we identify tea4p, a SH3 domain protein that binds directly to tea1p. Like tea1p, tea4p localizes to growing microtubule plus ends and to cortical sites at cell ends, and it is necessary for the establishment of bipolar growth. Tea4p binds directly to and recruits the formin for3p, which nucleates actin cable assembly. During "new end take off" (NETO), formation of a protein complex that includes tea1p, tea4p, and for3p is necessary and sufficient for the establishment of cell polarity and localized actin assembly at new cell ends. Our results suggest a molecular mechanism for how microtubule plus ends regulate the spatial distribution of actin assembly.
Collapse
Affiliation(s)
- Sophie G Martin
- Department of Microbiology, Columbia University, College of Physicians and Surgeons, 701 West 168th Street, New York, New York 10032, USA
| | | | | | | |
Collapse
|
99
|
Waltregny D, Glénisson W, Tran SL, North BJ, Verdin E, Colige A, Castronovo V. Histone deacetylase HDAC8 associates with smooth muscle alpha-actin and is essential for smooth muscle cell contractility. FASEB J 2005; 19:966-8. [PMID: 15772115 DOI: 10.1096/fj.04-2303fje] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although originally characterized as nuclear enzymes controlling the stability of nucleosomes, histone deacetylases (HDACs) may also exert their activity within the cytosol. Recently, we have demonstrated that HDAC8, a class I HDAC, is a novel, prominently cytosolic marker of smooth muscle differentiation. As HDAC8 displays a striking stress fiber-like pattern of distribution and is coexpressed in vivo with smooth muscle alpha-actin (alpha-SMA) and smooth muscle myosin heavy chain, we have explored the possible participation of this HDAC in smooth muscle cytoskeleton regulation. Cell fractionation assays performed with primary human smooth muscle cells (HSMCs) showed that HDAC8, in contrast to HDAC1 and HDAC3, was enriched in cytoskeleton-bound protein fractions and insoluble cell pellets, suggesting an association of HDAC8 with the cystoskeleton. Coimmunoprecipitation experiments using HSMCs, NIH-3T3 cells, and human prostate tissue lysates further demonstrated that HDAC8 associates with alpha-SMA but not with beta-actin. HDAC8 silencing through RNA interference strongly reduced the capacity of HSMCs to contract collagen lattices. Mock transfections had no effect on HSMC contractily, and transfections with small interfering RNAs (siRNAs) specific for HDAC6, a cytosolic HDAC that functions as an alpha-tubulin deacetylase, resulted in a weak contraction inhibition. Although mock- and HDAC6 siRNA-transfected HSMCs showed no noticeable morphological changes, HDAC8 siRNA-transfected HSMCs displayed a size reduction with diminished cell spreading after replating. Altogether, our findings indicate that HDAC8 associates with the smooth muscle actin cytoskeleton and may regulate the contractile capacity of smooth muscle cells.
Collapse
Affiliation(s)
- David Waltregny
- Metastasis Research Laboratory, University of Liège, Liège, Belgium.
| | | | | | | | | | | | | |
Collapse
|
100
|
Jiang X, Bruzewicz DA, Wong AP, Piel M, Whitesides GM. Directing cell migration with asymmetric micropatterns. Proc Natl Acad Sci U S A 2005; 102:975-8. [PMID: 15653772 PMCID: PMC545855 DOI: 10.1073/pnas.0408954102] [Citation(s) in RCA: 312] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This report shows that the direction of polarization of attached mammalian cells determines the direction in which they move. Surfaces micropatterned with appropriately functionalized self-assembled monolayers constrain individual cells to asymmetric geometries (for example, a teardrop); these geometries polarize the morphology of the cell. After electrochemical desorption of the self-assembled monolayers removes these constraints and allows the cells to move across the surface, they move toward their blunt ends.
Collapse
Affiliation(s)
- Xingyu Jiang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|