51
|
Ihara M, Koyama H, Uchimura Y, Saitoh H, Kikuchi A. Noncovalent binding of small ubiquitin-related modifier (SUMO) protease to SUMO is necessary for enzymatic activities and cell growth. J Biol Chem 2007; 282:16465-75. [PMID: 17428805 DOI: 10.1074/jbc.m610723200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
SUMO proteases possess two enzymatic activities to hydrolyze the C-terminal region of SUMOs (hydrolase activity) and to remove SUMO from SUMO-conjugated substrates (isopeptidase activity). SUMO proteases bind to SUMOs noncovalently, but the physiological roles of the binding in the functions of SUMO proteases are not well understood. In this study we found that SUMO proteases (Axam, SENP1, and yeast Ulp1) show different preferences for noncovalent binding to various SUMOs (SUMO-1, -2, -3, and yeast Smt3) and that the hydrolase and isopeptidase activities of SUMO proteases are dependent on their binding to SUMOs through salt bridge. Expression of Smt3 suppressed the phenotype of yeast mutant lacking smt3, which exhibits growth arrest, and the binding of Ulp1 to Smt3 was essential for this rescue activity. Although expression of an Smt3 mutant (smt3R64E(GG)), which conjugates to substrate but loses the ability to bind to Ulp1, rescued the phenotype of yeast lacking smt3 partially, the mutant cells showed an increment in the doubling time and a delay of desumoylation of Smt3-conjugated Cdc3. These results indicate that the noncovalent binding of SUMO protease to SUMO through salt bridge is essential for the enzymatic activities and that the balance between sumoylation and desumoylation is important for cell growth control.
Collapse
Affiliation(s)
- Motomasa Ihara
- Department of Biochemistry, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | | | | | | | | |
Collapse
|
52
|
Cooper HJ, Tatham MH, Jaffray E, Heath JK, Lam TT, Marshall AG, Hay RT. Fourier transform ion cyclotron resonance mass spectrometry for the analysis of small ubiquitin-like modifier (SUMO) modification: identification of lysines in RanBP2 and SUMO targeted for modification during the E3 autoSUMOylation reaction. Anal Chem 2007; 77:6310-9. [PMID: 16194093 DOI: 10.1021/ac058019d] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The attachment of the ubiquitin-like protein SUMO to target proteins is involved in a number of important cellular processes. Typically, SUMO modification occurs on lysine residues within the consensus sequence psiKxE/D (psi is a hydrophobic residue and x is any residue), although there are examples of modifications at nonconsensus sites. In most cases, sites of SUMO modification have been inferred from a combination of site-directed mutagenesis and functional analysis; however, these methods have two limitations. They do not directly identify the acceptor lysine, nor are they sufficient to identify acceptor lysine residues in SUMO polymers. Here, we use Fourier transform ion cyclotron resonance (FT-ICR) together with activated-ion electron capture dissociation (AI-ECD) or infrared multiphoton dissociation (IRMPD) mass spectrometry techniques to overcome these restrictions. These approaches were employed to analyze the autoSUMOylation reaction catalyzed by the SUMO E3 ligase RanBP2. Six sites of in vitro SUMOylation in RanBP2 along with four branch-point lysines in SUMO-1 and three in SUMO-2 were identified. In all but one case, SUMOylation occurred within the sequences KxE or KpsiK. These results demonstrate the utility of FT-ICR with AI-ECD or IRMPD mass spectrometry in detecting SUMOylation, and sites of SUMOylation, and their potential roles as complementary tools for proteomic and functional analysis, and provide significant insight into the modification of a SUMO ligase for which conventional techniques have been unsuccessful.
Collapse
Affiliation(s)
- Helen J Cooper
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | | | | | | | |
Collapse
|
53
|
Chiu MW, Shih HM, Yang TH, Yang YL. The type 2 dengue virus envelope protein interacts with small ubiquitin-like modifier-1 (SUMO-1) conjugating enzyme 9 (Ubc9). J Biomed Sci 2007; 14:429-44. [PMID: 17265167 DOI: 10.1007/s11373-007-9151-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 01/06/2007] [Indexed: 11/29/2022] Open
Abstract
Dengue viruses are mosquito-borne flaviviruses and may cause the life-threatening dengue hemorrhagic fever and dengue shock syndrome. Its envelope protein is responsible mainly for the virus attachment and entry to host cells. To identify the human cellular proteins interacting with the envelope protein of dengue virus serotype 2 inside host cells, we have performed a screening with the yeast-two-hybrid-based "Functional Yeast Array". Interestingly, the small ubiquitin-like modifier-1 conjugating enzyme 9 protein, modulating cellular processes such as those regulating signal transduction and cell growth, was one of the candidates interacting with the dengue virus envelope protein. With co-precipitation assay, we have demonstrated that it indeed could interact directly with the Ubc9 protein. Site-directed mutagenesis has demonstrated that Ubc9 might interact with the E protein via amino acid residues K51 and K241. Furthermore, immunofluorescence microscopy has shown that the DV2E-EGFP proteins tended to progress toward the nuclear membrane and co-localized with Flag-Ubc9 proteins around the nuclear membrane in the cytoplasmic side, and DV2E-EGFP also shifted the distribution of Flag-Ubc9 from evenly in the nucleus toward concentrating around the nuclear membrane in the nucleic side. In addition, over-expression of Ubc9 could reduce the plaque formation of the dengue virus in mammalian cells. This is the first report that DV envelope proteins can interact with the protein of sumoylation system and Ubc9 may involve in the host defense system to prevent virus propagation.
Collapse
Affiliation(s)
- Mei-Wui Chiu
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu, Taiwan, ROC
| | | | | | | |
Collapse
|
54
|
Abstract
The Ran GTPase controls many cellular functions, including nucleocytoplasmic trafficking, spindle assembly, nuclear assembly and cell-cycle progression. Considerable evidence suggests that diffusible Ran-GTP near mitotic chromatin facilitates the release of critical factors from nuclear transport receptors, thereby promoting organization of mitotic spindles with respect to chromosomes. In addition to this role of soluble Ran-GTP, Ran has two important but less understood roles at mitotic kinetochores. Namely, it is essential for regulation of the spindle assembly checkpoint and for assembly of microtubule fibres that attach kinetochores to spindle poles. Here, I will briefly summarize evidence for these kinetochore-associated functions and mention some of the issues that remain to be addressed regarding them.
Collapse
Affiliation(s)
- M Dasso
- Laboratory of Gene Regulation and Development, NICHD (National Institute of Child Health and Human Development)/NIH (National Institutes of Health), Bethesda, MD 20892-5431, USA.
| |
Collapse
|
55
|
Suico MA, Nakamura H, Lu Z, Saitoh H, Shuto T, Nakao M, Kai H. SUMO down-regulates the activity of Elf4/myeloid Elf-1-like factor. Biochem Biophys Res Commun 2006; 348:880-8. [PMID: 16904644 DOI: 10.1016/j.bbrc.2006.07.151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 07/20/2006] [Indexed: 01/20/2023]
Abstract
Myeloid elf-1-like factor (MEF) or Elf4 is an ETS protein known to regulate the basal expression of the anti-microbial peptides, lysozyme and human beta-defensin-2, in epithelial cells and activate the transcription of perforin in natural killer cells. The numerous target genes of MEF and its biological functions signify the importance of this Ets transcription factor. Here we show that MEF is modified by conjugation with SUMO-1/-2 (small ubiquitin-related modifier) both in mammalian cells and in Escherichia coli overexpressing human SUMO-1/-2. We identified by point mutation that lysine 657 of MEF is the site for sumoylation. This modification down-regulated MEF activity on lysozyme and perforin promoters, and decreased the lysozyme mRNA expression. Chromatin immuno-precipitation analysis revealed that SUMO-conjugation diminished the recruitment of MEF to the lysozyme promoter, which partly explains the down-regulation of MEF activity by SUMO. These findings contribute to our understanding of the regulation of the ETS factor MEF.
Collapse
Affiliation(s)
- Mary Ann Suico
- Department of Molecular Medicine, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | | | | | | | | | | |
Collapse
|
56
|
Quimby BB, Yong-Gonzalez V, Anan T, Strunnikov AV, Dasso M. The promyelocytic leukemia protein stimulates SUMO conjugation in yeast. Oncogene 2006; 25:2999-3005. [PMID: 16501610 DOI: 10.1038/sj.onc.1209335] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 11/08/2005] [Accepted: 11/14/2005] [Indexed: 11/09/2022]
Abstract
The promyelocytic leukemia gene was first identified through its fusion to the gene encoding the retinoic acid receptor alpha (RARalpha) in acute promyelocytic leukemia (APL) patients. The promyelocytic leukemia gene product (PML) becomes conjugated in vivo to the small ubiquitin-like protein SUMO-1, altering its behavior and capacity to recruit other proteins to PML nuclear bodies (PML-NBs). In the NB4 cell line, which was derived from an APL patient and expresses PML:RARalpha, we observed a retinoic acid-dependent change in the modification of specific proteins by SUMO-1. To dissect the interaction of PML with the SUMO-1 modification pathway, we used the budding yeast Saccharomyces cerevisiae as a model system through expression of PML and human SUMO-1 (hSUMO-1). We found that PML stimulated hSUMO-1 modification in yeast, in a manner that was dependent upon PML's RING-finger domain. PML:RARalpha also stimulated hSUMO-1 conjugation in yeast. Interestingly, however, PML and PML:RARalpha differentially complemented yeast Smt3p conjugation pathway mutants. These findings point toward a potential function of PML and PML:RARalpha as SUMO E3 enzymes or E3 regulators, and suggest that fusion of RARalpha to PML may affect this activity.
Collapse
MESH Headings
- Amino Acid Substitution
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor/drug effects
- Cytoskeletal Proteins/metabolism
- Genetic Complementation Test
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Multiprotein Complexes/biosynthesis
- Mutagenesis, Site-Directed
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Nocodazole/pharmacology
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Promyelocytic Leukemia Protein
- Protein Structure, Tertiary
- Recombinant Fusion Proteins/physiology
- Repressor Proteins/genetics
- Repressor Proteins/physiology
- SUMO-1 Protein
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Saccharomyces cerevisiae Proteins/physiology
- Small Ubiquitin-Related Modifier Proteins/genetics
- Small Ubiquitin-Related Modifier Proteins/metabolism
- Species Specificity
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transfection
- Tretinoin/pharmacology
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/physiology
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- B B Quimby
- Section on Cell Cycle Regulation, Laboratory of Gene Regulation and Development, NICHD/NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
57
|
Saitoh N, Uchimura Y, Tachibana T, Sugahara S, Saitoh H, Nakao M. In situ SUMOylation analysis reveals a modulatory role of RanBP2 in the nuclear rim and PML bodies. Exp Cell Res 2006; 312:1418-30. [PMID: 16688858 DOI: 10.1016/j.yexcr.2006.01.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
SUMO modification plays a critical role in a number of cellular functions including nucleocytoplasmic transport, gene expression, cell cycle and formation of subnuclear structures such as promyelocytic leukemia (PML) bodies. In order to identify the sites where SUMOylation takes place in the cell, we developed an in situ SUMOylation assay using a semi-intact cell system and subsequently combined it with siRNA-based knockdown of nucleoporin RanBP2, also known as Nup358, which is one of the known SUMO E3 proteins. With the in situ SUMOylation assay, we found that both nuclear rim and PML bodies, besides mitotic apparatuses, are major targets for active SUMOylation. The ability to analyze possible SUMO conjugation sites would be a valuable tool to investigate where SUMO E3-like activities and/or SUMO substrates exist in the cell. Specific knockdown of RanBP2 completely abolished SUMOylation along the nuclear rim and dislocated RanGAP1 from the nuclear pore complexes. Interestingly, the loss of RanBP2 markedly reduced the number of PML bodies, in contrast to other, normal-appearing nuclear compartments including the nuclear lamina, nucleolus and chromatin, suggesting a novel link between RanBP2 and PML bodies. SUMOylation facilitated by RanBP2 at the nuclear rim may be a key step for the formation of a particular subnuclear organization. Our data imply that SUMO E3 proteins like RanBP2 facilitate spatio-temporal SUMOylation for certain nuclear structure and function.
Collapse
Affiliation(s)
- Noriko Saitoh
- Department of Regeneration Medicine, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumanmoto 860-0811, Japan
| | | | | | | | | | | |
Collapse
|
58
|
Zhu S, Zhang H, Matunis MJ. SUMO modification through rapamycin-mediated heterodimerization reveals a dual role for Ubc9 in targeting RanGAP1 to nuclear pore complexes. Exp Cell Res 2006; 312:1042-9. [PMID: 16469311 DOI: 10.1016/j.yexcr.2005.12.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 12/15/2005] [Accepted: 12/15/2005] [Indexed: 01/12/2023]
Abstract
SUMOs (small ubiquitin-related modifiers) are eukaryotic proteins that are covalently conjugated to other proteins and thereby regulate a wide range of important cellular processes. The molecular mechanisms by which SUMO modification influences the functions of most target proteins and cellular processes, however, remain poorly defined. A major obstacle to investigating the effects of SUMO modification is the availability of a system for selectively inducing the modification or demodification of an individual protein. To address this problem, we have developed a procedure using the rapamycin heterodimerizer system. This procedure involves co-expression of rapamycin-binding domain fusion proteins of SUMO and candidate SUMO substrates in living cells. Treating cells with rapamycin induces a tight association between SUMO and a single SUMO substrate, thereby allowing specific downstream effects to be analyzed. Using RanGAP1 as a model SUMO substrate, the heterodimerizer system was used to investigate the molecular mechanism by which SUMO modification targets RanGAP1 from the cytoplasm to nuclear pore complexes (NPCs). Our results revealed a dual role for Ubc9 in targeting RanGAP1 to NPCs: In addition to conjugating SUMO-1 to RanGAP1, Ubc9 is also required to form a stable ternary complex with SUMO-1 modified RanGAP1 and Nup358. As illustrated by our studies, the rapamycin heterodimerizer system represents a novel tool for studying the molecular effects of SUMO modification.
Collapse
Affiliation(s)
- Shanshan Zhu
- Johns Hopkins University, Bloomberg School of Public Health, Department of Biochemistry and Molecular Biology, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
59
|
Takeda E, Hieda M, Katahira J, Yoneda Y. Phosphorylation of RanGAP1 stabilizes its interaction with Ran and RanBP1. Cell Struct Funct 2006; 30:69-80. [PMID: 16428860 DOI: 10.1247/csf.30.69] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ran is a nuclear Ras-like GTPase that is required for various nuclear events including the bi-directional transport of proteins and ribonucleoproteins through the nuclear pore complex, spindle formation, and reassembly of the nuclear envelope. One of the key regulators of Ran is RanGAP1, a Ran specific GTPase activating protein. The question of whether a mechanism exists for controlling nucleocytoplasmic transport through the regulation of RanGAP1 activity continues to be debated. Here we show that RanGAP1 is phosphorylated in vivo and in vitro. Serine-358 (358S) was identified as the major phosphorylation site, by MALDI-TOF-MS spectrometry. Site directed mutagenesis at this position abolished the phosphorylation. Experiments using purified recombinant kinase and specific inhibitors such as DRB and apigenin strongly suggest that casein kinase II (CK2) is the responsible kinase. Although the phosphorylation of 358S of RanGAP1 did not significantly alter its GAP activity, the phosphorylated wild type RanGAP1, but not a mutant harboring a mutation at the phosphorylation site 358S, efficiently formed a stable ternary complex with Ran and RanBP1 in vivo, suggesting that the 358S phosphorylation of RanGAP1 affects the Ran system.
Collapse
Affiliation(s)
- Eri Takeda
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
60
|
Zheng Z, Cai C, Omwancha J, Chen SY, Baslan T, Shemshedini L. SUMO-3 Enhances Androgen Receptor Transcriptional Activity through a Sumoylation-independent Mechanism in Prostate Cancer Cells. J Biol Chem 2006; 281:4002-12. [PMID: 16361251 DOI: 10.1074/jbc.m509260200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Androgens are important for male sexual development, which depend on the cognate receptor, the androgen receptor. The transcriptional activity of the androgen receptor, like other nuclear receptors, is regulated by accessory proteins that can have either positive or negative effects. Through a yeast functional screen, we have identified SUMO-3 as a regulator of androgen receptor activity in prostate cancer cells. SUMO-3 is one of three eukaryotic proteins that become post-translationally conjugated to their target proteins in a manner analogous to the attachment of ubiquitin. In primary prostate epithelial cells, PrEC, and the prostate cancer cells, PC-3, SUMO-3 has a weak negative effect on androgen receptor transcriptional activity. In contrast, SUMO-3 and it close relative SUMO-2 strongly enhance transactivation by endogenous androgen receptor in LNCaP cells. This positive effect is observed in both androgen-dependent and androgen-independent LNCaP cells. Interestingly, SUMO-1, unlike SUMO-3 and SUMO-2, can inhibit, but not stimulate, androgen receptor activity. Mutational analysis of the androgen receptor and SUMO-3 demonstrates that the SUMO-3-positive activity does not depend on either the sumoylation sites of the androgen receptor or the sumoylation function of SUMO-3. Stable overexpression of SUMO-3 in LNCaP cells significantly enhances the androgen-dependent proliferation of these cells. Additionally, siRNA-mediated repression of SUMO-2 significantly inhibits the growth of both androgen-dependent and -independent LNCaP cells. Collectively, these results suggest (i) a novel mechanism for elevating AR activity through the switch of SUMO-3 from a weak negative regulator in normal prostate cells to a strong positive regulator in prostate cancer cells and (ii) a proliferative role for SUMO-3 and SUMO-2 in the growth of prostate cancer cells that is independent of sumoylation of the androgen receptor.
Collapse
Affiliation(s)
- Zhe Zheng
- University of Toledo, Department of Biological Sciences, OH 43606, USA
| | | | | | | | | | | |
Collapse
|
61
|
Hetzer MW, Walther TC, Mattaj IW. PUSHING THE ENVELOPE: Structure, Function, and Dynamics of the Nuclear Periphery. Annu Rev Cell Dev Biol 2005; 21:347-80. [PMID: 16212499 DOI: 10.1146/annurev.cellbio.21.090704.151152] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nuclear envelope (NE) is a highly specialized membrane that delineates the eukaryotic cell nucleus. It is composed of the inner and outer nuclear membranes, nuclear pore complexes (NPCs) and, in metazoa, the lamina. The NE not only regulates the trafficking of macromolecules between nucleoplasm and cytosol but also provides anchoring sites for chromatin and the cytoskeleton. Through these interactions, the NE helps position the nucleus within the cell and chromosomes within the nucleus, thereby regulating the expression of certain genes. The NE is not static, rather it is continuously remodeled during cell division. The most dramatic example of NE reorganization occurs during mitosis in metazoa when the NE undergoes a complete cycle of disassembly and reformation. Despite the importance of the NE for eukaryotic cell life, relatively little is known about its biogenesis or many of its functions. We thus are far from understanding the molecular etiology of a diverse group of NE-associated diseases.
Collapse
Affiliation(s)
- Martin W Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
62
|
Shirakura H, Hayashi N, Ogino SI, Tsuruma K, Uehara T, Nomura Y. Caspase recruitment domain of procaspase-2 could be a target for SUMO-1 modification through Ubc9. Biochem Biophys Res Commun 2005; 331:1007-15. [PMID: 15882978 DOI: 10.1016/j.bbrc.2005.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Indexed: 11/19/2022]
Abstract
To identify the binding proteins that regulate the function of procaspase-2, we screened for proteins using the yeast two-hybrid method and isolated human Ubc9 and SUMO-1 as the candidates. Ubc9 and SUMO-1 interacted with the caspase recruitment domain of procaspase-2 in its N-terminal. We elucidated the covalent modification of procaspase-2 by SUMO-1 in mammalian cells by immunoprecipitation followed by Western blot analysis. Procaspase-2 and SUMO-1 were co-localized by dot-like structures in the nucleus that are related to promyelocytic leukemia bodies. Interestingly, a conjugation-deficient mutant (K60R) procaspase-2 resulted in a delay of its enzyme maturation (appearance of p12 subunit) compared to that of wild-type. Thus, the modification with SUMO-1 may play a critical role in the nuclear localization and the activation (maturation) of procaspase-2.
Collapse
Affiliation(s)
- Hiromi Shirakura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | | | | | |
Collapse
|
63
|
Ihara M, Yamamoto H, Kikuchi A. SUMO-1 modification of PIASy, an E3 ligase, is necessary for PIASy-dependent activation of Tcf-4. Mol Cell Biol 2005; 25:3506-18. [PMID: 15831457 PMCID: PMC1084305 DOI: 10.1128/mcb.25.9.3506-3518.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 12/25/2004] [Accepted: 01/21/2005] [Indexed: 12/13/2022] Open
Abstract
We have previously shown that modification of Tcf-4, a transcription factor in the Wnt pathway, with SUMO by PIASy, a SUMO E3 ligase, enhances its transcriptional activity. Since PIASy itself was also modified with SUMO-1, we studied the role of sumoylation of PIASy in the regulation of Tcf-4. Lys(35) was found to be a sumoylation site of PIASy. PIASy(K35R), in which Lys(35) was mutated to Arg, did not enhance sumoylation of Tcf-4, although this PIASy mutant did not lose the ligase activity of sumoylation for other proteins. Wild-type PIASy and PIASy(K35R) showed a distinct distribution in the nucleus, although both were colocalized with Tcf-4. Promyelocytic leukemia protein, which is involved in transcriptional regulation, was associated with PIASy(K35R) more frequently than wild-type PIASy in the nucleus. PIASy(K35R) could not stimulate the transcriptional activity of Tcf-4 under the conditions in which wild-type PIASy enhanced it. Conjugation of SUMO-1 to the amino terminus of PIASy(K35R) neither enhanced sumoylation of Tcf-4 nor stimulated the transcriptional activity of Tcf-4. These results suggest that sumoylation of Lys(35) in PIASy determines the nuclear localization of PIASy and that it is necessary for PIASy-dependent sumoylation and transcriptional activation of Tcf-4.
Collapse
Affiliation(s)
- Motomasa Ihara
- Department of Biochemistry, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | | | | |
Collapse
|
64
|
Rajan S, Plant LD, Rabin ML, Butler MH, Goldstein SAN. Sumoylation Silences the Plasma Membrane Leak K+ Channel K2P1. Cell 2005; 121:37-47. [PMID: 15820677 DOI: 10.1016/j.cell.2005.01.019] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 01/19/2005] [Accepted: 01/21/2005] [Indexed: 11/15/2022]
Abstract
Reversible, covalent modification with small ubiquitin-related modifier proteins (SUMOs) is known to mediate nuclear import/export and activity of transcription factors. Here, the SUMO pathway is shown to operate at the plasma membrane to control ion channel function. SUMO-conjugating enzyme is seen to be resident in plasma membrane, to assemble with K2P1, and to modify K2P1 lysine 274. K2P1 had not previously shown function despite mRNA expression in heart, brain, and kidney and sequence features like other two-P loop K+ leak (K2P) pores that control activity of excitable cells. Removal of the peptide adduct by SUMO protease reveals K2P1 to be a K+-selective, pH-sensitive, openly rectifying channel regulated by reversible peptide linkage.
Collapse
Affiliation(s)
- Sindhu Rajan
- Department of Pediatrics, Institute for Molecular Pediatric Sciences, Pritzker School of Medicine, University of Chicago, 5721 South Maryland Avenue, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
65
|
Amerik AY, Hochstrasser M. Mechanism and function of deubiquitinating enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1695:189-207. [PMID: 15571815 DOI: 10.1016/j.bbamcr.2004.10.003] [Citation(s) in RCA: 735] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Attachment of ubiquitin to proteins is a crucial step in many cellular regulatory mechanisms and contributes to numerous biological processes, including embryonic development, the cell cycle, growth control, and prevention of neurodegeneration. In these diverse regulatory settings, the most widespread mechanism of ubiquitin action is probably in the context of protein degradation. Polyubiquitin attachment targets many intracellular proteins for degradation by the proteasome, and (mono)ubiquitination is often required for down-regulating plasma membrane proteins by targeting them to the vacuole (lysosome). Ubiquitin-protein conjugates are highly dynamic structures. While an array of enzymes directs the conjugation of ubiquitin to substrates, there are also dozens of deubiquitinating enzymes (DUBs) that can reverse the process. Several lines of evidence indicate that DUBs are important regulators of the ubiquitin system. These enzymes are responsible for processing inactive ubiquitin precursors, proofreading ubiquitin-protein conjugates, removing ubiquitin from cellular adducts, and keeping the 26S proteasome free of inhibitory ubiquitin chains. The present review focuses on recent discoveries that have led to a better understanding the mechanisms and physiological roles of this diverse and still poorly understood group of enzymes. We also discuss briefly some of the proteases that act on ubiquitin-like protein (UBL) conjugates and compare them to DUBs.
Collapse
Affiliation(s)
- Alexander Y Amerik
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, PO Box 208114, New Haven, CT 06520-8114, USA.
| | | |
Collapse
|
66
|
Abstract
SUMO (small ubiquitin-related modifier) family proteins are not only structurally but also mechanistically related to ubiquitin in that they are posttranslationally attached to other proteins. As ubiquitin, SUMO is covalently linked to its substrates via amide (isopeptide) bonds formed between its C-terminal glycine residue and the epsilon-amino group of internal lysine residues. The enzymes involved in the reversible conjugation of SUMO are similar to those mediating the ubiquitin conjugation. Since its discovery in 1996, SUMO has received a high degree of attention because of its intriguing and essential functions, and because its substrates include a variety of biomedically important proteins such as tumor suppressor p53, c-jun, PML and huntingtin. SUMO modification appears to play important roles in diverse processes such as chromosome segregation and cell division, DNA replication and repair, nuclear protein import, protein targeting to and formation of certain subnuclear structures, and the regulation of a variety of processes including the inflammatory response in mammals and the regulation of flowering time in plants.
Collapse
Affiliation(s)
- R Jürgen Dohmen
- Institute for Genetics, University of Cologne, Zülpicher Str. 47, D-50674 Cologne, Germany.
| |
Collapse
|
67
|
Andrews EA, Palecek J, Sergeant J, Taylor E, Lehmann AR, Watts FZ. Nse2, a component of the Smc5-6 complex, is a SUMO ligase required for the response to DNA damage. Mol Cell Biol 2005; 25:185-96. [PMID: 15601841 PMCID: PMC538766 DOI: 10.1128/mcb.25.1.185-196.2005] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The Schizosaccharomyces pombe SMC proteins Rad18 (Smc6) and Spr18 (Smc5) exist in a high-M(r) complex which also contains the non-SMC proteins Nse1, Nse2, Nse3, and Rad62. The Smc5-6 complex, which is essential for viability, is required for several aspects of DNA metabolism, including recombinational repair and maintenance of the DNA damage checkpoint. We have characterized Nse2 and show here that it is a SUMO ligase. Smc6 (Rad18) and Nse3, but not Smc5 (Spr18) or Nse1, are sumoylated in vitro in an Nse2-dependent manner, and Nse2 is itself autosumoylated, predominantly on the C-terminal part of the protein. Mutations of C195 and H197 in the Nse2 RING-finger-like motif abolish Nse2-dependent sumoylation. nse2.SA mutant cells, in which nse2.C195S-H197A is integrated as the sole copy of nse2, are viable, whereas the deletion of nse2 is lethal. Smc6 (Rad18) is sumoylated in vivo: the sumoylation level is increased upon exposure to DNA damage and is drastically reduced in the nse2.SA strain. Since nse2.SA cells are sensitive to DNA-damaging agents and to exposure to hydroxyurea, this implicates the Nse2-dependent sumoylation activity in DNA damage responses but not in the essential function of the Smc5-6 complex.
Collapse
Affiliation(s)
- Emily A Andrews
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
68
|
Chih DY, Park DJ, Gross M, Idos G, Vuong PT, Hirama T, Chumakov AM, Said J, Koeffler HP. Protein partners of C/EBPε. Exp Hematol 2004; 32:1173-81. [PMID: 15588942 DOI: 10.1016/j.exphem.2004.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 08/23/2004] [Accepted: 08/26/2004] [Indexed: 11/17/2022]
Abstract
CCAAT-enhancer binding protein-epsilon (C/EBPepsilon) is a nuclear transcription factor implicated in the regulation of terminal myeloid differentiation. Using a yeast two-hybrid screen, potential interaction partners of C/EBPepsilon involved in myeloid development were identified. C/EBPepsilon was found to associate with other C/EBP family members, including C/EBPepsilon and CHOP as well as other proteins that are known to contain a leucine-zipper protein interaction motif including CREB2, LDOC1, E6TP1, and AF-17. In addition, C/EBPepsilon demonstrated the potential for interaction with proteins that do not possess a leucine-zipper motif, including proteins that may be involved in sumoylation (protein inhibitor of activated STAT1 [PIAS1] and ubiquitin-conjugating enzyme E2I). As expected, the association of C/EBPepsilon with other C/EBP family members depends on the presence of a functional leucine-zipper motif. Mapping studies of C/EBPepsilon with PIAS1 (as an example of a nonleucine-zipper-containing protein) showed that C/EBPepsilon interacts with the amino-terminal domain of PIAS1. The function of C/EBPepsilon interacting proteins was further investigated. Co-expression of C/EBPepsilon with C/EBPdelta resulted in potent transactivation in a lactoferrin reporter system. A gel mobility shift assay suggests that C/EBPepsilon, C/EBPalpha, and C/EBPdelta proteins can bind as heterodimers to a C/EBP consensus DNA-binding site. As CHOP is known to represent a transcriptional repressor, the functional interaction between C/EBPepsilon and CHOP was investigated. Co-expression of C/EBPepsilon and c-Myb with CHOP caused marked transcriptional repression of target reporter genes. Our results suggest heterodimeric partners of C/EBPepsilon modulate the function of C/EBPepsilon in mediating gene transcription during myelopoiesis.
Collapse
Affiliation(s)
- Doris Y Chih
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, Calif. 90048, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Takahashi H, Hatakeyama S, Saitoh H, Nakayama KI. Noncovalent SUMO-1 binding activity of thymine DNA glycosylase (TDG) is required for its SUMO-1 modification and colocalization with the promyelocytic leukemia protein. J Biol Chem 2004; 280:5611-21. [PMID: 15569683 DOI: 10.1074/jbc.m408130200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SUMO-1 is a member of a family of ubiquitin-like molecules that are post-translationally conjugated to various cellular proteins in a process that is mechanistically similar to ubiquitylation. To identify molecules that bind noncovalently to SUMO-1, we performed yeast two-hybrid screening with a SUMO-1 mutant that cannot be conjugated to target proteins as the bait. This screening resulted in the isolation of cDNAs encoding the b isoform of thymine DNA glycosylase (TDGb). A deletion mutant of TDGb (TDGb(Delta11)) that lacks a region shown to be required for noncovalent binding of SUMO-1 was also found not to be susceptible to SUMO-1 conjugation at an adjacent lysine residue, suggesting that such binding is required for covalent modification. In contrast, another mutant of TDGb (TDGb(KR)) in which the lysine residue targeted for SUMO-1 conjugation is replaced with arginine retained the ability to bind SUMO-1 non-covalently. TDGb was shown to interact with the promyelocytic leukemia protein (PML) in vitro as well as to colocalize with this protein to nuclear bodies in transfected cells. TDGb(KR) also colocalized with PML, whereas TDGb(Delta11) did not, indicating that the noncovalent SUMO-1 binding activity of TDGb is required for colocalization with PML. Furthermore, SUMO-1 modification of TDGb and PML enhanced the interaction between the two proteins. These results suggest that SUMO-1 functions to tether proteins to PML-containing nuclear bodies through post-translational modification and noncovalent protein-protein interaction.
Collapse
Affiliation(s)
- Hidehisa Takahashi
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
70
|
Abstract
Small ubiquitin-related modifier (SUMO) family proteins function by becoming covalently attached to other proteins as post-translational modifications. SUMO modifies many proteins that participate in diverse cellular processes, including transcriptional regulation, nuclear transport, maintenance of genome integrity, and signal transduction. Reversible attachment of SUMO is controlled by an enzyme pathway that is analogous to the ubiquitin pathway. The functional consequences of SUMO attachment vary greatly from substrate to substrate, and in many cases are not understood at the molecular level. Frequently SUMO alters interactions of substrates with other proteins or with DNA, but SUMO can also act by blocking ubiquitin attachment sites. An unusual feature of SUMO modification is that, for most substrates, only a small fraction of the substrate is sumoylated at any given time. This review discusses our current understanding of how SUMO conjugation is controlled, as well as the roles of SUMO in a number of biological processes.
Collapse
Affiliation(s)
- Erica S Johnson
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| |
Collapse
|
71
|
Terui Y, Saad N, Jia S, McKeon F, Yuan J. Dual role of sumoylation in the nuclear localization and transcriptional activation of NFAT1. J Biol Chem 2004; 279:28257-65. [PMID: 15117942 DOI: 10.1074/jbc.m403153200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear import of nuclear factor of activated T cells (NFAT) transcription factors is critical for regulating NFAT activity. Here we demonstrate that the sumoylation of NFAT1 defines a novel mechanism of the nuclear anchorage and transcriptional activation downstream from the known mechanism of calcineurin-mediated dephosphorylation and nuclear import. We show that Lys(684) and Lys(897) of NFAT1 can be sumoylated. The sumoylation at Lys(684) is required for NFAT1 transcriptional activity and subsequent sumoylation of Lys(897), whereas the sumoylation of Lys(897) is only required for nuclear anchorage. Because Lys(897) of NFAT1 is not conserved among other members of the NFAT family, we propose that sumoylation of Lys(897) may provide a mechanism for NFAT1 isotype-specific regulation of nuclear anchorage and transcriptional activation. Furthermore, we found that treatment with both ionomycin and phorbol 12-myristate 13-acetate ensured efficient nuclear anchorage with the recruitment of NFAT1 into the SUMO-1 bodies, whereas treatment with ionomycin alone induced nuclear translocation of NFAT1 but not recruitment into the SUMO-1 bodies. Our results suggest that the recruitment of NFAT1 into SUMO-1 bodies may be required for the progressive transcriptional activity of NFAT1 upon co-stimulation with ionomycin and phorbol 12-myristate 13-acetate, whereas anergic transcription stimulated by ionomycin alone may occur without recruitment into the SUMO-1 bodies.
Collapse
Affiliation(s)
- Yasuhito Terui
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
72
|
Guo W, Shang F, Liu Q, Urim L, West-Mays J, Taylor A. Differential regulation of components of the ubiquitin-proteasome pathway during lens cell differentiation. Invest Ophthalmol Vis Sci 2004; 45:1194-201. [PMID: 15037588 PMCID: PMC1446108 DOI: 10.1167/iovs.03-0830] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To investigate the role for the ubiquitin-proteasome pathway in controlling lens cell proliferation and differentiation and the regulation of the ubiquitin conjugation machinery during the differentiation process. METHODS bFGF-induced lens cell proliferation and differentiation was monitored in rat lens epithelial explants by bromodeoxyuridine (BrdU) incorporation and expression of crystallins and other differentiation markers. Levels of typical substrates for the ubiquitin-proteasome pathway, p21(WAF) and p27(Kip), were monitored during the differentiation process, as were levels and activities of the enzymes involved in ubiquitin conjugation. RESULTS Explants treated with bFGF initially underwent enhanced proliferation as indicated by BrdU incorporation. Then they withdrew from the cell cycle as indicated by diminished BrdU incorporation and accumulation of p21(WAF) and p27(Kip). bFGF-induced cell proliferation was prohibited or delayed by proteasome inhibitors. Lens epithelial explants treated with bFGF for 7 days displayed characteristics of lens fibers, including expression of large quantities of crystallins. Whereas levels of E1 remained constant during the differentiation process, the levels of ubiquitin-conjugating enzyme (Ubc)-1 increased approximately twofold, and the thiol ester form of Ubc1 increased approximately threefold on 7 days of bFGF treatment. Levels of Ubc2 increased moderately on bFGF treatment, and most of the Ubc2 was found in the thiol ester form. Although levels of total Ubc3 and -7 remained unchanged, the proportions of Ubc3 and -7 in the thiol ester form were significantly higher in the bFGF-treated explants. Levels of Ubc4/5 and -9 also increased significantly on treatment with bFGF, and more than 90% of Ubc9 was found in the thiol ester form in the bFGF-treated explants. In contrast, levels of Cul1, the backbone of the SCF type of E3s, decreased 50% to 70% in bFGF-treated explants. CONCLUSIONS The data show that proteolysis through the ubiquitin-proteasome pathway is required for bFGF-induced lens cell proliferation and differentiation. Various components of the ubiquitin-proteasome pathway are differentially regulated during lens cell differentiation. The downregulation of Cul1 appears to contribute to the accumulation of p21(WAF) and p27(Kip), which play an important role in establishing a differentiated phenotype.
Collapse
Affiliation(s)
- Weimin Guo
- From the Laboratory for Nutrition and Vision Research, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; the
| | - Fu Shang
- From the Laboratory for Nutrition and Vision Research, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; the
| | - Qing Liu
- From the Laboratory for Nutrition and Vision Research, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; the
| | - Lyudmila Urim
- Department of Ophthalmology, New England Medical Center, Boston, Massachusetts; and the
| | - Judith West-Mays
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Allen Taylor
- From the Laboratory for Nutrition and Vision Research, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts; the
- Corresponding author: Allen Taylor, Laboratory for Nutrition and Vision Research, JMUSDA-HNRCA at Tufts University, Boston, MA 02111;
| |
Collapse
|
73
|
Uchimura Y, Nakao M, Saitoh H. Generation of SUMO-1 modified proteins inE. coli: towards understanding the biochemistry/structural biology of the SUMO-1 pathway. FEBS Lett 2004; 564:85-90. [PMID: 15094046 DOI: 10.1016/s0014-5793(04)00321-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 03/04/2004] [Accepted: 03/12/2004] [Indexed: 11/26/2022]
Abstract
Here, we developed a binary vector system that introduces a synthetic SUMO-1 conjugation pathway into Escherichia coli and demonstrated that large amounts of sumoylated Ran GTPase activating protein 1 C-terminal region (RanGAP1-C2), Ran binding protein 2 internal repeat domain, p53 and promyelocytic leukemia were efficiently produced. The sumoylated recombinant RanGAP1-C2 appeared to retain the in vivo properties, since it was specifically sumoylated at lysine 517 as expected from in vivo studies. Our findings indicate the establishment of a biosynthetic route for producing large amounts of sumoylated recombinant proteins that will open up new avenues for studying the biochemical and structural aspects of the SUMO-1 modification pathway.
Collapse
Affiliation(s)
- Yasuhiro Uchimura
- Department of Regeneration Medicine, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | |
Collapse
|
74
|
Abstract
A wide range of eukaryotic proteins has been shown to be sumoylated. Most, but not all of these proteins are nuclear. In all cases documented so far, sumoylation has been shown to occur on lysine residues. In general these are located within the consensus sequence psiKxE, although there are some exceptions to this. The role of sumoylation has been investigated for a number of identified targets. Unlike the situation with ubiquitination, sumoylation does not appear to target proteins for proteasome-mediated degradation. In contrast, the effect of SUMO modification appears to depend on the target protein and includes roles in altering protein activity, protein-protein interactions or protein localisation.
Collapse
Affiliation(s)
- Felicity Z Watts
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
75
|
Weldon RA, Sarkar P, Brown SM, Weldon SK. Mason-Pfizer monkey virus Gag proteins interact with the human sumo conjugating enzyme, hUbc9. Virology 2003; 314:62-73. [PMID: 14517060 DOI: 10.1016/s0042-6822(03)00348-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Retroviral Gag proteins function during early and late stages of the viral life cycle. To gain additional insight into the cellular requirements for viral replication, a two-hybrid screen was used to identify cellular proteins that interact with the Mason-Pfizer monkey virus Gag protein. One of the cellular proteins found was identified as hUbc9, a nuclear pore-associated E2 SUMO conjugating enzyme. In vitro protein interaction assays verified the association and mapped the interaction domain to the CA protein. In vivo, hUbc9 and Gag colocalized in the cytoplasm as discrete foci near the nuclear membrane. In addition, overexpression of hUbc9 in cells caused a fraction of Gag to colocalize with hUbc9 in the nucleus. These experiments demonstrate that hUbc9 and Gag interact in cells, strengthen the hypothesis that Gag proteins transiently associate with the nuclear compartment during viral replication, and suggest that hUbc9 plays a role in this process.
Collapse
Affiliation(s)
- Robert A Weldon
- School of Biological Sciences and the Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68588-0666, USA.
| | | | | | | |
Collapse
|
76
|
Abstract
We have analyzed the abundance of SUMO-conjugated species during the cell cycle in Xenopus egg extracts. The predominant SUMO conjugation products associated with mitotic chromosomes arose from SUMO conjugation of topoisomerase II. Topoisomerase II was modified exclusively by SUMO-2/3 during mitosis under normal circumstances, although we observed conjugation of topoisomerase II to SUMO-1 in extracts with exogenous SUMO-1 protein. Inhibition of SUMO modification by a dominant-negative mutant of the SUMO-conjugating enzyme Ubc9 (dnUbc9) did not detectably alter topoisomerase II activity, but it did increase the amount of unmodified topoisomerase II retained on mitotic chromosomes after high salt washing. dnUbc9 did not disrupt the assembly of condensed mitotic chromosomes or block progression of extracts through mitosis, but it did block the dissociation of sister chromatids at the metaphase–anaphase transition. Together, our results suggest that SUMO conjugation is important for chromosome segregation in metazoan systems, and that mobilization of topoisomerase II from mitotic chromatin may be a key target of this modification.
Collapse
Affiliation(s)
- Yoshiaki Azuma
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-5431, USA
| | | | | |
Collapse
|
77
|
Weger S, Hammer E, Engstler M. The DNA topoisomerase I binding protein topors as a novel cellular target for SUMO-1 modification: characterization of domains necessary for subcellular localization and sumolation. Exp Cell Res 2003; 290:13-27. [PMID: 14516784 DOI: 10.1016/s0014-4827(03)00292-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the past years, modification by covalent attachment of SUMO (small ubiquitin-like modifier) has been demonstrated for of a number of cellular and viral proteins. While increasing evidence suggests a role for SUMO modification in the regulation of protein-protein interactions and/or subcellular localization, most SUMO targets are still at large. In this report we show that Topors, a Topoisomerase I and p53 interacting protein of hitherto unknown function, presents a novel cellular target for SUMO-1 modification. In a yeast two-hybrid system, Topors interacted with both SUMO-1 and the SUMO-1 conjugating enzyme UBC9. Multiple SUMO-1 modified forms of Topors could be detected after cotransfection of exogenous SUMO-1 and Topors induced the colocalization of a YFP tagged SUMO-1 protein in a speckled pattern in the nucleus. A subset of these Topors' nuclear speckles were closely associated with the PML nuclear bodies (POD, ND10). A central domain comprising Topors residues 437 to 574 was sufficient for both sumolation and localization to nuclear speckles. One SUMO-1 acceptor site at lysine residue 560 could be identified within this region. However, sumolation-deficient Topors mutants showed that sumolation obviously is not required for localization to nuclear speckles.
Collapse
Affiliation(s)
- Stefan Weger
- Department of Virology, Institute of Infectious Diseases, Free University of Berlin, Hindenburgdamm 27, 12203 Berlin, Germany.
| | | | | |
Collapse
|
78
|
Abstract
Post-translational modification by the ubiquitin-like SUMO protein is emerging as a defining feature of eukaryotic cells. Sumoylation has crucial roles in the regulatory challenges that face nucleate cells, including the control of nucleocytoplasmic signalling and transport and the faithful replication of a large and complex genome, as well as the regulation of gene expression.
Collapse
Affiliation(s)
- Jacob-S Seeler
- Nuclear Organization and Oncogenesis Unit, INSERM U 579, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
79
|
Yamamoto H, Ihara M, Matsuura Y, Kikuchi A. Sumoylation is involved in beta-catenin-dependent activation of Tcf-4. EMBO J 2003; 22:2047-59. [PMID: 12727872 PMCID: PMC156076 DOI: 10.1093/emboj/cdg204] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Sumoylation is involved in mediating protein-protein interactions, subcellular compartmentalization and protein stability. Our analysis of various Wnt signaling molecules revealed that one of them, Tcf-4, is sumoylated at the endogenous level. At least one sumoylation site, Lys297, of Tcf-4 was identified. The sumoylation of Tcf-4 was enhanced by PIASy, a SUMO E3 enzyme, and inhibited by Axam, a desumoylation enzyme. Although PIASy did not affect the interaction of Tcf-4 with beta-catenin or DNA, Tcf-4, SUMO-1 and PIASy were co-localized in the nucleus and present in a complex in the PML body. PIASy enhanced beta-catenin-dependent transcriptional activity of Tcf-4, whereas Axam inhibited it. Reduction of the protein level of Axam by RNA interference led to an increase in sumoylation of Tcf-4 and activation of Tcf-4. Furthermore, beta-catenin and PIASy activated Tcf-4(K297R), in which Lys297 was changed to arginine, less than wild-type Tcf-4. These results suggest that sumoylation of Tcf-4 is involved in beta-catenin-dependent and Tcf-4-mediated gene expression in the Wnt signaling pathway.
Collapse
Affiliation(s)
- Hideki Yamamoto
- Department of Biochemistry, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | |
Collapse
|
80
|
Chauchereau A, Amazit L, Quesne M, Guiochon-Mantel A, Milgrom E. Sumoylation of the progesterone receptor and of the steroid receptor coactivator SRC-1. J Biol Chem 2003; 278:12335-43. [PMID: 12529333 DOI: 10.1074/jbc.m207148200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
SUMO-1 (small ubiquitin-like modifier) conjugation regulates the subcellular localization, stability, and activity of a variety of proteins. We show here that SUMO-1 overexpression markedly enhances progesterone receptor (PR)-mediated gene transcription. PR undergoes a sumoylation at lysine 388 located in its N-terminal domain. However, sumoylation of the receptor is not responsible for enhanced transcription because substitution of its target lysine did not abolish the effect of SUMO-1 and even converted the receptor into a slightly more active transactivator. Furthermore estrogen receptor alpha (ERalpha)-driven transcription is also enhanced by SUMO-1 overexpression contrasting with the absence of sumoylation of this receptor. We thus analyzed SUMO-1 conjugation to the steroid receptor coactivator SRC-1. We showed that this protein contains two major sites of conjugation at Lys-732 and Lys-774. Sumoylation was shown to increase PR-SRC-1 interaction and to prolong SRC-1 retention in the nucleus. It did not prevent SRC-1 ubiquitinylation and did not exert a clear effect on the stability of the protein. Overexpression of SUMO-1 enhanced PR-mediated gene transcription even in the presence of non-sumoylated mutants of SRC-1. This observation suggests that among the many protein partners involved in steroid hormone-mediated gene regulation several are probably targets of SUMO-1 modification.
Collapse
Affiliation(s)
- Anne Chauchereau
- INSERM U135, Hormones, Gènes, and Reproduction, Hôpital de Bicêtre, 78 rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France
| | | | | | | | | |
Collapse
|
81
|
Kim SH, Roux SJ. An Arabidopsis Ran-binding protein, AtRanBP1c, is a co-activator of Ran GTPase-activating protein and requires the C-terminus for its cytoplasmic localization. PLANTA 2003; 216:1047-1052. [PMID: 12687374 DOI: 10.1007/s00425-002-0959-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2002] [Accepted: 11/16/2002] [Indexed: 05/24/2023]
Abstract
Ran-binding proteins (RanBPs) are a group of proteins that bind to Ran (Ras-related nuclear small GTP-binding protein), and thus either control the GTP/GDP-bound states of Ran or help couple the Ran GTPase cycle to a cellular process. AtRanBP1c is a Ran-binding protein from Arabidopsis thaliana (L.) Heynh. that was recently shown to be critically involved in the regulation of auxin-induced mitotic progression [S.-H. Kim et al. (2001) Plant Cell 13:2619-2630]. Here we report that AtRanBP1c inhibits the EDTA-induced release of GTP from Ran and serves as a co-activator of Ran-GTPase-activating protein (RanGAP) in vitro. Transient expression of AtRanBP1c fused to a beta-glucuronidase (GUS) reporter reveals that the protein localizes primarily to the cytosol. Neither the N- nor C-terminus of AtRanBP1c, which flank the Ran-binding domain (RanBD), is necessary for the binding of PsRan1-GTP to the protein, but both are needed for the cytosolic localization of GUS-fused AtRanBP1c. These findings, together with a previous report that AtRanBP1c is critically involved in root growth and development, imply that the promotion of GTP hydrolysis by the Ran/RanGAP/AtRanBP1c complex in the cytoplasm, and the resulting concentration gradient of Ran-GDP to Ran-GTP across the nuclear membrane could be important in the regulation of auxin-induced mitotic progression in root tips of A. thaliana.
Collapse
Affiliation(s)
- Soo-Hwan Kim
- Section of Molecular Cell and Developmental Biology, University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|
82
|
Stade K, Vogel F, Schwienhorst I, Meusser B, Volkwein C, Nentwig B, Dohmen RJ, Sommer T. A lack of SUMO conjugation affects cNLS-dependent nuclear protein import in yeast. J Biol Chem 2002; 277:49554-61. [PMID: 12393908 DOI: 10.1074/jbc.m207991200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast SUMO (Smt3) and its mammalian ortholog SUMO-1 are ubiquitin-like proteins that can reversibly be conjugated to other proteins. Among the substrates for SUMO modification in vertebrates are RanGAP1 and RanBP2/Nup358, two proteins previously implicated in nucleocytoplasmic transport. Sumoylated RanGAP1 binds to the nuclear pore complex via RanBP2/Nup358, a giant nucleoporin, which was recently reported to act as a SUMO E3 ligase on some nuclear substrates. However, no direct evidence for a role of the SUMO system in nuclear transport has been obtained so far. By the use of conditional yeast mutants, we examined nuclear protein import in vivo. We show here that cNLS-dependent protein import is impaired in mutants with defective Ulp1 and Uba2, two enzymes involved in the SUMO conjugation reaction. In contrast, other transport pathways such as rgNLS-mediated protein import and mRNA export are not affected. Furthermore, we find that the yeast importin-alpha subunit Srp1 accumulates in the nucleus of ulp1 and uba2 strains but not the importin-beta subunit Kap95, indicating that a lack of Srp1 export might impair cNLS import. In summary, our results provide evidence that SUMO modification in yeast, as has been suspected for vertebrates, plays an important role in nucleocytoplasmic trafficking.
Collapse
Affiliation(s)
- Katrin Stade
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Steggerda SM, Paschal BM. Regulation of nuclear import and export by the GTPase Ran. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 217:41-91. [PMID: 12019565 DOI: 10.1016/s0074-7696(02)17012-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review focuses on the control of nuclear import and export pathways by the small GTPase Ran. Transport of signal-containing cargo substrates is mediated by receptors that bind to the cargo proteins and RNAs and deliver them to the appropriate cellular compartment. Ran is an evolutionarily conserved member of the Ras superfamily that regulates all receptor-mediated transport between the nucleus and the cytoplasm. We describe the identification and characterization of the RanGTPase and its binding partners: the guanine nucleotide exchange factor, RanGEF; the GTPase activating protein, RanGAP; the soluble import and export receptors; Ran-binding domain-(RBD) containing proteins; and NTF2 and related factors.
Collapse
Affiliation(s)
- Susanne M Steggerda
- Center for Cell Signaling and Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville 22908, USA
| | | |
Collapse
|
84
|
Tojo M, Matsuzaki K, Minami T, Honda Y, Yasuda H, Chiba T, Saya H, Fujii-Kuriyama Y, Nakao M. The aryl hydrocarbon receptor nuclear transporter is modulated by the SUMO-1 conjugation system. J Biol Chem 2002; 277:46576-85. [PMID: 12354770 DOI: 10.1074/jbc.m205987200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aryl hydrocarbon receptor nuclear transporter (ARNT) is a member of the basic helix-loop-helix/PAS (Per-ARNT-Sim) family of transcription factors, which are important for cell regulation in response to environmental conditions. ARNT is an indispensable partner of the aryl hydrocarbon receptor (AHR) or hypoxia-inducible factor-1alpha. This protein is also able to form homodimers such as ARNT/ARNT. However, the molecular mechanism that regulates the transcriptional activity of ARNT remains to be elucidated. Here, we report that ARNT is modified by SUMO-1 chiefly at Lys(245) within the PAS domain of this protein, both in vivo and in vitro. Substitution of the target lysine with alanine enhanced the transcriptional potential of ARNT per se. Furthermore, green fluorescent protein-fused ARNT tended to form nuclear foci in approximately 20% of the transfected cells, and the foci partly colocalized with PML nuclear bodies. PML, one of the well known substrates for sumoylation, was found to augment the transcriptional activities of ARNT. ARNT bound AHR or PML, whereas the sumoylated form of ARNT associated with AHR, but not with PML, resulting in a reduced effect of PML on transactivation by ARNT. Our data suggest that the sumoylation of ARNT modulates its transcriptional role through affecting the ability of ARNT to interact with cooperative molecules such as PML. This exemplifies a crucial role of protein sumoylation in modulating protein-protein interactions.
Collapse
Affiliation(s)
- Masahide Tojo
- Department of Regeneration Medicine, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Nishida T, Yasuda H. PIAS1 and PIASxalpha function as SUMO-E3 ligases toward androgen receptor and repress androgen receptor-dependent transcription. J Biol Chem 2002; 277:41311-7. [PMID: 12177000 DOI: 10.1074/jbc.m206741200] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The androgen receptor (AR) has been shown to be modified by SUMO-1, a ubiquitin-like protein. Recently we showed that PIAS family proteins function as SUMO-E3 ligases. Here we provide evidence that PIAS1 and PIASxalpha act as specific SUMO-E3 ligases for the AR. PIAS1 and PIASxalpha but not PIAS3 or PIASxbeta enhanced the sumoylation of AR in intact cells and in vitro. PIAS1 and PIASxalpha bound Ubc9, the E2 enzyme for SUMO-1, in a RING finger-like domain-dependent manner. Consistent with previous studies (Kahyo, T., Nishida, T., and Yasuda, H. (2001) Mol. Cell 8, 713-718), the RING finger-like domain of the SUMO-E3 was required for ligase activity. The binding of a ligand, e.g. testosterone, to the AR was required for the sumoylation of AR in intact cells. Although AR-dependent transcription was enhanced by PIAS proteins without sumoylation of the receptor, PIAS1 and PIASxalpha repressed AR-dependent transcription in a manner dependent on the ectopic expression of SUMO-1 and their RING finger-like domain. Furthermore, the sumoylation sites of the AR were necessary for the full repressive effect on AR-dependent transactivation, indicating that the sumoylation of AR was crucial for the repression of transactivation of the AR. Thus, PIAS1 and PIASxalpha modulate the AR-dependent transactivation, which, at least in part, can be attributed to their SUMO-E3 activity toward AR.
Collapse
Affiliation(s)
- Tamotsu Nishida
- Division of Molecular Biology, School of Life Science, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Japan
| | | |
Collapse
|
86
|
Fornerod M, Ohno M. Exportin-mediated nuclear export of proteins and ribonucleoproteins. Results Probl Cell Differ 2002; 35:67-91. [PMID: 11791409 DOI: 10.1007/978-3-540-44603-3_4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Maarten Fornerod
- EMBL, Gene Expression Programme, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
87
|
Zhang H, Saitoh H, Matunis MJ. Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Mol Cell Biol 2002; 22:6498-508. [PMID: 12192048 PMCID: PMC135644 DOI: 10.1128/mcb.22.18.6498-6508.2002] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMOs are small ubiquitin-related polypeptides that are reversibly conjugated to many nuclear proteins. Although the number of identified substrates has grown rapidly, relatively little is still understood about when, where, and why most proteins are modified by SUMO. Here, we demonstrate that enzymes involved in the SUMO modification and demodification of proteins are components of the nuclear pore complex (NPC). We show that SENP2, a SUMO protease that is able to demodify both SUMO-1 and SUMO-2 or SUMO-3 protein conjugates, localizes to the nucleoplasmic face of the NPC. The unique amino-terminal domain of SENP2 interacts with the FG repeat domain of Nup153, indicating that SENP2 associates with the nucleoplasmic basket of the NPC. We also investigated the localization of the SUMO conjugating enzyme, Ubc9. Using immunogold labeling of isolated nuclear envelopes, we found that Ubc9 localizes to both the cytoplasmic and the nucleoplasmic filaments of the NPC. In vitro binding studies revealed that Ubc9 and SUMO-1-modified RanGAP1 bind synergistically to form a trimeric complex with a component of the cytoplasmic filaments of the NPC, Nup358. Our results indicate that both SUMO modification and demodification of proteins may occur at the NPC and suggest a connection between the SUMO modification pathway and nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
88
|
Mavlyutov TA, Cai Y, Ferreira PA. Identification of RanBP2- and kinesin-mediated transport pathways with restricted neuronal and subcellular localization. Traffic 2002; 3:630-40. [PMID: 12191015 DOI: 10.1034/j.1600-0854.2002.30905.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ran-binding proteins, karyopherins, and RanGTPase mediate and impart directionality to nucleocytoplasmic transport processes. This biological process remains elusive in neurons. RanBP2 has been localized at the nuclear pore complexes and is very abundant in the neuroretina. RanBP2 mediates the assembly of a large complex comprising RanGTPase, CRM1/exportin-1, importin-beta, KIF5-motor proteins, components of the 19S cap of the 26S proteasome, ubc9 and opsin. Here, we show RanBP2 is abundant in the ellipsoid compartment of photoreceptors and RanGTPase-positive particles in cytoplasmic tracks extending away from the nuclear envelope of subpopulations of ganglion cells, suggesting RanBP2's release from nuclear pore complexes. KIF5C and KIF5B are specifically expressed in a subset of neuroretinal cells and differentially localize with RanBP2 and importin-beta in distinct compartments. The C-terminal domains of KIF5B and KIF5C, but not KIF5A, associate directly with importin-beta in a RanGTPase-dependent fashion in vivo and in vitro, indicating importin-beta is an endogenous cargo for a subset of KIF5s in retinal neurons. The KIF5 transport pathway is absent from the myoid region of a topographically distinct subclass of blue cones and the distribution of kinesin-light chains is largely distinct from its KIF5 partners. Altogether, the results identify the existence of neuronal- and subtype-specific kinesin-mediated transport pathways of importin-beta-bound cargoes to and/or from RanBP2 and indicate RanBP2 itself may also constitute a scaffold carrier for some of its associated partners. The implications of these findings in protein kinesis and pathogenesis of degenerative neuropathies are discussed.
Collapse
Affiliation(s)
- Timur A Mavlyutov
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
89
|
Eloranta JJ, Hurst HC. Transcription factor AP-2 interacts with the SUMO-conjugating enzyme UBC9 and is sumolated in vivo. J Biol Chem 2002; 277:30798-804. [PMID: 12072434 DOI: 10.1074/jbc.m202780200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The members of the AP-2 family of transcription factors are developmentally regulated and have distinct yet overlapping functions in the regulation of many genes governing growth and differentiation. All AP-2 factors appear to be capable of binding very similar DNA recognition sites, and the determinants of functional specificity remain to be elucidated. AP-2 transcription factors have been shown to act both as transcriptional activators and repressors in a promoter-specific manner. Although several mediators of their activation function have been suggested, few mechanisms for the repression or down-regulation of transactivation have been described. In a two-hybrid screen for proteins interacting with AP-2 factors, we have identified the UBC9 gene that encodes the E2 (ubiquitin carrier protein)-conjugating enzyme for the small ubiquitin-like modifier, SUMO. The interaction domain resides in the C-terminal half of AP-2, which contains the conserved DNA binding and dimerization domains. We have detected sumolated forms of endogenous AP-2 in mammalian cells and have further mapped the in vivo sumolation site to conserved lysine 10. Transient transfection studies indicate that sumolation of AP-2 decreases its transcription activation potential, and we discuss the possible mechanisms for the observed suppression of AP-2 transactivation.
Collapse
Affiliation(s)
- Jyrki J Eloranta
- Cancer Research United Kingdom, Molecular Oncology Unit, Hammersmith Hospital, Du Cane Rd., London W12 0NN, United Kingdom
| | | |
Collapse
|
90
|
Abstract
The small GTPase Ran has roles in multiple cellular processes, including nuclear transport, mitotic spindle assembly, the regulation of cell cycle progression and nuclear assembly. The past year has seen a remarkable unification of these different roles with respect to the effectors and mechanisms through which they function. Our emergent understanding of Ran suggests that it plays a central role in spatial and temporal organization of the vertebrate cell.
Collapse
Affiliation(s)
- Mary Dasso
- Laboratory of Gene Regulation and Development, NICHD/NIH, Bethesda, MD 20892-5431, USA.
| |
Collapse
|
91
|
Abstract
Small ubiquitin-related modifier-1 (SUMO-1) is a protein that is covalently modified to various cellular proteins and protects cells against both anti-Fas and TNF-induced cell death. Previously, we reported that the C-terminus of Daxx interacted with Ubc9, an E2 type SUMO-1 conjugating enzyme, as well as with SUMO-1. In BOSC23 cells expressing FLAG-Daxx together with HA-SUMO-1, 110 and 130kDa Daxx appeared and the 130kDa band bound to both anti-HA and anti-FLAG antibodies. This means that Daxx can be covalently modified by SUMO-1. Substitution of K630 and K631 abrogated the modification of Daxx by SUMO-1, implying that K630 and K631 were essential for sumoylation. Daxx (K630, 631A) and Daxx (K634, 636, 637A) in which the putative C-terminal nuclear localization signals (NLSs) were disrupted appeared in the nucleus, suggesting that the C-terminal NLS was not functional. Daxx (K630, 631A), the sumoylation defective mutant, was able to interact with PML and co-localized with PML in the PML oncogenic domains (PODs). Thus, our data show that sumoylation status of Daxx does not affect its presence in PODs.
Collapse
Affiliation(s)
- Moon-Sun Jang
- Research Center for Biomedicinal Resources and Division of Life Science, PaiChai University, 439-6 Doma-2-dong, Seo-gu, Daejon 302-735, Republic of Korea
| | | | | |
Collapse
|
92
|
Kim KI, Baek SH, Chung CH. Versatile protein tag, SUMO: its enzymology and biological function. J Cell Physiol 2002; 191:257-68. [PMID: 12012321 DOI: 10.1002/jcp.10100] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small ubiquitin-related modifier (SUMO) is a member of a ubiquitin-like protein family that regulates cellular function of a variety of target proteins. SUMO and ubiquitin are synthesized as precursors that need to be processed prior to conjugation to target proteins, and their mature forms have a similar tertiary structure. The mechanism for SUMO conjugation is also analogous to that of the ubiquitin system, such as the utilization of E1, E2, and E3 cascade enzymes. However, the biological consequence of SUMO modification is quite different from that of the ubiquitin system. Whereas ubiquitination of most proteins is for the degradative pathway, SUMO modification of target proteins is involved in nuclear protein targeting, formation of subnuclear structures, regulation of transcriptional activities or DNA binding abilities of transcription factors, and control of protein stability. This review will summarize the recent progress made in the enzymology of SUMO and its biological significance.
Collapse
Affiliation(s)
- Keun Il Kim
- NRL of Protein Biochemistry, School of Biological Sciences, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
93
|
Kadoya T, Yamamoto H, Suzuki T, Yukita A, Fukui A, Michiue T, Asahara T, Tanaka K, Asashima M, Kikuchi A. Desumoylation activity of Axam, a novel Axin-binding protein, is involved in downregulation of beta-catenin. Mol Cell Biol 2002; 22:3803-19. [PMID: 11997515 PMCID: PMC133821 DOI: 10.1128/mcb.22.11.3803-3819.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Axam has been identified as a novel Axin-binding protein that inhibits the Wnt signaling pathway. We studied the molecular mechanism by which Axam stimulates the downregulation of beta-catenin. The C-terminal region of Axam has an amino acid sequence similar to that of the catalytic region of SENP1, a SUMO-specific protease (desumoylation enzyme). Indeed, Axam exhibited activity to remove SUMO from sumoylated proteins in vitro and in intact cells. The Axin-binding domain is located in the central region of Axam, which is different from the catalytic domain. Neither the Axin-binding domain nor the catalytic domain alone was sufficient for the downregulation of beta-catenin. An Axam fragment which contains both domains was able to decrease the level of beta-catenin. On substitution of Ser for Cys(547) in the catalytic domain, Axam lost its desumoylation activity. Further, this Axam mutant decreased the activity to downregulate beta-catenin. Although Axam strongly inhibited axis formation and expression of siamois, a Wnt-response gene, in Xenopus embryos, Axam(C547S) showed weak activities. These results demonstrate that Axam functions as a desumoylation enzyme to downregulate beta-catenin and suggest that sumoylation is involved in the regulation of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Takayuki Kadoya
- Department of Biochemistry, Faculty of Medicine, Hiroshima University, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Su HL, Liao CL, Lin YL. Japanese encephalitis virus infection initiates endoplasmic reticulum stress and an unfolded protein response. J Virol 2002; 76:4162-71. [PMID: 11932381 PMCID: PMC155064 DOI: 10.1128/jvi.76.9.4162-4171.2002] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2001] [Accepted: 01/25/2002] [Indexed: 11/20/2022] Open
Abstract
The malfunctioning of the endoplasmic reticulum (ER) of cells in hosts ranging from yeast to mammals can trigger an unfolded protein response (UPR). Such malfunctioning can result from a variety of ER stresses, including the inhibition of protein glycosylation and calcium imbalance. To cope with ER stresses, cells may rely on the UPR to send a signal(s) from the ER to the nucleus to stimulate appropriate cellular responses, including induction of chaperone expression. During Japanese encephalitis virus (JEV) infection, the lumen of the ER rapidly accumulates substantial amounts of viral proteins for virus progeny production. In the present study, we demonstrate that as evidenced by certain chaperone inductions, JEV infection triggers the UPR in fibroblast BHK-21 cells and in neuronal N18 and NT-2 cells, in which JEV results in apoptotic cell death. By contrast, no UPR was observed in apoptosis-resistant K562 cells infected by JEV. JEV infection also activates expression of CHOP/GADD153, a distinctive transcription factor often induced by the UPR, and appears to trigger activation of p38 mitogen-activated protein kinase, a posttranslational activator of CHOP. Ectopic enforcement of CHOP expression enhanced JEV-induced apoptosis, whereas treatment with a p38-specific inhibitor, SB203580, partially blocked JEV-induced apoptosis. Interestingly, bcl-2 overexpression and treatment with a pancaspase inhibitor, z-VAD-fmk, inhibited CHOP induction and diminished JEV-induced apoptosis, suggesting that Bcl-2 and caspases could be the upstream regulators of CHOP. Our results thus suggest that virus-induced ER stress may participate, via p38-dependent and CHOP-mediated pathways, in the apoptotic process triggered by JEV infection.
Collapse
Affiliation(s)
- Hong-Lin Su
- Graduate Institute of Life Sciences, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
95
|
Kaul S, Blackford JA, Cho S, Simons SS. Ubc9 is a novel modulator of the induction properties of glucocorticoid receptors. J Biol Chem 2002; 277:12541-9. [PMID: 11812797 DOI: 10.1074/jbc.m112330200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The EC(50) of agonists and the partial agonist activity of antagonists are crucial parameters for steroid hormone control of gene expression and endocrine therapies. These parameters have been shown to be modulated by a naturally occurring cis-acting element, called the glucocorticoid modulatory element (GME) that binds two proteins, GMEB-1 and -2. We now present evidence that the GMEBs contact Ubc9, which is the mammalian homolog of a yeast E2 ubiquitin-conjugating enzyme. Ubc9 also binds to glucocorticoid receptors (GRs). Ubc9 displays no intrinsic transactivation activity but modifies both the absolute amount of induced gene product and the fold induction by GR. With high concentrations of GR, added Ubc9 also reduces the EC(50) of agonists and increases the partial agonist activity of antagonists in a manner that is independent of the ability of Ubc9 to transfer SUMO-1 (small ubiquitin-like modifier-1) to proteins. This new activity of Ubc9 requires only the ligand binding domain of GR and part of the hinge region. Interestingly, Ubc9 modulation of full-length GR transcriptional properties can be seen in the absence of a GME. This, though, is consistent with the GME acting by increasing the local concentration of Ubc9, which then activates a previously unobserved target in the transcriptional machinery. With high concentrations of Ubc9 and GR, Ubc9 binding to GR appears to be sufficient to permit Ubc9 to act independently of the GME.
Collapse
Affiliation(s)
- Sunil Kaul
- Steroid Hormones Section, NIDDK/Laboratory of Molecular and Cellular Biology, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
96
|
Taylor DL, Ho JCY, Oliver A, Watts FZ. Cell-cycle-dependent localisation of Ulp1, a Schizosaccharomyces pombe Pmt3 (SUMO)-specific protease. J Cell Sci 2002; 115:1113-22. [PMID: 11884512 DOI: 10.1242/jcs.115.6.1113] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here on the characterisation of Ulp1, a component of the SUMO modification process in S. pombe. Recombinant S. pombe Ulp1 has de-sumoylating activity; it is involved in the processing of Pmt3 (S. pombe SUMO) and can, to a limited extent, remove Pmt3 from modified targets in S. pombe cell extracts. ulp1 is not essential for cell viability, but cells lacking the gene display severe cell and nuclear abnormalities. ulp1-null (ulp1.d) cells are sensitive to ultraviolet radiation in a manner similar to rad31.d and hus5.62, which have mutations in one subunit of the activator and the conjugator for the ubiquitin-like protein SUMO respectively. However ulp1.d cells are less sensitive to ionising radiation and hydroxyurea(HU) than are rad31.d and hus5.62. ulp1-null cells are defective in processing precursor Pmt3 and display reduced levels of Pmt3 conjugates compared with wild-type cells. The slow growth phenotype of ulp1 null cells is not substantially rescued by over-expression of the mature form of Pmt3 (Pmt3-GG), suggesting that the de-conjugating activity of Ulp1 is required for normal cell cycle progression. During the S and G2 phases of the cell cycle the Ulp1 protein is localised to the nuclear periphery. However, during mitosis the pattern of staining alters, and during anaphase, Ulp1 is observed within the nucleus. Ulp1 localisation at the nuclear periphery is generally re-established by the time of septation (S phase).
Collapse
Affiliation(s)
- Deborah L Taylor
- Genome Damage and Stability Centre, School of Biological Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | | | | | | |
Collapse
|
97
|
Saitoh H, Pizzi MD, Wang J. Perturbation of SUMOlation enzyme Ubc9 by distinct domain within nucleoporin RanBP2/Nup358. J Biol Chem 2002; 277:4755-63. [PMID: 11709548 DOI: 10.1074/jbc.m104453200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ubc9, a conjugation enzyme for the ubiquitin-related modifier SUMO, is present predominantly in the nucleus and at the nuclear pore complex. The functional significance of its subcellular compartmentalization, however, remains to be elucidated. Here, we define a Pro-Glu-Asp-Ser-Thr-rich element containing 129 amino acid residues, designated IR1+2, on the human nucleoporin RanBP2/Nup358, which binds directly to Ubc9 with high affinity both in vitro and in vivo. When IR1+2 tagged with green fluorescence protein at its amino terminus (GFP-IR1+2) was transfected into COS-7 cells, we found that approximately 90% of the nuclear Ubc9 was sequestered in the cytoplasm. We also observed that both SUMO-1 and SUMO-2/3 were mislocalized, and promyelocytic leukemia protein PML formed an enlarged aggregate in the nucleus. Moreover, the homologous recombination protein Rad51 mislocalized to the cytoplasm, and Rad51 foci, a hallmark of functional association of Rad51 with damaged DNA, did not form efficiently even in the presence of a DNA strand breaker. These findings emphasize that the IR1+2 domain is a useful tool for manipulating the nuclear localization of Ubc9 and perturbing the subcellular localization of SUMOs and/or SUMOlated proteins, and they emphasize the important role of nuclear Ubc9 in the Rad51-mediated homologous recombination pathway, possibly by modulating intracellular trafficking of Rad51.
Collapse
Affiliation(s)
- Hisato Saitoh
- The Picower Institute for Medical Research, Manhasset, New York 11030, USA.
| | | | | |
Collapse
|
98
|
Abstract
A recent paper in Cell shows that the large nucleoporin RanBP2 can act as an E3 enzyme for the ubiquitin-like protein SUMO1. These intriguing results raise important questions about the mechanism of SUMO1 conjugation, the relationship of SUMO1 to nuclear transport, and the regulation of RanBP2 in the pore.
Collapse
Affiliation(s)
- Yoshiaki Azuma
- Laboratory of Gene Regulation and Development, NICHD/NIH, Building 18, Room 106, Bethesda, MD 20892, USA
| | | |
Collapse
|
99
|
Abstract
Posttranslational modification with SUMO1 regulates protein/protein interactions, localization, and stability. SUMOylation requires the E1 enzyme Aos1/Uba2 and the E2 enzyme Ubc9. A family of E3-like factors, PIAS proteins, was discovered recently. Here we show that the nucleoporin RanBP2/Nup358 also has SUMO1 E3-like activity. RanBP2 directly interacts with the E2 enzyme Ubc9 and strongly enhances SUMO1-transfer from Ubc9 to the SUMO1 target Sp100. The E3-like activity is contained within a 33 kDa domain of RanBP2 that lacks RING finger motifs and does not resemble PIAS family proteins. Our findings place SUMOylation at the cytoplasmic filaments of the NPC and suggest that, at least for some substrates, modification and nuclear import are linked events.
Collapse
Affiliation(s)
- Andrea Pichler
- Max-Planck Institute for Biochemistry, Am Klopferspitz 18a, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
100
|
Abstract
A novel host cell post-translational modification system termed sumoylation was discovered recently. Sumoylation is an enzymatic process that is biochemically analogous to, but functionally distinct from ubiquitinylation. As in ubiquitinylation, sumoylation involves the attachment of a small protein moiety, SUMO, to substrate proteins. Conjugation of SUMO does not typically lead to degradation of the substrate and instead causes functional alterations or changes in intracellular localization. While the majority of identified SUMO targets are cellular proteins, both herpesvirus and papillomavirus proteins have also been identified as authentic substrates for this modification. The exact effect of sumoylation on viral proteins appears to be substrate specific, but does have functional consequences that are likely to be important for the viral life cycle. In addition to viral proteins being targets for sumoylation, there is both direct and indirect evidence that viruses can alter the sumoylation status of host cell proteins. Such modulation of critical host proteins may be important for inhibiting cellular defense mechanisms or for promoting an intracellular state that is supportive of viral reproduction. This review highlights the enzymology of sumoylation and discusses the known examples of how viruses impact and are impacted by sumoylation.
Collapse
Affiliation(s)
- V G Wilson
- Department of Medical Microbiology and Immunology, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA.
| | | |
Collapse
|