51
|
Higashi TL, Pobegalov G, Tang M, Molodtsov MI, Uhlmann F. A Brownian ratchet model for DNA loop extrusion by the cohesin complex. eLife 2021; 10:e67530. [PMID: 34309513 PMCID: PMC8313234 DOI: 10.7554/elife.67530] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex topologically encircles DNA to promote sister chromatid cohesion. Alternatively, cohesin extrudes DNA loops, thought to reflect chromatin domain formation. Here, we propose a structure-based model explaining both activities. ATP and DNA binding promote cohesin conformational changes that guide DNA through a kleisin N-gate into a DNA gripping state. Two HEAT-repeat DNA binding modules, associated with cohesin's heads and hinge, are now juxtaposed. Gripping state disassembly, following ATP hydrolysis, triggers unidirectional hinge module movement, which completes topological DNA entry by directing DNA through the ATPase head gate. If head gate passage fails, hinge module motion creates a Brownian ratchet that, instead, drives loop extrusion. Molecular-mechanical simulations of gripping state formation and resolution cycles recapitulate experimentally observed DNA loop extrusion characteristics. Our model extends to asymmetric and symmetric loop extrusion, as well as z-loop formation. Loop extrusion by biased Brownian motion has important implications for chromosomal cohesin function.
Collapse
Affiliation(s)
- Torahiko L Higashi
- Chromosome Segregation Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Georgii Pobegalov
- Mechanobiology and Biophysics Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Department of Physics and Astronomy, University College LondonLondonUnited Kingdom
| | - Minzhe Tang
- Chromosome Segregation Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Maxim I Molodtsov
- Mechanobiology and Biophysics Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Department of Physics and Astronomy, University College LondonLondonUnited Kingdom
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
52
|
Li X, Song G, Dou L, Yan S, Zhang M, Yuan W, Lai S, Jiang X, Li K, Sun K, Zhao C, Geng J. The structure and unzipping behavior of dumbbell and hairpin DNA revealed by real-time nanopore sensing. NANOSCALE 2021; 13:11827-11835. [PMID: 34152351 DOI: 10.1039/d0nr08729g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hairpin structures play an essential role in DNA replication, transcription, and recombination. Single-molecule studies enable the real-time measurement and observation of the energetics and dynamics of hairpin structures, including folding and DNA-protein interactions. Nanopore sensing is emerging as a powerful tool for DNA sensing and sequencing, and previous research into hairpins using an α-hemolysin (α-HL) nanopore suggested that hairpin DNA enters from its stem side. In this work, the translocation and interaction of hairpin and dumbbell DNA samples with varying stems, loops, and toeholds were investigated systematically using a Mycobacterium smegmatis porin A (MspA) nanopore. It was found that these DNA constructs could translocate through the pore under a bias voltage above +80 mV, and blockage events with two conductance states could be observed. The events of the lower blockage were correlated with the loop size of the hairpin or dumbbell DNA (7 nt to 25 nt), which could be attributed to non-specific collisions with the pore, whereas the dwell time of events with the higher blockage were correlated with the stem length, thus indicating effective translocation. Furthermore, dumbbell DNA with and without a stem opening generated different dwell times when driven through the MspA nanopore. Finally, a new strategy based on the dwell time difference was developed to detect single nucleotide polymorphisms (SNPs). These results demonstrated that the unzipping behaviors and DNA-protein interactions of hairpin and dumbbell DNA could be revealed using nanopore technology, and this could be further developed to create sensors for the secondary structures of nucleic acids.
Collapse
Affiliation(s)
- Xinqiong Li
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Measurements of Real-Time Replication Kinetics of DNA Polymerases on ssDNA Templates Coated with Single-Stranded DNA-Binding Proteins. Methods Mol Biol 2021; 2281:289-301. [PMID: 33847966 DOI: 10.1007/978-1-0716-1290-3_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Optical tweezers can monitor and control the activity of individual DNA polymerase molecules in real time, providing in this way unprecedented insight into the complex dynamics and mechanochemical processes that govern their operation. Here, we describe an optical tweezers-based assay to determine at the single-molecule level the effect of single-stranded DNA-binding proteins (SSB) on the real-time replication kinetics of the human mitochondrial DNA polymerase during the synthesis of the lagging strand.
Collapse
|
54
|
Hong Y, Zhang H, Gartner A. The Last Chance Saloon. Front Cell Dev Biol 2021; 9:671297. [PMID: 34055803 PMCID: PMC8160109 DOI: 10.3389/fcell.2021.671297] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023] Open
Abstract
Accurate chromosome segregation requires the removal of all chromatin bridges, which link chromosomes before cell division. When chromatin bridges fail to be removed, cell cycle progression may halt, or cytokinesis failure and ensuing polyploidization may occur. Conversely, the inappropriate severing of chromatin bridges leads to chromosome fragmentation, excessive genome instability at breakpoints, micronucleus formation, and chromothripsis. In this mini-review, we first describe the origins of chromatin bridges, the toxic processing of chromatin bridges by mechanical force, and the TREX1 exonuclease. We then focus on the abscission checkpoint (NoCut) which can confer a transient delay in cytokinesis progression to facilitate bridge resolution. Finally, we describe a recently identified mechanism uncovered in C. elegans where the conserved midbody associated endonuclease LEM-3/ANKLE1 is able to resolve chromatin bridges generated by various perturbations of DNA metabolism at the final stage of cell division. We also discuss how LEM-3 dependent chromatin bridge resolution may be coordinated with abscission checkpoint (NoCut) to achieve an error-free cleavage, therefore acting as a "last chance saloon" to facilitate genome integrity and organismal survival.
Collapse
Affiliation(s)
- Ye Hong
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Hongtao Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Anton Gartner
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, South Korea
| |
Collapse
|
55
|
Arce NA, Cao W, Brown AK, Legan ER, Wilson MS, Xu ER, Berndt MC, Emsley J, Zhang XF, Li R. Activation of von Willebrand factor via mechanical unfolding of its discontinuous autoinhibitory module. Nat Commun 2021; 12:2360. [PMID: 33883551 PMCID: PMC8060278 DOI: 10.1038/s41467-021-22634-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/16/2021] [Indexed: 01/05/2023] Open
Abstract
Von Willebrand factor (VWF) activates in response to shear flow to initiate hemostasis, while aberrant activation could lead to thrombosis. Above a critical shear force, the A1 domain of VWF becomes activated and captures platelets via the GPIb-IX complex. Here we show that the shear-responsive element controlling VWF activation resides in the discontinuous autoinhibitory module (AIM) flanking A1. Application of tensile force in a single-molecule setting induces cooperative unfolding of the AIM to expose A1. The AIM-unfolding force is lowered by truncating either N- or C-terminal AIM region, type 2B VWD mutations, or binding of a ristocetin-mimicking monoclonal antibody, all of which could activate A1. Furthermore, the AIM is mechanically stabilized by the nanobody that comprises caplacizumab, the only FDA-approved anti-thrombotic drug to-date that targets VWF. Thus, the AIM is a mechano-regulator of VWF activity. Its conformational dynamics may define the extent of VWF autoinhibition and subsequent activation under force.
Collapse
Affiliation(s)
- Nicholas A Arce
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Wenpeng Cao
- Department of Bioengineering, Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, PA, USA
| | - Alexander K Brown
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Emily R Legan
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Moriah S Wilson
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Emma-Ruoqi Xu
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Michael C Berndt
- Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Jonas Emsley
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - X Frank Zhang
- Department of Bioengineering, Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, PA, USA.
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
56
|
From folding to function: complex macromolecular reactions unraveled one-by-one with optical tweezers. Essays Biochem 2021; 65:129-142. [PMID: 33438724 DOI: 10.1042/ebc20200024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Single-molecule manipulation with optical tweezers has uncovered macromolecular behaviour hidden to other experimental techniques. Recent instrumental improvements have made it possible to expand the range of systems accessible to optical tweezers. Beyond focusing on the folding and structural changes of isolated single molecules, optical tweezers studies have evolved into unraveling the basic principles of complex molecular processes such as co-translational folding on the ribosome, kinase activation dynamics, ligand-receptor binding, chaperone-assisted protein folding, and even dynamics of intrinsically disordered proteins (IDPs). In this mini-review, we illustrate the methodological principles of optical tweezers before highlighting recent advances in studying complex protein conformational dynamics - from protein synthesis to physiological function - as well as emerging future issues that are beginning to be addressed with novel approaches.
Collapse
|
57
|
Mo Y, Fizari M, Koharchik K, Smith DE. Determining Trap Compliances, Microsphere Size Variations, and Response Linearities in Single DNA Molecule Elasticity Measurements with Optical Tweezers. Front Mol Biosci 2021; 8:605102. [PMID: 33829038 PMCID: PMC8019724 DOI: 10.3389/fmolb.2021.605102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/05/2021] [Indexed: 11/25/2022] Open
Abstract
We previously introduced the use of DNA molecules for calibration of biophysical force and displacement measurements with optical tweezers. Force and length scale factors can be determined from measurements of DNA stretching. Trap compliance can be determined by fitting the data to a nonlinear DNA elasticity model, however, noise/drift/offsets in the measurement can affect the reliability of this determination. Here we demonstrate a more robust method that uses a linear approximation for DNA elasticity applied to high force range (25-45 pN) data. We show that this method can be used to assess how small variations in microsphere sizes affect DNA length measurements and demonstrate methods for correcting for these errors. We further show that these measurements can be used to check assumed linearities of system responses. Finally, we demonstrate methods combining microsphere imaging and DNA stretching to check the compliance and positioning of individual traps.
Collapse
Affiliation(s)
| | | | | | - Douglas E. Smith
- Department of Physics, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
58
|
Ferger M, Ban Ž, Krošl I, Tomić S, Dietrich L, Lorenzen S, Rauch F, Sieh D, Friedrich A, Griesbeck S, Kenđel A, Miljanić S, Piantanida I, Marder TB. Bis(phenylethynyl)arene Linkers in Tetracationic Bis-triarylborane Chromophores Control Fluorimetric and Raman Sensing of Various DNAs and RNAs. Chemistry 2021; 27:5142-5159. [PMID: 33411942 PMCID: PMC8048639 DOI: 10.1002/chem.202005141] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Indexed: 11/24/2022]
Abstract
We report four new luminescent tetracationic bis-triarylborane DNA and RNA sensors that show high binding affinities, in several cases even in the nanomolar range. Three of the compounds contain substituted, highly emissive and structurally flexible bis(2,6-dimethylphenyl-4-ethynyl)arene linkers (3: arene=5,5'-2,2'-bithiophene; 4: arene=1,4-benzene; 5: arene=9,10-anthracene) between the two boryl moieties and serve as efficient dual Raman and fluorescence chromophores. The shorter analogue 6 employs 9,10-anthracene as the linker and demonstrates the importance of an adequate linker length with a certain level of flexibility by exhibiting generally lower binding affinities than 3-5. Pronounced aggregation-deaggregation processes are observed in fluorimetric titration experiments with DNA for compounds 3 and 5. Molecular modelling of complexes of 5 with AT-DNA, suggest the minor groove as the dominant binding site for monomeric 5, but demonstrate that dimers of 5 can also be accommodated. Strong SERS responses for 3-5 versus a very weak response for 6, particularly the strong signals from anthracene itself observed for 5 but not for 6, demonstrate the importance of triple bonds for strong Raman activity in molecules of this compound class. The energy of the characteristic stretching vibration of the C≡C bonds is significantly dependent on the aromatic moiety between the triple bonds. The insertion of aromatic moieties between two C≡C bonds thus offers an alternative design for dual Raman and fluorescence chromophores, applicable in multiplex biological Raman imaging.
Collapse
Affiliation(s)
- Matthias Ferger
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Željka Ban
- Division of Organic Chemistry & BiochemistryRuđer Bošković Institute, Bijenička 5410000ZagrebCroatia
| | - Ivona Krošl
- Division of Organic Chemistry & BiochemistryRuđer Bošković Institute, Bijenička 5410000ZagrebCroatia
| | - Sanja Tomić
- Division of Organic Chemistry & BiochemistryRuđer Bošković Institute, Bijenička 5410000ZagrebCroatia
| | - Lena Dietrich
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Sabine Lorenzen
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Florian Rauch
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Daniel Sieh
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Stefanie Griesbeck
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Adriana Kenđel
- Division of Analytical ChemistryDepartment of Chemistry, Faculty of ScienceUniversity of Zagreb, Horvatovac 102a10000ZagrebCroatia
| | - Snežana Miljanić
- Division of Analytical ChemistryDepartment of Chemistry, Faculty of ScienceUniversity of Zagreb, Horvatovac 102a10000ZagrebCroatia
| | - Ivo Piantanida
- Division of Organic Chemistry & BiochemistryRuđer Bošković Institute, Bijenička 5410000ZagrebCroatia
| | - Todd B. Marder
- Institut für Anorganische Chemie andInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
59
|
Keenen MM, Brown D, Brennan LD, Renger R, Khoo H, Carlson CR, Huang B, Grill SW, Narlikar GJ, Redding S. HP1 proteins compact DNA into mechanically and positionally stable phase separated domains. eLife 2021; 10:e64563. [PMID: 33661100 PMCID: PMC7932698 DOI: 10.7554/elife.64563] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
In mammals, HP1-mediated heterochromatin forms positionally and mechanically stable genomic domains even though the component HP1 paralogs, HP1α, HP1β, and HP1γ, display rapid on-off dynamics. Here, we investigate whether phase-separation by HP1 proteins can explain these biological observations. Using bulk and single-molecule methods, we show that, within phase-separated HP1α-DNA condensates, HP1α acts as a dynamic liquid, while compacted DNA molecules are constrained in local territories. These condensates are resistant to large forces yet can be readily dissolved by HP1β. Finally, we find that differences in each HP1 paralog's DNA compaction and phase-separation properties arise from their respective disordered regions. Our findings suggest a generalizable model for genome organization in which a pool of weakly bound proteins collectively capitalize on the polymer properties of DNA to produce self-organizing domains that are simultaneously resistant to large forces at the mesoscale and susceptible to competition at the molecular scale.
Collapse
Affiliation(s)
- Madeline M Keenen
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - David Brown
- Department of Pharmaceutical Chemistry, University of California, San FranciscoSan FranciscoUnited States
| | - Lucy D Brennan
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Roman Renger
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Harrison Khoo
- Department of Mechanical Engineering, Johns Hopkins UniversityBaltimoreUnited States
| | - Christopher R Carlson
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
| | - Bo Huang
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Department of Pharmaceutical Chemistry, University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Stephan W Grill
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Cluster of Excellence Physics of Life, Technische Universität DresdenDresdenGermany
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Sy Redding
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Marine Biological LaboratoryWoods HoleUnited States
| |
Collapse
|
60
|
Razbin M, Mashaghi A. Elasticity of connected semiflexible quadrilaterals. SOFT MATTER 2021; 17:102-112. [PMID: 33150925 DOI: 10.1039/d0sm01719a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using the positional-orientational propagator of a semiflexible filament in the weakly bending regime, we analytically calculate the probability densities associated with the fluctuating tip and the corners of a grafted system of connected quadrilaterals. We calculate closed analytic expressions for the probability densities within the framework of the worm-like chain model, which are valid in the weakly bending regime. The probability densities give the physical quantities related to the elasticity of the system such as the force-extension relation in the fixed extension ensemble, the Poisson's ratio and the average of the force exerted to a confining stiff planar wall by the fluctuating tip of the system. Our analysis reveals that the force-extension relations depend on the contour length of the system (material content), the bending stiffness (chemical nature), the geometrical angle and the number of the quadrilaterals, while the Poisson's ratio depends only on the geometrical angle and the number of the quadrilaterals, and is thus a purely geometric property of the system.
Collapse
Affiliation(s)
- Mohammadhosein Razbin
- Department of Energy Engineering and Physics, Amirkabir University of Technology, 14588 Tehran, Iran.
| | | |
Collapse
|
61
|
Affiliation(s)
- Michael Jacobs
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Andrey V. Dobrynin
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
62
|
Abraham Punnoose J, Hayden A, Zhou L, Halvorsen K. Wi-Fi Live-Streaming Centrifuge Force Microscope for Benchtop Single-Molecule Experiments. Biophys J 2020; 119:2231-2239. [PMID: 33121943 PMCID: PMC7732769 DOI: 10.1016/j.bpj.2020.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 11/21/2022] Open
Abstract
The ability to apply controlled forces to individual molecules has been revolutionary in shaping our understanding of biophysics in areas as diverse as dynamic bond strength, biological motor operation, and DNA replication. However, the methodology to perform single-molecule experiments remains relatively inaccessible because of cost and complexity. In 2010, we introduced the centrifuge force microscope (CFM) as a platform for accessible and high-throughput single-molecule experimentation. The CFM consists of a rotating microscope with which prescribed centrifugal forces can be applied to microsphere-tethered biomolecules. In this work, we develop and demonstrate a next-generation Wi-Fi CFM that offers unprecedented ease of use and flexibility in design. The modular CFM unit fits within a standard benchtop centrifuge and connects by Wi-Fi to an external computer for live control and streaming at near gigabit speeds. The use of commercial wireless hardware allows for flexibility in programming and provides a streamlined upgrade path as Wi-Fi technology advances. To facilitate ease of use, detailed build and setup instructions, as well as LabVIEW-based control software and MATLAB-based analysis software, are provided. We demonstrate the instrument’s performance by analysis of force-dependent dissociation of short DNA duplexes of 7, 8, and 9 bp. We showcase the sensitivity of the approach by resolving distinct dissociation kinetic rates for a 7 bp duplex in which one G-C basepair is mutated to an A-T basepair.
Collapse
Affiliation(s)
| | | | - Lifeng Zhou
- RNA Institute, SUNY at Albany, Albany, New York
| | | |
Collapse
|
63
|
Pang L, Abeysekera G, Hanning K, Premaratne A, Robson B, Abraham P, Sutton R, Hanson C, Hadfield J, Heiligenthal L, Stone D, McBeth K, Billington C. Water tracking in surface water, groundwater and soils using free and alginate-chitosan encapsulated synthetic DNA tracers. WATER RESEARCH 2020; 184:116192. [PMID: 32731038 DOI: 10.1016/j.watres.2020.116192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Investigating contamination pathways and hydraulic connections in complex hydrological systems will benefit greatly from multi-tracer approaches. The use of non-toxic synthetic DNA tracers is promising, because unlimited numbers of tracers, each with a unique DNA identifier, could be used concurrently and detected at extremely low concentrations. This study aimed to develop multiple synthetic DNA tracers as free molecules and encapsulated within microparticles of biocompatible and biodegradable alginate and chitosan, and to validate their field utility in different systems. Experiments encompassing a wide range of conditions and flow rates (19 cm/day-39 km/day) were conducted in a stream, an alluvial gravel aquifer, a fine coastal sand aquifer, and in lysimeters containing undisturbed silt loam over gravels. The DNA tracers were identifiable in all field conditions investigated, and they were directly detectable in the stream at a distance of at least 1 km. The DNA tracers showed promise at tracking fast-flowing water in the stream, gravel aquifer and permeable soils, but were unsatisfactory at tracking slow-moving groundwater in the fine sand aquifer. In the surface water experiments, the microencapsulated DNA tracers' concentrations and mass recoveries were 1-3 orders of magnitude greater than those of the free DNA tracers, because encapsulation protected them from environmental stressors and they were more negatively charged. The opposite was observed in the gravel aquifer, probably due to microparticle filtration by the aquifer media. Although these new DNA tracers showed promise in proof-of-concept field validations, further work is needed before they can be used for large-scale investigations.
Collapse
Affiliation(s)
- Liping Pang
- Institute of Environmental Science and Research, PO Box 29181, Christchurch 8540, New Zealand.
| | - Gayan Abeysekera
- Institute of Environmental Science and Research, PO Box 29181, Christchurch 8540, New Zealand
| | - Kyrin Hanning
- Institute of Environmental Science and Research, PO Box 29181, Christchurch 8540, New Zealand; School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Aruni Premaratne
- Institute of Environmental Science and Research, PO Box 29181, Christchurch 8540, New Zealand
| | - Beth Robson
- Institute of Environmental Science and Research, PO Box 29181, Christchurch 8540, New Zealand
| | - Phillip Abraham
- Institute of Environmental Science and Research, PO Box 29181, Christchurch 8540, New Zealand
| | - Richard Sutton
- Institute of Environmental Science and Research, PO Box 29181, Christchurch 8540, New Zealand
| | - Carl Hanson
- Environment Canterbury, PO Box 345, Christchurch 8140, New Zealand
| | - John Hadfield
- Waikato Regional Council, Private Bag 3038, Hamilton 3240, New Zealand
| | - Laura Heiligenthal
- Institute of Environmental Science and Research, PO Box 29181, Christchurch 8540, New Zealand
| | - Dana Stone
- Institute of Environmental Science and Research, PO Box 29181, Christchurch 8540, New Zealand
| | - Kurt McBeth
- Institute of Environmental Science and Research, PO Box 29181, Christchurch 8540, New Zealand
| | - Craig Billington
- Institute of Environmental Science and Research, PO Box 29181, Christchurch 8540, New Zealand
| |
Collapse
|
64
|
Cao W, Cao W, Zhang W, Zheng XL, Zhang XF. Factor VIII binding affects the mechanical unraveling of the A2 domain of von Willebrand factor. J Thromb Haemost 2020; 18:2169-2176. [PMID: 32544272 PMCID: PMC7789802 DOI: 10.1111/jth.14962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/05/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Proteolytic cleavage of von Willebrand factor (VWF) by ADAMTS13 is crucial for normal hemostasis. Our previous studies demonstrate that binding of coagulation factor VIII (or FVIII) to VWF enhances the proteolytic cleavage of VWF by ADAMTS13 under shear. OBJECTIVES Present study aims to determine the mechanism underlying FVIII-mediated enhancing effect on VWF proteolysis by ADAMTS13 under force. METHODS Single molecular force spectroscopy, atomic force microscopy, and surface plasmon resonance are all used. RESULTS Using single molecule force spectroscopy, we show that an addition of FVIII (~5 nmol/L) to D'D3 or D'D3A1 does not significantly alter force-induced unfolding of these fragments; however, an addition of FVIII at the same concentration to D'D3A1A2 eliminates its long unfolding event at ~40 nm, suggesting that binding of FVIII to D'D3 and/or A2 may result in force-induced conformational changes in A2 domain. Atomic force spectroscopy further demonstrates the direct binding between FVIII and D'D3 (or A2) with an intrinsic 2-dimensional off-rate (k0 ) of 0.02 ± 0.01/s (or 0.3 ± 0.1/s). The direct binding interaction between FVIII and A2 is further confirmed with the surface plasmon resonance assay, with a dissociation constant of ~0.2 μmol/L; no binding is detected between FVIII and A1 under the same conditions. CONCLUSIONS Our results suggest that binding of FVIII to D'D3 and/or A2 may alter the mechanical property in the central A2 domain. The findings provide novel insight into the molecular mechanism underlying FVIII-dependent regulation of VWF proteolysis by ADAMTS13 under mechanical force.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Bioengineering, and Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA
| | - Wenjing Cao
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wei Zhang
- Department of Bioengineering, and Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA
| | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - X. Frank Zhang
- Department of Bioengineering, and Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA
| |
Collapse
|
65
|
Finardi A, Massari LF, Visintin R. Anaphase Bridges: Not All Natural Fibers Are Healthy. Genes (Basel) 2020; 11:genes11080902. [PMID: 32784550 PMCID: PMC7464157 DOI: 10.3390/genes11080902] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
At each round of cell division, the DNA must be correctly duplicated and distributed between the two daughter cells to maintain genome identity. In order to achieve proper chromosome replication and segregation, sister chromatids must be recognized as such and kept together until their separation. This process of cohesion is mainly achieved through proteinaceous linkages of cohesin complexes, which are loaded on the sister chromatids as they are generated during S phase. Cohesion between sister chromatids must be fully removed at anaphase to allow chromosome segregation. Other (non-proteinaceous) sources of cohesion between sister chromatids consist of DNA linkages or sister chromatid intertwines. DNA linkages are a natural consequence of DNA replication, but must be timely resolved before chromosome segregation to avoid the arising of DNA lesions and genome instability, a hallmark of cancer development. As complete resolution of sister chromatid intertwines only occurs during chromosome segregation, it is not clear whether DNA linkages that persist in mitosis are simply an unwanted leftover or whether they have a functional role. In this review, we provide an overview of DNA linkages between sister chromatids, from their origin to their resolution, and we discuss the consequences of a failure in their detection and processing and speculate on their potential role.
Collapse
Affiliation(s)
- Alice Finardi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy;
| | - Lucia F. Massari
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK;
| | - Rosella Visintin
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy;
- Correspondence: ; Tel.: +39-02-5748-9859; Fax: +39-02-9437-5991
| |
Collapse
|
66
|
Inukai R, Takao H, Shimokawa F, Terao K. Capture and elongation of single chromosomal DNA molecules using optically driven microchopsticks. BIOMICROFLUIDICS 2020; 14:044114. [PMID: 32831987 PMCID: PMC7428348 DOI: 10.1063/5.0017727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/05/2020] [Indexed: 05/11/2023]
Abstract
DNA analysis based on the observation of single DNA molecules has been a key technology in molecular biology. Several techniques for manipulating single DNA molecules have been proposed for this purpose; however, these techniques have limits on the manipulatable DNA. To overcome this, we demonstrate a method of DNA manipulation using microstructures captured by optical tweezers that allow the manipulation of a chromosomal DNA molecule. For proper DNA handling, we developed microstructures analogous to chopsticks to capture and elongate single DNA molecules under an optical microscope. Two microstructures (i.e., microchopsticks) were captured by two focused laser beams to pinch a single yeast chromosomal DNA molecule between them and thereby manipulate it. The experiments demonstrated successful DNA manipulation and revealed that the size and geometry of the microchopsticks are important factors for effective DNA handling. This technique allows a high degree of freedom in handling single DNA molecules, potentially leading to applications in the study of chromosomal DNA.
Collapse
Affiliation(s)
- Ryo Inukai
- Department of Intelligent Mechanical Systems Engineering, Kagawa University, Takamatsu 761-0396, Japan
| | | | | | - Kyohei Terao
- Author to whom correspondence should be addressed:. Tel.: +81 (87) 864-2346
| |
Collapse
|
67
|
Llorente García I, Marsh M. A biophysical perspective on receptor-mediated virus entry with a focus on HIV. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183158. [PMID: 31863725 PMCID: PMC7156917 DOI: 10.1016/j.bbamem.2019.183158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022]
Abstract
As part of their entry and infection strategy, viruses interact with specific receptor molecules expressed on the surface of target cells. The efficiency and kinetics of the virus-receptor interactions required for a virus to productively infect a cell is determined by the biophysical properties of the receptors, which are in turn influenced by the receptors' plasma membrane (PM) environments. Currently, little is known about the biophysical properties of these receptor molecules or their engagement during virus binding and entry. Here we review virus-receptor interactions focusing on the human immunodeficiency virus type 1 (HIV), the etiological agent of acquired immunodeficiency syndrome (AIDS), as a model system. HIV is one of the best characterised enveloped viruses, with the identity, roles and structure of the key molecules required for infection well established. We review current knowledge of receptor-mediated HIV entry, addressing the properties of the HIV cell-surface receptors, the techniques used to measure these properties, and the macromolecular interactions and events required for virus entry. We discuss some of the key biophysical principles underlying receptor-mediated virus entry and attempt to interpret the available data in the context of biophysical mechanisms. We also highlight crucial outstanding questions and consider how new tools might be applied to advance understanding of the biophysical properties of viral receptors and the dynamic events leading to virus entry.
Collapse
Affiliation(s)
| | - Mark Marsh
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
68
|
Freeland J, Zhang L, Wang ST, Ruiz M, Wang Y. Bent DNA Bows as Sensing Amplifiers for Detecting DNA-Interacting Salts and Molecules. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3112. [PMID: 32486417 PMCID: PMC7309149 DOI: 10.3390/s20113112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/23/2020] [Accepted: 05/29/2020] [Indexed: 01/20/2023]
Abstract
Due to the central role of DNA, its interactions with inorganic salts and small organic molecules are important. For example, such interactions play important roles in various fundamental cellular processes in living systems and are involved in many DNA-damage related diseases. Strategies to improve the sensitivity of existing techniques for studying DNA interactions with other molecules would be appreciated in situations where the interactions are too weak. Here we report our development and demonstration of bent DNA bows for amplifying, sensing, and detecting the interactions of 14 inorganic salts and small organic molecules with DNA. With the bent DNA bows, these interactions were easily visualized and quantified in gel electrophoresis, which were difficult to measure without bending. In addition, the strength of the interactions of DNA with the various salts/molecules were quantified using the modified Hill equation. This work highlights the amplification effects of the bending elastic energy stored in the DNA bows and the potential use of the DNA bows for quantitatively measuring DNA interactions with small molecules as simple economic methods; it may also pave the way for exploiting the bent DNA bows for other applications such as screening DNA-interacting molecules and drugs.
Collapse
Affiliation(s)
- Jack Freeland
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA; (J.F.); (M.R.)
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA; (L.Z.); (S.-T.W.)
| | - Shih-Ting Wang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA; (L.Z.); (S.-T.W.)
| | - Mason Ruiz
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA; (J.F.); (M.R.)
- Department of Biology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yong Wang
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA; (J.F.); (M.R.)
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
- Microelectronics-Photonics Program, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
69
|
Yazaki J, Kawashima Y, Ogawa T, Kobayashi A, Okoshi M, Watanabe T, Yoshida S, Kii I, Egami S, Amagai M, Hosoya T, Shiroguchi K, Ohara O. HaloTag-based conjugation of proteins to barcoding-oligonucleotides. Nucleic Acids Res 2020; 48:e8. [PMID: 31752022 PMCID: PMC6954424 DOI: 10.1093/nar/gkz1086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/29/2019] [Accepted: 11/18/2019] [Indexed: 11/12/2022] Open
Abstract
Highly sensitive protein quantification enables the detection of a small number of protein molecules that serve as markers/triggers for various biological phenomena, such as cancer. Here, we describe the development of a highly sensitive protein quantification system called HaloTag protein barcoding. The method involves covalent linking of a target protein to a unique molecule counting oligonucleotide at a 1:1 conjugation ratio based on an azido-cycloalkyne click reaction. The sensitivity of the HaloTag-based barcoding was remarkably higher than that of a conventional luciferase assay. The HaloTag system was successfully validated by analyzing a set of protein-protein interactions, with the identification rate of 44% protein interactions between positive reference pairs reported in the literature. Desmoglein 3, the target antigen of pemphigus vulgaris, an IgG-mediated autoimmune blistering disease, was used in a HaloTag protein barcode assay to detect the anti-DSG3 antibody. The dynamic range of the assay was over 104-times wider than that of a conventional enzyme-linked immunosorbent assay (ELISA). The technology was used to detect anti-DSG3 antibody in patient samples with much higher sensitivity compared to conventional ELISA. Our detection system, with its superior sensitivity, enables earlier detection of diseases possibly allowing the initiation of care/treatment at an early disease stage.
Collapse
Affiliation(s)
- Junshi Yazaki
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama City 230-0045, Japan
| | - Yusuke Kawashima
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama City 230-0045, Japan
| | - Taisaku Ogawa
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka 565-0874, Japan
| | - Atsuo Kobayashi
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama City 230-0045, Japan
| | - Mayu Okoshi
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama City 230-0045, Japan
| | - Takashi Watanabe
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama City 230-0045, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Isao Kii
- Common Facilities Unit, Compass to Healthy Life Research Complex Program, RIKEN Cluster for Science, Technology and Innovation Hub, Kobe 650-0047, Japan
| | - Shohei Egami
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama 230-0045, Japan.,Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masayuki Amagai
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama 230-0045, Japan.,Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan.,Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan
| | - Katsuyuki Shiroguchi
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka 565-0874, Japan.,Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama 230-0045, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama City 230-0045, Japan
| |
Collapse
|
70
|
Kang Y, Cheon NY, Cha J, Kim A, Kim HI, Lee L, Kim KO, Jo K, Lee JY. High-throughput single-molecule imaging system using nanofabricated trenches and fluorescent DNA-binding proteins. Biotechnol Bioeng 2020; 117:1640-1648. [PMID: 32162675 DOI: 10.1002/bit.27331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/02/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022]
Abstract
DNA curtain is a high-throughput system, integrating a lipid bilayer, fluorescence imaging, and microfluidics to probe protein-DNA interactions in real-time and has provided in-depth understanding of DNA metabolism. Especially, the microfluidic platform of a DNA curtain is highly suitable for a biochip. In the DNA curtain, DNA molecules are aligned along chromium nanobarriers, which are fabricated on a slide surface, and visualized using an intercalating dye, YOYO-1. Although the chromium barriers confer precise geometric alignment of DNA, reuse of the slides is limited by wear of the barriers during cleaning. YOYO-1 is rapidly photobleached and causes photocleavage of DNA under continuous laser illumination, restricting DNA observation to a brief time window. To address these challenges, we developed a new nanopatterned slide, upon which carved nanotrenches serve as diffusion barriers. The nanotrenches were robust under harsh cleaning conditions, facilitating the maintenance of surface cleanliness that is essential to slide reuse. We also stained DNA with a fluorescent protein with a DNA-binding motif, fluorescent protein-DNA binding peptide (FP-DBP). FP-DBP was slowly photobleached and did not cause DNA photocleavage. This new DNA curtain system enables a more stable and repeatable investigation of real-time protein-DNA interactions and will serve as a good platform for lab-on-a-chip.
Collapse
Affiliation(s)
- Yujin Kang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Na Young Cheon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jongjin Cha
- Department of Physics and Astronomy, Seoul National University, Seoul, Republic of Korea
| | - Ayoung Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hyung-Il Kim
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Luda Lee
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Kang O Kim
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Kyubong Jo
- Department of Chemistry and Integrated Biotechnology, Sogang University, Seoul, Republic of Korea
| | - Ja Yil Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| |
Collapse
|
71
|
Bleha T, Cifra P. Compression and Stretching of Single DNA Molecules under Channel Confinement. J Phys Chem B 2020; 124:1691-1702. [PMID: 32045238 DOI: 10.1021/acs.jpcb.9b11602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We study the compression and extension response of single dsDNA (double-stranded DNA) molecules confined in cylindrical channels by means of Monte Carlo simulations. The elastic response of micrometer-sized DNA to the external force acting through the chain ends or through the piston is markedly affected by the size of the channel. The interpretation of the force (f)-displacement (R) functions under quasi-one-dimensional confinement is facilitated by resolving the overall change of displacement ΔR into the confinement contribution ΔRD and the force contribution ΔRf. The external stretching of confined DNA results in a characteristic pattern of f-R functions involving their shift to the larger extensions due to the channel-induced pre-stretching ΔRD. A smooth end-chain compression into loop-like conformations observed in moderately confined DNA can be accounted for by the relationship valid for a Gaussian chain in bulk. In narrow channels, the considerably pre-stretched DNA molecules abruptly buckle on compression by the backfolding into hairpins. On the contrary, the piston compression of DNA is characterized by a gradual reduction of the chain span S and by smooth f-S functions in the whole spatial range from the 3d near to 1d limits. The observed discrepancy between the shape of the f-R and f-S functions from two compression methods can be important for designing nanopiston experiments of compaction and knotting of single DNA in nanochannels.
Collapse
Affiliation(s)
- Tomáš Bleha
- Polymer Institute, Slovak Academy of Sciences, 84541 Bratislava, Slovakia
| | - Peter Cifra
- Polymer Institute, Slovak Academy of Sciences, 84541 Bratislava, Slovakia
| |
Collapse
|
72
|
Single-Molecule Mechanics in Ligand Concentration Gradient. MICROMACHINES 2020; 11:mi11020212. [PMID: 32093081 PMCID: PMC7074681 DOI: 10.3390/mi11020212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/09/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
Abstract
Single-molecule experiments provide unique insights into the mechanisms of biomolecular phenomena. However, because varying the concentration of a solute usually requires the exchange of the entire solution around the molecule, ligand-concentration-dependent measurements on the same molecule pose a challenge. In the present work we exploited the fact that a diffusion-dependent concentration gradient arises in a laminar-flow microfluidic device, which may be utilized for controlling the concentration of the ligand that the mechanically manipulated single molecule is exposed to. We tested this experimental approach by exposing a λ-phage dsDNA molecule, held with a double-trap optical tweezers instrument, to diffusionally-controlled concentrations of SYTOX Orange (SxO) and tetrakis(4-N-methyl)pyridyl-porphyrin (TMPYP). We demonstrate that the experimental design allows access to transient-kinetic, equilibrium and ligand-concentration-dependent mechanical experiments on the very same single molecule.
Collapse
|
73
|
Meyer AC, Öz Y, Gundlach N, Karbach M, Lu P, Müller G. Molecular chains under tension: Thermal and mechanical activation of statistically interacting extension and contraction particles. Phys Rev E 2020; 101:022504. [PMID: 32168618 DOI: 10.1103/physreve.101.022504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/23/2020] [Indexed: 11/07/2022]
Abstract
This work introduces a methodology for the statistical mechanical analysis of polymeric chains under tension controlled by optical or magnetic tweezers at thermal equilibrium with an embedding fluid medium. The response of single bonds between monomers or of entire groups of monomers to tension is governed by the activation of statistically interacting particles representing quanta of extension or contraction. This method of analysis is capable of describing thermal unbending of the freely jointed or wormlike chain kind, linear or nonlinear contour elasticity, and structural transformations including effects of cooperativity. The versatility of this approach is demonstrated in an application to double-stranded DNA undergoing torsionally unconstrained stretching across three regimes of mechanical response including an overstretching transition. The three-regime force-extension characteristic, derived from a single free-energy expression, accurately matches empirical evidence.
Collapse
Affiliation(s)
- Aaron C Meyer
- Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Yahya Öz
- Fachgruppe Physik, Bergische Universität Wuppertal, D-42097 Wuppertal, Germany
| | - Norman Gundlach
- Fachgruppe Physik, Bergische Universität Wuppertal, D-42097 Wuppertal, Germany
| | - Michael Karbach
- Fachgruppe Physik, Bergische Universität Wuppertal, D-42097 Wuppertal, Germany
| | - Ping Lu
- Department of Applied Science and Mathematics, Bluefield State College, Bluefield, West Virginia 24701, USA
| | - Gerhard Müller
- Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881, USA
| |
Collapse
|
74
|
Daban JR. Supramolecular multilayer organization of chromosomes: possible functional roles of planar chromatin in gene expression and DNA replication and repair. FEBS Lett 2020; 594:395-411. [PMID: 31879954 DOI: 10.1002/1873-3468.13724] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/25/2019] [Accepted: 12/12/2019] [Indexed: 01/16/2023]
Abstract
Experimental evidence indicates that the chromatin filament is self-organized into a multilayer planar structure that is densely stacked in metaphase and unstacked in interphase. This chromatin organization is unexpected, but it is shown that diverse supramolecular assemblies, including dinoflagellate chromosomes, are multilayered. The mechanical strength of planar chromatin protects the genome integrity, even when double-strand breaks are produced. Here, it is hypothesized that the chromatin filament in the loops and topologically associating domains is folded within the thin layers of the multilaminar chromosomes. It is also proposed that multilayer chromatin has two states: inactive when layers are stacked and active when layers are unstacked. Importantly, the well-defined topology of planar chromatin may facilitate DNA replication without entanglements and DNA repair by homologous recombination.
Collapse
Affiliation(s)
- Joan-Ramon Daban
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
75
|
Kishimoto T, Yoshikawa Y, Yoshikawa K, Komeda S. Different Effects of Cisplatin and Transplatin on the Higher-Order Structure of DNA and Gene Expression. Int J Mol Sci 2019; 21:E34. [PMID: 31861648 PMCID: PMC6981875 DOI: 10.3390/ijms21010034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Despite the effectiveness of cisplatin as an anticancer agent, its trans-isomer, transplatin, is clinically ineffective. Although both isomers target nuclear DNA, there is a large difference in the magnitude of their biological effects. Here, we compared their effects on gene expression in an in vitro luciferase assay and quantified their effects on the higher-order structure of DNA using fluorescence microscopy (FM) and atomic force microscopy (AFM). The inhibitory effect of cisplatin on gene expression was about 7 times that of transplatin. Analysis of the fluctuation autocorrelation function of the intrachain Brownian motion of individual DNA molecules showed that cisplatin increases the spring and damping constants of DNA by one order of magnitude and these visco-elastic characteristics tend to increase gradually over several hours. Transplatin had a weaker effect, which tended to decrease with time. These results agree with a stronger inhibitory effect of cisplatin on gene expression. We discussed the characteristic effects of the two compounds on the higher-order DNA structure and gene expression in terms of the differences in their binding to DNA.
Collapse
Affiliation(s)
- Toshifumi Kishimoto
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan; (T.K.); (Y.Y.); (K.Y.)
| | - Yuko Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan; (T.K.); (Y.Y.); (K.Y.)
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan; (T.K.); (Y.Y.); (K.Y.)
| | - Seiji Komeda
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan
| |
Collapse
|
76
|
Ma G, Wan Z, Zhu H, Tao N. Roles of entropic and solvent damping forces in the dynamics of polymer tethered nanoparticles and implications for single molecule sensing. Chem Sci 2019; 11:1283-1289. [PMID: 33376589 PMCID: PMC7747464 DOI: 10.1039/c9sc05434k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/10/2019] [Indexed: 01/19/2023] Open
Abstract
Tethering a particle to a surface with a single molecule allows detection of the molecule and analysis of molecular conformations and interactions.
Tethering a particle to a surface with a single molecule allows detection of the molecule and analysis of molecular conformations and interactions. Understanding the dynamics of the system is critical to all applications. Here we present a plasmonic imaging study of two important forces that govern the dynamics. One is entropic force arising from the conformational change of the molecular tether, and the other is solvent damping on the particle and the molecule. We measure the response of the particle by driving it into oscillation with an alternating electric field. By varying the field frequency, we study the dynamics on different time scales. We also vary the type of the tether molecule (DNA and polyethylene glycol), size of the particle, and viscosity of the solvent, and describe the observations with a model. The study allows us to derive a single parameter to predict the relative importance of the entropic and damping forces. The findings provide insights into single molecule studies using not only tethered particles, but also other approaches, including force spectroscopy using atomic force microscopy and nanopores.
Collapse
Affiliation(s)
- Guangzhong Ma
- Biodesign Center for Biosensors and Bioelectronics , Arizona State University , Tempe , Arizona 85287 , USA .
| | - Zijian Wan
- Biodesign Center for Biosensors and Bioelectronics , Arizona State University , Tempe , Arizona 85287 , USA . .,School of Electrical, Computer and Energy Engineering , Arizona State University , Tempe , Arizona 85287 , USA
| | - Hao Zhu
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Nongjian Tao
- Biodesign Center for Biosensors and Bioelectronics , Arizona State University , Tempe , Arizona 85287 , USA . .,School of Electrical, Computer and Energy Engineering , Arizona State University , Tempe , Arizona 85287 , USA
| |
Collapse
|
77
|
Minhas V, Sun T, Mirzoev A, Korolev N, Lyubartsev AP, Nordenskiöld L. Modeling DNA Flexibility: Comparison of Force Fields from Atomistic to Multiscale Levels. J Phys Chem B 2019; 124:38-49. [DOI: 10.1021/acs.jpcb.9b09106] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Vishal Minhas
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Tiedong Sun
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Alexander Mirzoev
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Alexander P. Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
78
|
Kirkness MWH, Lehmann K, Forde NR. Mechanics and structural stability of the collagen triple helix. Curr Opin Chem Biol 2019; 53:98-105. [DOI: 10.1016/j.cbpa.2019.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 01/18/2023]
|
79
|
Baptista LA, Netz PA. Single molecule force spectroscopy of a streptomycin-binding RNA aptamer: An out-of-equilibrium molecular dynamics study. J Chem Phys 2019; 151:195102. [PMID: 31757139 DOI: 10.1063/1.5128126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Here, we investigate the unfolding behavior of a streptomycin-binding ribonucleic acid (RNA) aptamer under application of force in shear geometry. Using Langevin out-of-equilibrium simulations to emulate the single-molecule force spectroscopy (SMFS) experiment, we were able to understand the hierarchical unfolding process that occurs in the RNA molecule under application of stretching force and the influence of streptomycin modifying this unfolding. Subsequently, the application of the Jarzynski equality to the force profiles obtained in the pulling simulations shows that the free energies for individual systems and the difference of unfolding free energy upon streptomycin binding to the RNA free aptamer are in fair agreement with the experimental values, obtained through SMFS by Nick et al. [J. Phys. Chem. B 120, 6479 (2016)].
Collapse
Affiliation(s)
- Luis A Baptista
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paulo A Netz
- Department of Physical Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
80
|
Bellino L, Florio G, Puglisi G. The influence of device handles in single-molecule experiments. SOFT MATTER 2019; 15:8680-8690. [PMID: 31621748 DOI: 10.1039/c9sm01376h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We deduce a fully analytical model to predict the artifacts of the device handles in single molecule force spectroscopy experiments. As we show, neglecting the handle stiffness can lead to crucial overestimation or underestimation of the stability properties and unfolding thresholds of multistable molecules.
Collapse
Affiliation(s)
- Luca Bellino
- Politecnico di Bari, (DMMM) Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Re David 200, 70125, Italy.
| | - Giuseppe Florio
- Politecnico di Bari, (DMMM) Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Re David 200, 70125, Italy. and INFN, Sezione di Bari, I-70126, Italy
| | - Giuseppe Puglisi
- Politecnico di Bari, (DICAR) Dipartimento di Scienza dell'Ingegneria Civile e dell'Architettura, Politecnico di Bari, Via Re David 200, 70126, Italy.
| |
Collapse
|
81
|
Ahmadi A, Till K, Hafting Y, Schüttpelz M, Bjørås M, Glette K, Tørresen J, Rowe AD, Dalhus B. Additive manufacturing of laminar flow cells for single-molecule experiments. Sci Rep 2019; 9:16784. [PMID: 31727950 PMCID: PMC6856346 DOI: 10.1038/s41598-019-53151-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/22/2019] [Indexed: 11/08/2022] Open
Abstract
A microfluidic laminar flow cell (LFC) forms an indispensable component in single-molecule experiments, enabling different substances to be delivered directly to the point under observation and thereby tightly controlling the biochemical environment immediately surrounding single molecules. Despite substantial progress in the production of such components, the process remains relatively inefficient, inaccurate and time-consuming. Here we address challenges and limitations in the routines, materials and the designs that have been commonly employed in the field, and introduce a new generation of LFCs designed for single-molecule experiments and assembled using additive manufacturing. We present single- and multi-channel, as well as reservoir-based LFCs produced by 3D printing to perform single-molecule experiments. Using these flow cells along with optical tweezers, we show compatibility with single-molecule experiments including the isolation and manipulation of single DNA molecules either attached to the surface of a coverslip or as freely movable DNA dumbbells, as well as direct observation of protein-DNA interactions. Using additive manufacturing to produce LFCs with versatility of design and ease of production allow experimentalists to optimize the flow cells to their biological experiments and provide considerable potential for performing multi-component single-molecule experiments.
Collapse
Affiliation(s)
- Arash Ahmadi
- Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Katharina Till
- Biomolecular Photonics, Department of Physics, University of Bielefeld, Bielefeld, Germany
| | - Yngve Hafting
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Mark Schüttpelz
- Biomolecular Photonics, Department of Physics, University of Bielefeld, Bielefeld, Germany
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Microbiology, Oslo University Hospital HF, Rikshospitalet and University of Oslo, Oslo, Norway
| | - Kyrre Glette
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Jim Tørresen
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Alexander D Rowe
- Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Newborn Screening, Division of Child and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.
| | - Bjørn Dalhus
- Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Microbiology, Oslo University Hospital HF, Rikshospitalet and University of Oslo, Oslo, Norway.
| |
Collapse
|
82
|
Casanova-Morales N, Figueroa NL, Alfaro K, Montenegro F, Barrera NP, Maze JR, Wilson CAM, Conejeros P. Structural characterization of the saxitoxin-targeting APTSTX1 aptamer using optical tweezers and molecular dynamics simulations. PLoS One 2019; 14:e0222468. [PMID: 31697710 PMCID: PMC6837747 DOI: 10.1371/journal.pone.0222468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023] Open
Abstract
Optical tweezers have enabled the exploration of picoNewton forces and dynamics in single-molecule systems such as DNA and molecular motors. In this work, we used optical tweezers to study the folding/unfolding dynamics of the APTSTX1-aptamer, a single-stranded DNA molecule with high affinity for saxitoxin (STX), a lethal neurotoxin. By measuring the transition force during (un)folding processes, we were able to characterize and distinguish the conformational changes of this aptamer in the presence of magnesium ions and toxin. This work was supported by molecular dynamics (MD) simulations to propose an unfolding mechanism of the aptamer-Mg+2 complex. Our results are a step towards the development of new aptamer-based STX sensors that are potentially cheaper and more sensitive than current alternatives.
Collapse
Affiliation(s)
- Nathalie Casanova-Morales
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Chile
| | | | - Karol Alfaro
- CIGREN. Instituto de Biología. Facultad de Ciencias. Universidad de Valparaíso, Valparaíso, Chile
| | - Felipe Montenegro
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nelson P. Barrera
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - J. R. Maze
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christian A. M. Wilson
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Pablo Conejeros
- CIGREN. Instituto de Biología. Facultad de Ciencias. Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
83
|
Statistical physics and mesoscopic modeling to interpret tethered particle motion experiments. Methods 2019; 169:57-68. [PMID: 31302177 DOI: 10.1016/j.ymeth.2019.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/11/2019] [Accepted: 07/07/2019] [Indexed: 11/22/2022] Open
Abstract
Tethered particle motion experiments are versatile single-molecule techniques enabling one to address in vitro the molecular properties of DNA and its interactions with various partners involved in genetic regulations. These techniques provide raw data such as the tracked particle amplitude of movement, from which relevant information about DNA conformations or states must be recovered. Solving this inverse problem appeals to specific theoretical tools that have been designed in the two last decades, together with the data pre-processing procedures that ought to be implemented to avoid biases inherent to these experimental techniques. These statistical tools and models are reviewed in this paper.
Collapse
|
84
|
Xiao S, Liang H, Wales DJ. The Contribution of Backbone Electrostatic Repulsion to DNA Mechanical Properties is Length-Scale-Dependent. J Phys Chem Lett 2019; 10:4829-4835. [PMID: 31380654 DOI: 10.1021/acs.jpclett.9b01960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The mechanics of DNA bending is crucially related to many vital biological processes. Recent experiments reported anomalous flexibility for DNA on short length scales, calling into doubt the validity of the harmonic worm-like chain (WLC) model in this region. In the present work, we systematically probed the bending dynamics of DNA at different length scales. In contrast to the remarkable deviation from the WLC description for DNA duplexes of less than three helical turns, our atomistic studies indicate that the neutral "null isomer" behaves in accord with the ideal elastic WLC and exhibits a uniform decay for the directional correlation of local bending. The backbone neutralization weakens the anisotropy in the effective bending preference and the helical periodicity of bend correlation that have previously been observed for normal DNA. The contribution of electrostatic repulsion to stretching cooperativity and the mechanical properties of DNA strands is length-scale-dependent: the phosphate neutralization increases the stiffness of DNA below two helical turns, but it is decreased for longer strands. We find that DNA rigidity is largely determined by base pair stacking, with electrostatic interactions contributing only around 10% of the total persistence length.
Collapse
Affiliation(s)
- Shiyan Xiao
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Haojun Liang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - David J Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
85
|
Lee JY, Kim YJ, Lee C, Lee JG, Yagyu H, Tabata O, Kim DN. Investigating the sequence-dependent mechanical properties of DNA nicks for applications in twisted DNA nanostructure design. Nucleic Acids Res 2019; 47:93-102. [PMID: 30476210 PMCID: PMC6326809 DOI: 10.1093/nar/gky1189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/09/2018] [Indexed: 01/09/2023] Open
Abstract
DNA nick can be used as a design motif in programming the shape and reconfigurable deformation of synthetic DNA nanostructures, but its mechanical properties have rarely been systematically characterized at the level of base sequences. Here, we investigated sequence-dependent mechanical properties of DNA nicks through molecular dynamics simulation for a comprehensive set of distinct DNA oligomers constructed using all possible base-pair steps with and without a nick. We found that torsional rigidity was reduced by 28–82% at the nick depending on its sequence and location although bending and stretching rigidities remained similar to those of regular base-pair steps. No significant effect of a nick on mechanically coupled deformation such as the twist-stretch coupling was observed. These results suggest that the primary structural role of nick is the relaxation of torsional constraint by backbones known to be responsible for relatively high torsional rigidity of DNA. Moreover, we experimentally demonstrated the usefulness of quantified nick properties in self-assembling DNA nanostructure design by constructing twisted DNA origami structures to show that sequence design of nicks successfully controls the twist angle of structures. Our study illustrates the importance as well as the opportunities of considering sequence-dependent properties in structural DNA nanotechnology.
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Mechanical and Aerospace Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Young-Joo Kim
- Department of Mechanical and Aerospace Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Chanseok Lee
- Department of Mechanical and Aerospace Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jae Gyung Lee
- Department of Mechanical and Aerospace Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hiromasa Yagyu
- Department of Mechanical Engineering, Kanto Gakuin University, Yokohama 236-8501, Japan
| | - Osamu Tabata
- Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Kyoto 615-8540, Japan
| | - Do-Nyun Kim
- Department of Mechanical and Aerospace Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea.,Institute of Advanced Machines and Design, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
86
|
Melkonyan L, Bercy M, Bizebard T, Bockelmann U. Overstretching Double-Stranded RNA, Double-Stranded DNA, and RNA-DNA Duplexes. Biophys J 2019; 117:509-519. [PMID: 31337545 PMCID: PMC6697464 DOI: 10.1016/j.bpj.2019.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 06/17/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022] Open
Abstract
Using single-molecule force measurements, we compare the overstretching transition of the four types of duplexes composed of DNA or RNA strands. Three of the four extremities of each double helix are attached to two microscopic beads, and a stretching force is applied with a dual-beam optical trapping interferometer. We find that overstretching occurs for all four duplexes with small differences between the plateau forces. Double-stranded RNA (dsRNA) exhibits a smooth transition in contrast to the other three duplexes that show sawtooth patterns, the latter being a characteristic signature of peeling. This difference is observed for a wide range of experimental conditions. We present a theoretical description that explains the difference and predicts that peeling and bubble formation do not occur in overstretching double-stranded RNA. Formation of S-RNA is proposed, an overstretching mechanism that contrary to the other two does not generate single strands. We suggest that this singular RNA property helps RNA structures to assemble and play their essential roles in the biological cell.
Collapse
Affiliation(s)
- Lena Melkonyan
- Nanobiophysique, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, Paris, France
| | - Mathilde Bercy
- Nanobiophysique, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, Paris, France
| | - Thierry Bizebard
- Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris, France.
| | - Ulrich Bockelmann
- Nanobiophysique, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, Paris, France.
| |
Collapse
|
87
|
Kotnala A, Zheng Y. Digital Assembly of Colloidal Particles for Nanoscale Manufacturing. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2019; 36:1900152. [PMID: 33041521 PMCID: PMC7546242 DOI: 10.1002/ppsc.201900152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Indexed: 06/11/2023]
Abstract
From unravelling the most fundamental phenomena to enabling applications that impact our everyday lives, the nanoscale world holds great promise for science, technology and medicine. However, the extent of its practical realization would rely on manufacturing at the nanoscale. Among the various nanomanufacturing approaches being investigated, the bottom-up approach involving assembly of colloidal nanoparticles as building blocks is promising. Compared to a top-down lithographic approach, particle assembly exhibits advantages such as smaller feature size, finer control of chemical composition, less defects, lower material wastage, and higher scalability. The capability to assemble colloidal particles one by one or "digitally" has been heavily sought as it mimics the natural way of making matter and enables construction of nanomaterials with sophisticated architectures. This progress report provides an insight into the tools and techniques for digital assembly of particles, including their working mechanisms and demonstrated particle assemblies. Examples of nanomaterials and nanodevices are presented to demonstrate the strength of digital assembly in nanomanufacturing.
Collapse
Affiliation(s)
- Abhay Kotnala
- Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
88
|
Bleha T, Cifra P. Force-displacement relations at compression of dsDNA macromolecules. J Chem Phys 2019; 151:014901. [PMID: 31272182 DOI: 10.1063/1.5099522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The elasticity of dsDNA molecules is investigated by Monte Carlo simulations based on a coarse-grained model of DNA. The force-displacement (f-r) curves are computed under the constraints of the constant force (Gibbs) or the constant length (Helmholtz) ensemble. Particular attention was paid to the compressional (negative) and weak tensile forces. It was confirmed that simulations using the vector Gibbs ensemble fail to represent the compression behavior of polymers. Simulations using the scalar Gibbs protocol resulted in a qualitatively correct compressional response of DNA provided that the quadratic averages of displacements were employed. Furthermore, a well-known shortcoming of the popular Marko-Siggia relation for DNA elasticity at weak tensile forces is elucidated. Conversely, the function f-r from the simulation at the constant length constraint, as well as the new closed-form expressions, provides a realistic depiction of the DNA elasticity over the wide range of negative and positive forces. Merely a qualitative resemblance of the compression functions f-r predicted by the employed approaches supports the notion that the elastic response of DNA molecules may be greatly affected by the specifics of the experimental setups and the kind of averaging of the measured variable.
Collapse
Affiliation(s)
- Tomáš Bleha
- Polymer Institute, Slovak Academy of Sciences, 84541 Bratislava, Slovakia
| | - Peter Cifra
- Polymer Institute, Slovak Academy of Sciences, 84541 Bratislava, Slovakia
| |
Collapse
|
89
|
Mangeat M, Amarouchene Y, Louyer Y, Guérin T, Dean DS. Role of nonconservative scattering forces and damping on Brownian particles in optical traps. Phys Rev E 2019; 99:052107. [PMID: 31212517 DOI: 10.1103/physreve.99.052107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Indexed: 11/07/2022]
Abstract
We consider a model of a particle trapped in a harmonic optical trap but with the addition of a nonconservative radiation induced force. This model is known to correctly describe experimentally observed trapped particle statistics for a wide range of physical parameters, such as temperature and pressure. We theoretically analyze the effect of nonconservative force on the underlying steady state distribution as well as the power spectrum for the particle position. We compute perturbatively the probability distribution of the resulting nonequilibrium steady states for all dynamical regimes underdamped through to overdamped and give expressions for the associated currents in phase space (position and velocity). We also give the spectral density of the trapped particle's position in all dynamical regimes and for any value of the nonconservative force. Signatures of the presence of nonconservative forces are shown to be particularly strong for the underdamped regime at low frequencies.
Collapse
Affiliation(s)
- Matthieu Mangeat
- Université de Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | | | - Yann Louyer
- Université de Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | - Thomas Guérin
- Université de Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | - David S Dean
- Université de Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| |
Collapse
|
90
|
|
91
|
Theodorakopoulos N. Thermodynamics of force-induced B-DNA melting: Single-strand discreteness matters. Phys Rev E 2019; 99:032404. [PMID: 30999428 DOI: 10.1103/physreve.99.032404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Indexed: 11/07/2022]
Abstract
Overstretching of B-DNA is currently understood as force-induced melting. Depending on the geometry of the stretching experiment, the force threshold for the overstretching transition is around 65 or 110 pN. Although the mechanisms behind force-induced melting have been correctly described by Rouzina and Bloomfield [Biophys. J. 80, 882 (2001)BIOJAU0006-349510.1016/S0006-3495(01)76067-5], neither force threshold has been exactly calculated by theory. In this work, a detailed analysis of the force-extension curve is presented, based on a description of single-stranded (ss) DNA in terms of the discrete Kratky-Porod model, consistent with (i) the contour length expected from the crystallographically determined monomer distance and (ii) a high value of the elastic stretch modulus arising from covalent bonding. The value estimated for the ss-DNA persistence length, λ=1.0 nm, is at the low end of currently known estimates and reflects the intrinsic stiffness of the partially, or fully stretched state, where electrostatic repulsion effects are expected to be minimal. A detailed analysis of single- and double-stranded DNA free energies provides estimates of the overstretching force thresholds. In the unconstrained geometry, the predicted threshold is 64 pN. In the constrained geometry, after allowing for the entropic penalty of the plectonemic topology of the molten state, the predicted threshold is 111 pN.
Collapse
Affiliation(s)
- Nikos Theodorakopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vasileos Constantinou 48, 116 35 Athens, Greece and Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
92
|
Stassi S, Marini M, Allione M, Lopatin S, Marson D, Laurini E, Pricl S, Pirri CF, Ricciardi C, Di Fabrizio E. Nanomechanical DNA resonators for sensing and structural analysis of DNA-ligand complexes. Nat Commun 2019; 10:1690. [PMID: 30979901 PMCID: PMC6461617 DOI: 10.1038/s41467-019-09612-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
The effect of direct or indirect binding of intercalant molecules on DNA structure is of fundamental importance in understanding the biological functioning of DNA. Here we report on self-suspended DNA nanobundles as ultrasensitive nanomechanical resonators for structural studies of DNA-ligand complexes. Such vibrating nanostructures represent the smallest mechanical resonator entirely composed of DNA. A correlative analysis between the mechanical and structural properties is exploited to study the intrinsic changes of double strand DNA, when interacting with different intercalant molecules (YOYO-1 and GelRed) and a chemotherapeutic drug (Cisplatin), at different concentrations. Possible implications of our findings are related to the study of interaction mechanism of a wide category of molecules with DNA, and to further applications in medicine, such as optimal titration of chemotherapeutic drugs and environmental studies for the detection of heavy metals in human serum.
Collapse
Affiliation(s)
- Stefano Stassi
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Torino, Italy
| | - Monica Marini
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Torino, Italy
- Physical Science and Engineering and BESE Divisions, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Marco Allione
- Physical Science and Engineering and BESE Divisions, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Sergei Lopatin
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS) - DEA, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS) - DEA, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS) - DEA, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Candido Fabrizio Pirri
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Torino, Italy
| | - Carlo Ricciardi
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Torino, Italy.
| | - Enzo Di Fabrizio
- Physical Science and Engineering and BESE Divisions, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
93
|
Regan K, Wulstein D, Rasmussen H, McGorty R, Robertson-Anderson RM. Bridging the spatiotemporal scales of macromolecular transport in crowded biomimetic systems. SOFT MATTER 2019; 15:1200-1209. [PMID: 30543245 PMCID: PMC6365203 DOI: 10.1039/c8sm02023j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Crowding plays a key role in the transport and conformations of biological macromolecules. Gene therapy, viral infection, and transfection require DNA to traverse the crowded cytoplasm, including the cytoskeletal network of filamentous proteins. Given the complexity of cellular crowding, the dynamics of biological molecules can be highly dependent on the spatiotemporal scale probed. We present a powerful platform that spans molecular and cellular scales by coupling single-molecule conformational tracking (SMCT) and selective-plane illumination differential dynamic microscopy (SPIDDM). We elucidate the transport and conformational properties of large DNA, crowded by custom-designed networks of actin and microtubules, to link single-molecule conformations with ensemble DNA transport and cytoskeleton structure. We show that actin crowding leads to DNA compaction and suppression of fluctuations, combined with subdiffusion and heterogeneous transport, whereas microtubules have much more subdued impact across all scales. In composite networks of both filaments, scale-dependent effects emerge such that actin dictates ensemble DNA transport while microtubules influence single-molecule dynamics. We show that these intriguing results arise from a complex interplay between network rigidity, mesh size, filament concentration, and DNA size.
Collapse
Affiliation(s)
- Kathryn Regan
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| | | | | | | | | |
Collapse
|
94
|
Modular Design of Programmable Mechanofluorescent DNA Hydrogels. Nat Commun 2019; 10:528. [PMID: 30705271 PMCID: PMC6355893 DOI: 10.1038/s41467-019-08428-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Mechanosensing systems are ubiquitous in nature and control many functions from cell spreading to wound healing. Biologic systems typically rely on supramolecular transformations and secondary reporter systems to sense weak forces. By contrast, synthetic mechanosensitive materials often use covalent transformations of chromophores, serving both as force sensor and reporter, which hinders orthogonal engineering of their sensitivity, response and modularity. Here, we introduce FRET-based, rationally tunable DNA tension probes into macroscopic 3D all-DNA hydrogels to prepare mechanofluorescent materials with programmable sacrificial bonds and stress relaxation. This design addresses current limitations of mechanochromic system by offering spatiotemporal resolution, as well as quantitative and modular force sensing in soft hydrogels. The programmable force probe design further grants temporal control over the recovery of the mechanofluorescence during stress relaxation, enabling reversible and irreversible strain sensing. We show proof-of-concept applications to study strain fields in composites and to visualize freezing-induced strain patterns in homogeneous hydrogels.
Collapse
|
95
|
Zhang C, Fu H, Yang Y, Zhou E, Tan Z, You H, Zhang X. The Mechanical Properties of RNA-DNA Hybrid Duplex Stretched by Magnetic Tweezers. Biophys J 2018; 116:196-204. [PMID: 30635125 DOI: 10.1016/j.bpj.2018.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 12/25/2022] Open
Abstract
RNA can anneal to its DNA template to generate an RNA-DNA hybrid (RDH) duplex and a displaced DNA strand, termed R-loop. RDH duplex occupies up to 5% of the mammalian genome and plays important roles in many biological processes. The functions of RDH duplex are affected by its mechanical properties, including the elasticity and the conformation transitions. The mechanical properties of RDH duplex, however, are still unclear. In this work, we studied the mechanical properties of RDH duplex using magnetic tweezers in comparison with those of DNA and RNA duplexes with the same sequences. We report that the contour length of RDH duplex is ∼0.30 nm/bp, and the stretching modulus of RDH duplex is ∼660 pN, neither of which is sensitive to NaCl concentration. The persistence length of RDH duplex depends on NaCl concentration, decreasing from ∼63 nm at 1 mM NaCl to ∼49 nm at 500 mM NaCl. Under high tension of ∼60 pN, the end-opened RDH duplex undergoes two distinct overstretching transitions; at high salt in which the basepairs are stable, it undergoes the nonhysteretic transition, leading to a basepaired elongated structure, whereas at low salt, it undergoes a hysteretic peeling transition, leading to the single-stranded DNA strand under force and the single-stranded RNA strand coils. The peeled RDH is difficult to reanneal back to the duplex conformation, which may be due to the secondary structures formed in the coiled single-stranded RNA strand. These results help us understand the full picture of the structures and mechanical properties of nucleic acid duplexes in solution and provide a baseline for studying the interaction of RDH with proteins at the single-molecule level.
Collapse
Affiliation(s)
- Chen Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
| | - Hang Fu
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
| | - Yajun Yang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
| | - Erchi Zhou
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
| | - Zhijie Tan
- School of Physics and Technology, Wuhan University, Wuhan, China
| | - Huijuan You
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinghua Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China.
| |
Collapse
|
96
|
Kong XZ, Deuber CA, Kittilä A, Somogyvári M, Mikutis G, Bayer P, Stark WJ, Saar MO. Tomographic Reservoir Imaging with DNA-Labeled Silica Nanotracers: The First Field Validation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13681-13689. [PMID: 30387997 DOI: 10.1021/acs.est.8b04367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study presents the first field validation of using DNA-labeled silica nanoparticles as tracers to image subsurface reservoirs by travel time based tomography. During a field campaign in Switzerland, we performed short-pulse tracer tests under a forced hydraulic head gradient to conduct a multisource-multireceiver tracer test and tomographic inversion, determining the two-dimensional hydraulic conductivity field between two vertical wells. Together with three traditional solute dye tracers, we injected spherical silica nanotracers, encoded with synthetic DNA molecules, which are protected by a silica layer against damage due to chemicals, microorganisms, and enzymes. Temporal moment analyses of the recorded tracer concentration breakthrough curves (BTCs) indicate higher mass recovery, less mean residence time, and smaller dispersion of the DNA-labeled nanotracers, compared to solute dye tracers. Importantly, travel time based tomography, using nanotracer BTCs, yields a satisfactory hydraulic conductivity tomogram, validated by the dye tracer results and previous field investigations. These advantages of DNA-labeled nanotracers, in comparison to traditional solute dye tracers, make them well-suited for tomographic reservoir characterizations in fields such as hydrogeology, petroleum engineering, and geothermal energy, particularly with respect to resolving preferential flow paths or the heterogeneity of contact surfaces or by enabling source zone characterizations of dense nonaqueous phase liquids.
Collapse
Affiliation(s)
- Xiang-Zhao Kong
- Geothermal Energy and Geofluids Group, Department of Earth Sciences , ETH Zurich , 8092 Zurich , Switzerland
| | - Claudia A Deuber
- Geothermal Energy and Geofluids Group, Department of Earth Sciences , ETH Zurich , 8092 Zurich , Switzerland
| | - Anniina Kittilä
- Geothermal Energy and Geofluids Group, Department of Earth Sciences , ETH Zurich , 8092 Zurich , Switzerland
| | - Márk Somogyvári
- Institute of Mathematics , University of Potsdam , 14476 Potsdam-Golm , Germany
| | - Gediminas Mikutis
- Functional Materials Laboratory, Department of Chemistry and Applied Biosciences , ETH Zurich , 8093 Zurich , Switzerland
| | - Peter Bayer
- Institute of new Energy Systems (InES) , Ingolstadt University of Applied Sciences , 85049 Ingolstadt , Germany
| | - Wendelin J Stark
- Functional Materials Laboratory, Department of Chemistry and Applied Biosciences , ETH Zurich , 8093 Zurich , Switzerland
| | - Martin O Saar
- Geothermal Energy and Geofluids Group, Department of Earth Sciences , ETH Zurich , 8092 Zurich , Switzerland
| |
Collapse
|
97
|
Barde C, Destainville N, Manghi M. Energy required to pinch a DNA plectoneme. Phys Rev E 2018; 97:032412. [PMID: 29776038 DOI: 10.1103/physreve.97.032412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Indexed: 11/07/2022]
Abstract
DNA supercoiling plays an important role from a biological point of view. One of its consequences at the supramolecular level is the formation of DNA superhelices named plectonemes. Normally separated by a distance on the order of 10 nm, the two opposite double strands of a DNA plectoneme must be brought closer if a protein or protein complex implicated in genetic regulation is to be bound simultaneously to both strands, as if the plectoneme was locally pinched. We propose an analytic calculation of the energetic barrier, of elastic nature, required to bring closer the two loci situated on the opposed double strands. We examine how this energy barrier scales with the DNA supercoiling. For physically relevant values of elastic parameters and of supercoiling density, we show that the energy barrier is in the k_{B}T range under physiological conditions, thus demonstrating that the limiting step to loci encounter is more likely the preceding plectoneme slithering bringing the two loci side by side.
Collapse
Affiliation(s)
- Céline Barde
- Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS 118 route de Narbonne, F-31062 Toulouse, France, EU
| | - Nicolas Destainville
- Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS 118 route de Narbonne, F-31062 Toulouse, France, EU
| | - Manoel Manghi
- Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS 118 route de Narbonne, F-31062 Toulouse, France, EU
| |
Collapse
|
98
|
Coarse-grained models of double-stranded DNA based on experimentally determined knotting probabilities. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
99
|
Kurzthaler C. Elastic behavior of a semiflexible polymer in 3D subject to compression and stretching forces. SOFT MATTER 2018; 14:7634-7644. [PMID: 30168558 DOI: 10.1039/c8sm01403e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We elucidate the elastic behavior of a wormlike chain in 3D under compression and provide exact solutions for the experimentally accessible force-extension relation in terms of generalized spheroidal wave functions. In striking contrast to the classical Euler buckling instability, the force-extension relation of a clamped semiflexible polymer exhibits a smooth crossover from an almost stretched to a buckled configuration. In particular, the associated susceptibility, which measures the strength of the response of the polymer to the applied force, displays a prominent peak in the vicinity of the critical Euler buckling force. For increasing persistence length, the force-extension relation and the susceptibility of semiflexible polymers approach the behavior of a classical rod, whereas thermal fluctuations permit more flexible polymers to resist the applied force. Furthermore, we find that semiflexible polymers confined to 2D can oppose the applied force more strongly than in 3D.
Collapse
Affiliation(s)
- Christina Kurzthaler
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria.
| |
Collapse
|
100
|
Zhang CY, Zhang NH. Influence of Microscopic Interactions on the Flexible Mechanical Properties of Viral DNA. Biophys J 2018; 115:763-772. [PMID: 30119833 DOI: 10.1016/j.bpj.2018.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/09/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022] Open
Abstract
During the packaging and ejection of viral DNA, its mechanical properties play an essential role in viral infection. Some of these mechanical properties originate from different microscopic interactions of the encapsulated DNA in the capsid. Based on an updated mesoscopic model of the interaction potential by Parsegian et al., an alternative continuum elastic model of the free energy of the confined DNA in the capsid is developed in this work. With this model, we not only quantitatively identify the respective contributions from hydration repulsion, electrostatic repulsion, entropy and elastic bending but also predict the ionic effect of viral DNA's mechanical properties during the packaging and ejection. The relevant predictions are quantitively or qualitatively consistent with the existing experimental results. Furthermore, the nonmonotonous or monotonous changes in the respective contributions of microscopic interactions to the ejection force and free energy at different ejection stages are revealed systematically. Among these, the nonmonotonicity in the entropic contribution implies a transition of viral DNA structure from order to disorder during the ejection.
Collapse
Affiliation(s)
- Cheng-Yin Zhang
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, China
| | - Neng-Hui Zhang
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, China; Department of Mechanics, College of Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|