51
|
Trinei M, Berniakovich I, Pelicci PG, Giorgio M. Mitochondrial DNA copy number is regulated by cellular proliferation: a role for Ras and p66(Shc). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:624-30. [PMID: 16829231 DOI: 10.1016/j.bbabio.2006.05.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 05/03/2006] [Accepted: 05/15/2006] [Indexed: 11/22/2022]
Abstract
The abundance of mitochondria is regulated by biogenesis and division. These processes are controlled by cellular factors, given that, for example, mitochondria have to replicate their DNA prior to cell division. However, the mechanisms that allow a synchronization of cell proliferation with mitochondrial genome replication are still obscure. We report here our investigations on the role of proliferation and the contribution of Ras and p66Shc in the regulation of mitochondrial DNA copy number. Ras proteins mediate a variety of receptor-transduced mitogenic signals and appear to play an essential role in the cellular response to growth factors. P66Shc is a genetic determinant of life span in mammals and has been implicated in the regulation of receptor signaling and various mitochondrial functions. First, we confirmed previous reports showing that mitochondrial DNA is replicated during a specific phase of the cell cycle (the pre-S phase) and provided novel evidences that this process is regulated by mitogenic growth factors. Second, we showed that mitochondrial DNA replication is activated following Ras-induced cellular hyper-proliferation. Finally, we showed that p66Shc expression induces mitochondrial DNA replication, both in vitro and in vivo. We suggest that mitochondria are target of intracellular signaling pathways leading to proliferation, involving Ras and p66Shc, which might function to integrate cellular bio-energetic requirements and the inheritance of mitochondrial DNA in a cell cycle-dependent manner.
Collapse
Affiliation(s)
- Mirella Trinei
- European Institute of Oncology, Via Ripamonti 435 Milan, Italy.
| | | | | | | |
Collapse
|
52
|
Tiberi L, Faisal A, Rossi M, Di Tella L, Franceschi C, Salvioli S. p66(Shc) gene has a pro-apoptotic role in human cell lines and it is activated by a p53-independent pathway. Biochem Biophys Res Commun 2006; 342:503-8. [PMID: 16487929 DOI: 10.1016/j.bbrc.2006.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 02/02/2006] [Indexed: 11/30/2022]
Abstract
p66(Shc) protein has been proposed to be an indispensable factor for p53-dependent, mitochondria-mediated apoptosis in mice. Here, we show that p66(Shc) plays a pro-apoptotic role also in cell lines of human origin such as SaOs-2 and HeLa, where p53 is either absent or inactivated, thus, suggesting that p66(Shc) pro-apoptotic role is independent from the presence of a functional form of p53. The active form of p66(Shc) is phosphorylated in Serine 36. We confirm the importance of Serine 36 phosphorylation for p66(Shc) pro-apoptotic role, and our results suggest that the kinase involved in this process is activated independently from p53.
Collapse
Affiliation(s)
- Luca Tiberi
- Department of Experimental Pathology, University of Bologna, via S. Giacomo 12, 40126 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
53
|
Khanday FA, Yamamori T, Mattagajasingh I, Zhang Z, Bugayenko A, Naqvi A, Santhanam L, Nabi N, Kasuno K, Day BW, Irani K. Rac1 leads to phosphorylation-dependent increase in stability of the p66shc adaptor protein: role in Rac1-induced oxidative stress. Mol Biol Cell 2005; 17:122-9. [PMID: 16251354 PMCID: PMC1345652 DOI: 10.1091/mbc.e05-06-0570] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The rac1 GTPase and the p66shc adaptor protein regulate intracellular levels of reactive oxygen species (ROS). We examined the relationship between rac1 and p66shc. Expression of constitutively active rac1 (rac1V12) increased phosphorylation, reduced ubiquitination, and increased stability of p66shc protein. Rac1V12-induced phosphorylation and up-regulation of p66shc was suppressed by inhibiting p38MAPK and was dependent on serine 54 and threonine 386 in p66shc. Phosphorylation of recombinant p66shc by p38MAPK in vitro was also partly dependent on serine 54 and threonine 386. Reconstitution of p66shc in p66shc-null fibroblasts increased intracellular ROS generated by rac1V12, which was significantly dependent on the integrity of residues 54 and 386. Overexpression of p66shc increased rac1V12-induced apoptosis, an effect that was also partly dependent on serine 54 and threonine 386. Finally, RNA interference-mediated down-regulation of endogenous p66shc suppressed rac1V12-induced cell death. These findings identify p66shc as a mediator of rac1-induced oxidative stress. In addition, they suggest that serine 54 and threonine 386 are novel phosphorylatable residues in p66shc that govern rac1-induced increase in its expression, through a decrease in its ubiquitination and degradation, and thereby mediate rac1-stimulated cellular oxidative stress and death.
Collapse
Affiliation(s)
- Firdous A Khanday
- Cardiovascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Initially identified as components of the signaling pathways triggered by receptor tyrosine kinases and leading to Ras activation, Shc proteins have been more recently implicated in the regulation of signals controlling not only cell proliferation, but also cell survival and apoptosis. Here we briefly review the current understanding of Shc proteins as promoters of apoptosis. Specifically, we focus on the 66 kDa isoform of ShcA, whose paramount importance in the regulation of oxidative stress responses leading to cell apoptosis and ageing has been by now firmly established.
Collapse
Affiliation(s)
- M Pellegrini
- Department of Evolutionary Biology, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | | | | |
Collapse
|
55
|
Park YJ, Kim TY, Lee SH, Kim H, Kim SW, Shong M, Yoon YK, Cho BY, Park DJ. p66Shc expression in proliferating thyroid cells is regulated by thyrotropin receptor signaling. Endocrinology 2005; 146:2473-80. [PMID: 15705774 DOI: 10.1210/en.2004-1588] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is almost unanimously accepted that thyrocyte proliferation is synergistically activated by TSH and insulin/IGF-I. Moreover, it was recently suggested that p66Shc, which is an adaptor molecule of the IGF-I receptor, might play a critical role in this synergistic effect. In this study, we undertook to confirm the role and the mechanism underlying the regulation of p66Shc expression via TSH receptor in thyrocytes. We have found that p66Shc expression is elevated in proliferating human thyroid tissues, including adenomatous goiter, adenoma, Graves' disease, and thyroid cancer, but not in normal thyroid. Among growth factors, TSH increased p66Shc expression both in vivo and in vitro; however, IGF-I, epidermal growth factor, or insulin did not. TSH and Graves' Ig increased the p66Shc expression via the TSH receptor-G(s)-cAMP pathway. However, interestingly, IGF-I or epidermal growth factor increased the tyrosine phosphorylations of p66Shc, and this was enhanced by TSH pretreatment. A similar synergism was observed during the DNA synthesis. When we measured the p66Shc levels induced by individual Igs from 130 patients with Graves' disease, TSH receptor stimulating activity and goiter size showed a weak correlation. We conclude that the expression of p66Shc is regulated by signaling through the TSH receptor in proliferating thyroid cells and that p66Shc appears to be an important mediator of the synergistic effect between TSH and IGF-I with respect to thyrocyte proliferation. Moreover, we suggest that TSH potentiates the regulatory effect of IGF-I on thyrocyte growth, at least in part, by increasing the expression of p66Shc.
Collapse
Affiliation(s)
- Y J Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, 28 Yongon-dong Chongno-gu, Seoul 110-744, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Smith WW, Norton DD, Gorospe M, Jiang H, Nemoto S, Holbrook NJ, Finkel T, Kusiak JW. Phosphorylation of p66Shc and forkhead proteins mediates Abeta toxicity. ACTA ACUST UNITED AC 2005; 169:331-9. [PMID: 15837797 PMCID: PMC2171879 DOI: 10.1083/jcb.200410041] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Excessive accumulation of amyloid β-peptide (Aβ) plays an early and critical role in synapse and neuronal loss in Alzheimer's Disease (AD). Increased oxidative stress is one of the mechanisms whereby Aβ induces neuronal death. Given the lessened susceptibility to oxidative stress exhibited by mice lacking p66Shc, we investigated the role of p66Shc in Aβ toxicity. Treatment of cells and primary neuronal cultures with Aβ caused apoptotic death and induced p66Shc phosphorylation at Ser36. Ectopic expression of a dominant-negative SEK1 mutant or chemical JNK inhibition reduced Aβ-induced JNK activation and p66Shc phosphorylation (Ser36), suggesting that JNK phosphorylates p66Shc. Aβ induced the phosphorylation and hence inactivation of forkhead transcription factors in a p66Shc-dependent manner. Ectopic expression of p66ShcS36A or antioxidant treatment protected cells against Aβ-induced death and reduced forkhead phosphorylation, suggesting that p66Shc phosphorylation critically influences the redox regulation of forkhead proteins and underlies Aβ toxicity. These findings underscore the potential usefulness of JNK, p66Shc, and forkhead proteins as therapeutic targets for AD.
Collapse
Affiliation(s)
- Wanli W Smith
- Molecular Neurobiology Unit, Laboratory of Cellular and Molecular Biology, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Ruschel A, Ullrich A. Protein tyrosine kinase Syk modulates EGFR signalling in human mammary epithelial cells. Cell Signal 2004; 16:1249-61. [PMID: 15337524 DOI: 10.1016/j.cellsig.2004.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2004] [Accepted: 03/16/2004] [Indexed: 11/19/2022]
Abstract
Signalling through protein tyrosine kinases (PTKs) is critical in the regulation of important cellular processes and its deregulation is associated with pathophysiological disorders such as cancer. We investigated the function of the PTK spleen tyrosine kinase (Syk) in the regulation of growth factor signalling pathways in human mammary epithelial cells. Our results show that downregulation of endogenous Syk expression enhances the ligand-induced activity of the epidermal growth factor receptor (EGFR) but not that of the closely related human epidermal growth factor receptor 2 (HER2) and human epidermal growth factor receptor 3 (HER3) receptors. Moreover, Syk function interfered with EGFR-mediated cell responses such as proliferation and survival of mammary epithelial cells. A mechanistic link between Syk and EGFR is further supported by the colocalisation of the two PTKs in membrane fractions as well as the regulatory feedback effects of the EGFR kinase on Syk activity. Our findings demonstrate that Syk acts a negative control element of EGFR signalling.
Collapse
Affiliation(s)
- Anja Ruschel
- Department of Molecular Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | |
Collapse
|
58
|
Higashi T, Yoshioka A, Shirakawa R, Tabuchi A, Nishioka H, Kita T, Horiuchi H. Direct demonstration of involvement of the adaptor protein ShcA in the regulation of Ca2+-induced platelet aggregation. Biochem Biophys Res Commun 2004; 322:700-4. [PMID: 15325286 DOI: 10.1016/j.bbrc.2004.07.177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Indexed: 10/26/2022]
Abstract
Platelet aggregation is mediated by conformational change of integrin alpha(IIb)beta(3). Tyrosine-phosphorylation of cytoplasmic domain of beta(3) upon platelet activation has been demonstrated to play a critical role in this process. Recently, the adaptor protein ShcA has been shown to bind to the tyrosine-phosphorylated beta(3), while it remains open whether ShcA plays any role in platelet aggregation. Here, we show that ShcA bound to tyrosine-phosphorylated beta(3)-tail peptide through its phosphotyrosine-binding domain in vitro. Then, we examined the involvement of ShcA in platelet aggregation by a previously established in vitro assay using platelets permeabilized with streptolysin-O, where exogenous addition of platelet cytosol is required for reconstitution of the Ca(2+)-induced aggregation. When ShcA was specifically depleted with anti-ShcA antibody from the cytosol, this ShcA-depleted cytosol lost the aggregation-supporting activity, which was rescued by addition of purified recombinant ShcA. Thus, ShcA is essential for the Ca(2+)-induced platelet aggregation.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
59
|
Francia P, delli Gatti C, Bachschmid M, Martin-Padura I, Savoia C, Migliaccio E, Pelicci PG, Schiavoni M, Lüscher TF, Volpe M, Cosentino F. Deletion of p66shc gene protects against age-related endothelial dysfunction. Circulation 2004; 110:2889-95. [PMID: 15505103 DOI: 10.1161/01.cir.0000147731.24444.4d] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Enhanced production of reactive oxygen species (ROS) has been recognized as the major determinant of age-related endothelial dysfunction. The p66shc protein controls cellular responses to oxidative stress. Mice lacking p66shc (p66shc-/-) have increased resistance to ROS and a 30% prolonged life span. The present study investigates age-dependent changes of endothelial function in this model. METHODS AND RESULTS Aortic rings from young and old p66shc-/- or wild-type (WT) mice were suspended for isometric tension recording. Nitric oxide (NO) release was measured by a porphyrinic microsensor. Expression of endothelial NO synthase (eNOS), inducible NOS (iNOS), superoxide dismutase, and nitrotyrosine-containing proteins was assessed by Western blotting. Nitrotyrosine residues were also identified by immunohistochemistry. Superoxide (O2-) production was determined by coelenterazine-enhanced chemiluminescence. Endothelium-dependent relaxation in response to acetylcholine was age-dependently impaired in WT mice but not in p66shc-/- mice. Accordingly, an age-related decline of NO release was found in WT but not in p66shc-/- mice. The expression of eNOS and manganese superoxide dismutase was not affected by aging either in WT or in p66shc-/- mice, whereas iNOS was upregulated only in old WT mice. It is interesting that old WT mice displayed a significant increase of O2- production as well as of nitrotyrosine expression compared with young animals. Such age-dependent changes were not found in p66shc-/- mice. CONCLUSIONS We report that inactivation of the p66shc gene protects against age-dependent, ROS-mediated endothelial dysfunction. These findings suggest that the p66shc is part of a signal transduction pathway also relevant to endothelial integrity and may represent a novel target to prevent vascular aging.
Collapse
Affiliation(s)
- Pietro Francia
- Cardiovascular Research & Cardiology, Institute of Physiology, Zürich, Irchel and University Hospital, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Pacini S, Pellegrini M, Migliaccio E, Patrussi L, Ulivieri C, Ventura A, Carraro F, Naldini A, Lanfrancone L, Pelicci P, Baldari CT. p66SHC promotes apoptosis and antagonizes mitogenic signaling in T cells. Mol Cell Biol 2004; 24:1747-57. [PMID: 14749389 PMCID: PMC344195 DOI: 10.1128/mcb.24.4.1747-1757.2004] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Of the three Shc isoforms, p66Shc is responsible for fine-tuning p52/p46Shc signaling to Ras and has been implicated in apoptotic responses to oxidative stress. Here we show that human peripheral blood lymphocytes and mouse thymocytes and splenic T cells acquire the capacity to express p66Shc in response to apoptogenic stimulation. Using a panel of T-cell transfectants and p66Shc(-/-) T cells, we show that p66Shc expression results in increased susceptibility to apoptogenic stimuli, which depends on Ser36 phosphorylation and correlates with an altered balance in apoptosis-regulating gene expression. Furthermore, p66Shc blunts mitogenic responses to T-cell receptor engagement, at least in part by transdominant inhibition of p52Shc signaling to Ras/mitogen-activated protein kinases, in an S36-dependent manner. The data highlight a novel interplay between p66Shc and p52Shc in the control of T-cell fate.
Collapse
Affiliation(s)
- Sonia Pacini
- Department of Evolutionary Biology, University of Siena, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Faisal A, Kleiner S, Nagamine Y. Non-redundant Role of Shc in Erk Activation by Cytoskeletal Reorganization. J Biol Chem 2004; 279:3202-11. [PMID: 14576154 DOI: 10.1074/jbc.m310010200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown previously that cytoskeletal reorganization (CSR) induced by pharmacological reagents such as colchicine or cytochalasins can up-regulate the urokinase-type plasminogen activator (uPA) gene via the Ras/Erk signaling pathway. In this present study using the small interfering RNA technique, we have found that ShcA adapter proteins play a rather active role in CSR-induced Erk activation, contrary to their mostly redundant role in other signaling pathways, e.g. growth factor-induced Erk activation, where Grb2 can bind directly to the receptor tyrosine kinase and activate Erk in the absence of ShcA. ShcA knockdown abolished CSR-induced activation of both Erk and the uPA promoter. Expression of small interfering RNA-escaping silent mutants of p52 or p46 but not p66 ShcA isoform efficiently rescued CSR-induced Erk activation. Moreover, we have shown that phosphorylation of either Tyr-239/Tyr-240 or Tyr-313 in p52(ShcA) can mediate CSR-induced Erk activation equally well. In a quest for molecules upstream of ShcA in this signaling, we found that CSR-induced ShcA tyrosine phosphorylation, its association with Grb2, Erk activation, and uPA gene expression were all dependent on Rho kinase, p38 mitogen-activated protein kinase, and Src. In summary, we have found a novel, non-redundant role for ShcA in contrast to its redundant role in many other signaling pathways.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport/metabolism
- Adaptor Proteins, Vesicular Transport/physiology
- Animals
- Blotting, Western
- Colchicine/pharmacology
- Cytoskeleton/metabolism
- Dose-Response Relationship, Drug
- Enzyme Activation
- Genes, Reporter
- LLC-PK1 Cells
- Mice
- Microscopy, Fluorescence
- Mitogen-Activated Protein Kinases/metabolism
- Models, Biological
- Mutation
- Oxidative Stress
- Phosphorylation
- Plasmids/metabolism
- Protein Isoforms
- Protein Structure, Tertiary
- Proteins/metabolism
- RNA, Small Interfering/metabolism
- Shc Signaling Adaptor Proteins
- Signal Transduction
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Swine
- Transfection
- Tyrosine/chemistry
- Up-Regulation
- Urokinase-Type Plasminogen Activator/biosynthesis
- p38 Mitogen-Activated Protein Kinases
Collapse
Affiliation(s)
- Amir Faisal
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | |
Collapse
|
62
|
Gong Y, Zhao X. Shc-dependent pathway is redundant but dominant in MAPK cascade activation by EGF receptors: a modeling inference. FEBS Lett 2003; 554:467-72. [PMID: 14623113 DOI: 10.1016/s0014-5793(03)01174-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In cell signaling cascades, one stimulus often leads to various physiological functions by multiple pathways. Perturbation of one pathway by blocking or overexpressing one of its components will result in changes in multiple pathways and multiple cell functions. Thus, it is important to reveal the relative contribution of each pathway to each function in order to assess the consequence of perturbations (e.g. drug delivery). By exploring an established mathematical model, the Shc-dependent pathway is found to be both redundant and dominant during activation of the mitogen-activated protein kinase cascade by epidermal growth factor receptor (EGFR). Its dominance results from the majority consumption of the common precursor ((EGF-EGFR*)2-GAP) by this pathway. The key steps for the dominance are the binding and phosphorylation of Shc. In conclusion, cells may prefer the long Shc-dependent pathway to the short Shc-independent pathway.
Collapse
Affiliation(s)
- Yunchen Gong
- Department of Animal Science, McGill University, 21111 Lakeshore Rd., Ste-Anne-de-Bellevue, QC, Canada H9X 3V9.
| | | |
Collapse
|
63
|
Benetti L, Calistri A, Ulivieri C, Cabrelle A, Baldari CT, Palù G, Parolin C. Inhibition of ShcA isoforms p46/p52Shc enhances HIV-1 replication in CD4+T-lymphocytes. J Cell Physiol 2003; 199:40-6. [PMID: 14978733 DOI: 10.1002/jcp.10449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
HIV-1 infection decreases the number of CD4(+) T-cells, and apoptosis has been suggested among the mechanisms. Proteins of the Shc family are involved in a complex network of signal transduction, differentiation, and apoptotic response to stress in many different cell types. Out of three homologous gene products (ShcA, ShcB, and ShcC), only two splicing variants of ShA are expressed in T-lymphocytes, namely p46Shc and p52Shc. In the present study, we report that inhibition of p46Shc and p52Shc by a dominant negative mutant enhances the yield of HIV-1 particles production without affecting efficiency of viral gene expression in CD4(+)-infected cells. The increase in HIV-1 replication in cells expressing the dominant negative mutant isoform ultimately correlates with a decrease in the percentage of cells entering apoptosis. The data presented suggest that ShcA proteins can play a role in committing CD4(+) T-cells to apoptosis, as a response to HIV-1 infection.
Collapse
Affiliation(s)
- Luca Benetti
- Department of Histology, Microbiology and Medical Biotechnologies, Section of Microbiology and Virology, University of Padua, Padua, Italy
| | | | | | | | | | | | | |
Collapse
|
64
|
Barnes H, Ackermann EJ, van der Geer P. v-Src induces Shc binding to tyrosine 63 in the cytoplasmic domain of the LDL receptor-related protein 1. Oncogene 2003; 22:3589-97. [PMID: 12789267 DOI: 10.1038/sj.onc.1206504] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We recently observed that the LDL receptor-related protein 1 (LRP-1) is tyrosine phosphorylated in v-Src-transformed cells. Using a GST-fusion protein containing the cytoplasmic domain of LRP-1, we show that LRP-1 is a direct substrate for v-Src in vitro. To study LRP-1 phosphorylation in vivo, we constructed an LRP-1 minireceptor composed of the beta chain linked at the amino-terminus to a Myc epitope (Myc-LRPbeta). When expressed together with v-Src, Myc-LRPbeta becomes phosphorylated on tyrosine. Of the four tyrosine residues present in the cytoplasmic domain of LRP-1, only Tyr 63 is phosphorylated by v-Src in vivo or in vitro. Using fibroblasts deficient in Src, Yes and Fyn, we were able to show that there are multiple kinases present in the cell that can phosphorylate LRP-1. Tyrosine-phosphorylated LRP-1 associates with Shc, a PTB and SH2 domain containing signaling protein that is involved in the activation of Ras. Binding of the purified Shc PTB domain to Tyr 63 containing peptides shows that the interaction between LRP-1 and Shc is direct. We found that DAB, a PTB domain containing signaling protein that is involved in signaling by LDL receptor-related proteins in the nervous system, did not bind to full-length LRP-1. Our observations suggest that LRP-1 may be involved in normal and malignant signal transduction through a direct interaction with Shc adaptor proteins.
Collapse
Affiliation(s)
- Helen Barnes
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0601, USA
| | | | | |
Collapse
|
65
|
Koike T, Yamagishi H, Hatanaka Y, Fukushima A, Chang JW, Xia Y, Fields M, Chandler P, Iwashima M. A novel ERK-dependent signaling process that regulates interleukin-2 expression in a late phase of T cell activation. J Biol Chem 2003; 278:15685-92. [PMID: 12595531 DOI: 10.1074/jbc.m210829200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Engagement of the T cell antigen receptor (TCR) rapidly induces multiple signal transduction pathways, including ERK activation. Here, we report a critical role for ERK at a late stage of T cell activation. Inhibition of the ERK pathway 2-6 h after the start of TCR stimulation significantly impaired interleukin-2 (IL-2) production, whereas the same treatment during the first 2 h had no effect. ERK inhibition significantly impaired nuclear translocation of c-Rel with a minimum reduction of NF-AT activity. Requirement for sustained ERK activation was also confirmed using primary T cells. To induce sustained activation of ERK, T cells required continuous engagement of TCR. Stimulation of T cells with soluble anti-TCR antibody resulted in activation of ERK lasting for 60 min, but failed to induce IL-2 production. In contrast, plate-bound anti-TCR antibody activated ERK over 4 h and induced IL-2. Furthermore, T cells treated with soluble anti-TCR antibody produced IL-2 when phorbol 12-myristate 13-acetate, which activates ERK, was present in the culture medium 2-6 h after the start of stimulation. Together, the data demonstrate the presence of a novel activation process following TCR stimulation that requires ERK-dependent regulation of c-Rel, a member of the NF-kappaB family.
Collapse
Affiliation(s)
- Toru Koike
- Program in Molecular Immunology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, CA 2004, 1120 15th Street, Augusta, GA 30912-2600, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Napoli C, Martin-Padura I, de Nigris F, Giorgio M, Mansueto G, Somma P, Condorelli M, Sica G, De Rosa G, Pelicci P. Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc Natl Acad Sci U S A 2003; 100:2112-6. [PMID: 12571362 PMCID: PMC149967 DOI: 10.1073/pnas.0336359100] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2002] [Indexed: 11/18/2022] Open
Abstract
Several experimental and clinical studies have shown that oxidized low-density lipoprotein and oxidation-sensitive mechanisms are central in the pathogenesis of vascular dysfunction and atherogenesis. Here, we have used p66(Shc-/-) and WT mice to investigate the effects of high-fat diet on both systemic and tissue oxidative stress and the development of early vascular lesions. To date, the p66(Shc-/-) mouse is the unique genetic model of increased resistance to oxidative stress and prolonged life span in mammals. Computer-assisted image analysis revealed that chronic 21% high-fat treatment increased the aortic cumulative early lesion area by approximately 21% in WT mice and only by 3% in p66(Shc-/-) mice. Early lesions from p66(Shc-/-) mice had less content of macrophage-derived foam cells and apoptotic vascular cells, in comparison to the WT. Furthermore, in p66(Shc-/-) mice, but not WT mice, we found a significant reduction of systemic and tissue oxidative stress (assessed by isoprostanes, plasma low-density lipoprotein oxidizability, and the formation of arterial oxidation-specific epitopes). These results support the concept that p66(Shc-/-) may play a pivotal role in controlling systemic oxidative stress and vascular diseases. Therefore, p66(Shc) might represent a molecular target for therapies against vascular diseases.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of Medicine, School of Medicine, University of Naples, 80131 Naples, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Haj FG, Markova B, Klaman LD, Bohmer FD, Neel BG. Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatase-1B. J Biol Chem 2003; 278:739-44. [PMID: 12424235 DOI: 10.1074/jbc.m210194200] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) are key regulators of cellular homeostasis. Based on in vitro and ex vivo studies, protein tyrosine phosphatase-1B (PTP1B) was implicated in the regulation of several RTKs, yet mice lacking PTP1B show defects mainly in insulin and leptin receptor signaling. To address this apparent paradox, we studied RTK signaling in primary and immortalized fibroblasts from PTP1B(-/-) mice. After growth factor treatment, cells lacking PTP1B exhibit increased and sustained phosphorylation of the epidermal growth factor receptor (EGFR) and the platelet-derived growth factor receptor (PDGFR). However, Erk activation is enhanced only slightly, and there is no increase in Akt activation in PTP1B-deficient cells. Our results show that PTP1B does play a role in regulating EGFR and PDGFR phosphorylation but that other signaling mechanisms can largely compensate for PTP1B deficiency. In-gel phosphatase experiments suggest that other PTPs may help to regulate the EGFR and PDGFR in PTP1B(-/-) fibroblasts. This and other compensatory mechanisms prevent widespread, uncontrolled activation of RTKs in the absence of PTP1B and probably explain the relatively mild effects of PTP1B deletion in mice.
Collapse
Affiliation(s)
- Fawaz G Haj
- Cancer Biology Program, Division of Hematology Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
68
|
Nakamura T, Komiya M, Sone K, Hirose E, Gotoh N, Morii H, Ohta Y, Mori N. Grit, a GTPase-activating protein for the Rho family, regulates neurite extension through association with the TrkA receptor and N-Shc and CrkL/Crk adapter molecules. Mol Cell Biol 2002; 22:8721-34. [PMID: 12446789 PMCID: PMC139861 DOI: 10.1128/mcb.22.24.8721-8734.2002] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurotrophins are key regulators of the fate and shape of neuronal cells and act as guidance cues for growth cones by remodeling the actin cytoskeleton. Actin dynamics is controlled by Rho GTPases. We identified a novel Rho GTPase-activating protein (Grit) for Rho/Rac/Cdc42 small GTPases. Grit was abundant in neuronal cells and directly interacted with TrkA, a high-affinity receptor for nerve growth factor (NGF). Another pool of Grit was recruited to the activated receptor tyrosine kinase through its binding to N-Shc and CrkL/Crk, adapter molecules downstream of activated receptor tyrosine kinases. Overexpression of the TrkA-binding region of Grit inhibited NGF-induced neurite elongation. Further, we found some tendency for neurite promotion in full-length Grit-overexpressing PC12 cells upon NGF stimulation. These results suggest that Grit, a novel TrkA-interacting protein, regulates neurite outgrowth by modulating the Rho family of small GTPases.
Collapse
Affiliation(s)
- Takeshi Nakamura
- Department of Molecular Genetics, National Institute for Longevity Sciences, Program of Protecting the Brain, CREST, JST, Oobu, Aichi 474-8522, Japan
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Pelicci G, Troglio F, Bodini A, Melillo RM, Pettirossi V, Coda L, De Giuseppe A, Santoro M, Pelicci PG. The neuron-specific Rai (ShcC) adaptor protein inhibits apoptosis by coupling Ret to the phosphatidylinositol 3-kinase/Akt signaling pathway. Mol Cell Biol 2002; 22:7351-63. [PMID: 12242309 PMCID: PMC139827 DOI: 10.1128/mcb.22.20.7351-7363.2002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rai is a recently identified member of the family of Shc-like proteins, which are cytoplasmic signal transducers characterized by the unique PTB-CH1-SH2 modular organization. Rai expression is restricted to neuronal cells and regulates in vivo the number of postmitotic sympathetic neurons. We report here that Rai is not a common substrate of receptor tyrosine kinases under physiological conditions and that among the analyzed receptors (Ret, epidermal growth factor receptor, and TrkA) it is activated specifically by Ret. Overexpression of Rai in neuronal cell lines promoted survival by reducing apoptosis both under conditions of limited availability of the Ret ligand glial cell line-derived neurotrophic factor (GDNF) and in the absence of Ret activation. Overexpressed Rai resulted in the potentiation of the Ret-dependent activation of phosphatidylinositol 3-kinase (PI3K) and Akt. Notably, increased Akt phosphorylation and PI3K activity were also found under basal conditions, e.g., in serum-starved neuronal cells. Phosphorylated and hypophosphorylated Rai proteins form a constitutive complex with the p85 subunit of PI3K: upon Ret triggering, the Rai-PI3K complex is recruited to the tyrosine-phosphorylated Ret receptor through the binding of the Rai PTB domain to tyrosine 1062 of Ret. In neurons treated with low concentrations of GDNF, the prosurvival effect of Rai depends on Rai phosphorylation and Ret activation. In the absence of Ret activation, the prosurvival effect of Rai is, instead, phosphorylation independent. Finally, we showed that overexpression of Rai, at variance with Shc, had no effects on the early peak of mitogen-activated protein kinase (MAPK) activation, whereas it increased its activation at later time points. Phosphorylated Rai, however, was not found in complexes with Grb2. We propose that Rai potentiates the MAPK and PI3K signaling pathways and regulates Ret-dependent and -independent survival signals.
Collapse
Affiliation(s)
- Giuliana Pelicci
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Ratcliffe KE, Tao Q, Yavuz B, Stoletov KV, Spring SC, Terman BI. Sck is expressed in endothelial cells and participates in vascular endothelial growth factor-induced signaling. Oncogene 2002; 21:6307-16. [PMID: 12214271 DOI: 10.1038/sj.onc.1205781] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2002] [Revised: 06/12/2002] [Accepted: 06/19/2002] [Indexed: 11/08/2022]
Abstract
Sck, a member of the Shc family of cell signaling proteins, has only been studied in neuronal cells, though previous studies have demonstrated its expression in tissues other than brain. Using RT-PCR and RNase protection assays, we detected Sck mRNA expression in endothelial cells, and Sck protein was detected by Western blotting using polyclonal and monoclonal antibodies targeting the Sck CH1 domain. Immunohistochemistry protocols demonstrate that Sck is expressed in KDR and PECAM positive cells found in the mouse retina, mouse heart and human umbilical chord. Treatment of human umbilical vein endothelial (HUVE) cells with vascular endothelial growth factor (VEGF) leads to the recruitment of Sck to the KDR VEGF receptor and an enhanced Sck tyrosine phosphorylation. Sck is recruited to KDR tyrosine 1175, as co-immunoprecipitation of KDR and Sck is not observed in VEGF-treated porcine aortic endothelial cells expressing a receptor mutated at this autophosphorylation site. The Sck and Shc SH2 domains, and not the PTB domain, mediates its interactions with KDR, as recombinant Sck SH2 domain binds to a tyrosine phosphorylated KDR 1175-derived synthetic peptide, but not to a peptide synthesized without tyrosine phosphate. Recombinant PLCgamma SH2 domain also interacts with the phosphotyrosine 1175 containing peptide. VEGF-induced MAPK activation is dependent upon PLCgamma activity, and chimeric proteins consisting of the Shc or Sck SH2 domains fused with a cellular internalization sequence attenuated this activation. Taken together, these results demonstrate that Sck is expressed in vascular endothelial cells, and participates in VEGF-induced signal transduction.
Collapse
Affiliation(s)
- Kirsty E Ratcliffe
- Department of Medicine, Cardiology Division, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
71
|
Faisal A, el-Shemerly M, Hess D, Nagamine Y. Serine/threonine phosphorylation of ShcA. Regulation of protein-tyrosine phosphatase-pest binding and involvement in insulin signaling. J Biol Chem 2002; 277:30144-52. [PMID: 12052829 DOI: 10.1074/jbc.m203229200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine phosphorylation of the ShcA signaling molecule has been reported recently. In this work, we have identified 12-O-tetradecanoylphorbol-13-acetate (TPA)- and growth factor-induced serine/threonine phosphorylation sites in p52(Shc) and p66(Shc). Among them, Ser(29) in p52(Shc) (equivalent to Ser(138) in p66(Shc)) was phosphorylated only after TPA stimulation. Phosphorylation of this site together with the intact phosphotyrosine-binding domain was essential for ShcA binding to the protein-tyrosine phosphatase PTP-PEST. TPA-induced ShcA phosphorylation at this site (and hence, its association with PTP-PEST) was inhibited by a protein kinase C-specific inhibitor and was induced by overexpression of constitutively active mutants of protein kinase Calpha, -epsilon, and -delta isoforms. Insulin also induced ShcA/PTP-PEST association, although to a lesser extent than TPA. Overexpression of a PTP-PEST binding-defective mutant of p52(Shc) (S29A) enhanced insulin-induced ERK activation in insulin receptor-overexpressing HIRc-B cells. Consistent with this, p52(Shc) S29A was more tyrosine-phosphorylated than wild-type p52(Shc) after insulin stimulation. Thus, we have identified a new mechanism whereby serine phosphorylation of ShcA controls the ability of its phosphotyrosine-binding domain to bind PTP-PEST, which is responsible for the dephosphorylation and down-regulation of ShcA after insulin stimulation.
Collapse
Affiliation(s)
- Amir Faisal
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | |
Collapse
|
72
|
Sato KI, Nagao T, Kakumoto M, Kimoto M, Otsuki T, Iwasaki T, Tokmakov AA, Owada K, Fukami Y. Adaptor protein Shc is an isoform-specific direct activator of the tyrosine kinase c-Src. J Biol Chem 2002; 277:29568-76. [PMID: 12048194 DOI: 10.1074/jbc.m203179200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of c-Src protein-tyrosine kinase is up-regulated under a number of receptor signaling pathways. However, the activation mechanism of c-Src under physiological conditions has remained unclear. We show here that the Shc adaptor protein is a novel direct activator of c-Src in epidermal growth factor receptor signaling in A431 human epidermoid carcinoma cells. Among the three Shc isoforms, P66 and P52, but not P46, were found to interact with and activate c-Src in vitro and in vivo. Activation of c-Src accompanied autophosphorylation of c-Src in the activation segment, but the carboxyl-terminal dephosphorylation was not observed. We have identified the interaction sites between Shc and c-Src and constructed a point mutant of Shc that abolishes the c-Src activation. Using this mutant, we have confirmed that the Shc-mediated c-Src activation triggers Stat-p21/WAF1/Cip1 pathway that has been implicated in the cell cycle arrest and apoptosis of epidermal growth factor-stimulated A431 cells.
Collapse
Affiliation(s)
- Ken-ichi Sato
- Research Center for Environmental Genomics, Department of Biology, Faculty of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Nakazawa T, Nakano I, Sato M, Nakamura T, Tamai M, Mori N. Comparative expression profiles of Trk receptors and Shc-related phosphotyrosine adapters during retinal development: potential roles of N-Shc/ShcC in brain-derived neurotrophic factor signal transduction and modulation. J Neurosci Res 2002; 68:668-80. [PMID: 12111828 DOI: 10.1002/jnr.10259] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neurotrophins (NTs) have multiple roles in retinal development and survival, which are mediated through their specific receptors and signaling molecules. An emerging family of adapter protein, Shc (Src homology and collagen)-related molecules, i.e., Shc/ShcA, Sck/ShcB, and N-Shc/ShcC, has been implicated in various phosphotyrosine signal transduction mechanisms, including that for NTs. To explore the potential role(s) of Shc-related adapters in NT signaling in the retina, we compared the developmental changes of the mRNA expression of TrkA -B, and -C in the rat retina, on one hand and, on the other hand, studied which members of the Shc family were activated after brain-derived neurotrophic factor (BDNF) application in axotomized rat retinas. Early in development, both TrkA and ShcA were highly expressed, whereas, in late development to adulthood, TrkB/C and ShcB/C were highly expressed. In the mature retinal ganglion cell layer, the expression of ShcB/C and TrkB/C was evident. Immunoreactivity of ShcC was located in the retinal ganglion cells, amacrine cells, and inner plexiform layer. The response of ShcC following retinal axotomy was most profound with the administration of BDNF, and there was some response with neurotrophin-3. These results indicate that ShcC could be a potential phosphotyrosine adapter among the Shc family members for BDNF signaling and function during retinal development and regeneration in vivo.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Axotomy
- Blotting, Western
- Brain-Derived Neurotrophic Factor/metabolism
- Brain-Derived Neurotrophic Factor/pharmacology
- Gene Expression Regulation
- Immunohistochemistry
- In Situ Hybridization
- Male
- Nerve Tissue Proteins/analysis
- Nerve Tissue Proteins/drug effects
- Nerve Tissue Proteins/genetics
- Neuropeptides/metabolism
- Phosphotyrosine/metabolism
- Plasmids
- Precipitin Tests
- Proteins/analysis
- Proteins/drug effects
- Proteins/genetics
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Receptor, trkA/analysis
- Receptor, trkA/genetics
- Receptor, trkB/analysis
- Receptor, trkB/genetics
- Receptor, trkC/analysis
- Receptor, trkC/genetics
- Receptors, Nerve Growth Factor/metabolism
- Retina/growth & development
- Retina/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Shc Signaling Adaptor Proteins
- Signal Transduction
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Src Homology 2 Domain-Containing, Transforming Protein 2
- Src Homology 2 Domain-Containing, Transforming Protein 3
Collapse
Affiliation(s)
- Toru Nakazawa
- Department of Molecular Genetics, National Institute for Longevity Sciences, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
74
|
Yang CPH, Horwitz SB. Distinct mechanisms of taxol-induced serine phosphorylation of the 66-kDa Shc isoform in A549 and RAW 264.7 cells. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1590:76-83. [PMID: 12063170 DOI: 10.1016/s0167-4889(02)00200-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nanomolar concentrations of Taxol, and other antimitotic agents that interact with microtubules, mediate serine phosphorylation of the 66-kDa Shc isoform (p66shc) in A549 human lung carcinoma cells, 9-18 h after drug treatment. This event coincides with the release of PARP cleavage fragments that are early indicators of apoptosis. Taxol-induced serine phosphorylation of p66shc results from a MEK-independent signaling pathway that is activated in A549 cells that have a prolonged or abnormal mitotic phase of the cell cycle [Cancer Res. 60 (2000) 5171]. In contrast, in murine macrophage RAW 264.7 cells, micromolar concentrations of Taxol but not other microtubule-interacting agents induced serine phosphorylation of p66shc that correlated with the phosphorylation of Raf-1 and extracellular signal-regulated kinase (ERK1/2), within 15-30 min after Taxol treatment. This event also was induced by lipopolysaccharide (LPS). The MEK-inhibitor, U0126, that specifically inhibits the activation of ERK also blocked the phosphorylation of p66shc and Raf-1, suggesting that these processes were MEK-dependent, quite different from that which was observed in A549 cells. Taxol also induced phosphorylation of p38 and JNK MAP kinases within 8-15 min after drug treatment. It is known that Taxol, but not other microtubule-interacting agents, induces the production of cytokines, such as tumor necrosis factor alpha (TNF-alpha) in mouse macrophages. The time course of Taxol-induced TNF-alpha expression coincides with that of Taxol-induced p66shc phosphorylation, and U0126 inhibits significantly Taxol-induced TNF-alpha expression in RAW 264.7 cells. Our data indicate that the Taxol-induced serine phosphorylation of p66shc in RAW 264.7 cells is microtubule-independent and may be related to increased TNF-alpha expression after Taxol and LPS treatment. It is concluded that the mechanisms involved in Taxol-induced p66shc phosphorylation are distinct in A549 and RAW 264.7 cells.
Collapse
Affiliation(s)
- Chia-Ping Huang Yang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
75
|
Piu F, Magnani M, Ader ME. Dissection of the cytoplasmic domains of cytokine receptors involved in STAT and Ras dependent proliferation. Oncogene 2002; 21:3579-91. [PMID: 12032860 DOI: 10.1038/sj.onc.1205444] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2001] [Revised: 02/11/2002] [Accepted: 02/21/2002] [Indexed: 11/08/2022]
Abstract
Cytokine receptors have different signaling requirements which ultimately lead to various physiological responses. In an effort to precisely characterize the molecular determinants involved in the proliferative response mediated by cytokines, we examine dose-dependent proliferation of the betac (GM-CSF, IL-3, IL-5) and homodimeric (G-CSF, TPO) cytokine receptors. Here we report that all cytokine receptors tested activate mostly STAT3 and STAT5. While STAT3 had a positive effect on betac cytokine receptor dependent proliferation, STAT5 was strongly inhibitory. Similarly, G-CSF and TPO lead to activation of STAT3 and STAT5 but, unlike the betac cytokine receptors, both stimulated cellular growth. On the other hand, Ras activation was necessary for all receptor mediated proliferation with the exception of G-CSF R. Truncated mutants of the receptors intracellular domains were used to delineate the functional domains involved in JAK/STAT and Ras activation linked to cellular growth. For instance, we revealed a critical role for the specific alpha subunit of the betac receptors in triggering receptor activation, STAT3 stimulation and proliferation, while Ras activation originates from the distal intracellular portion of the betac subunit. Finally, we showed that proximal STAT activation is the triggering event of G-CSF and TPO receptor function.
Collapse
Affiliation(s)
- Fabrice Piu
- ACADIA Pharmaceuticals Inc., Signal Transduction Group, San Diego, California, CA 92121, USA.
| | | | | |
Collapse
|
76
|
Iwashima M, Takamatsu M, Yamagishi H, Hatanaka Y, Huang YY, McGinty C, Yamasaki S, Koike T. Genetic evidence for Shc requirement in TCR-induced c-Rel nuclear translocation and IL-2 expression. Proc Natl Acad Sci U S A 2002; 99:4544-9. [PMID: 11917142 PMCID: PMC123684 DOI: 10.1073/pnas.082647499] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2001] [Indexed: 01/20/2023] Open
Abstract
Shc, a prototypic adapter molecule, has been implicated in T cell receptor (TCR) signal transduction, but its role has not been identified clearly. Here we report that Shc is essential for TCR-induced IL-2 production but is dispensable for CD69 or CD25 expression. Engagement of TCR in mutant Jurkat T cells lacking Shc fails to produce IL-2 because of impaired mitogen-activated protein kinase activation. Activation of c-Rel, a transcription factor essential for IL-2 expression, was impaired also. In contrast, activation of nuclear factor of activated T cell and expression of CD69/CD25 were comparable between the mutant and wild-type Jurkat cells. These defects were rescued by expression of exogenous Shc. Activation of c-Rel using the estrogen receptor fusion protein restored the activation of the IL-2 promoter in an estrogen-dependent manner. These results show that Shc plays an essential role in the TCR-induced activation of c-Rel and the IL-2 promoter.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Antigens, CD/genetics
- Antigens, Differentiation, T-Lymphocyte/genetics
- Biological Transport
- Cell Nucleus/metabolism
- DNA-Binding Proteins/metabolism
- Humans
- Interleukin-2/biosynthesis
- Interleukin-2/genetics
- Jurkat Cells
- Lectins, C-Type
- Mitogen-Activated Protein Kinases/physiology
- NF-kappa B/metabolism
- NFATC Transcription Factors
- Nuclear Proteins
- Promoter Regions, Genetic
- Proteins/physiology
- Proto-Oncogene Proteins c-rel/metabolism
- Receptors, Antigen, T-Cell/physiology
- Receptors, Interleukin-2/genetics
- Shc Signaling Adaptor Proteins
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Transcription Factor AP-1/metabolism
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Makio Iwashima
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912-2600, USA.
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Day RM, Soon L, Breckenridge D, Bridges B, Patel BKR, Wang LM, Corey SJ, Bottaro DP. Mitogenic synergy through multilevel convergence of hepatocyte growth factor and interleukin-4 signaling pathways. Oncogene 2002; 21:2201-11. [PMID: 11948403 DOI: 10.1038/sj.onc.1205289] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2000] [Revised: 01/03/2002] [Accepted: 01/07/2002] [Indexed: 11/09/2022]
Abstract
Hepatocyte growth factor (HGF) regulates various physiological and developmental processes in concert with other growth factors, cytokines and hormones. We examined interactions between cell signaling events elicited by HGF and the cytokine interleukin (IL)-4, in the IL-3-dependent murine myeloid cell line 32D transfected with the human HGF receptor, c-Met. HGF was a potent mitogen in these cells, and prevented apoptosis in response to IL-3 withdrawal. IL-4 showed modest anti-apoptotic activity, but no significant mitogenic activity. IL-4 synergistically enhanced HGF-stimulated DNA synthesis, whereas only additive prevention of apoptosis was observed. IL-4 did not enhance HGF-dependent tyrosine phosphorylation of c-Met or Shc. In contrast, HGF-stimulated activation of MAP kinases was enhanced by IL-4, suggesting that the IL-4 and HGF signaling pathways converge upstream of these events. Although phosphatidylinositol 3-kinase (PI3K) inhibitors diminished HGF-induced mitogenesis, anti-apoptosis, and MAP kinase activation, IL-4 enhanced HGF signaling persisted even in the presence of these inhibitors. IL-4 enhancement of HGF signaling was partially blocked in 32D/c-Met cells treated with inhibitors of MEK1 or c-Src kinases, completely blocked by expression of a catalytically inactive mutant of Janus kinase 3 (Jak3), and increased in 32D/c-Met cells overexpressing STAT6. Our results suggest that the IL-4 and HGF pathways converge at multiple levels, and that IL-4-dependent Jak3 and STAT6 activities modulate signaling events independent of PI3K to enhance HGF-dependent mitogenesis in myeloid cells, and possibly other common cellular targets.
Collapse
Affiliation(s)
- Regina M Day
- Laboratory of Cellular and Molecular Biology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Nakamura T, Komiya M, Gotoh N, Koizumi S, Shibuya M, Mori N. Discrimination between phosphotyrosine-mediated signaling properties of conventional and neuronal Shc adapter molecules. Oncogene 2002; 21:22-31. [PMID: 11791173 DOI: 10.1038/sj.onc.1205019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2001] [Revised: 09/24/2001] [Accepted: 10/01/2001] [Indexed: 11/08/2022]
Abstract
The phosphotyrosine (pTyr) adapter Shc/ShcA is a major connector in various tyrosine kinase signalings following a variety of stimulation such as growth factor/neurotrophin, as well as in those following calcium influx and integrin activation. As in other tissues, Shc has been implicated in neuronal signalings; however, recent evidence suggests that N-Shc/ShcC and Sck/ShcB would take over most of the roles of Shc in mature central neurons, and switching phenomena between Shc and N-Shc expression were observed in several neuronal paradigms. Little is, however, known as to the signal-output differences between Shc and N-Shc. Here we determined the efficacy of Shc and N-Shc toward Erk activation in NGF-treated PC12 cells, and found that N-Shc transduced Grb2/Sos/Ras-dependent Erk activation less efficiently than Shc. This was mainly because N-Shc has only one high-affinity Grb2-binding site, whereas Shc has two such sites. Phosphopeptide mapping revealed that N-Shc has novel tyrosine-phosphorylation sites at Y259/Y260 and Y286; in vivo-phosphorylation of these tyrosines was demonstrated by site-specific anti-pTyr antibodies. Phosphorylated Y286 bound to several proteins, of which one was Crk. The pY221/pY222 site, corresponding to one of the Grb2-binding sites of Shc, also preferentially bound to Crk. The phosphorylation-dependent interaction between N-Shc and Crk was demonstrated in vitro and in vivo. These results indicate that N-Shc has specific features of signal-output, and further suggest that the switching between Shc and N-Shc during neural development and regeneration would lead to differentiation of downstream signalings.
Collapse
Affiliation(s)
- Takeshi Nakamura
- Department of Molecular Genetics, National Institute for Longevity Sciences, Oobu, Aichi 474-8522, Japan
| | | | | | | | | | | |
Collapse
|
79
|
Abstract
The family of docker proteins containing phosphotyrosine-binding (PTB) domains appears to represent a family of critically positioned and exquisitely controlled signalling proteins that relay signals from the activated receptors to downstream pathways. These proteins all have a membrane attachment domain, a PTB domain that targets the protein to a subset of receptors and a number of phosphorylatable tyrosines that dock other signalling proteins. Evidence is accruing that suggests that the PTB domain has evolved from a pleckstrin homology (PH) domain to bind to a range of sequences that, while bestowing specificity, allows switching of the docker protein between receptors or signalling systems. The history of the PTB domain and how it influences the participation of docker protein in various signalling pathways are discussed.
Collapse
Affiliation(s)
- Graeme R Guy
- Signal Transduction Laboratory, Institute of Molecular and Cell Biology, 30 Medical Drive 117609, Singapore.
| | | | | | | | | |
Collapse
|
80
|
Le S, Connors TJ, Maroney AC. c-Jun N-terminal kinase specifically phosphorylates p66ShcA at serine 36 in response to ultraviolet irradiation. J Biol Chem 2001; 276:48332-6. [PMID: 11602589 DOI: 10.1074/jbc.m106612200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mice lacking expression of the p66 isoform of the ShcA adaptor protein (p66(ShcA)) are less susceptible to oxidative stress and have an extended life span. Specifically, phosphorylation of p66(ShcA) at serine 36 is critical for the cell death response elicited by oxidative damage. We sought to identify the kinase(s) responsible for this phosphorylation. Utilizing the SH-SY5Y human neuroblastoma cell model, it is demonstrated that p66(ShcA) is phosphorylated on serine/threonine residues in response to UV irradiation. Both c-Jun N-terminal kinases (JNKs) and p38 mitogen-activated protein kinases are activated by UV irradiation, and we show that both are capable of phosphorylating serine 36 of p66(ShcA) in vitro. However, treatment of cells with a multiple lineage kinase inhibitor, CEP-1347, that blocks UV-induced JNK activation, but not p38, phosphatidylinositol 3-kinase, or MEK1 inhibitors, prevented p66(ShcA) phosphorylation in SH-SY5Y cells. Consistent with this finding, transfected activated JNK1, but not the kinase-dead JNK1, leads to phosphorylation of serine 36 of p66(ShcA) in Chinese hamster ovary cells. In conclusion, JNKs are the kinases that phosphorylate serine 36 of p66(ShcA) in response to UV irradiation in SH-SY5Y cells, and blocking p66(ShcA) phosphorylation by intervening in the JNK pathway may prevent cellular damage due to light-induced oxidative stress.
Collapse
Affiliation(s)
- S Le
- Cephalon, Inc., West Chester, Pennsylvania 19380, USA
| | | | | |
Collapse
|
81
|
Abstract
The adapter protein Shc was initially identified as an SH2 containing proto-oncogene involved in growth factor signaling. Since then a number of studies in multiple systems have implicated a role for Shc in signaling via many different types of receptors, such as growth factor receptors, antigen receptors, cytokine receptors, G-protein coupled receptors, hormone receptors and integrins. In addition to the ubiquitous ShcA, two other shc gene products, ShcB and ShcC, which are predominantly expressed in neuronal cells, have also been identified. ShcA knockout mice are embryonic lethal and have clearly suggested an important role for ShcA in vivo. Based on dominant negative studies and mouse embryos deficient in ShcA, a clear role for Shc in leading to mitogen activated protein kinase (MAPK) activation has been established. However MAPK activation may not be the sole function of Shc proteins. Although Shc has also been linked to other signaling events such as c-Myc activation and cell survival, the mechanistic understanding of these signaling events remains poorly characterized. Given the apparently central role that Shc plays signaling via many receptors, delineating the precise mechanism(s) of Shc-mediated signaling may be critical to our understanding of the effects mediated through these receptors.
Collapse
Affiliation(s)
- K S Ravichandran
- Beirne Carter Center for Immunology Research and the Department of Microbiology, University of Virginia, Charlottesville, Virginia, VA 22908, USA.
| |
Collapse
|
82
|
O'Bryan JP. Determining involvement of Shc proteins in signaling pathways. Methods Enzymol 2001; 333:3-15. [PMID: 11400346 DOI: 10.1016/s0076-6879(01)33039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- J P O'Bryan
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
83
|
Olayioye MA, Badache A, Daly JM, Hynes NE. An essential role for Src kinase in ErbB receptor signaling through the MAPK pathway. Exp Cell Res 2001; 267:81-7. [PMID: 11412040 DOI: 10.1006/excr.2001.5242] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ErbB receptor tyrosine kinases are activated by multiple ligands such as epidermal growth factor (EGF) and neuregulins (NRGs), leading to stimulation of intracellular signaling pathways, including the mitogen-activated protein kinase (MAPK) cascade. We show here that Src kinase is essential for rapid EGF- and NRG-induced MAPK activation when the breast carcinoma cell lines T47D and SKBR3 are stimulated with low concentrations of ligand. In the presence of the pharmacological inhibitor CGP77675, which specifically blocks the activity of Src family kinases, ligand-induced MAPK activation was almost completely blocked at 5 min. Although this block was only transient, inactivation of Src suppressed ligand-induced transcription from a MAPK-responsive promoter. At the molecular level, the initial inhibition of MAPK by Src inactivation correlated with impaired ligand-induced Shc phosphorylation. Surprisingly, Src inhibition affected neither association of Shc with ErbB receptors nor phosphorylation of receptor-bound Shc. Thus, ErbB signaling requires the engagement of a novel Src-dependent route to MAPK, to trigger its rapid activation and subsequent efficient stimulation of transcription.
Collapse
Affiliation(s)
- M A Olayioye
- Friedrich Miescher Institute, Basel, CH-4002, Switzerland
| | | | | | | |
Collapse
|
84
|
Belton RJ, Adams NL, Foltz KR. Isolation and characterization of sea urchin egg lipid rafts and their possible function during fertilization. Mol Reprod Dev 2001; 59:294-305. [PMID: 11424215 DOI: 10.1002/mrd.1034] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Specialized membrane microdomains called rafts are thought to play a role in many types of cell-cell interactions and signaling. We have investigated the possibility that sea urchin eggs contain these specialized membrane microdomains and if they play a role in signal transduction at fertilization. A low density, TX-100 insoluble membrane fraction, typical of lipid rafts, was isolated by equilibrium gradient centrifugation. This raft fraction contained proteins distinct from cytoskeletal complexes. The fraction was enriched in tyrosine phosphorylated proteins and contained two proteins known to be involved in signaling during egg activation (an egg Src-type kinase and PLC gamma). This fraction was further characterized as a prototypical raft fraction by the release of proteins in response to in vitro treatment of the rafts with the cholesterol binding drug, methyl-beta-cyclodextrin (M beta CD). Furthermore, treatment of eggs with M beta CD inhibited fertilization, suggesting that egg lipid rafts play a physiological role in fertilization. Mol. Reprod. Dev. 59:294-305, 2001.
Collapse
Affiliation(s)
- R J Belton
- Department of Molecular, Cellular and Developmental Biology and the Marine Science Institute, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
85
|
Galandrini R, Tassi I, Morrone S, Lanfrancone L, Pelicci P, Piccoli M, Frati L, Santoni A. The adaptor protein shc is involved in the negative regulation of NK cell-mediated cytotoxicity. Eur J Immunol 2001. [DOI: 10.1002/1521-4141(200107)31:7<2016::aid-immu2016>3.0.co;2-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
86
|
Barnes H, Larsen B, Tyers M, van Der Geer P. Tyrosine-phosphorylated low density lipoprotein receptor-related protein 1 (Lrp1) associates with the adaptor protein SHC in SRC-transformed cells. J Biol Chem 2001; 276:19119-25. [PMID: 11259429 DOI: 10.1074/jbc.m011437200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
v-Src transforms fibroblasts in vitro and causes tumor formation in the animal by tyrosine phosphorylation of critical cellular substrates. Exactly how v-Src interacts with these substrates remains unknown. One of its substrates, the adaptor protein Shc, is thought to play a crucial role during cellular transformation by v-Src by linking v-Src to Ras. We used Shc proteins with mutations in either the phosphotyrosine binding (PTB) or Src homology 2 domain to determine that phosphorylation of Shc in v-Src-expressing cells depends on the presence of a functional PTB domain. We purified a 100-kDa Shc PTB-binding protein from Src-transformed cells that was identified as the beta chain of the low density lipoprotein receptor-related protein LRP1. LRP1 acts as an import receptor for a variety of proteins and is involved in clearance of the beta-amyloid precursor protein. This study shows that LRP1 is tyrosine-phosphorylated in v-Src-transformed cells and that tyrosine-phosphorylated LRP1 binds in vivo and in vitro to Shc. The association between Shc and LRP1 may provide a mechanism for recruitment of Shc to the plasma membrane where it is phosphorylated by v-Src. It is at the membrane that Shc is thought to be involved in Ras activation. These observations further suggest that LRP1 could function as a signaling receptor and may provide new avenues to investigate its possible role during embryonal development and the onset of Alzheimer's disease.
Collapse
Affiliation(s)
- H Barnes
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0359, USA
| | | | | | | |
Collapse
|
87
|
Sakaguchi K, Okabayashi Y, Kasuga M. Shc mediates ligand-induced internalization of epidermal growth factor receptors. Biochem Biophys Res Commun 2001; 282:1154-60. [PMID: 11302736 DOI: 10.1006/bbrc.2001.4680] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to clarify the physiological relevance of the interaction between Shc and adaptins, components of plasma membrane-coated pit adaptor complex AP2, we investigated the role of Shc in ligand-induced endocytosis of epidermal growth factor (EGF) receptors. In vitro peptide binding assay showed that alpha-adaptin bound to the wild-type peptide corresponding to amino acids 346-355 of Shc, RDLFDMKPFE, but not to the mutant peptide in which both phenylalanines at 349 and 354 were substituted for alanines (FA). Using adenovirus vectors carrying a herpes simplex virus epitope-tagged 52-kDa wild-type Shc and Shc FA, we examined the interaction between Shc, AP2, and EGF receptors in intact cells. Alpha-adaptin bound to wild-type Shc in an EGF-dependent manner, whereas EGF-dependent association of alpha-adaptin with Shc FA was markedly reduced. In addition, EGF increased the amount of alpha-adaptin coprecipitated with EGF receptors in cells expressing wild-type Shc but not Shc FA. These results suggest that EGF stimulates Shc-AP2 complex formation and association of Shc-AP2 complexes with EGF receptors. Internalization assay showed that (125)I-EGF internalization was reduced in cells overexpressing Shc FA. Immunofluorescence study showed that punctate staining along the plasma membrane border as well as punctate pattern characteristic of cytoplasmic vesicles near the plasma membrane was enhanced in cells expressing wild-type Shc. These results suggest, therefore, the implication of Shc in ligand-induced endocytosis of EGF receptors in intact cells.
Collapse
Affiliation(s)
- K Sakaguchi
- Second Department of Internal Medicine, Kobe University School of Medicine, Kobe, 650-0017, Japan
| | | | | |
Collapse
|
88
|
Abstract
The Philadelphia chromosome generates a chimeric oncogene in which the BCR and c-ABL genes are fused. The product of this oncogene, BCR/ABL, has elevated ABL tyrosine kinase activity, relocates to the cytoskeleton, and phosphorylates multiple cellular substrates. BCR/ABL transforms hematopoietic cells and exerts a wide variety of biological effects, including reduction in growth factor dependence, enhanced viability, and altered adhesion of chronic myelocytic leukemia (CML) cells. Elevated tyrosine kinase activity of BCR/ABL is critical for activating downstream signal transduction and for all aspects of transformation. This review will describe mechanisms of transformation by the BCR/ABL oncogene and opportunities for clinical intervention with specific signal transduction inhibitors such as STI-571 in CML.
Collapse
MESH Headings
- Benzamides
- Cell Transformation, Neoplastic/genetics
- Cytoskeleton/metabolism
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Enzyme Inhibitors/therapeutic use
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/physiology
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Models, Biological
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Philadelphia Chromosome
- Phosphorylation
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- Protein Transport
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Reactive Oxygen Species
- Signal Transduction/physiology
Collapse
Affiliation(s)
- M Sattler
- Department of Adult Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
89
|
Dans M, Gagnoux-Palacios L, Blaikie P, Klein S, Mariotti A, Giancotti FG. Tyrosine phosphorylation of the beta 4 integrin cytoplasmic domain mediates Shc signaling to extracellular signal-regulated kinase and antagonizes formation of hemidesmosomes. J Biol Chem 2001; 276:1494-502. [PMID: 11044453 DOI: 10.1074/jbc.m008663200] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Ligation of the alpha(6)beta(4) integrin induces tyrosine phosphorylation of the beta(4) cytoplasmic domain, followed by recruitment of the adaptor protein Shc and activation of mitogen-activated protein kinase cascades. We have used Far Western analysis and phosphopeptide competition assays to map the sites in the cytoplasmic domain of beta(4) that are required for interaction with Shc. Our results indicate that, upon phosphorylation, Tyr(1440), or secondarily Tyr(1422), interacts with the SH2 domain of Shc, whereas Tyr(1526), or secondarily Tyr(1642), interacts with its phosphotyrosine binding (PTB) domain. An inactivating mutation in the PTB domain of Shc, but not one in its SH2 domain, suppresses the activation of Shc by alpha(6)beta(4). In addition, mutation of beta(4) Tyr(1526), which binds to the PTB domain of Shc, but not of Tyr(1422) and Tyr(1440), which interact with its SH2 domain, abolishes the activation of ERK by alpha(6)beta(4). Phenylalanine substitution of the beta(4) tyrosines able to interact with the SH2 or PTB domain of Shc does not affect incorporation of alpha(6)beta(4) in the hemidesmosomes of 804G cells. Exposure to the tyrosine phosphatase inhibitor orthovanadate increases tyrosine phosphorylation of beta4 and disrupts the hemidesmosomes of 804G cells expressing recombinant wild type beta(4). This treatment, however, exerts a decreasing degree of inhibition on the hemidesmosomes of cells expressing versions of beta(4) containing phenylalanine substitutions at Tyr(1422) and Tyr(1440), at Tyr(1526) and Tyr(1642), or at all four tyrosine phosphorylation sites. These results suggest that beta(4) Tyr(1526) interacts in a phosphorylation-dependent manner with the PTB domain of Shc. This event is required for subsequent tyrosine phosphorylation of Shc and signaling to ERK but not formation of hemidesmosomes.
Collapse
Affiliation(s)
- M Dans
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
90
|
The Regulation of Enzymatic Activity and Metabolism. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
91
|
Hermanns HM, Radtke S, Schaper F, Heinrich PC, Behrmann I. Non-redundant signal transduction of interleukin-6-type cytokines. The adapter protein Shc is specifically recruited to rhe oncostatin M receptor. J Biol Chem 2000; 275:40742-8. [PMID: 11016927 DOI: 10.1074/jbc.m005408200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The common use of the cytokine receptor gp130 has served as an explanation for the extremely redundant biological activities exerted by interleukin (IL)-6-type cytokines. Indeed, hardly any differences in signal transduction initiated by these cytokines are known. In the present study, we demonstrate that oncostatin M (OSM), but not IL-6 or leukemia inhibitory factor, induces tyrosine phosphorylation of the Shc isoforms p52 and p66 and their association with Grb2. Concomitantly, OSM turns out to be a stronger activator of ERK1/2 MAPKs. Shc is recruited to the OSM receptor (OSMR), but not to gp130. Binding involves Tyr(861) of the OSMR, located within a consensus binding sequence for the Shc PTB domain. Moreover, Tyr(861) is essential for activation of ERK1/2 and for full activation of the alpha(2)-macroglobulin promoter, but not for an exclusively STAT-responsive promoter. This study therefore provides evidence for qualitative differential signaling mechanisms exerted by IL-6-type cytokines.
Collapse
Affiliation(s)
- H M Hermanns
- Institut für Biochemie, Universitätsklinikum der Rheinisch-Westfälischen Technischen Hochschule Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
92
|
Pandey A, Fernandez MM, Steen H, Blagoev B, Nielsen MM, Roche S, Mann M, Lodish HF. Identification of a novel immunoreceptor tyrosine-based activation motif-containing molecule, STAM2, by mass spectrometry and its involvement in growth factor and cytokine receptor signaling pathways. J Biol Chem 2000; 275:38633-9. [PMID: 10993906 DOI: 10.1074/jbc.m007849200] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In an effort to clone novel tyrosine-phosphorylated substrates of the epidermal growth factor receptor, we have initiated an approach coupling affinity purification using anti-phosphotyrosine antibodies to mass spectrometry-based identification. Here, we report the identification of a signaling molecule containing a Src homology 3 domain as well as an immunoreceptor tyrosine-based activation motif (ITAM). This molecule is 55% identical to a previously isolated molecule designated signal transducing adaptor molecule (STAM) that was identified as an interleukin (IL)-2-induced phosphoprotein and is therefore designated STAM2. Tyrosine phosphorylation of STAM2 is induced by growth factors such as epidermal growth factor and platelet-derived growth factor as well as by cytokines like IL-3. Several of the deletion mutants tested except the one containing only the amino-terminal region underwent tyrosine phosphorylation upon growth factor stimulation, implying that STAM2 is phosphorylated on several tyrosine residues. STAM2 is downstream of the Jak family of kinases since coexpression of STAM2 with Jak1 or Jak2 but not an unrelated Tec family kinase, Etk, resulted in its tyrosine phosphorylation. In contrast to epidermal growth factor receptor-induced phosphorylation, this required the ITAM domain since mutants lacking this region did not undergo tyrosine phosphorylation. Finally, overexpression of wild type STAM2 led to an increase in IL-2-mediated induction of c-Myc promoter activation indicating that it potentiates cytokine receptor signaling.
Collapse
Affiliation(s)
- A Pandey
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Scorilas A, Black MH, Talieri M, Diamandis EP. Genomic organization, physical mapping, and expression analysis of the human protein arginine methyltransferase 1 gene. Biochem Biophys Res Commun 2000; 278:349-59. [PMID: 11097842 DOI: 10.1006/bbrc.2000.3807] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein arginine methyltransferases (PRMTs) regulate mRNA processing and maturation by modulating the activity of RNA-binding proteins through methylation. The cDNA for human PRMT1 (HRMT1L2) was recently identified. In this paper, we describe the complete genomic organization of the human PRMT1 gene (GenBank Accession No. AF222689), together with its precise chromosomal localization in relation to other neighboring genes. We have also examined its expression in a total RNA panel of 26 human tissues, the BT-474 breast carcinoma cell line, and 16 breast tumors. PRMT1, which spans 11.2 kb of genomic sequence on chromosome 19q13.3, is located in close proximity to the IRF3 and RRAS genes and is transcribed in the opposite direction. It is formed of 12 coding exons and 11 intervening introns, and shows structural similarity to other PRMT genes. Three PRMT1 isoforms exist as a result of alternative mRNA splicing. Amino acid sequence comparison of the splicing variants indicates that they are all enzymatically active methyl transferases, but with different N-terminal hydrophobic regions. PRMT1 expression was detected in a variety of tissues. We have shown that the relative prevalence of alternatively spliced forms of PRMT1 is different between normal and cancerous breast tissues. Although PRMT1 was not found to be hormonally regulated by steroid hormones in breast cancer cells, our results suggest that two variants of PRMT1 are down regulated in breast cancer.
Collapse
Affiliation(s)
- A Scorilas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | | | | | | |
Collapse
|
94
|
Cowan KJ, Law DA, Phillips DR. Identification of shc as the primary protein binding to the tyrosine-phosphorylated beta 3 subunit of alpha IIbbeta 3 during outside-in integrin platelet signaling. J Biol Chem 2000; 275:36423-9. [PMID: 10964917 DOI: 10.1074/jbc.m004068200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Outside-in signaling mediated by the integrin alpha(IIb)beta(3) (GPIIbIIIa) is critical to platelet function and has been shown to involve the phosphorylation of tyrosine residues on the cytoplasmic tail of beta(3). To identify proteins that bind directly to phosphorylated beta(3), we utilized an affinity column consisting of a peptide modeled on the tyrosine-phosphorylated cytoplasmic domain of beta(3). Tandem mass spectrometric sequencing and immunoblotting demonstrated that Shc was the primary protein binding to phosphorylated beta(3). To determine the involvement of Shc in outside-in alpha(IIb)beta(3) signaling, the phosphorylation of Shc during platelet aggregation was examined; transient Shc phosphorylation was observed when thrombin-stimulated platelets were allowed to aggregate or when aggregation was induced by an LIBS (ligand-induced binding site) antibody, D3. Moreover, Shc was co-immunoprecipitated with tyrosine-phosphorylated beta(3) in detergent lysates of aggregated platelets. Using purified, recombinant protein, it was found that the binding of Shc to monophosphorylated (C-terminal tyrosine) and diphosphorylated beta(3) peptides was direct, demonstrating Shc recognition motifs on phospho-beta(3). Aggregation-induced Shc phosphorylation was also observed to be robust in platelets from wild-type mice, but not in those from mice expressing (Y747F,Y759F) beta(3), which are defective in outside-in alpha(IIb)beta(3) signaling. Thus, Shc is the primary downstream signaling partner of beta(3) in its tyrosine phosphorylation outside-in signaling pathway.
Collapse
Affiliation(s)
- K J Cowan
- COR Therapeutics, Inc., South San Francisco, California 94080, USA
| | | | | |
Collapse
|
95
|
Gu H, Maeda H, Moon JJ, Lord JD, Yoakim M, Nelson BH, Neel BG. New role for Shc in activation of the phosphatidylinositol 3-kinase/Akt pathway. Mol Cell Biol 2000; 20:7109-20. [PMID: 10982827 PMCID: PMC86258 DOI: 10.1128/mcb.20.19.7109-7120.2000] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2000] [Accepted: 06/12/2000] [Indexed: 11/20/2022] Open
Abstract
Most, if not all, cytokines activate phosphatidylinositol 3-kinase (PI-3K). Although many cytokine receptors have direct binding sites for the p85 subunit of PI-3K, others, such as the interleukin-3 (IL-3) receptor beta common chain (betac) and the IL-2 receptor beta chain (IL-2Rbeta), lack such sites, leaving the mechanism by which they activate PI-3K unclear. Here, we show that the protooncoprotein Shc, which promotes Ras activation by recruiting the Grb2-Sos complex in response to stimulation of cytokine stimulation, also signals to the PI-3K/Akt pathway. Analysis of Y-->F and "add-back" mutants of betac shows that Y577, the Shc binding site, is the major site required for Gab2 phosphorylation in response to cytokine stimulation. When fused directly to a mutant form of IL-2Rbeta that lacks other cytoplasmic tyrosines, Shc can promote Gab2 tyrosyl phosphorylation. Mutation of the three tyrosyl phosphorylation sites of Shc, which bind Grb2, blocks the ability of the Shc chimera to evoke Gab2 tyrosyl phosphorylation. Overexpression of mutants of Grb2 with inactive SH2 or SH3 domains also blocks cytokine-stimulated Gab2 phosphorylation. The majority of cytokine-stimulated PI-3K activity associates with Gab2, and inducible expression of a Gab2 mutant unable to bind PI-3K markedly impairs IL-3-induced Akt activation and cell growth. Experiments with the chimeric receptors indicate that Shc also signals to the PI-3K/Akt pathway in response to IL-2. Our results suggest that cytokine receptors lacking direct PI-3K binding sites activate Akt via a Shc/Grb2/Gab2/PI-3K pathway, thereby regulating cell survival and/or proliferation.
Collapse
Affiliation(s)
- H Gu
- Cancer Biology Program, Division of Hematology-Oncology, Department of Medicine, Beth Israel-Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
96
|
Sato K, Tokmakov AA, Fukami Y. Fertilization signalling and protein-tyrosine kinases. Comp Biochem Physiol B Biochem Mol Biol 2000; 126:129-48. [PMID: 10874161 DOI: 10.1016/s0305-0491(00)00192-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fertilization is initiated by species-specific gamete cell recognition, i.e. sperm-egg interaction, followed by a rapid and sustained activation of multiple cellular and biochemical events, collectively called 'egg activation', which is indispensable for successful formation of zygotic nucleus and later embryogenesis. It is well known that sperm-induced egg activation is mediated by a transient release of calcium ions that originates from the sperm entry point and propagates through the entire egg cytoplasm. It is unclear, however, what kind of upstream events prelude to the calcium transient after sperm-egg interaction. Recently, much attention has been paid to the role of protein-tyrosine phosphorylation in egg activation process by a number of studies on some well-established model organisms. These includes marine invertebrates, frogs, and mammals. In this review, we will summarize the recent findings that begin to uncover a 'missing link' between sperm-egg interaction and egg activation with emphasis on the role of egg protein-tyrosine kinases (PTKs) in Xenopus egg fertilization.
Collapse
Affiliation(s)
- K Sato
- Laboratory of Molecular Biology, Biosignal Research Center, Kobe University, Nada, Japan.
| | | | | |
Collapse
|
97
|
Plyte S, Majolini MB, Pacini S, Scarpini F, Bianchini C, Lanfrancone L, Pelicci P, Baldari CT. Constitutive activation of the Ras/MAP kinase pathway and enhanced TCR signaling by targeting the Shc adaptor to membrane rafts. Oncogene 2000; 19:1529-37. [PMID: 10734312 DOI: 10.1038/sj.onc.1203451] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Shc adaptor is responsible for coupling receptor tyrosine kinases and tyrosine kinase-associated receptors to the Ras/MAP kinase pathway. Shc is believed to be regulated by a change in subcellular localization from the cytosol to the plasma membrane, where it recruits Grb-2/Sos complexes and hence permits juxtaposition of the guanine nucleotide exchange factor Sos to Ras, resulting in GDP/GTP exchange and Ras activation. Shc has been recently shown to inducibly colocalize in detergent-resistant membrane rafts together with the activated TCR and associated signaling molecules. To understand whether Shc localization in membrane rafts is sufficient to regulate Shc function, we constructed a Shc chimera containing the Ras membrane localization motif at the C-terminus. We show that membrane targeted Shc was constitutively localized in the plasma membrane of T-cells, and was mostly compartmentalized in lipid rafts. Membrane targeted Shc was phosphorylated on tyrosine residues and bound Grb-2/Sos in the absence of TCR engagement. Furthermore, expression of membrane targeted Shc resulted in constitutive downstream signaling, including Erk2 activation and enhancement of TCR dependent activation of the TCR responsive transcription factor NF-AT. Hence localization of Shc in membrane rafts is sufficient for Shc to acquire a signaling competent state. Interestingly, a membrane targeted Shc mutant lacking both Grb-2 binding sites was not only incapable of signaling in the absence of TCR triggering, but transdominantly inhibited endogenous Shc, supporting a non redundant role for Shc in the activation of the Ras/MAP kinase pathway in T-cells.
Collapse
Affiliation(s)
- S Plyte
- Department of Evolutionary Biology, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Wai DH, Knezevich SR, Lucas T, Jansen B, Kay RJ, Sorensen PH. The ETV6-NTRK3 gene fusion encodes a chimeric protein tyrosine kinase that transforms NIH3T3 cells. Oncogene 2000; 19:906-15. [PMID: 10702799 DOI: 10.1038/sj.onc.1203396] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/1999] [Revised: 11/18/1999] [Accepted: 12/08/1999] [Indexed: 11/09/2022]
Abstract
The congenital fibrosarcoma t(12;15)(p13;q25) rearrangement splices the ETV6 (TEL) gene on chromosome 12p13 in frame with the NTRK3 (TRKC) neurotrophin-3 receptor gene on chromosome 15q25. Resultant ETV6-NTRK3 fusion transcripts encode the helix - loop - helix (HLH) dimerization domain of ETV6 fused to the protein tyrosine kinase (PTK) domain of NTRK3. We show here that ETV6-NTRK3 homodimerizes and is capable of forming heterodimers with wild-type ETV6. Moreover, ETV6-NTRK3 has PTK activity and is autophosphorylated on tyrosine residues. To determine if the fusion protein has transforming activity, NIH3T3 cells were infected with recombinant retroviral vectors carrying the full-length ETV6-NTRK3 cDNA. These cells exhibited a transformed phenotype, grew macroscopic colonies in soft agar, and formed tumors in severe combined immunodeficient (SCID) mice. We hypothesize that chimeric proteins mediate transformation by dysregulating NTRK3 signal transduction pathways via ligand-independent dimerization and PTK activation. To test this hypothesis, we expressed a series of ETV6-NTRK3 mutants in NIH3T3 cells and assessed their transformation activities. Deletion of the ETV6 HLH domain abolished dimer formation with either ETV6 or ETV6-NTRK3, and cells expressing this mutant protein were morphologically non-transformed and failed to grow in soft agar. An ATP-binding mutant failed to autophosphorylate and completely lacked transformation activity. Mutants of the three NTRK3 PTK activation-loop tyrosines had variable PTK activity but had limited to absent transformation activity. Of a series of signaling molecules well known to bind to wild-type NTRK3, only phospholipase-Cgamma (PLCgamma) associated with ETV6-NTRK3. However, a PTK active mutant unable to bind PLCgamma did not show defects in transformation activity. Our studies confirm that ETV6-NTRK3 is a transforming protein that requires both an intact dimerization domain and a functional PTK domain for transformation activity. Oncogene (2000) 19, 906 - 915.
Collapse
MESH Headings
- 3T3 Cells
- Adaptor Proteins, Signal Transducing
- Animals
- Cell Line, Transformed/enzymology
- Cell Line, Transformed/metabolism
- DNA-Binding Proteins/genetics
- GRB2 Adaptor Protein
- Helix-Loop-Helix Motifs/genetics
- Humans
- Isoenzymes/metabolism
- Mice
- Mice, SCID
- Molecular Sequence Data
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Phospholipase C gamma
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Proteins/metabolism
- Proto-Oncogene Proteins c-ets
- Receptor, trkC/biosynthesis
- Receptor, trkC/chemistry
- Receptor, trkC/genetics
- Receptor, trkC/metabolism
- Recombinant Fusion Proteins/genetics
- Repressor Proteins
- Transcription Factors/genetics
- Translocation, Genetic
- Type C Phospholipases/metabolism
- src Homology Domains/genetics
- ETS Translocation Variant 6 Protein
Collapse
Affiliation(s)
- D H Wai
- Department of Pathology, 4480 Oak St., British Columbia's Children's Hospital, Vancouver, British Columbia V6H 3V4, Canada
| | | | | | | | | | | |
Collapse
|
99
|
Luschnig S, Krauss J, Bohmann K, Desjeux I, Nüsslein-Volhard C. The Drosophila SHC adaptor protein is required for signaling by a subset of receptor tyrosine kinases. Mol Cell 2000; 5:231-41. [PMID: 10882065 DOI: 10.1016/s1097-2765(00)80419-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Receptor tyrosine kinases (RTKs) transduce signals via cytoplasmic adaptor proteins to downstream signaling components. We have identified loss-of-function mutations in dshc, the Drosophila homolog of the mammalian adaptor protein SHC. A point mutation in the phosphotyrosine binding (PTB) domain completely abolishes DSHC function and provides in vivo evidence for the function of PTB domains. Unlike other adaptor proteins, DSHC is involved in signaling by only a subset of RTKs: dshc mutants show defects in Torso and DER but not Sevenless signaling, which is confirmed by epistasis experiments. We show by double-mutant analysis that the adaptors DOS, DRK, and DSHC act in parallel to transduce the Torso signal. Our results suggest that DSHC confers specificity to receptor signaling.
Collapse
Affiliation(s)
- S Luschnig
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Genetik, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
100
|
Dotto GP. Signal transduction pathways controlling the switch between keratinocyte growth and differentiation. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2000; 10:442-57. [PMID: 10634582 DOI: 10.1177/10454411990100040201] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Self-renewing epithelia are characterized by a high turnover rate and a fine balance between growth and differentiation. Such a balance is influenced by many exogenous factors, including gradients of diffusible molecules, cell/substrate adhesion contacts, and direct cell-cell communication. The inter-connection between these various extracellular signals and underlying intracellular pathways is clearly of great interest. Primary keratinocytes of either human or murine origin provide an ideal experimental system to elucidate early signaling events involved in the control of epithelial differentiation. Relative to established cell lines, use of a primary system eliminates the possibility of alterations in critical regulatory events which may occur during prolonged propagation in culture. Primary keratinocytes are easily grown in large numbers, and their differentiation can be induced under well-defined culture conditions. The ensuing rapid and homogeneous response is amenable to careful biochemical analysis. Gene transfer technology (transient transfections, adenoviral and retroviral vectors), together with the use of keratinocytes derived from gene knockout and transgenic mice, makes it possible to assess the specific contribution of individual genes to the control of the differentiation process. This review focuses on the significant progress that has been made over the last few years in our understanding of the specific signals that trigger keratinocyte differentiation, the underlying signaling pathways, and how they impinge on specific transcription and cell-cycle control mechanisms associated with the onset of keratinocyte differentiation. Recent developments and future directions in this important area of research will be highlighted.
Collapse
Affiliation(s)
- G P Dotto
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown 02129, USA
| |
Collapse
|